CY7C09179A-9AC [CYPRESS]

32K x 8/9 Synchronous Dual-Port Static RAM; 32K X 8/9同步双端口静态RAM
CY7C09179A-9AC
型号: CY7C09179A-9AC
厂家: CYPRESS    CYPRESS
描述:

32K x 8/9 Synchronous Dual-Port Static RAM
32K X 8/9同步双端口静态RAM

文件: 总18页 (文件大小:331K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
25/0251  
CY7C09079A  
CY7C09179A  
32K x 8/9 Synchronous  
Dual-Port Static RAM  
• Low operating power  
Features  
Active = 195 mA (typical)  
• True dual-ported memory cells which allow simulta-  
neous access of the same memory location  
Standby = 0.05 mA (typical)  
• Fully synchronous interface for easier operation  
• Burst counters increment addresses internally  
Shorten cycle times  
• Two Flow-Through/Pipelined devices  
— 32K x 8/9 organizations (CY7C09079A/179A)  
• Three Modes  
Minimize bus noise  
— Flow-Through  
Supported in Flow-Through and Pipelined modes  
• Dual Chip Enables for easy depth expansion  
• Automatic power-down  
— Pipelined  
— Burst  
• Pipelined output mode on both ports allows fast 100-  
MHz cycle time  
• Commercial temperature range  
• 0.35-micron CMOS for optimum speed/power  
• High-speed clock to data access 6.5[1]/7.5/9/12 ns  
(max.)  
• Available in 100-pin TQFP  
Pin-compatible and functionally equivalent to  
IDT709079  
Logic Block Diagram  
R/WL  
OEL  
R/WR  
OER  
CE0L  
CE0R  
1
1
CE1L  
CE1R  
0
0
0/1  
0/1  
1
0
0
1
0/1  
0/1  
FT/PipeL  
FT/PipeR  
[2]  
[2]  
8/9  
8/9  
I/O0LI/O7/8L  
I/O0RI/O7/8R  
I/O  
Control  
I/O  
Control  
15  
15  
A0A14L  
CLKL  
A0A14R  
CLKR  
Counter/  
Address  
Register  
Decode  
Counter/  
Address  
Register  
Decode  
True Dual-Ported  
RAM Array  
ADSL  
ADSR  
CNTENL  
CNTRSTL  
CNTENR  
CNTRSTR  
Notes:  
1. See page 7 for Load Conditions.  
2. I/O0I/O7 for x8 devices; I/O0I/O8 for x9 devices.  
For the most recent information, visit the Cypress web site at www.cypress.com  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
Document #: 38-06049 Rev. *A  
Revised December 27, 2002  
CY7C09079A  
CY7C09179A  
A HIGH on CE0 or LOW on CE1 for one clock cycle will power  
down the internal circuitry to reduce the static power consump-  
tion. The use of multiple Chip Enables allows easier banking  
of multiple chips for depth expansion configurations. In the  
pipelined mode, one cycle is required with CE0 LOW and CE1  
HIGH to reactivate the outputs.  
Functional Description  
The CY7C09079A and CY7C09179A are high-speed synchro-  
nous CMOS 32k x 8/9 dual-port static RAMs. Two ports are  
provided, permitting independent, simultaneous access for  
reads and writes to any location in memory.[3] Registers on  
control, address, and data lines allow for minimal set-up and  
hold times. In pipelined output mode, data is registered for  
decreased cycle time. Clock to data valid tCD2 = 6.5 ns[1] (pipe-  
lined). Flow-through mode can also be used to bypass the  
pipelined output register to eliminate access latency. In flow-  
through mode data will be available tCD1 = 15 ns after the  
address is clocked into the device. Pipelined output or flow-  
through mode is selected via the FT/Pipe pin.  
Counter enable inputs are provided to stall the operation of the  
address input and utilize the internal address generated by the  
internal counter for fast interleaved memory applications. A  
ports burst counter is loaded with the ports Address Strobe  
(ADS). When the ports Count Enable (CNTEN) is asserted,  
the address counter will increment on each LOW-to-HIGH  
transition of that ports clock signal. This will read/write one  
word from/into each successive address location until CNTEN  
is deasserted. The counter can address the entire memory  
array and will loop back to the start. Counter Reset (CNTRST)  
is used to reset the burst counter.  
Each port contains a burst counter on the input address regis-  
ter. The internal write pulse width is independent of the LOW-  
to-HIGH transition of the clock signal. The internal write pulse  
is self-timed to allow the shortest possible cycle times.  
All parts are available in 100-pin Thin Quad Plastic Flatpack  
(TQFP) packages.  
Note:  
3. When writing simultaneously to the same location, the final value cannot be guaranteed.  
Document #: 38-06049 Rev. *A  
Page 2 of 18  
CY7C09079A  
CY7C09179A  
Pin Configurations  
100-Pin TQFP  
(Top View)  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
NC  
NC  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
2
NC  
A7L  
3
A7R  
A8R  
A9R  
A10R  
A11R  
A12R  
A13R  
A14R  
NC  
A8L  
4
A9L  
5
A10L  
A11L  
A12L  
A13L  
A14L  
NC  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
NC  
NC  
VCC  
NC  
GND  
NC  
CY7C09079A (32K x 8)  
NC  
NC  
NC  
NC  
NC  
NC  
CE0L  
CE1L  
CNTRSTL  
R/WL  
OEL  
CE0R  
CE1R  
CNTRSTR  
R/WR  
OER  
[4]  
[4]  
FT/PIPEL  
FT/PIPER  
NC  
NC  
24  
25  
GND  
NC  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Note:  
4. For CY7C09079A pin #23 connected to VCC is equivalent to an IDT x8 pipelined device; connecting pin #23 and #53 to GND is equivalent to an IDT x8 flow-  
through device.  
Document #: 38-06049 Rev. *A  
Page 3 of 18  
CY7C09079A  
CY7C09179A  
Pin Configurations (continued)  
100-Pin TQFP  
(Top View)  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
NC  
NC  
1
2
3
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
A7L  
A7R  
A8R  
A8L  
A9L  
4
5
A9R  
A10L  
A11L  
A12L  
A13L  
A14L  
NC  
6
A10R  
A11R  
A12R  
A13R  
A14R  
NC  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
NC  
NC  
CY7C09179A (32K x 9)  
VCC  
GND  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
CE0L  
CE1L  
CNTRSTL  
R/WL  
OEL  
CE0R  
CE1R  
CNTRSTR  
R/WR  
OER  
FT/PIPER  
GND  
NC  
FT/PIPEL  
NC  
NC  
24  
25  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Selection Guide  
CY7C09079A  
CY7C09179A  
-6[1]  
CY7C09079A  
CY7C09179A  
-7  
CY7C09079A  
CY7C09179A  
-9  
CY7C09079A  
CY7C09179A  
-12  
fMAX2 (MHz) (Pipelined)  
100  
6.5  
83  
67  
9
50  
12  
Max Access Time (ns) (Clock to Data,  
Pipelined)  
7.5  
Typical Operating Current ICC (mA)  
250  
45  
235  
40  
215  
35  
195  
30  
Typical Standby Current for ISB1 (mA)  
(Both ports TTL Level)  
Typical Standby Current for ISB3 (mA)  
(Both ports CMOS Level)  
0.05  
0.05  
0.05  
0.05  
Document #: 38-06049 Rev. *A  
Page 4 of 18  
CY7C09079A  
CY7C09179A  
Pin Definitions  
Left Port  
A0LA14L  
ADSL  
Right Port  
Description  
A0RA14R  
Address Inputs  
ADSR  
Address Strobe Input. Used as an address qualifier. This signal should be asserted LOW to  
access the part using an externally supplied address. Asserting this signal LOW also loads the  
burst counter with the address present on the address pins.  
CE0L,CE1L  
CE0R,CE1R  
Chip Enable Input. To select either the left or right port, both CE0 AND CE1 must be asserted to  
their active states (CE0 VIL and CE1 VIH).  
CLKL  
CLKR  
Clock Signal. This input can be free running or strobed. Maximum clock input rate is fMAX.  
CNTENL  
CNTENR  
Counter Enable Input. Asserting this signal LOW increments the burst address counter of its  
respective port on each rising edge of CLK. CNTEN is disabled if ADS or CNTRST are asserted  
LOW.  
CNTRSTL  
CNTRSTR  
Counter Reset Input. Asserting this signal LOW resets the burst address counter of its respective  
port to zero. CNTRST is not disabled by asserting ADS or CNTEN.  
I/O0LI/O8L  
I/O0RI/O8R Data Bus Input/Output (I/O0I/O7 for x8 devices; I/O0I/O8 for x9 devices).  
OEL  
OER  
Output Enable Input. This signal must be asserted LOW to enable the I/O data pins during read  
operations.  
R/WL  
R/WR  
Read/Write Enable Input. This signal is asserted LOW to write to the dual port memory array.  
For read operations, assert this pin HIGH.  
FT/PIPEL  
FT/PIPER  
Flow-Through/Pipelined Select Input. For flow-through mode operation, assert this pin LOW. For  
pipelined mode operation, assert this pin HIGH.  
GND  
NC  
Ground Input.  
No Connect.  
Power Input.  
VCC  
Maximum Ratings[55]  
DC Input Voltage ............................................0.5V to +7.0V  
Output Current into Outputs (LOW)............................. 20 mA  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Static Discharge Voltage............................................ >2001V  
Latch-Up Current...................................................... >200mA  
Storage Temperature ................................. 65°C to +150°C  
Ambient Temperature with Power Applied..55°C to +125°C  
Supply Voltage to Ground Potential............... 0.3V to +7.0V  
Operating Range  
Ambient  
Temperature  
DC Voltage Applied to  
Outputs in High Z State.................................. 0.5V to +7.0V  
Range  
VCC  
Commercial  
0°C to +70°C  
5V ± 10%  
Note:  
5. The Voltage on any input or I/O pin cannot exceed the power pin during power-up.  
Document #: 38-06049 Rev. *A  
Page 5 of 18  
CY7C09079A  
CY7C09179A  
Electrical Characteristics Over the Operating Range  
CY7C09079A  
CY7C09179A  
-6[1]  
Typ  
-7  
-9  
-12  
Typ  
.
Typ  
.
Typ  
.
Parameter  
Description  
Min.  
.
Max. Min.  
Max. Min.  
Max. Min.  
Max. Unit  
VOH  
Output HIGH Voltage  
(VCC = Min., IOH = 4.0 mA)  
2.4  
2.4  
2.4  
2.4  
V
VOL  
Output LOW Voltage  
(VCC = Min., IOH = +4.0 mA)  
0.4  
0.4  
0.4  
0.4  
V
VIH  
VIL  
IOZ  
ICC  
Input HIGH Voltage  
Input LOW Voltage  
2.2  
2.2  
0.8  
2.2  
0.8  
2.2  
0.8  
V
V
0.8  
10  
Output Leakage Current  
10  
10 10  
10 10  
10 10  
µA  
Operating Current  
(VCC = Max.,  
IOUT = 0 mA) Outputs  
Disabled  
Coml.  
250 450  
45 115  
175 235  
0.05 0.5  
160 200  
235 420  
40 105  
160 220  
0.05 0.5  
145 185  
210 350  
195 305 mA  
ISB1  
ISB2  
ISB3  
ISB4  
StandbyCurrent(Both Coml.  
Ports TTL Level)[6]  
CEL & CER VIH,  
f = fMAX  
35  
95  
30  
85  
mA  
Standby Current (One Coml.  
Port TTL Level)[6]  
CEL | CER VIH,  
f = fMAX  
140 205  
.05 0.5  
130 170  
125 190 mA  
0.05 0.5 mA  
110 150 mA  
StandbyCurrent(Both Coml.  
Ports CMOS Level)[6]  
CEL & CER  
VCC 0.2V, f = 0  
Standby Current (One Coml.  
Port CMOS Level)[6]  
CEL | CER VIH,  
f = fMAX  
Capacitance  
Parameter  
Description  
Test Conditions  
Max.  
Unit  
pF  
CIN  
Input Capacitance  
Output Capacitance  
TA = 25°C, f = 1 MHz,  
VCC = 5.0V  
10  
10  
COUT  
Note:  
pF  
6. CEL and CER are internal signals. To select either the left or right port, both CE0 AND CE1 must be asserted to their active states (CE0 VIL and CE1 VIH).  
Document #: 38-06049 Rev. *A  
Page 6 of 18  
CY7C09079A  
CY7C09179A  
AC Test Loads  
5V  
5V  
R
TH  
= 250Ω  
R1 = 893Ω  
R2 = 347Ω  
OUTPUT  
C = 30 pF  
OUTPUT  
R1 = 893Ω  
OUTPUT  
C = 5 pF  
C = 30 pF  
R2 = 347Ω  
V
TH  
= 1.4V  
(a) Normal Load (Load 1)  
(c) Three-State Delay(Load 2)  
(Used for tCKLZ, tOLZ, & tOHZ  
including scope and jig)  
(b) Thévenin  
Equivalent (Load 1)  
AC Test Loads (Applicable to -6 only)[7]  
Z = 50  
R = 50Ω  
0
ALL INPUTPULSES  
OUTPUT  
3.0V  
90%  
10%  
C
90%  
10%  
GND  
V
TH  
= 1.4V  
3 ns  
3 ns  
(a) Load 1 (-6 only)  
0.60  
0.50  
0.40  
0.30  
0.20  
0. 1 0  
0.00  
1 0  
1 5  
20  
25  
30  
35  
Capacitance (pF)  
(b) Load Derating Curve  
Note:  
7. Test Conditions: C = 10 pF.  
Document #: 38-06049 Rev. *A  
Page 7 of 18  
CY7C09079A  
CY7C09179A  
Switching Characteristics Over the Operating Range  
CY7C09079A  
CY7C09179A  
-6[1]  
-7  
-9  
-12  
Parameter  
fMAX1  
fMAX2  
tCYC1  
tCYC2  
tCH1  
tCL1  
tCH2  
tCL2  
tR  
Description  
fMax Flow-Through  
Min. Max. Min. Max. Min. Max. Min. Max. Unit  
53  
45  
83  
40  
67  
33  
50  
MHz  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
fMax Pipelined  
100  
Clock Cycle Time - Flow-Through  
Clock Cycle Time - Pipelined  
Clock HIGH Time - Flow-Through  
Clock LOW Time - Flow-Through  
Clock HIGH Time - Pipelined  
Clock LOW Time - Pipelined  
Clock Rise Time  
19  
10  
6.5  
6.5  
4
22  
12  
7.5  
7.5  
5
25  
15  
12  
12  
6
30  
20  
12  
12  
8
4
5
6
8
3
3
3
3
3
3
3
3
tF  
Clock Fall Time  
tSA  
Address Set-Up Time  
Address Hold Time  
3.5  
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
tHA  
tSC  
Chip Enable Set-Up Time  
Chip Enable Hold Time  
R/W Set-Up Time  
3.5  
0
tHC  
tSW  
3.5  
0
tHW  
R/W Hold Time  
tSD  
Input Data Set-Up Time  
Input Data Hold Time  
3.5  
0
tHD  
tSAD  
tHAD  
tSCN  
tHCN  
tSRST  
tHRST  
tOE  
ADS Set-Up Time  
3.5  
0
ADS Hold Time  
CNTEN Set-Up Time  
3.5  
0
CNTEN Hold Time  
CNTRST Set-Up Time  
CNTRST Hold Time  
3.5  
0
Output Enable to Data Valid  
OE to Low Z  
8
9
10  
12  
[8, 9]  
tOLZ  
2
1
2
1
2
1
2
1
[8, 9]  
tOHZ  
OE to High Z  
7
7
7
20  
9
7
tCD1  
tCD2  
tDC  
Clock to Data Valid - Flow-Through  
Clock to Data Valid - Pipelined  
Data Output Hold After Clock HIGH  
Clock HIGH to Output High Z  
Clock HIGH to Output Low Z  
15  
6.5  
18  
7.5  
25  
12  
2
2
2
2
2
2
2
2
2
2
2
2
[8, 9]  
tCKHZ  
9
9
9
9
[8, 9]  
tCKLZ  
Port to Port Delays  
tCWDD  
Write Port Clock HIGH to Read Data Delay  
Clock to Clock Set-Up Time  
30  
9
35  
10  
40  
15  
40  
15  
ns  
ns  
tCCS  
Notes:  
8. Test conditions used are Load 2.  
9. This parameter is guaranteed by design, but is not production tested.  
Document #: 38-06049 Rev. *A  
Page 8 of 18  
CY7C09079A  
CY7C09179A  
Switching Waveforms  
Read Cycle for Flow-Through Output (FT/PIPE = VIL)[10, 11, 12, 13]  
t
CYC1  
t
t
CL1  
CH1  
CLK  
CE  
CE  
0
1
t
t
t
t
HC  
SC  
HC  
SC  
R/W  
t
t
t
t
SW  
SA  
HW  
HA  
A
A
A
A
n+3  
n
n+1  
n+2  
ADDRESS  
t
CKHZ  
t
t
DC  
CD1  
DATA  
OUT  
Q
Q
t
Q
n
n+1  
n+2  
DC  
t
t
CKLZ  
t
OHZ  
OLZ  
OE  
t
OE  
Read Cycle for Pipelined Operation (FT/PIPE = VIH)[10, 11, 12, 13]  
t
CYC2  
t
t
CL2  
CH2  
CLK  
CE  
CE  
0
1
t
t
t
t
HC  
SC  
HC  
SC  
R/W  
t
t
t
t
SW  
SA  
HW  
HA  
ADDRESS  
A
A
A
A
n+3  
n
n+1  
n+2  
t
1 Latency  
t
DC  
CD2  
DATA  
OUT  
Q
Q
Q
n+2  
n
n+1  
t
OHZ  
t
t
CKLZ  
OLZ  
OE  
tOE  
Notes:  
10. OE is asynchronously controlled; all other inputs are synchronous to the rising clock edge.  
11. ADS = VIL, CNTEN and CNTRST = VIH  
12. The output is disabled (high-impedance state) by CE0=VIH or CE1 = VIL following the next rising edge of the clock.  
13. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK. Numbers are for reference only.  
.
Document #: 38-06049 Rev. *A  
Page 9 of 18  
CY7C09079A  
CY7C09179A  
Switching Waveforms (continued)  
Bank Select Pipelined Read[14, 15]  
t
CYC2  
t
t
CL2  
CH2  
CLK  
L
t
t
t
HA  
SA  
A
A
4
ADDRESS  
A
A
A
A
(B1)  
3
5
0
1
2
t
HC  
SC  
CE  
0(B1)  
t
t
t
t
t
t
t
CD2  
HC  
CD2  
CD2  
CKHZ  
CKHZ  
SC  
D
D
D
3
DATA  
1
0
OUT(B1)  
t
t
HA  
SA  
t
t
t
CKLZ  
DC  
DC  
A
A
4
A
ADDRESS  
A
0
A
A
3
5
(B2)  
1
2
t
t
HC  
SC  
CE  
0(B2)  
t
t
t
CD2  
t
CD2  
CKHZ  
t
SC  
HC  
DATA  
OUT(B2)  
D
D
4
2
t
t
CKLZ  
CKLZ  
Left Port Write to Flow-Through Right Port Read[16, 17, 18, 19]  
CLK  
R/W  
L
L
t
t
HW  
SW  
t
t
HA  
SA  
NO  
MATCH  
ADDRESS  
MATCH  
VALID  
L
t
t
HD  
SD  
DATA  
INL  
t
CCS  
CLK  
R
R
R
t
CD1  
t
t
t
t
SW  
SA  
HW  
HA  
R/W  
NO  
MATCH  
MATCH  
ADDRESS  
t
t
CWDD  
CD1  
DATA  
VALID  
VALID  
OUTR  
t
DC  
t
DC  
Notes:  
14. In this depth expansion example, B1 represents Bank #1 and B2 is Bank #2; Each Bank consists of one Cypress dual-port device from this data sheet.  
ADDRESS(B1) = ADDRESS(B2)  
15. OE and ADS = VIL; CE1(B1), CE1(B2), R/W, CNTEN, and CNTRST = VIH  
16. The same waveforms apply for a right port write to flow-through left port read.  
17. CE0 and ADS = VIL; CE1, CNTEN, and CNTRST = VIH  
18. OE = VIL for the right port, which is being read from. OE = VIH for the left port, which is being written to.  
.
.
.
19. It tCCS maximum specified, then data from right port READ is not valid until the maximum specified for tCWDD. If tCCS>maximum specified, then data is not valid  
until tCCS + tCD1. tCWDD does not apply in this case.  
Document #: 38-06049 Rev. *A  
Page 10 of 18  
CY7C09079A  
CY7C09179A  
Switching Waveforms (continued)  
Pipelined Read-to-Write-to-Read (OE = VIL)[13, 20, 21, 22]  
t
CYC2  
t
t
CL2  
CH2  
CLK  
CE  
0
1
t
t
HC  
SC  
CE  
t
t
HW  
SW  
R/W  
t
t
HW  
SW  
A
A
A
A
A
A
n+4  
n
n+1  
n+2  
n+2  
n+3  
ADDRESS  
t
t
SD HD  
t
t
HA  
SA  
DATA  
D
IN  
n+2  
t
t
t
t
CD2  
CD2  
CKHZ  
CKLZ  
Q
Q
n+3  
n
DATA  
OUT  
READ  
NO OPERATION  
WRITE  
READ  
Pipelined Read-to-Write-to-Read (OE Controlled)[13, 20, 21, 22]  
t
CYC2  
t
t
CL2  
CH2  
CLK  
CE  
0
1
t
t
HC  
SC  
CE  
t
t
HW  
SW  
R/W  
t
t
HW  
SW  
A
A
A
A
A
A
n+5  
n
n+1  
n+2  
n+3  
n+4  
ADDRESS  
t
t
HA  
t
t
SA  
SD HD  
D
DATA  
D
n+2  
IN  
n+3  
t
t
t
CD2  
CD2  
CKLZ  
DATA  
Q
Q
n+4  
OUT  
n
t
OHZ  
OE  
READ  
WRITE  
READ  
Notes:  
20. Output state (HIGH, LOW, or High-Impedance) is determined by the previous cycle control signals.  
21. CE0 and ADS = VIL; CE1, CNTEN, and CNTRST = VIH  
.
22. During No operation,data in memory at the selected address may be corrupted and should be rewritten to ensure data integrity.  
Document #: 38-06049 Rev. *A  
Page 11 of 18  
CY7C09079A  
CY7C09179A  
Switching Waveforms (continued)  
Flow-Through Read-to-Write-to-Read (OE = VIL)[11, 14, 20, 21]  
t
CYC1  
t
t
CH1  
CL1  
CLK  
CE  
CE  
0
1
t
t
HC  
SC  
t
t
HW  
SW  
R/W  
t
t
HW  
SW  
A
A
A
A
D
A
A
n+4  
n
n+1  
n+2  
n+2  
n+3  
ADDRESS  
t
t
HD  
SD  
t
t
HA  
SA  
n+2  
DATA  
IN  
t
t
t
t
CD1  
CD1  
CD1  
CD1  
DATA  
Q
Q
Q
n+3  
OUT  
n
n+1  
t
t
t
t
DC  
DC  
CKHZ  
CKLZ  
NO  
OPERATION  
READ  
WRITE  
READ  
Flow-Through Read-to-Write-to-Read (OE Controlled)[11, 14, 20, 21]  
t
CYC1  
t
t
CH1  
CL1  
CLK  
CE  
CE  
0
1
t
t
HC  
SC  
t
t
HW  
SW  
R/W  
t
t
HW  
SW  
A
A
A
A
D
A
A
n+5  
n
n+1  
n+2  
n+3  
n+4  
ADDRESS  
t
t
HD  
SD  
t
t
HA  
SA  
D
n+2  
n+3  
t
DATA  
t
OE  
IN  
DC  
t
t
CD1  
CD1  
t
CD1  
Q
Q
n+4  
n
DATA  
OUT  
t
OHZ  
t
t
DC  
CKLZ  
OE  
READ  
WRITE  
READ  
Document #: 38-06049 Rev. *A  
Page 12 of 18  
CY7C09079A  
CY7C09179A  
Switching Waveforms (continued)  
Pipelined Read with Address Counter Advance[23]  
t
CYC2  
t
t
CH2  
CL2  
CLK  
t
t
HA  
SA  
ADDRESS  
A
n
t
t
t
t
SAD  
HAD  
ADS  
t
t
t
t
SAD  
HAD  
CNTEN  
SCN  
HCN  
SCN  
HCN  
t
CD2  
DATA  
OUT  
Q
Q
Q
Q
Q
Q
n+3  
x-1  
x
n
n+1  
n+2  
t
READ  
DC  
COUNTER HOLD  
READ WITH COUNTER  
READ WITH COUNTER  
EXTERNAL  
ADDRESS  
Flow-Through Read with Address Counter Advance[23]  
t
CYC1  
t
t
CH1  
CL1  
CLK  
t
t
HA  
SA  
A
n
ADDRESS  
t
t
t
SAD  
HAD  
ADS  
t
t
t
t
SAD  
HAD  
CNTEN  
t
SCN  
HCN  
SCN  
HCN  
t
CD1  
Q
Q
Q
Q
Q
n+2  
DATA  
n+3  
x
n
n+1  
OUT  
t
DC  
READ  
WITH  
READ  
COUNTER HOLD  
READ WITH COUNTER  
EXTERNAL  
ADDRESS  
COUNTER  
Note:  
23. CE0 and OE = VIL; CE1, R/W and CNTRST = VIH  
.
Document #: 38-06049 Rev. *A  
Page 13 of 18  
CY7C09079A  
CY7C09179A  
Switching Waveforms (continued)  
Write with Address Counter Advance (Flow-Through or Pipelined Outputs)[24, 25]  
t
CYC2  
t
t
CH2  
CL2  
CLK  
t
t
HA  
SA  
A
ADDRESS  
n
INTERNAL  
ADDRESS  
A
A
A
A
A
n+4  
n
n+1  
n+2  
n+3  
t
t
HAD  
SAD  
ADS  
CNTEN  
t
t
HCN  
SCN  
D
D
D
D
D
D
n+4  
DATA  
n
n+1  
n+1  
n+2  
n+3  
IN  
t
t
HD  
SD  
WRITE EXTERNAL  
ADDRESS  
WRITE WITH WRITE COUNTER  
COUNTER HOLD  
WRITE WITH COUNTER  
Notes:  
24. CE0 and R/W = VIL; CE1 and CNTRST = VIH  
.
25. The Internal Addressis equal to the External Addresswhen ADS = VIL and equals the counter output when ADS = VIH  
.
Document #: 38-06049 Rev. *A  
Page 14 of 18  
CY7C09079A  
CY7C09179A  
Switching Waveforms (continued)  
Counter Reset (Pipelined Outputs)[13, 20, 26, 27]  
t
CYC2  
t
t
CH2  
CL2  
CLK  
t
t
HA  
SA  
A
A
ADDRESS  
n
n+1  
INTERNAL  
ADDRESS  
A
0
1
A
A
n+1  
X
n
t
t
HW  
SW  
R/W  
ADS  
t
t
SAD  
HAD  
t
t
SCN  
HCN  
CNTEN  
t
t
HRST  
SRST  
CNTRST  
t
t
HD  
SD  
DATA  
D
IN  
0
DATA  
Q
Q
Q
n
OUT  
0
1
COUNTER  
RESET  
WRITE  
ADDRESS 0  
READ  
ADDRESS 0  
READ  
ADDRESS 1  
READ  
ADDRESS n  
Notes:  
26. CE0 = VIL; CE1 = VIH  
.
27. No dead cycle exists during counter reset. A READ or WRITE cycle may be coincidental with the counter reset.  
Document #: 38-06049 Rev. *A  
Page 15 of 18  
CY7C09079A  
CY7C09179A  
Read/Write and Enable Operation[28, 29, 30]  
Inputs  
Outputs  
I/O0I/O8  
High-Z  
OE  
CLK  
CE0  
CE1  
R/W  
Operation  
X
H
X
X
Deselected[31]  
X
X
L
X
L
L
L
L
X
L
High-Z  
DIN  
Deselected[31]  
Write  
H
H
H
H
X
DOUT  
High-Z  
Read[33]  
H
X
Outputs Disabled  
Address Counter Control Operation[28, 32, 33, 34]  
Previous  
Address Address CLK ADS CNTEN CNTRST  
I/O  
Mode  
Operation  
X
An  
X
X
X
X
X
H
L
H
H
Dout(0)  
Reset  
Counter Reset to Address 0  
X
L
Dout(n)  
Dout(n)  
Load  
Hold  
Address Load into Counter  
An  
H
External Address BlockedCounter  
Disabled  
X
An  
H
L
H
Dout(n+1) Increment Counter EnabledInternal Address  
Generation  
Notes:  
28. X= Dont Care,” “H= VIH, L= VIL.  
29. ADS, CNTEN, CNTRST = Dont Care.”  
30. OE is an asynchronous input signal.  
31. When CE changes state in the pipelined mode, deselection and read happen in the following clock cycle.  
32. CE0 and OE = VIL; CE1 and R/W = VIH  
.
33. Data shown for flow-through mode; pipelined mode output will be delayed by one cycle.  
34. Counter operation is independent of CE0 and CE1.  
Document #: 38-06049 Rev. *A  
Page 16 of 18  
CY7C09079A  
CY7C09179A  
Ordering Information  
32K x8 Synchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
6.5[1]  
7.5  
9
Ordering Code  
CY7C09079A-6AC  
CY7C09079A-7AC  
CY7C09079A-9AC  
CY7C09079A-12AC  
Package Type  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
A100  
A100  
A100  
A100  
Commercial  
Commercial  
Commercial  
Commercial  
12  
32K x9 Synchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
6.5  
7.5  
9
Ordering Code  
CY7C09179A-6AC  
CY7C09179A-7AC  
CY7C09179A-9AC  
CY7C09179A-12AC  
Package Type  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
A100  
A100  
A100  
A100  
Commercial  
Commercial  
Commercial  
Commercial  
12  
Package Diagram  
100-Pin Thin Plastic Quad Flat Pack (TQFP) A100  
51-85048-B  
Document #: 38-06049 Rev. *A  
Page 17 of 18  
© Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C09079A  
CY7C09179A  
Document Title: CY7C09079A/CY7C09179A 32K x 8/9 Synchronous Dual-Port Static RAM  
Document Number: 38-06049  
Issue  
Date  
Orig. of  
REV.  
**  
ECN NO.  
110201  
Change Description of Change  
11/11/01  
12/27/02  
SZV  
RBI  
Change from Spec number: 38-00835 to 38-06049  
Power up requirements added to Maximum Ratings Information  
*A  
122299  
Document #: 38-06049 Rev. *A  
Page 18 of 18  

相关型号:

CY7C09179V

3.3V 32K/64K/128K x 8/9 Synchronous Dual-Port Static RAM
CYPRESS

CY7C09179V-12AC

3.3V 32K/64K/128K x 8/9 Synchronous Dual-Port Static RAM
CYPRESS

CY7C09179V-12AXC

3.3V 32K/64K/128K x 8/9 Synchronous Dual-Port Static RAM
CYPRESS

CY7C09179V-6AC

3.3V 32K/64K/128K x 8/9 Synchronous Dual-Port Static RAM
CYPRESS

CY7C09179V-6AXC

3.3V 32K/64K/128K x 8/9 Synchronous Dual-Port Static RAM
CYPRESS

CY7C09179V-7AC

3.3V 32K/64K/128K x 8/9 Synchronous Dual-Port Static RAM
CYPRESS

CY7C09179V-7ACT

Dual-Port SRAM, 32KX9, 18ns, CMOS, PQFP100, PLASTIC, TQFP-100
CYPRESS

CY7C09179V-9AC

x9 Dual-Port SRAM
ETC

CY7C09179V-9C

3.3V 32K/64K/128K x 8/9 Synchronous Dual-Port Static RAM
CYPRESS

CY7C09189

64K/128K x 8/9 Synchronous Dual-Port Static RAM
CYPRESS

CY7C09189-10AC

Multi-Port SRAM, 64KX9, 10ns, CMOS, PQFP100, PLASTIC, TQFP-100
CYPRESS

CY7C09189-10AI

Multi-Port SRAM, 64KX9, 10ns, CMOS, PQFP100, PLASTIC, TQFP-100
CYPRESS