CY7C09349V-9AC [CYPRESS]

Dual-Port SRAM, 4KX18, 9ns, CMOS, PQFP100, PLASTIC, TQFP-100;
CY7C09349V-9AC
型号: CY7C09349V-9AC
厂家: CYPRESS    CYPRESS
描述:

Dual-Port SRAM, 4KX18, 9ns, CMOS, PQFP100, PLASTIC, TQFP-100

静态存储器 内存集成电路
文件: 总17页 (文件大小:348K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1
CY7C09349V  
CY7C09359V  
PRELIMINARY  
3.3V 4K/8K x 18  
Synchronous Dual-Port Static RAM  
[1, 2]  
• High-speed clock to data access 7.5  
• 3.3V Low operating power  
/9/12 ns (max.)  
Features  
• True dual-ported memory cells which allow simulta-  
neous access of the same memory location  
— Active = 135 mA (typical)  
— Standby = 10 µA (typical)  
• Two Flow-Through/Pipelined devices  
— 4K x 18 organization (CY7C09349V)  
— 8K x 18 organization (CY7C09359V)  
• Three Modes  
• Fully synchronous interface for easier operation  
• Burst counters increment addresses internally  
— Shorten cycle times  
— Minimize bus noise  
— Flow-Through  
— Supported in Flow-Through and Pipelined modes  
• Dual Chip Enables for easy depth expansion  
• Upper and lower byte controls for bus matching  
• Automatic power-down  
— Pipelined  
— Burst  
• Pipelinedoutputmodeonboth portsallowsfast83-MHz  
operation  
• Commercial and Industrial temperature ranges  
• 0.35-micron CMOS for optimum speed/power  
Available in 100-pin TQFP  
v
Logic Block Diagram  
R/W  
R/W  
UB  
L
R
R
UB  
L
CE  
CE  
CE  
CE  
0L  
1L  
0R  
1R  
1
1
0
0
0/1  
0/1  
LB  
LB  
L
R
OE  
OE  
L
R
1b 0b 1a 0a  
0a 1a 0b 1b  
a b 0/1  
0/1  
b
a
FT/Pipe  
FT/Pipe  
L
R
9
9
9
9
I/O –I/O  
I/O –I/O  
9R 17R  
9L  
17L  
8L  
I/O  
Control  
I/O  
Control  
I/O –I/O  
I/O –I/O  
0L  
0R  
8R  
12/13  
12/13  
[3]  
A
–A[3]  
A
–A  
0L  
11/12L  
0R 11/12R  
Counter/  
Address  
Register  
Decode  
Counter/  
Address  
Register  
Decode  
CLK  
CLK  
ADS  
L
R
R
R
R
True Dual-Ported  
RAM Array  
ADS  
L
CNTEN  
CNTEN  
L
CNTRST  
CNTRST  
L
Notes:  
1. Call for availability  
2. See Page 6 for Load Conditions.  
3. A0–A11 for 4K; A0–A12 for 8K devices.  
For the most recent information, visit the Cypress web site at www.cypress.com  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
October 14, 1999  
CY7C09349V  
CY7C09359V  
PRELIMINARY  
A HIGH on CE or LOW on CE for one clock cycle will power  
Functional Description  
0
1
down the internal circuitry to reduce the static power consump-  
tion. The use of multiple Chip Enables allows easier banking  
of multiple chips for depth expansion configurations. In the  
The CY7C09349V and CY7C09359V are high-speed 3.3V  
synchronous CMOS 4K and 8K x 18 dual-port static RAMs.  
Two ports are provided, permitting independent, simultaneous  
pipelined mode, one cycle is required with CE LOW and CE  
0
1
[4]  
access for reads and writes to any location in memory. Reg-  
HIGH to reactivate the outputs.  
isters on control, address, and data lines allow for minimal set-  
Counter enable inputs are provided to stall the operation of the  
address input and utilize the internal address generated by the  
internal counter for fast interleaved memory applications. A  
ports burst counter is loaded with the ports Address Strobe  
(ADS). When the ports Count Enable (CNTEN) is asserted,  
the address counter will increment on each LOW-to-HIGH  
transition of that ports clock signal. This will read/write one  
word from/into each successive address location until CNTEN  
is deasserted. The counter can address the entire memory  
array and will loop back to the start. Counter Reset (CNTRST)  
is used to reset the burst counter.  
up and hold times. In pipelined output mode, data is registered  
[1]  
for decreased cycle time. Clock to data valid t  
= 7.5 ns  
CD2  
(pipelined). Flow-through mode can also be used to bypass  
the pipelined output register to eliminate access latency. In  
flow-through mode data will be available t  
= 18 ns after the  
CD1  
address is clocked into the device. Pipelined output or flow-  
through mode is selected via the FT/Pipe pin.  
Each port contains a burst counter on the input address regis-  
ter. The internal write pulse width is independent of the LOW-  
to-HIGH transition of the clock signal. The internal write pulse  
is self-timed to allow the shortest possible cycle times.  
All parts are available in 100-pin Thin Quad Plastic Flatpack  
(TQFP) packages.  
Note:  
4. When simultaneously writing to the same location, final value cannot be guaranteed.  
2
CY7C09349V  
CY7C09359V  
PRELIMINARY  
Pin Configuration  
100-Pin TQFP (Top View)  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
A9L  
A10L  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
A8R  
2
A9R  
A11L  
3
A10R  
A11R  
[Note 5] A12L  
NC  
4
5
A12R  
NC  
[Note 5]  
NC  
6
NC  
7
NC  
LBL  
8
NC  
UBL  
9
LBR  
UBR  
CE0R  
CE1R  
CE0L  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CE1L  
CY7C09359V (8K x 18)  
CY7C09349V (4K x 18)  
CNTRSTL  
R/WL  
CNTRSTR  
R/WR  
OEL  
VCC  
GND  
FT/PIPEL  
I/O17L  
I/O16L  
GND  
60  
59  
58  
57  
56  
55  
OER  
FT/PIPER  
I/O17R  
GND  
I/O15L  
I/O14L  
I/O13L  
1/012L  
I/O16R  
I/O15R  
54  
53  
I/O14R  
I/O13R  
I/O11L  
I/O10L  
24  
25  
52  
51  
I/O12R  
I/O11R  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Selection Guide  
CY7C09349V  
CY7C09359V  
CY7C09349V  
CY7C09359V  
-9  
CY7C09349V  
CY7C09359V  
-12  
[1, 2]  
-7  
f
(MHz) (Pipelined)  
83  
7.5  
67  
9
50  
12  
MAX2  
Max Access Time (ns) (Clock to Data, Pipelined)  
Typical Operating Current I (mA)  
155  
25  
135  
20  
115  
20  
CC  
Typical Standby Current for I  
(mA) (Both Ports TTL Level)  
SB1  
Typical Standby Current for I  
(µA) (Both Ports CMOS Level)  
10 µA  
10 µA  
10 µA  
SB3  
Shaded areas contain advance information.  
Note:  
5. This pin is NC for CY7C09349V.  
3
CY7C09349V  
CY7C09359V  
PRELIMINARY  
Pin Definitions  
Left Port  
A  
Right Port  
A A  
0R  
Description  
Address Inputs (A A for 4K, A A for 8K devices).  
A
0L  
12L  
12R  
0
11  
0
12  
ADS  
ADS  
Address Strobe Input. Used as an address qualifier. This signal should be asserted LOW during  
normal read or write transactions. Asserting this signal LOW also loads the burst address  
counter with data present on the I/O pins.  
L
R
CE ,CE  
CE ,CE  
Chip Enable Input. To select either the left or right port, both CE AND CE must be asserted  
0 1  
0L  
1L  
0R  
1R  
to their active states (CE V and CE V ).  
0
IL  
1
IH  
CLK  
CLK  
Clock Signal. This input can be free running or strobed. Maximum clock input rate is f  
.
L
R
MAX  
CNTEN  
CNTEN  
Counter Enable Input. Asserting this signal LOW increments the burst address counter of its  
respective port on each rising edge of CLK. CNTEN is disabled if ADS or CNTRST are asserted  
LOW.  
L
R
CNTRST  
CNTRST  
Counter Reset Input. Asserting this signal LOW resets the burst address counter of its respec-  
tive port to zero. CNTRST is not disabled by asserting ADS or CNTEN.  
L
R
I/O I/O  
I/O I/O  
Data Bus Input/Output (I/O I/O for x16 devices).  
0 15  
0L  
17L  
0R  
17R  
LB  
LB  
Lower Byte Select Input. Asserting this signal LOW enables read and write operations to the  
lower byte (I/O I/O for x18, I/O I/O for x16) of the memory array. For read operations both  
L
R
0
8
0
7
the LB and OE signals must be asserted to drive output data on the lower byte of the data pins.  
UB  
UB  
R
Upper Byte Select Input. Same function as LB, but to the upper byte (I/O I/O ).  
L
8/9L  
15/17L  
OE  
OE  
Output Enable Input. This signal must be asserted LOW to enable the I/O data pins during read  
operations.  
L
R
R/W  
R/W  
Read/Write Enable Input. This signal is asserted LOW to write to the dual port memory array.  
For read operations, assert this pin HIGH.  
L
R
FT/PIPE  
FT/PIPE  
Flow-Through/Pipelined Select Input. For flow-through mode operation, assert this pin LOW.  
For pipelined mode operation, assert this pin HIGH.  
L
R
GND  
NC  
Ground Input.  
No Connect.  
Power Input.  
V
CC  
Output Current into Outputs (LOW)............................. 20 mA  
Static Discharge Voltage ........................................... >2001V  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-Up Current..................................................... >200 mA  
Storage Temperature ................................. 65°C to +150°C  
Operating Range  
Ambient Temperature with  
Ambient  
Power Applied.............................................55°C to +125°C  
Range  
Commercial  
Industrial  
Temperature  
0°C to +70°C  
40°C to +85°C  
V
CC  
Supply Voltage to Ground Potential ............... 0.5V to +4.6V  
3.3V ± 300 mV  
3.3V ± 300 mV  
DC Voltage Applied to  
Outputs in High Z State ...........................0.5V to V +0.5V  
CC  
Shaded areas contain advance information.  
DC Input Voltage......................................0.5V to V +0.5V  
CC  
4
CY7C09349V  
CY7C09359V  
PRELIMINARY  
Electrical Characteristics Over the Operating Range  
CY7C09349V  
CY7C09359V  
[1, 2]  
-7  
-9  
-12  
Parameter  
Description  
Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit  
V
V
V
V
Output HIGH Voltage (V = Min., I = 4.0 mA) 2.4  
2.4  
2.0  
10  
2.4  
2.0  
10  
V
V
OH  
OL  
IH  
CC  
OH  
Output LOW Voltage (V = Min., I = +4.0 mA)  
0.4  
0.4  
0.4  
CC  
OH  
Input HIGH Voltage  
Input LOW Voltage  
2.0  
V
0.8  
10  
0.8  
10  
0.8  
10  
V
IL  
I
I
Output Leakage Current  
Operating Current (V = Max.,  
10  
µA  
OZ  
Coml.  
Indust.  
Coml.  
Indust.  
Coml.  
Indust.  
Coml.  
Indust.  
Coml.  
Indust.  
155 275  
135 230  
185 300  
115 180 mA  
155 250 mA  
CC  
CC  
I
= 0 mA) Outputs Disabled  
OUT  
I
I
I
I
Standby Current (Both Ports TTL  
25  
85  
20  
35  
75  
85  
20  
30  
70 mA  
80 mA  
SB1  
SB2  
SB3  
SB4  
[6]  
Level) CE & CE V , f =f  
L
R
IH  
MAX  
[6]  
Standby Current (One Port TTL Level)  
CE | CE V , f =f  
105 165  
95 155  
106 165  
10 250  
10 250  
85 115  
95 125  
85 140 mA  
95 150 mA  
10 250 µA  
10 250 µA  
75 100 mA  
85 110 mA  
L
R
IH  
MAX  
Standby Current (Both Ports CMOS  
10  
95  
250  
125  
[6]  
Level) CE & CE V 0.2V, f = 0  
L
R
CC  
Standby Current (One Port CMOS  
[6]  
Level) CE | CE V , f = f  
L
R
IH  
MAX  
Shaded areas contain advance information.  
Capacitance  
Parameter  
Description  
Test Conditions  
T = 25°C, f = 1 MHz,  
Max.  
Unit  
pF  
C
C
Input Capacitance  
Output Capacitance  
10  
10  
IN  
A
V
= 3.3V  
CC  
pF  
OUT  
Note:  
6. CEL and CER are internal signals. To select either the left or right port, both CE0 AND CE1 must be asserted to their active states (CE0 VIL and CE1 VIH).  
5
CY7C09349V  
CY7C09359V  
PRELIMINARY  
AC Test Loads  
3.3V  
3.3V  
R
TH  
= 250  
R1 = 590  
OUTPUT  
C = 30 pF  
OUTPUT  
R1 = 590  
OUTPUT  
C = 5 pF  
C = 30 pF  
R2 = 435  
R2 = 435  
V
TH  
= 1.4V  
(a) Normal Load (Load 1)  
(c)Three-State Delay(Load 2)  
(Used for t , t , & t  
(b) Thévenin Equivalent (Load 1)  
CKLZ OLZ  
OHZ  
including scope and jig)  
AC Test Loads (Applicable to -7 only)[7]  
ALL INPUTPULSES  
Z = 50  
R = 50  
0
OUTPUT  
3.0V  
GND  
90%  
10%  
90%  
C
10%  
3 ns  
3 ns  
V
TH  
= 1.4V  
(a) Load 1 (-7 only)  
1 .00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.1 0  
0.00  
1 0  
1 5  
20  
25  
30  
35  
Capacitance (pF)  
(b) Load Derating Curve  
Note:  
7. Test Conditions: C = 10 pF.  
6
CY7C09349V  
CY7C09359V  
PRELIMINARY  
Switching Characteristics Over the Operating Range  
CY7C09349V  
CY7C09359V  
[1, 2]  
-7  
Min.  
-9  
-12  
Parameter  
Description  
Flow-Through  
Max.  
Min.  
Max.  
40  
Min.  
Max.  
33  
Unit  
MHz  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
f
f
f
45  
83  
MAX1  
MAX2  
CYC1  
CYC2  
CH1  
CL1  
CH2  
CL2  
R
Max  
f
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Pipelined  
67  
50  
Max  
Clock Cycle Time - Flow-Through  
Clock Cycle Time - Pipelined  
Clock HIGH Time - Flow-Through  
Clock LOW Time - Flow-Through  
Clock HIGH Time - Pipelined  
Clock LOW Time - Pipelined  
Clock Rise Time  
22  
12  
7.5  
7.5  
5
25  
15  
12  
12  
6
30  
20  
12  
12  
8
5
6
8
3
3
3
3
3
3
Clock Fall Time  
F
Address Set-up Time  
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
SA  
Address Hold Time  
HA  
Chip Enable Set-up Time  
Chip Enable Hold Time  
R/W Set-up Time  
SC  
HC  
SW  
R/W Hold Time  
HW  
Input Data Set-up Time  
Input Data Hold Time  
SD  
HD  
ADS Set-up Time  
SAD  
HAD  
SCN  
HCN  
SRST  
HRST  
OE  
ADS Hold Time  
CNTEN Set-up Time  
CNTEN Hold Time  
CNTRST Set-up Time  
CNTRST Hold Time  
Output Enable to Data Valid  
OE to Low Z  
9
10  
12  
2
1
2
1
2
1
OLZ  
OHZ  
CD1  
CD2  
DC  
OE to High Z  
7
7
20  
9
7
Clock to Data Valid - Flow-Through  
Clock to Data Valid - Pipelined  
Data Output Hold After Clock HIGH  
Clock HIGH to Output High Z  
Clock HIGH to Output Low Z  
18  
7.5  
25  
12  
2
2
2
2
2
2
2
2
2
9
9
9
CKHZ  
CKLZ  
Port to Port Delays  
t
t
Write Port Clock HIGH to Read Data Delay  
Clock to Clock Set-up Time  
35  
10  
40  
15  
40  
15  
ns  
ns  
CWDD  
CCS  
Shaded areas contain advance information.  
7
CY7C09349V  
CY7C09359V  
PRELIMINARY  
Switching Waveforms  
Read Cycle for Flow-Through Output (FT/PIPE = V )  
[8, 9, 10, 11]  
IL  
tCYC1  
tCH1  
tCL1  
CLK  
CE0  
tSC  
tHC  
tSC  
tHC  
CE1  
R/W  
tSW  
tSA  
tHW  
tHA  
An  
An+1  
An+2  
An+3  
ADDRESS  
DATAOUT  
tCKHZ  
Qn+2  
tDC  
tDC  
Qn  
tCD1  
Qn+1  
tCKLZ  
tOHZ  
tOLZ  
OE  
tOE  
[8, 9, 10, 11]  
Read Cycle for Pipelined Operation (FT/PIPE = V )  
IH  
tCYC2  
tCH2  
tCL2  
CLK  
CE0  
tSC  
tHC  
tSC  
tHC  
CE1  
R/W  
tSW  
tSA  
tHW  
tHA  
ADDRESS  
DATAOUT  
An  
An+1  
An+2  
An+3  
tDC  
1 Latency  
tCD2  
Qn  
Qn+1  
tOHZ  
Qn+2  
tCKLZ  
tOLZ  
OE  
tOE  
Notes:  
8. OE is asynchronously controlled; all other inputs are synchronous to the rising clock edge.  
9. ADS = VIL, CNTEN and CNTRST = VIH  
10. The output is disabled (high-impedance state) by CE0=VIH or CE1 = VIL following the next rising edge of the clock.  
.
11. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK. Numbers are for reference only.  
8
CY7C09349V  
CY7C09359V  
PRELIMINARY  
Switching Waveforms (continued)  
[12, 13]  
Bank Select Pipelined Read  
tCYC2  
tCH2  
tCL2  
CLKL  
tHA  
tSA  
A3  
ADDRESS(B1)  
A4  
A5  
A0  
A1  
A2  
tHC  
tSC  
CE0(B1)  
tCD2  
tCD2  
tCD2  
tCKHZ  
tHC  
tCKHZ  
tSC  
D0  
D3  
D1  
DATAOUT(B1)  
ADDRESS(B2)  
tHA  
tSA  
tDC  
A2  
tDC  
A3  
tCKLZ  
A4  
A5  
A0  
A1  
tHC  
tSC  
CE0(B2)  
tCD2  
tCKHZ  
tCD2  
tSC  
tHC  
DATAOUT(B2)  
D4  
D2  
tCKLZ  
tCKLZ  
[14, 15, 16, 17]  
Left Port Write to Flow-Through Right Port Read  
CLKL  
tHW  
tSW  
R/WL  
tHA  
tSA  
NO  
MATCH  
ADDRESSL  
MATCH  
tHD  
tSD  
VALID  
tCCS  
DATAINL  
CLKR  
R/WR  
tCD1  
tSW tHW  
tSA tHA  
NO  
MATCH  
MATCH  
ADDRESSR  
tCWDD  
tCD1  
DATAOUTR  
VALID  
VALID  
tDC  
tDC  
Notes:  
12. In this depth expansion example, B1 represents Bank #1 and B2 is Bank #2. Each Bank consists of one Cypress dual-port device from this data sheet.  
ADDRESS(B1) = ADDRESS(B2)  
.
13. UB, LB, OE and ADS = VIL; CE1(B1), CE1(B2), R/W, CNTEN, and CNTRST = VIH  
.
14. The same waveforms apply for a right port write to flow-through left port read.  
15. CE0, UB, LB, and ADS = VIL; CE1, CNTEN, and CNTRST = VIH  
.
16. OE = VIL for the right port, which is being read from. OE = VIH for the left port, which is being written to.  
17. It tCCS maximum specified, then data from right port READ is not valid until the maximum specified for tCWDD. If tCCS>maximum specified, then data is not valid  
until tCCS + tCD1. tCWDD does not apply in this case.  
9
CY7C09349V  
CY7C09359V  
PRELIMINARY  
Switching Waveforms (continued)  
Pipelined Read-to-Write-to-Read (OE = V )  
[11, 18, 19, 20]  
IL  
tCYC2  
tCH2  
tCL2  
CLK  
CE0  
tSC  
tHC  
CE1  
R/W  
tSW  
tHW  
tSW  
tHW  
An  
An+1  
An+2  
An+2  
An+3  
An+4  
ADDRESS  
DATAIN  
tSD tHD  
tSA  
tHA  
Dn+2  
tCD2  
tCD2  
tCKHZ  
tCKLZ  
Qn  
Qn+3  
DATAOUT  
READ  
NO OPERATION  
[11, 18, 19, 20]  
WRITE  
READ  
Pipelined Read-to-Write-to-Read (OE Controlled)  
tCYC2  
tCH2  
tCL2  
CLK  
CE0  
tSC  
tHC  
CE1  
R/W  
tHW  
tSW  
tSW  
tHW  
An  
An+1  
An+2  
An+3  
An+4  
An+5  
ADDRESS  
DATAOUT  
tSA  
tHA  
tSD tHD  
Dn+2  
Dn+3  
tCD2  
tCKLZ  
tCD2  
DATAIN  
OE  
Qn  
Qn+4  
tOHZ  
READ  
WRITE  
READ  
Notes:  
18. Output state (HIGH, LOW, or High-Impedance) is determined by the previous cycle control signals.  
19. CE0 and ADS = VIL; CE1, CNTEN, and CNTRST = VIH  
.
20. During No operation,data in memory at the selected address may be corrupted and should be rewritten to ensure data integrity.  
10  
CY7C09349V  
CY7C09359V  
PRELIMINARY  
Switching Waveforms (continued)  
Flow-Through Read-to-Write-to-Read (OE = V )  
[9, 11, 19, 20]  
IL  
tCYC1  
tCH1  
tCL1  
CLK  
CE0  
tSC  
tHC  
CE1  
R/W  
tSW  
tHW  
tSW  
tHW  
An  
An+1  
An+2  
An+2  
An+3  
An+4  
ADDRESS  
DATAIN  
tSD  
tHD  
tSA  
tHA  
Dn+2  
tCD1  
tCD1  
tCD1  
tCD1  
DATAOUT  
Qn  
tDC  
Qn+1  
tCKHZ  
Qn+3  
tCKLZ  
tDC  
NO  
OPERATION  
READ  
WRITE  
READ  
[9, 11, 18, 19, 20]  
Flow-Through Read-to-Write-to-Read (OE Controlled)  
tCYC1  
tCH1  
tCL1  
CLK  
CE0  
tSC  
tHC  
CE1  
R/W  
tSW  
tHW  
tSW  
tHW  
An  
An+1  
An+2  
An+3  
An+4  
An+5  
ADDRESS  
DATAIN  
tSD  
tHD  
tSA  
tHA  
Dn+2  
Dn+3  
tOE  
tCD1  
tDC  
tCD1  
tCD1  
Qn  
Qn+4  
tDC  
DATAOUT  
OE  
tOHZ  
tCKLZ  
READ  
WRITE  
READ  
11  
CY7C09349V  
CY7C09359V  
PRELIMINARY  
Switching Waveforms (continued)  
Pipelined Read with Address Counter Advance  
[21]  
tCYC2  
tCH2  
tCL2  
CLK  
tSA  
tHA  
ADDRESS  
An  
tSAD  
tHAD  
ADS  
tSAD  
tHAD  
CNTEN  
tSCN  
tHCN  
tSCN  
tHCN  
tCD2  
DATAOUT  
Qx-1  
Qx  
tDC  
Qn  
Qn+1  
Qn+2  
Qn+3  
READ  
COUNTER HOLD  
READ WITH COUNTER  
[21]  
READ WITH COUNTER  
EXTERNAL  
ADDRESS  
Flow-Through Read with Address Counter Advance  
tCYC1  
tCH1  
tCL1  
CLK  
tSA  
tHA  
An  
ADDRESS  
tSAD  
tHAD  
ADS  
tSAD  
tHAD  
CNTEN  
tSCN  
tHCN  
tSCN  
tHCN  
tCD1  
Qn+3  
Qn+2  
Qx  
tDC  
Qn  
Qn+1  
DATAOUT  
READ  
WITH  
READ  
COUNTER HOLD  
READ WITH COUNTER  
EXTERNAL  
ADDRESS  
COUNTER  
Note:  
21. CE0 and OE = VIL; CE1, R/W and CNTRST = VIH  
.
12  
CY7C09349V  
CY7C09359V  
PRELIMINARY  
Switching Waveforms (continued)  
Write with Address Counter Advance (Flow-Through or Pipelined Outputs)  
[22, 23]  
tCYC2  
tCH2  
tCL2  
CLK  
tSA  
tHA  
An  
ADDRESS  
INTERNAL  
ADDRESS  
An  
An+1  
An+2  
An+3  
An+4  
tSAD  
tHAD  
ADS  
CNTEN  
DATAIN  
tSCN  
tHCN  
Dn  
Dn+1  
Dn+1  
Dn+2  
Dn+3  
Dn+4  
tSD  
tHD  
WRITE EXTERNAL  
ADDRESS  
WRITE WITH WRITE COUNTER  
COUNTER HOLD  
WRITE WITH COUNTER  
Notes:  
22. CE0, UB, LB, and R/W = VIL; CE1 and CNTRST = VIH  
.
23. The Internal Addressis equal to the External Addresswhen ADS = VIL and equals the counter output when ADS = VIH  
.
13  
CY7C09349V  
CY7C09359V  
PRELIMINARY  
Switching Waveforms (continued)  
[11, 18, 24, 25]  
Counter Reset (Pipelined Outputs)  
tCYC2  
tCH2  
tCL2  
CLK  
tSA  
tHA  
An  
An+1  
ADDRESS  
INTERNAL  
ADDRESS  
AX  
0
1
An  
An+1  
tSW tHW  
R/W  
ADS  
tSAD  
tHAD  
tSCN  
tHCN  
CNTEN  
tSRST  
tHRST  
CNTRST  
DATAIN  
tSD tHD  
D0  
DATAOUT  
Q0  
Q1  
Qn  
COUNTER  
RESET  
WRITE  
ADDRESS 0  
READ  
ADDRESS 0  
READ  
ADDRESS 1  
READ  
ADDRESS n  
Notes:  
24. CE0, UB, and LB = VIL; CE1 = VIH  
.
25. No dead cycle exists during counter reset. A READ or WRITE cycle may be coincidental with the counter reset.  
14  
CY7C09349V  
CY7C09359V  
PRELIMINARY  
Read/Write and Enable Operation[26, 27, 28]  
Inputs  
Outputs  
OE  
CLK  
CE  
CE  
R/W  
I/O I/O  
Operation  
0
1
0
17  
[29]  
X
H
X
X
High-Z  
Deselected  
Deselected  
Write  
[29]  
X
X
L
X
L
L
L
L
H
H
H
X
L
High-Z  
D
IN  
[29]  
H
X
D
Read  
OUT  
H
X
High-Z  
Outputs Disabled  
Address Counter Control Operation[26, 30, 31, 32]  
Previous  
Address Address CLK ADS CNTEN CNTRST  
I/O  
Mode  
Operation  
X
X
X
X
X
H
L
H
H
D
D
D
Reset  
Counter Reset to Address 0  
out(0)  
A
X
L
Load  
Hold  
Address Load into Counter  
n
out(n)  
out(n)  
X
X
A
H
External Address BlockedCounter  
Disabled  
n
n
A
H
L
H
D
Increment Counter EnabledInternal Address  
out(n+1)  
Generation  
Notes:  
26. X= dont care,” “H= VIH, L= VIL  
.
27. ADS, CNTEN, CNTRST = dont care.”  
28. OE is an asynchronous input signal.  
29. When CE changes state In the pipelined mode, deselection and read happen in the following clock cycle.  
30. CE0 and OE = VIL; CE1 and R/W = VIH  
.
31. Data shown for flow-through mode; pipelined mode output will be delayed by one cycle.  
32. Counter operation is independent of CE0 and CE1.  
15  
CY7C09349V  
CY7C09359V  
PRELIMINARY  
Ordering Information  
4K x18 3.3V Synchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
CY7C09349V7AC  
CY7C09349V9AC  
CY7C09349V9AI  
CY7C09349V12AC  
CY7C09349V12AI  
Package Type  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
[1, 2]  
7.5  
A100  
A100  
A100  
A100  
A100  
Commercial  
Commercial  
Industrial  
9
12  
Commercial  
Industrial  
8K x18 3.3V Synchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
CY7C09359V7AC  
CY7C09359V9AC  
CY7C09359V9AI  
CY7C09359V12AC  
CY7C09359V12AI  
Package Type  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
[1, 2]  
7.5  
A100  
A100  
A100  
A100  
A100  
Commercial  
Commercial  
Industrial  
9
12  
Commercial  
Industrial  
Shaded areas contain advance information.  
Document #: 3800676C  
Package Diagram  
100-Pin Thin Plastic Quad Flat Pack (TQFP) A100  
51-85048-A  
16  
CY7C09349V  
CY7C09359V  
PRELIMINARY  
without the loss of any power. Contact your local Cypress FAE  
for assistance as needed.  
CY7C036 Dual Port Design Consideration –  
Data Sheet Addendum  
TroubleshootingIf a problem occurs with the part, power  
down the device to ground and then power up again at slower  
ramp rate (greater than 100 ns) in order to confirm that the  
problem might be due to the POR circuit. If the dual-port func-  
tions properly once the ramp rate is slowed to 100 ns or great-  
er, then the POR circuit is at fault.  
This design consideration applies to the Internal Power-On-  
Reset (POR) circuit used on the CY7C036 and its derivatives  
listed below.  
Power supply rampThe devices will function properly and  
meet all data sheet specifications if the power supply ramp rate  
is greater than 100 ns. If ramp is less than 100 ns, you may  
see a non-destructive failure in which the device will not re-  
spond to changes in address or clock, but the I/Os will respond  
to the output enable.  
Applicable devicesAll speed/package/temperature combi-  
nations of the following:  
CY7C09349V  
CY7C09359V  
Applications considerationIf the power supply ramps in less  
than 100 ns, a small resistor (2050), a large capacitor, or an  
RC network can be connected at the output of the power sup-  
ply to ground. The addition of a resistor will help clean up the  
power lines, while the capacitor will slow down the ramp rate  
Cypress design changeCypress design team has identified  
the root cause. A permanent circuit change and die revision  
will be available beginning in October and will be identified by  
the letter Ain the part number.  
© Cypress Semiconductor Corporation, 1999. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

CY7C09359-10AC

Dual-Port SRAM, 16KX9, 10ns, CMOS, PQFP100, PLASTIC, TQFP-100
CYPRESS

CY7C09359-6AC

Dual-Port SRAM, 8KX18, 6.5ns, CMOS, PQFP100, PLASTIC, TQFP-100
CYPRESS

CY7C09359-8AC

Dual-Port SRAM, 16KX9, 8ns, CMOS, PQFP100, PLASTIC, TQFP-100
CYPRESS

CY7C09359-8AI

Dual-Port SRAM, 16KX9, 8ns, CMOS, PQFP100, PLASTIC, TQFP-100
CYPRESS

CY7C09359A

4K/8K x 18 Synchronous Dual-Port Static RAM
CYPRESS

CY7C09359A-12AC

4K/8K x 18 Synchronous Dual-Port Static RAM
CYPRESS

CY7C09359A-6AC

4K/8K x 18 Synchronous Dual-Port Static RAM
CYPRESS

CY7C09359A-7AC

4K/8K x 18 Synchronous Dual-Port Static RAM
CYPRESS

CY7C09359A-9AC

4K/8K x 18 Synchronous Dual-Port Static RAM
CYPRESS

CY7C09359A-9AI

4K/8K x 18 Synchronous Dual-Port Static RAM
CYPRESS

CY7C09359AV

3.3V 4K/8K x 18 Synchronous Dual-Port Static RAM
CYPRESS

CY7C09359AV-12AC

3.3V 4K/8K x 18 Synchronous Dual-Port Static RAM
CYPRESS