CY7C09269-9AI [CYPRESS]

Dual-Port SRAM, 16KX16, 9ns, CMOS, PQFP100, PLASTIC, TQFP-100;
CY7C09269-9AI
型号: CY7C09269-9AI
厂家: CYPRESS    CYPRESS
描述:

Dual-Port SRAM, 16KX16, 9ns, CMOS, PQFP100, PLASTIC, TQFP-100

时钟 静态存储器 内存集成电路
文件: 总17页 (文件大小:540K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
025/0251  
CY7C09269/79/89  
CY7C09369/79/89  
PRELIMINARY  
16K/32K/64K x16/18  
Synchronous Dual Port Static RAM  
• Low operating power  
Features  
Active= 195 mA (typical)  
• True Dual-Ported memory cells which allow simulta-  
neous access of the same memory location  
Standby= 0.05 mA (typical)  
• Fully synchronous interface for easier operation  
• Burst counters increment addresses internally  
— Shorten cycle times  
• 6 Flow-Through/Pipelined devices  
— 16K x 16/18 organization (CY7C09269/369)  
— 32K x 16/18 organization (CY7C09279/379)  
— 64K x 16/18 organization (CY7C09289/389)  
• 3 Modes  
Minimize bus noise  
Supported in Flow-Through and Pipelined modes  
• Dual Chip Enables for easy depth expansion  
• Upper and Lower Byte Controls for Bus Matching  
• Automatic power-down  
• Commercial and Industrial temperature ranges  
• Available in 100-pin TQFP  
— Flow-Through  
— Pipelined  
— Burst  
• Pipelined output mode on both ports allows fast  
100-MHz cycle time  
• 0.35-micron CMOS for optimum speed/power  
• Pin-compatible and functionally equivalent to  
IDT709269, IDT70927, and IDT709279  
• High-speed clock to data access 6.5/7.5/9/12 ns (max.)  
Logic Block Diagram  
R/WL  
UBL  
R/WR  
UBR  
CE0L  
CE1L  
LBL  
CE0R  
CE1R  
LBR  
1
1
0
0
0/1  
0/1  
OEL  
OER  
1b 0b 1a 0a  
0a 1a 0b 1b  
a b 0/1  
0/1  
b
a
FT/PipeL  
FT/PipeR  
8/9  
8/9  
8/9  
8/9  
[1]  
[1]  
I/O8/9L–I/O15/17L  
I/O8/9R–I/O15/17R  
I/O  
Control  
I/O  
Control  
[2]  
[2]  
I/O0L–I/O7/8L  
I/O0R–I/O  
7/8R  
14/15/16  
14/15/16  
[3]  
[3]  
A
0L–A  
A
–A  
13/14/15L  
0R  
13/14/15R  
CLKR  
Counter/  
Address  
Register  
Decode  
Counter/  
Address  
Register  
Decode  
CLKL  
ADSL  
True Dual-Ported  
RAM Array  
ADSR  
CNTENL  
CNTENR  
CNTRSTL  
CNTRSTR  
Notes:  
1. I/O8–I/O15 for x16 devices; I/O9–I/O17 for x18 devices.  
2. I/O0–I/O7 for x16 devices. I/O0–I/O8 for x18 devices.  
3. A0–A13 for 16K; A0–A14 for 32K; A0–A15 for 64K devices.  
For the most recent information, visit the Cypress web site at www.cypress.com  
Cypress Semiconductor Corporation 3901 North First Street San Jose CA 95134  
408-943-2600  
November 23, 1998  
CY7C09269/79/89  
CY7C09369/79/89  
PRELIMINARY  
A HIGH on CE0 or LOW on CE1 for one clock cycle will power  
down the internal circuitry to reduce the static power consump-  
tion. The use of multiple Chip Enables allows easier banking  
of multiple chips for depth expansion configurations. In the  
pipelined mode, one cycle is required with CE0 LOW and CE1  
HIGH to reactivate the outputs.  
Functional Description  
The CY7C09269/79/89 and CY7C09369/79/89 are high  
speed synchronous CMOS 16K, 32K, and 64K x 16/18 du-  
al-port static RAMs. Two ports are provided, permitting inde-  
pendent, simultaneous access for reads and writes to any lo-  
cation in memory.[4] Registers on control, address, and data  
lines allow for minimal set-up and hold times. In pipelined out-  
put mode, data is registered for decreased cycle time. Clock  
to data valid tCD2 = 6.5 ns (pipelined). Flow-through mode can  
also be used to bypass the pipelined output register to elimi-  
nate access latency. In flow-through mode data will be avail-  
able tCD1 = 15 ns after the address is clocked into the device.  
Pipelined output or flow-through mode is selected via the  
FT/PIPE pin.  
Counter enable inputs are provided to stall the operation of the  
address input and utilize the internal address generated by the  
internal counter for fast interleaved memory applications. A  
port’s burst counter is loaded with the port’s address strobe  
(ADS). When the port’s count enable (CNTEN) is asserted, the  
address counter will increment on each LOW-to-HIGH transi-  
tion of that port’s clock signal. This will read/write one word  
from/into each successive address location until CNTEN is  
deasserted. The counter can address the entire memory array  
and will loop back to the start. Counter reset (CNTRST) is used  
to reset the burst counter.  
Each port contains a burst counter on the input address regis-  
ter. The internal write pulse width is independent of the  
LOW-to-HIGH transition of the clock signal. The internal write  
pulse is self-timed to allow the shortest possible cycle times.  
All parts are available in 100-pin Thin Quad Plastic Flatpack  
(TQFP) packages.  
Pin Configurations  
100-Pin TQFP (Top View)  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
A9L  
A10L  
A11L  
A12L  
A13L  
A14L  
A15L  
NC  
1
75  
74  
73  
72  
A9R  
2
A10R  
A11R  
A12R  
3
4
5
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
A13R  
A14R  
A15R  
NC  
[Note 5]  
[Note 6]  
[Note 5]  
[Note 6]  
6
7
8
NC  
9
NC  
LBL  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
LBR  
UBL  
UBR  
CE0R  
CE1R  
CY7C09289 (64K x 16)  
CY7C09279 (32K x 16)  
CY7C09269 (16K x 16)  
CE0L  
CE1L  
CNTRSTL  
VCC  
CNTRSTR  
GND  
R/WL  
R/WR  
OEL  
OER  
[Note 7]  
FT/PIPEL  
GND  
[Note 7]  
FT/PIPER  
GND  
I/O15L  
I/O14L  
I/O13L  
I/O12L  
I/O15R  
I/O14R  
I/O13R  
I/O12R  
I/O11R  
I/O10R  
I/O11L  
I/O10L  
24  
25  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Notes:  
4. When writing simultaneously to the same location, the final value cannot  
be guaranteed.  
7. For CY7C09269 and CY7C09279, pin #18 connected to VCC is equivalent  
to an IDT x16 pipelined device; connecting pin #18 and #58 to GND is  
equivalent to an IDT x16 flow-through device.  
5. This pin is NC for CY7C09269.  
6. This pin is NC for CY7C09269 and CY7C09279.  
2
CY7C09269/79/89  
CY7C09369/79/89  
PRELIMINARY  
Pin Configurations (continued)  
100-Pin TQFP (Top View)  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
A9L  
A10L  
A11L  
A12L  
A13L  
A14L  
A15L  
LBL  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
A8R  
2
A9R  
3
A10R  
A11R  
A12R  
A13R  
A14R  
A15R  
LBR  
4
5
[Note 8]  
[Note 9]  
6
[Note 8]  
[Note 9]  
7
8
UBL  
9
CE0L  
CE1L  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
UBR  
CE0R  
CE1R  
CY7C09389 (64K x 18)  
CY7C09379 (32K x 18)  
CY7C09369 (16K x 18)  
CNTRSTL  
R/WL  
CNTRSTR  
R/WR  
OEL  
VCC  
GND  
FT/PIPEL  
I/O17L  
I/O16L  
GND  
OER  
FT/PIPER  
I/O17R  
GND  
I/O15L  
I/O14L  
I/O13L  
1/012L  
I/O16R  
I/O15R  
I/O14R  
I/O13R  
I/O11L  
I/O10L  
24  
25  
52  
51  
I/O12R  
I/O11R  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Selection Guide  
CY7C09269/79/89 CY7C09269/79/89 CY7C09269/79/89 CY7C09269/79/89  
CY7C09369/79/89 CY7C09369/79/89 CY7C09369/79/89 CY7C09369/79/89  
-6  
-7  
83  
7.5  
-9  
67  
9
-12  
f
MAX2 (MHz) (Pipelined)  
100  
6.5  
50  
Max Access Time (ns) (Clock to Data,  
Pipelined)  
12  
Typical Operating Current ICC (mA)  
250  
45  
235  
40  
215  
35  
195  
30  
Typical Standby Current for ISB1 (mA)  
(Both ports TTL Level)  
Typical Standby Current for ISB3 (mA)  
(Both ports CMOS level)  
0.05  
0.05  
0.05  
0.05  
Notes:  
8. This pin is NC for CY7C09369.  
9. This pin is NC for CY7C09369 and CY7C09379.  
3
CY7C09269/79/89  
CY7C09369/79/89  
PRELIMINARY  
Pin Definitions  
Left Port  
A0L–A15L  
ADSL  
Right Port  
Description  
Address Inputs (A0–A14 for 32K, A0–A13 for 16K devices).  
A0R–A15R  
ADSR  
Address Strobe Input. Used as an address qualifier. This signal should be asserted LOW to  
access the part using an externally supplied address. Asserting this signal LOW also loads the  
burst counter with the address present on the address pins.  
CE0L,CE1L  
CE0R,CE1R  
Chip Enable Input. To select either the left or right port, both CE0 AND CE1 must be asserted  
to their active states (CE0 VIL and CE1 VIH).  
CLKL  
CLKR  
Clock Signal. This input can be free running or strobed. Maximum clock input rate is fMAX.  
CNTENL  
CNTENR  
Counter Enable Input. Asserting this signal LOW increments the burst address counter of its  
respective port on each rising edge of CLK. CNTEN is disabled if ADS or CNTRST are asserted  
LOW.  
CNTRSTL  
CNTRSTR  
Counter Reset Input. Asserting this signal LOW resets the burst address counter of its respec-  
tive port to zero. CNTRST is not disabled by asserting ADS or CNTEN.  
I/O0L–I/O17L  
LBL  
I/O0R–I/O17R Data Bus Input/Output (I/O0–I/O15 for x16 devices).  
LBR  
Lower Byte Select Input. Asserting this signal LOW enables read and write operations to the  
lower byte. (I/O0–I/O8 for x18, I/O0–I/O7 for x16) of the memory array. For read operations both  
the LB and OE signals must be asserted to drive output data on the lower byte of the data pins.  
UBL  
OEL  
UBR  
OER  
Upper Byte Select Input. Same function as LB, but to the upper byte (I/O8/9L–I/O15/17L).  
Output Enable Input. This signal must be asserted LOW to enable the I/O data pins during read  
operations.  
R/WL  
R/WR  
Read/Write Enable Input. This signal is asserted LOW to write to the dual port memory array.  
For read operations, assert this pin HIGH.  
FT/PIPEL  
FT/PIPER  
Flow-Through/Pipelined Select Input. For flow-through mode operation, assert this pin LOW.  
For pipelined mode operation, assert this pin HIGH.  
GND  
NC  
Ground Input.  
No Connect.  
Power Input.  
VCC  
Output Current into Outputs (LOW)............................. 20 mA  
Static Discharge Voltage ........................................... >1100V  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-Up Current..................................................... >200 mA  
Storage Temperature ................................. –65°C to +150°C  
Ambient Temperature with Power Applied ..–55°C to +125°C  
Supply Voltage to Ground Potential ............... –0.3V to +7.0V  
Operating Range  
Ambient  
Range  
Commercial  
Industrial  
Temperature  
0°C to +70°C  
–40°C to +85°C  
VCC  
DC Voltage Applied to  
Outputs in High Z State ................................. –0.5V to +7.0V  
5V ± 10%  
5V ± 10%  
DC Input Voltage............................................ –0.5V to +7.0V  
Shaded area contains advance information.  
4
CY7C09269/79/89  
CY7C09369/79/89  
PRELIMINARY  
Electrical Characteristics Over the Operating Range  
CY7C09269/79/89  
CY7C09369/79/89  
-6  
-7  
-9  
-12  
Symbol  
Parameter  
Min Typ Max Min Typ Max Min Typ Max Min Typ Max Units  
VOH  
Output HIGH Voltage (VCC=Min, 2.4  
IOH=–4.0 mA)  
2.4  
2.4  
2.4  
V
VOL  
Output LOW Voltage (VCC=Min,  
IOH= +4.0 mA)  
0.4  
0.8  
0.4  
0.8  
0.4  
0.8  
0.4  
V
VIH  
VIL  
IOZ  
ICC  
Input HIGH Voltage  
Input LOW Voltage  
2.2  
2.2  
2.2  
2.2  
V
V
0.8  
10  
Output Leakage Current  
–10  
10 –10  
250 450  
10 -10  
235 420  
10 –10  
215 360  
245 410  
µA  
Operating Current  
(VCC=Max, IOUT=0 mA)  
Outputs Disabled  
Com’l.  
Indust.  
195 300 mA  
225 375 mA  
260 445  
ISB1  
ISB2  
ISB3  
Standby Current (Both  
Ports TTL Level)[10] CEL  
& CER VIH, f=fMAX  
Com’l.  
Indust.  
45 115  
175 235  
0.05 0.25  
40 105  
55 120  
35  
95  
30  
85  
mA  
50 110  
45 100 mA  
Standby Current (One  
Port TTL Level)[10] CEL |  
CER VIH, f=fMAX  
Com’l.  
Indust.  
160 220  
175 235  
145 205  
160 220  
125 190 mA  
140 205 mA  
Standby Current (Both  
Ports CMOS Level)[10]  
CEL & CER VCC0.2V,  
f=0  
Com’l.  
Indust.  
0.05 0.25  
0.05 0.25  
0.05 0.25  
0.05 0.25  
0.05 0.25 mA  
0.05 0.25 mA  
ISB4  
Standby Current (One  
Port CMOS Level)[10]  
CEL | CER VIH, f=fMAX  
Com’l.  
Indust.  
160 200  
145 185  
160 200  
130 170  
145 185  
110 150 mA  
125 165 mA  
Shaded area contains advance information.  
Capacitance  
Parameter  
Description  
Test Conditions  
Max.  
Unit  
pF  
CIN  
Input Capacitance  
Output Capacitance  
TA = 25°C, f = 1 MHz,  
CC = 5.0V  
10  
10  
V
COUT  
pF  
AC Test Loads  
5V  
5V  
R
TH  
= 250Ω  
R1 = 893Ω  
OUTPUT  
C = 30 pF  
OUTPUT  
R1 = 893Ω  
OUTPUT  
C = 5 pF  
C = 30 pF  
R2 = 347Ω  
R2 = 347Ω  
V
TH  
= 1.4V  
(b) Thévenin Equivalent (Load 1)  
(a) Normal Load (Load 1)  
(c) Three-State Delay(Load 2)  
(Used for tCKLZ, tOLZ, & tOHZ  
including scope and jig)  
ALLINPUTPULSES  
3.0V  
GND  
90%  
90%  
10%  
3 ns  
10%  
3 ns  
Note:  
10. CEL and CER are internal signals. To select either the left or right port, both CE0 AND CE1 must be asserted to their active states (CE0 VIL and CE1 VIH .  
)
5
CY7C09269/79/89  
CY7C09369/79/89  
PRELIMINARY  
Switching Characteristics Over the Operating Range  
CY7C09269/79/89  
CY7C09369/79/89  
-6  
-7  
-9  
-12  
Symbol  
fMAX1  
Parameter  
fMax Flow-Through  
Min  
Max Min  
Max Min  
Max Min  
Max  
Units  
53  
100  
22  
12  
7.5  
7.5  
5
45  
83  
25  
15  
12  
12  
6
40  
67  
30  
20  
12  
12  
8
33  
50  
MHz  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
fMAX2  
tCYC1  
tCYC2  
tCH1  
tCL1  
tCH2  
tCL2  
tR  
fMax Pipelined  
Clock Cycle Time - Flow-Through  
Clock Cycle Time - Pipelined  
Clock HIGH Time - Flow-Through  
Clock LOW Time - Flow-Through  
Clock HIGH Time - Pipelined  
Clock LOW Time - Pipelined  
Clock Rise Time  
19  
10  
6.5  
6.5  
4
4
5
6
8
3
3
3
3
3
tF  
Clock Fall Time  
3
3
3
tSA  
Address Set-Up Time  
Address Hold Time  
3.5  
0
4
4
4
tHA  
0
1
1
tSC  
Chip Enable Set-Up Time  
Chip Enable Hold Time  
R/W Set-Up Time  
3.5  
0
4
4
4
tHC  
0
1
1
tSW  
3.5  
0
4
4
4
tHW  
tSD  
R/W Hold Time  
0
1
1
Input Data Set-Up Time  
Input Data Hold Time  
ADS Set-Up Time  
3.5  
0
4
4
4
tHD  
0
1
1
tSAD  
tHAD  
tSCN  
tHCN  
tSRST  
tHRST  
tOE  
3.5  
0
4
4
4
ADS Hold Time  
0
1
1
CNTEN Set-Up Time  
3.5  
0
4
4
4
CNTEN Hold Time  
0
1
1
CNTRST Set-Up Time  
CNTRST Hold Time  
3.5  
0
4
4
4
0
1
1
Output Enable to Data Valid  
OE to Low Z  
8
9
10  
12  
[11,12]  
tOLZ  
2
1
2
2
2
[11,12]  
tOZ  
OE to High Z  
7
1
7
1
7
20  
9
1
7
tCD1  
tCD2  
tDC  
Clock to Data Valid - Flow-Through  
Clock to Data Valid - Pipelined  
Data Output Hold After Clock HIGH  
Clock HIGH to Output High Z  
Clock HIGH to Output Low Z  
15  
6.5  
18  
7.5  
25  
12  
2
2
2
2
2
2
2
2
2
2
2
2
[11,12]  
tCKHZ  
9
9
9
9
[11,12]  
tCKLZ  
Port to Port Delays  
tCWDD  
Write Port Clock HIGH to Read Data Delay  
Clock to Clock Set-Up Time  
30  
9
35  
10  
40  
15  
40  
15  
ns  
ns  
tCCS  
Notes:  
11. Test conditions used are Load 2.  
12. This parameter is guaranteed by design, but it is not production tested.  
6
CY7C09269/79/89  
CY7C09369/79/89  
PRELIMINARY  
Switching Waveforms  
Read Cycle for Flow-Through Output (FT/PIPE = VIL)[13,14,15,16]  
t
CYC1  
t
t
CL1  
CH1  
CLK  
CE  
CE  
0
1
t
t
t
t
HC  
SC  
HC  
SC  
R/W  
t
t
t
t
SW  
SA  
HW  
HA  
A
A
A
A
n+3  
n
n+1  
n+2  
ADDRESS  
t
CKHZ  
t
t
DC  
CD1  
DATA  
OUT  
Q
Q
t
Q
n
n+1  
n+2  
DC  
t
t
CKLZ  
t
OHZ  
OLZ  
OE  
t
OE  
Read Cycle for Pipelined Operation (FT/PIPE = VIH)[13,14,15,16]  
t
CYC2  
t
t
CL2  
CH2  
CLK  
CE  
CE  
0
1
t
t
t
t
HC  
SC  
HC  
SC  
R/W  
t
t
t
t
SW  
SA  
HW  
HA  
ADDRESS  
A
A
A
A
n+3  
n
n+1  
n+2  
t
1 Latency  
t
DC  
CD2  
DATA  
OUT  
Q
Q
Q
n+2  
n
n+1  
t
OHZ  
t
t
CKLZ  
OLZ  
OE  
tOE  
Notes:  
13. OE is asynchronously controlled; all other inputs are synchronous to the rising clock edge.  
14. ADS = VIL, CNTEN and CNTRST = VIH  
15. The output is disabled (high-impedance state) by CE0=VIH or CE1 = VIL following the next rising edge of the clock.  
.
16. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK. Numbers are for reference only.  
7
CY7C09269/79/89  
CY7C09369/79/89  
PRELIMINARY  
Switching Waveforms (continued)  
Bank Select Pipelined Read[17,18]  
t
CYC2  
t
t
CL2  
CH2  
CLK  
L
t
t
t
HA  
SA  
ADDRESS  
A
A
A
5
A
A
A
(B1)  
3
4
0
1
2
t
HC  
SC  
CE  
0(B1)  
t
t
t
t
t
CKHZ  
t
t
CD2  
CD2  
CD2  
HC  
CKHZ  
SC  
D
D
D
3
DATA  
1
0
OUT(B1)  
t
t
HA  
SA  
t
t
t
CKLZ  
DC  
DC  
A
A
D
A
5
ADDRESS  
A
0
A
A
3
4
(B2)  
1
2
t
t
HC  
SC  
CE  
0(B2)  
t
t
t
CD2  
t
CD2  
CKHZ  
t
SC  
HC  
DATA  
OUT(B2)  
D
4
2
t
t
CKLZ  
CKLZ  
Left Port Write to Flow-Through Right Port Read[19,20,21,22]  
CLK  
R/W  
L
L
t
t
HW  
SW  
t
t
HA  
SA  
NO  
MATCH  
ADDRESS  
MATCH  
VALID  
L
t
t
HD  
SD  
DATA  
INL  
t
CCS  
CLK  
R
R
R
t
CD1  
t
t
t
t
SW  
SA  
HW  
HA  
R/W  
NO  
MATCH  
MATCH  
ADDRESS  
t
t
CWDD  
CD1  
DATA  
VALID  
VALID  
OUTR  
t
DC  
t
DC  
Notes:  
17. In this depth expansion example, B1 represents Bank #1 and B2 is Bank #2; each Bank consists of one Cypress dual-port device from this datasheet.  
ADDRESS(B1) = ADDRESS(B2)  
.
18. UB, LB, OE and ADS = VIL; CE1(B1), CE1(B2), R/W, CNTEN, and CNTRST = VIH  
.
19. The same waveforms apply for a right port write to flow-through left port read.  
20. CE0, UB, LB, and ADS = VIL; CE1, CNTEN, and CNTRST = VIH  
.
21. OE = VIL for the Right Port, which is being read from. OE = VIH for the Left Port, which is being written to.  
22. It tCCS maximum specified, then data from right port READ is not valid until the maximum specified for tCWDD. If tCCS>maximum specified, then data is not valid  
until tCCS + tCD1. tCWDD does not apply in this case.  
8
CY7C09269/79/89  
CY7C09369/79/89  
PRELIMINARY  
Switching Waveforms (continued)  
Pipelined Read-to-Write-to-Read (OE = VIL)[16,23,24,25]  
t
CYC2  
t
t
CL2  
CH2  
CLK  
CE  
0
1
t
t
HC  
SC  
CE  
t
t
HW  
SW  
R/W  
t
t
HW  
SW  
A
A
A
A
A
A
n+4  
n
n+1  
n+2  
n+2  
n+3  
ADDRESS  
t
t
SD HD  
t
t
HA  
SA  
DATA  
D
IN  
n+2  
t
t
t
t
CD2  
CD2  
CKHZ  
CKLZ  
Q
Q
n+3  
n
DATA  
OUT  
READ  
NO OPERATION  
WRITE  
READ  
Pipelined Read-to-Write-to-Read (OE Controlled)[16,23,24,25]  
t
CYC2  
t
t
CL2  
CH2  
CLK  
CE  
0
1
t
t
HC  
SC  
CE  
t
t
HW  
SW  
R/W  
t
t
HW  
SW  
A
A
A
A
A
A
n+5  
n
n+1  
n+2  
n+3  
n+4  
ADDRESS  
t
t
HA  
t
t
SA  
SD HD  
D
DATA  
D
n+2  
IN  
n+3  
t
t
t
CD2  
CD2  
CKLZ  
DATA  
OUT  
Q
Q
n+4  
n
t
OHZ  
OE  
READ  
WRITE  
READ  
Notes:  
23. Output state (HIGH, LOW, or High-Impedance) is determined by the previous cycle control signals.  
24. CE0 and ADS = VIL; CE1, CNTEN, and CNTRST = VIH  
.
25. During “No operation,” data in memory at the selected address may be corrupted and should be rewritten to ensure data integrity.  
9
CY7C09269/79/89  
CY7C09369/79/89  
PRELIMINARY  
Switching Waveforms (continued)  
Flow-Through Read-to-Write-to-Read (OE = VIL)[14,16,23,24]  
t
CYC1  
t
t
CH1  
CL1  
CLK  
CE  
CE  
0
1
t
t
HC  
SC  
t
t
HW  
SW  
R/W  
t
t
HW  
SW  
A
A
A
A
D
A
A
n+4  
n
n+1  
n+2  
n+2  
n+3  
ADDRESS  
t
t
HD  
SD  
t
t
HA  
SA  
n+2  
DATA  
IN  
t
t
t
t
CD1  
CD1  
CD1  
CD1  
DATA  
Q
Q
Q
n+3  
OUT  
n
n+1  
t
t
t
t
DC  
DC  
CKHZ  
CKLZ  
NO  
OPERATION  
READ  
WRITE  
READ  
Flow-Through Read-to-Write-to-Read (OE Controlled)[14,16,23,24]  
t
CYC1  
t
t
CH1  
CL1  
CLK  
CE  
CE  
0
1
t
t
HC  
SC  
t
t
HW  
SW  
R/W  
t
t
HW  
SW  
A
A
A
A
D
A
A
n+5  
n
n+1  
n+2  
n+3  
n+4  
ADDRESS  
t
t
HD  
SD  
t
t
HA  
SA  
D
n+2  
n+3  
t
DATA  
t
OE  
IN  
DC  
t
t
CD1  
CD1  
t
CD1  
Q
Q
n+4  
n
DATA  
OUT  
t
OHZ  
t
t
DC  
CKLZ  
OE  
READ  
WRITE  
READ  
10  
CY7C09269/79/89  
CY7C09369/79/89  
PRELIMINARY  
Switching Waveforms (continued)  
Pipelined Read with Address Counter Advance[26]  
t
CYC2  
t
t
CH2  
CL2  
CLK  
t
t
HA  
SA  
ADDRESS  
A
n
t
t
t
t
SAD  
HAD  
ADS  
t
t
t
t
SAD  
HAD  
CNTEN  
SCN  
HCN  
SCN  
HCN  
t
CD2  
DATA  
OUT  
Q
Q
Q
Q
Q
Q
n+3  
x-1  
x
n
n+1  
n+2  
t
READ  
DC  
COUNTER HOLD  
READ WITH COUNTER  
READ WITH COUNTER  
EXTERNAL  
ADDRESS  
Flow-Through Read with Address Counter Advance[26]  
t
CYC1  
t
t
CH1  
CL1  
CLK  
t
t
HA  
SA  
A
n
ADDRESS  
t
t
t
SAD  
HAD  
ADS  
t
t
t
t
SAD  
HAD  
CNTEN  
t
SCN  
HCN  
SCN  
HCN  
t
CD1  
Q
Q
Q
Q
Q
n+3  
DATA  
x
n
n+1  
n+2  
OUT  
t
DC  
READ  
READ  
WITH  
COUNTER HOLD  
READ WITH COUNTER  
EXTERNAL  
ADDRESS  
COUNTER  
Note:  
26. CE0 and OE = VIL; CE1, R/W and CNTRST = VIH  
.
11  
CY7C09269/79/89  
CY7C09369/79/89  
PRELIMINARY  
Switching Waveforms (continued)  
Write with Address Counter Advance (Flow-Through or Pipelined Outputs)  
[27,28]  
t
CYC2  
t
t
CH2  
CL2  
CLK  
t
t
HA  
SA  
A
ADDRESS  
n
INTERNAL  
ADDRESS  
A
A
A
A
A
n+4  
n
n+1  
n+2  
n+3  
t
t
HAD  
SAD  
ADS  
CNTEN  
t
t
HCN  
SCN  
D
D
D
D
D
D
n+4  
DATA  
n
n+1  
n+1  
n+2  
n+3  
IN  
t
t
HD  
SD  
WRITE EXTERNAL  
ADDRESS  
WRITE WITH WRITE COUNTER  
COUNTER HOLD  
WRITE WITH COUNTER  
Notes:  
27. CE0, UB, LB, and R/W = VIL; CE1 and CNTRST = VIH  
.
28. The “Internal Address” is equal to the “External Address” when ADS = VIL and equals the counter output when ADS = VIH  
.
12  
CY7C09269/79/89  
CY7C09369/79/89  
PRELIMINARY  
Switching Waveforms (continued)  
Counter Reset (Pipelined Outputs)[16,28,29,30]  
t
CYC2  
t
t
CH2  
CL2  
CLK  
t
t
HA  
SA  
A
A
n+1  
ADDRESS  
n
INTERNAL  
ADDRESS  
A
0
1
A
A
n+1  
X
n
t
t
HW  
SW  
R/W  
ADS  
t
t
SAD  
HAD  
t
t
SCN  
HCN  
CNTEN  
t
t
HRST  
SRST  
CNTRST  
t
t
HD  
SD  
DATA  
D
IN  
0
DATA  
Q
Q
Q
n
OUT  
0
1
COUNTER  
RESET  
WRITE  
ADDRESS 0  
READ  
ADDRESS 0  
READ  
ADDRESS 1  
READ  
ADDRESS n  
Notes:  
29. CE0, UB, and LB = VIL; CE1 = VIH  
.
30. No dead cycle exists during counter reset. A READ or WRITE cycle may be coincidental with the counter reset.  
13  
CY7C09269/79/89  
CY7C09369/79/89  
PRELIMINARY  
Read/Write and Enable Operation[31,32,33]  
Inputs  
Outputs  
I/O0I/O17  
High-Z  
OE  
CLK  
CE0 CE1 R/W  
Operation  
X
H
X
L
L
L
X
X
X
L
Deselected[34]  
X
X
L
L
High-Z  
DIN  
Deselected[34]  
Write  
H
H
H
H
X
DOUT  
High-Z  
Read[34]  
H
X
Outputs Disabled  
Address Counter Control Operation[31,35,36,37]  
Previous  
Address Address CLK ADS CNTEN CNTRST  
I/O  
Mode  
Operation  
X
An  
X
X
X
X
X
H
L
H
H
Dout(0)  
Reset  
Counter Reset to Address 0  
X
L
Dout(n)  
Dout(n)  
Load  
Hold  
Address Load into Counter  
An  
H
External Address Blocked—Counter  
Disabled  
X
An  
H
L
H
Dout(n+1) Increment Counter Enabled—Internal Address  
Generation  
Notes:  
31. “X” = Don’t Care, “H” = VIH, “L” = VIL  
.
32. ADS, CNTEN, CNTRST = Don’t Care.  
33. OE is an asynchronous input signal.  
34. When CE changes state in the pipelined mode, deselection and read happen in the following clock cycle.  
35. CE0 and OE = VIL; CE1 and R/W = VIH  
.
36. Data shown for flow-through mode; pipelined mode output will be delayed by one cycle.  
37. Counter operation is independent of CE0 and CE1.  
14  
CY7C09269/79/89  
CY7C09369/79/89  
PRELIMINARY  
Ordering Information  
16K x16 Synchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
Package Type  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
6.5  
CY7C09269-6AC  
A100  
A100  
A100  
A100  
A100  
A100  
A100  
Commercial  
Commercial  
Industrial  
7.5  
CY7C09269-7AC  
CY7C09269-7AI  
CY7C09269-9AC  
CY7C09269-9AI  
CY7C09269-12AC  
CY7C09269-12AI  
9
Commercial  
Industrial  
12  
Commercial  
Industrial  
Shaded area contains advance information.  
32K x16 Synchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
Package Type  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
6.5  
CY7C09279-6AC  
A100  
A100  
A100  
A100  
A100  
A100  
A100  
Commercial  
Commercial  
Industrial  
7.5  
CY7C09279-7AC  
CY7C09279-7AI  
CY7C09279-9AC  
CY7C09279-9AI  
CY7C09279-12AC  
CY7C09279-12AI  
9
Commercial  
Industrial  
12  
Commercial  
Industrial  
Shaded area contains advance information.  
64K x16 Synchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
Package Type  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
6.5  
CY7C09289-6AC  
A100  
A100  
A100  
A100  
A100  
A100  
A100  
Commercial  
Commercial  
Industrial  
7.5  
CY7C09289-7AC  
CY7C09289-7AI  
CY7C09289-9AC  
CY7C09289-9AI  
CY7C09289-12AC  
CY7C09289-12AI  
9
Commercial  
Industrial  
12  
Commercial  
Industrial  
Shaded area contains advance information.  
15  
CY7C09269/79/89  
CY7C09369/79/89  
PRELIMINARY  
Ordering Information (continued)  
16K x18 Synchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
Package Type  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
6.5  
CY7C09369-6AC  
A100  
A100  
A100  
A100  
A100  
A100  
A100  
Commercial  
Commercial  
Industrial  
7.5  
CY7C09369-7AC  
CY7C09369-7AI  
CY7C09369-9AC  
CY7C09369-9AI  
CY7C09369-12AC  
CY7C09369-12AI  
9
Commercial  
Industrial  
12  
Commercial  
Industrial  
Shaded area contains advancd information.  
32K x18 Synchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
Package Type  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
6.5  
CY7C09379-6AC  
A100  
A100  
A100  
A100  
A100  
A100  
A100  
Commercial  
Commercial  
Industrial  
7.5  
CY7C09379-7AC  
CY7C09379-7AI  
CY7C09379-9AC  
CY7C09379-9AI  
CY7C09379-12AC  
CY7C09379-12AI  
9
Commercial  
Industrial  
12  
Commercial  
Industrial  
Shaded area contains advance information.  
64K x18 Synchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
Package Type  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
6.5  
CY7C09389-6AC  
A100  
A100  
A100  
A100  
A100  
A100  
A100  
Commercial  
Commercial  
Industrial  
7.5  
CY7C09389-7AC  
CY7C09389-7AI  
CY7C09389-9AC  
CY7C09389-9AI  
CY7C09389-12AC  
CY7C09389-12AI  
9
Commercial  
Industrial  
12  
Commercial  
Industrial  
Shaded area contains advance information.  
Document #: 38–00664–D  
16  
CY7C09269/79/89  
CY7C09369/79/89  
PRELIMINARY  
Package Diagram  
100-Pin Thin Plastic Quad Flat Pack (TQFP) A100  
51-85048-A  
© Cypress Semiconductor Corporation, 1998. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

CY7C09269A

16K x16/18 Synchronous Dual Port Static RAM
CYPRESS

CY7C09269A-12AC

16K x16/18 Synchronous Dual Port Static RAM
CYPRESS

CY7C09269A-6AC

16K x16/18 Synchronous Dual Port Static RAM
CYPRESS

CY7C09269A-7AC

16K x16/18 Synchronous Dual Port Static RAM
CYPRESS

CY7C09269A-9AC

16K x16/18 Synchronous Dual Port Static RAM
CYPRESS

CY7C09269V

3.3V 16K/32K/64K x 16/18 Synchronous Dual-Port Static RAM
CYPRESS

CY7C09269V-10AC

Multi-Port SRAM, 16KX16, 10ns, CMOS, PQFP100, PLASTIC, TQFP-100
CYPRESS

CY7C09269V-12AC

3.3V 16K/32K/64K x 16/18 Synchronous Dual-Port Static RAM
CYPRESS

CY7C09269V-12AC

16KX16 DUAL-PORT SRAM, 12ns, PQFP100, PLASTIC, MS-026, TQFP-100
ROCHESTER

CY7C09269V-12AXC

3.3V 16K/32K/64K x 16/18 Synchronous Dual-Port Static RAM
CYPRESS

CY7C09269V-6AC

3.3V 16K/32K/64K x 16/18 Synchronous Dual-Port Static RAM
CYPRESS

CY7C09269V-6AXC

3.3V 16K/32K/64K x 16/18 Synchronous Dual-Port Static RAM
CYPRESS