CY7C1339B-100BGCT [CYPRESS]

Cache SRAM, 128KX32, 5.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119;
CY7C1339B-100BGCT
型号: CY7C1339B-100BGCT
厂家: CYPRESS    CYPRESS
描述:

Cache SRAM, 128KX32, 5.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119

静态存储器
文件: 总17页 (文件大小:527K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1339B  
128K x 32 Synchronous Pipelined Cache RAM  
The CY7C1339B I/O pins can operate at either the 2.5V or the  
3.3V level; the I/O pins are 3.3V-tolerant when VDDQ = 2.5V.  
Features  
• Supports 100-MHz bus for Pentiumand PowerPC  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock.  
Maximum access delay from the clock rise is 3.5 ns (166-MHz  
device).  
operations with zero wait states  
• Fully registered inputs and outputs for pipelined  
operation  
• 128K × 32 common I/O architecture  
• 3.3V core power supply  
• 2.5V / 3.3V I/O operation  
• Fast clock-to-output times  
— 3.5 ns (for 166-MHz device)  
The CY7C1339B supports either the interleaved burst  
sequence used by the Intel Pentium processor or a linear burst  
sequence used by processors such as the PowerPC. The  
burst sequence is selected through the MODE pin. Accesses  
can be initiated by asserting either the Processor Address  
Strobe (ADSP) or the Controller Address Strobe (ADSC) at  
clock rise. Address advancement through the burst sequence  
is controlled by the ADV input. A two-bit on-chip wraparound  
burst counter captures the first address in a burst sequence  
and automatically increments the address for the rest of the  
burst access.  
— 4.0 ns (for 133-MHz device)  
— 5.5 ns (for 100-MHz device)  
• User-selectable burst counter supporting Intel  
Pentium interleaved or linear burst sequences  
• Separate processor and controller address strobes  
• Synchronous self-timed writes  
• Asynchronous output enable  
• Offered in JEDEC-standard 100-pin TQFP and 119-ball  
BGA packages  
• “ZZ” Sleep Mode and Stop Clock options  
Byte Write operations are qualified with the four Byte Write  
Select (BW[3:0]) inputs. A Global Write Enable (GW) overrides  
all Byte Write inputs and writes data to all four bytes. All Writes  
are conducted with on-chip synchronous self-timed Write  
circuitry.  
Three synchronous Chip Selects (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output three-state control. In order to provide  
proper data during depth expansion, OE is masked during the  
first clock of a Read cycle when emerging from a deselected  
state.  
Functional Description  
The CY7C1339B is a 3.3V, 128K by 32 synchronous-pipelined  
cache SRAM designed to support zero wait state secondary  
cache with minimal glue logic.  
MODE  
Logic Block Diagram  
2
(A[1;0]  
)
Q
Q
CLK  
ADV  
ADSC  
0
BURST  
COUNTER  
CE  
CLR  
1
ADSP  
Q
15  
17  
ADDRESS  
REGISTER  
CE  
D
128K × 32  
MEMORY  
ARRAY  
A[16:0]  
GW  
17  
15  
Q
Q
Q
Q
DQ[31:24]  
D
BYTEWRITE  
REGISTERS  
BWE  
BW  
3
D
D
D
DQ[23:16]  
BYTEWRITE  
REGISTERS  
BW  
2
DQ[15:8]  
BYTEWRITE  
REGISTERS  
BW  
1
DQ[7:0]  
BYTEWRITE  
REGISTERS  
BW  
0
32  
32  
CE  
1
2
CE  
D
ENABLE  
CE REGISTER  
CLK  
Q
CE  
3
D
Q
OUTPUT  
INPUT  
ENABLE DELAY  
REGISTER  
CLK  
REGISTERS  
REGISTERS  
CLK  
CLK  
OE  
ZZ  
SLEEP  
CONTROL  
DQ[31:0]  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
Document #: 38-05141 Rev. *A  
Revised March 27, 2002  
CY7C1339B  
Selection Guide  
7C1339B-166  
7C1339B-133  
7C1339B-100  
Unit  
ns  
Maximum Access Time  
3.5  
420  
10  
4.0  
375  
10  
5.5  
325  
10  
Maximum Operating Current  
Maximum CMOS Standby Current  
mA  
mA  
Pin Configurations  
NC  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQ  
DQ  
16  
17  
DQ  
DQ  
V
15  
14  
V
V
DDQ  
DDQ  
SSQ  
SSQ  
V
DQ  
DQ  
DQ  
DQ  
18  
19  
DQ  
DQ  
DQ  
DQ  
V
13  
12  
11  
10  
BYTE2  
BYTE1  
20  
21  
9
V
V
SSQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
SSQ  
DDQ  
DDQ  
V
DQ  
DQ  
22  
23  
DQ  
DQ  
V
9
8
NC  
100-pin TQFP  
CY7C1339B  
SS  
V
DD  
NC  
NC  
V
DD  
V
SS  
ZZ  
DQ  
DQ  
DQ  
DQ  
24  
25  
7
6
V
V
DDQ  
V
V
DDQ  
SSQ  
SSQ  
DQ  
DQ  
DQ  
DQ  
26  
27  
DQ  
DQ  
DQ  
DQ  
V
5
4
3
2
BYTE3  
BYTE0  
28  
29  
V
V
SSQ  
SSQ  
DDQ  
V
DDQ  
DQ  
DQ  
30  
31  
DQ  
DQ  
NC  
1
0
NC  
Document #: 38-05141 Rev. *A  
Page 2 of 17  
CY7C1339B  
Pin Configurations (continued)  
119-ball BGA  
CY7C1339B (128K × 32)  
1
2
A
3
A
A
A
4
5
A
A
A
6
A
7
A
VDDQ  
NC  
ADSP  
ADSC  
VDD  
VDDQ  
NC  
B
C
CE2  
A
NC  
A
NC  
NC  
D
E
F
DQc  
DQc  
NC  
VSS  
VSS  
VSS  
BWc  
VSS  
NC  
NC  
CE1  
OE  
VSS  
VSS  
VSS  
BWb  
VSS  
NC  
NC  
DQb  
DQb  
VDDQ  
DQb  
DQb  
VDDQ  
DQa  
DQc  
DQc  
DQc  
DQc  
VDD  
DQd  
DQb  
DQb  
DQb  
DQb  
VDD  
DQa  
VDDQ  
DQc  
G
H
J
ADV  
GW  
VDD  
CLK  
DQc  
VDDQ  
DQd  
K
VSS  
VSS  
L
M
N
DQd  
VDDQ  
DQd  
DQd  
DQd  
DQd  
BWd  
VSS  
VSS  
NC  
BWE  
A1  
BWa  
VSS  
VSS  
DQa  
DQa  
DQa  
DQa  
VDDQ  
DQa  
P
R
T
DQd  
NC  
NC  
A
VSS  
MODE  
A
A0  
VDD  
A
VSS  
VDD  
A
NC  
A
DQa  
NC  
NC  
NC  
DNU  
NC  
NC  
ZZ  
U
VDDQ  
DNU  
DNU  
DNU  
VDDQ  
Document #: 38-05141 Rev. *A  
Page 3 of 17  
CY7C1339B  
Pin Definitions  
Pin Name  
I/O  
Input-  
Pin Description  
Address Inputs used to select one of the 64K address locations. Sampled at the rising edge of the  
A[16:0]  
Synchronous CLK if ADSP or ADSC is active LOW, and CE1, CE2, and CE3 are sampled active. A[1:0] feed the  
two-bit counter.  
BW[3:0]  
GW  
Input-  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes to the SRAM.  
Synchronous Sampled on the rising edge of CLK.  
Input-  
Global Write Enable Input, active LOW. When asserted LOW on the rising edge of CLK, a global  
Synchronous Write is conducted (ALL bytes are written, regardless of the values on BW[3:0] and BWE).  
BWE  
CLK  
CE1  
CE2  
CE3  
OE  
Input-  
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal must be  
Synchronous asserted LOW to conduct a Byte Write.  
Input-Clock Clock Input. Used to capture all synchronous inputs to the device. Also used to increment the burst  
counter when ADV is asserted LOW, during a burst operation.  
Input-  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
Synchronous CE2 and CE3 to select/deselect the device. ADSP is ignored if CE1 is HIGH.  
Input- Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with  
Synchronous CE1 and CE3 to select/deselect the device.  
Input-  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
Synchronous CE1 and CE2 to select/deselect the device.  
Input-  
Output Enable, AsynchronousInput, activeLOW. Controls the direction of theI/O pins. WhenLOW,  
Asynchronous the I/O pins behave as outputs. When deserted HIGH, I/O pins are three-stated, and act as input  
data pins. OE is masked during the first clock of a Read cycle when emerging from a deselected  
state.  
ADV  
Input-  
Advance Input Signal, sampled on the rising edge of CLK. When asserted, it automatically incre-  
Synchronous ments the address in a burst cycle.  
ADSP  
Input-  
Address Strobe from Processor, sampled on the rising edge of CLK. When asserted LOW, A[16:0]  
Synchronous is captured in the address registers. A[1:0] are also loaded into the burst counter. When ADSP and  
ADSC are both asserted, only ADSP is recognized. ASDP is ignored when CE1 is deserted HIGH.  
ADSC  
ZZ  
Input-  
Address Strobe from Controller, sampled on the rising edge of CLK. When asserted LOW, A[16:0]  
Synchronous is captured in the address registers. A[1:0] are also loaded into the burst counter. When ADSP and  
ADSC are both asserted, only ADSP is recognized.  
Input-  
ZZ sleepInput. This active HIGH input places the device in a non-time-critical sleepcondition  
Asynchronous with data integrity preserved. Leaving ZZ floating or NC will default the device into an active state.  
ZZ has an internal pull down.  
DQ[31:0]  
I/O-  
Bidirectional Data I/O Lines. As inputs, they feed into an on-chip data register that is triggered by  
Synchronous the rising edge of CLK. As outputs, they deliver the data contained in the memory location specified  
by A[16:0] during the previous clock rise of the Read cycle. The direction of the pins is controlled  
by OE. When OE is asserted LOW, the pins behave as outputs. When HIGH, DQ[31:0] are placed  
in a three-state condition.  
VDD  
Power Supply Power supply inputs to the core of the device. Should be connected to 3.3V power supply.  
VSS  
Ground  
Ground for the core of the device. Should be connected to ground of the system.  
Power supply for the I/O circuitry. Should be connected to a 3.3V or 2.5V power supply.  
VDDQ  
I/O Power  
Supply  
VSSQ  
I/O Ground Ground for the I/O circuitry. Should be connected to ground of the system.  
MODE  
Input-  
Static  
Selects Burst Order. When tied to GND selects linear burst sequence. When tied to VDDQ or left  
floating selects interleaved burst sequence. This is a strap pin and should remain static during  
device operation. When left floating or NC, defaults to interleaved burst order. Mode pin has an  
internal pull up.  
NC  
No Connects.  
DNU  
-
Do Not Use pins. These pins could be left floating or tied to GND.  
Document #: 38-05141 Rev. *A  
Page 4 of 17  
CY7C1339B  
data presented to the DQ[31:0] inputs is written into the corre-  
sponding address location in the RAM core. If GW is HIGH,  
then the Write operation is controlled by BWE and BW[3:0]  
signals. The CY7C1339B provides Byte Write capability that  
is described in the Write Cycle Descriptions table. Asserting  
the Byte Write Enable input (BWE) with the selected Byte  
Write (BW[3:0]) input will selectively write to only the desired  
bytes. Bytes not selected during a Byte Write operation will  
remain unaltered. A synchronous self-timed Write mechanism  
has been provided to simplify the Write operations.  
Introduction  
Functional Overview  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock.  
Maximum access delay from the clock rise (tCO) is 3.5 ns  
(166-MHz device).  
The CY7C1339B supports secondary cache in systems  
utilizing either a linear or interleaved burst sequence. The  
interleaved burst order supports Pentium and i486  
processors. The linear burst sequence is suited for processors  
that utilize a linear burst sequence. The burst order is user  
selectable, and is determined by sampling the MODE input.  
Accesses can be initiated with either the Processor Address  
Strobe (ADSP) or the Controller Address Strobe (ADSC).  
Address advancement through the burst sequence is  
controlled by the ADV input. A two-bit on-chip wraparound  
burst counter captures the first address in a burst sequence  
and automatically increments the address for the rest of the  
burst access.  
Because the CY7C1339B is a common I/O device, the Output  
Enable (OE) must be deserted HIGH before presenting data  
to the DQ[31:0] inputs. Doing so will three-state the output  
drivers. As a safety precaution, DQ[31:0] are automatically  
three-stated whenever a Write cycle is detected, regardless of  
the state of OE.  
Single Write Accesses Initiated by ADSC  
ADSC Write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deserted HIGH, (3) CE1, CE2, CE3 are all asserted active, and  
(4) the appropriate combination of the Write inputs (GW, BWE,  
and BW[3:0]) are asserted active to conduct a Write to the  
desired byte(s). ADSC-triggered Write accesses require a  
single clock cycle to complete. The address presented to  
A[16:0] is loaded into the address register and the address  
advancement logic while being delivered to the RAM core. The  
ADV input is ignored during this cycle. If a global Write is  
conducted, the data presented to the DQ[31:0] is written into the  
corresponding address location in the RAM core. If a Byte  
Write is conducted, only the selected bytes are written. Bytes  
not selected during a Byte Write operation will remain  
unaltered. A synchronous self-timed Write mechanism has  
been provided to simplify the Write operations.  
Byte Write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BW[3:0]) inputs. A Global Write  
Enable (GW) overrides all Byte Write inputs and writes data to  
all four bytes. All writes are simplified with on-chip  
synchronous self-timed Write circuitry.  
Three synchronous Chip Selects (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output three-state control. ADSP is ignored if  
CE1 is HIGH.  
Single Read Accesses  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)  
CE1, CE2, CE3 are all asserted active, and (3) the Write  
signals (GW, BWE) are all deserted HIGH. ADSP is ignored if  
CE1 is HIGH. The address presented to the address inputs  
(A[16:0]) is stored into the address advancement logic and the  
Address Register while being presented to the memory core.  
The corresponding data is allowed to propagate to the input of  
the Output Registers. At the rising edge of the next clock the  
data is allowed to propagate through the output register and  
onto the data bus within 3.5 ns (166-MHz device) if OE is  
active LOW. The only exception occurs when the SRAM is  
emerging from a deselected state to a selected state, its  
outputs are always three-stated during the first cycle of the  
access. After the first cycle of the access, the outputs are  
controlled by the OE signal. Consecutive single Read cycles  
are supported. Once the SRAM is deselected at clock rise by  
the chip select and either ADSP or ADSC signals, its output  
will three-state immediately.  
Because the CY7C1339B is a common I/O device, the Output  
Enable (OE) must be deserted HIGH before presenting data  
to the DQ[31:0] inputs. Doing so will three-state the output  
drivers. As a safety precaution, DQ[31:0] are automatically  
three-stated whenever a Write cycle is detected, regardless of  
the state of OE.  
Burst Sequences  
The CY7C1339B provides a two-bit wraparound counter, fed  
by A[1:0], that implements either an interleaved or linear burst  
sequence. The interleaved burst sequence is designed specif-  
ically to support Intel Pentium applications. The linear burst  
sequence is designed to support processors that follow a  
linear burst sequence. The burst sequence is user selectable  
through the MODE input.  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both Read and Write burst operations are supported.  
Interleaved Burst Sequence  
Single Write Accesses Initiated by ADSP  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and  
(2) CE1, CE2, CE3 are all asserted active. The address  
presented to A[16:0] is loaded into the address register and the  
address advancement logic while being delivered to the RAM  
core. The Write signals (GW, BWE, and BW[3:0]) and ADV  
inputs are ignored during this first cycle.  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
A[1:0]  
A[1:0]  
A[1:0]  
A[1:0]  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
ADSP-triggered Write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
Document #: 38-05141 Rev. *A  
Page 5 of 17  
CY7C1339B  
Sleep Mode  
Linear Burst Sequence  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation sleepmode. Two  
clock cycles are required to enter into or exit from this sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the sleepmode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the sleepmode. CE1, CE2, CE3, ADSP, and ADSC must  
remain inactive for the duration of tZZREC after the ZZ input  
returns LOW.  
First  
Second  
Third  
Fourth  
Address  
Address  
Address  
Address  
A[1:0]  
A[1:0]  
A[1:0]  
A[1:0]  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Snooze mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
ZZ > VDD 0.2V  
ZZ > VDD 0.2V  
ZZ < 0.2V  
Min.  
Max.  
3
Unit  
mA  
ns  
tZZS  
2tCYC  
tZZREC  
2tCYC  
ns  
Cycle Descriptions[1, 2, 3]  
Next Cycle  
Unselected  
Add. Used  
None  
ZZ  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
CE3  
X
1
CE2  
X
X
0
CE1  
1
ADSP  
X
0
ADSC  
ADV  
OE  
X
X
X
X
X
X
X
1
DQ  
Hi-Z  
Write  
X
0
X
X
0
0
X
0
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
X
X
X
X
X
X
X
X
0
0
0
0
1
1
1
1
1
1
X
0
0
1
1
X
Unselected  
None  
0
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
DQ  
X
Unselected  
None  
X
1
0
0
X
Unselected  
None  
X
0
0
1
X
Unselected  
None  
X
0
0
1
X
Begin Read  
External  
External  
Next  
1
0
0
X
Begin Read  
0
1
0
1
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
X
Continue Read  
Continue Read  
Continue Read  
Continue Read  
Suspend Read  
Suspend Read  
Suspend Read  
Suspend Read  
Begin Write  
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X
1
X
X
1
1
Next  
1
0
Next  
X
X
1
1
Hi-Z  
DQ  
Next  
1
0
Current  
Current  
Current  
Current  
Current  
Current  
External  
Next  
X
X
1
1
Hi-Z  
DQ  
1
0
X
X
1
1
Hi-Z  
DQ  
1
0
X
1
X
X
X
X
X
X
X
X
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Begin Write  
X
1
Begin Write  
0
Continue Write  
Continue Write  
Suspend Write  
Suspend Write  
X
X
X
X
X
X
X
X
X
X
X
1
1
Next  
X
1
Current  
Current  
None  
X
1
X
X
ZZ Sleep”  
X
Notes:  
1. X = Don't Care,1 = HIGH, 0 = LOW.  
2. Write is defined by BWE, BW[3:0], and GW. See Write Cycle Descriptions table.  
3. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
Document #: 38-05141 Rev. *A  
Page 6 of 17  
CY7C1339B  
Write Cycle Descriptions[4, 5, 6]  
Function  
GW  
1
BWE  
1
BW3  
X
1
BW2  
X
1
BW1  
BW0  
X
1
Read  
X
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
X
Read  
1
0
Write Byte 0 DQ[7:0]  
Write Byte 1 DQ[15:8]  
Write Bytes 1, 0  
Write Byte 2 DQ[23:16]  
Write Bytes 2, 0  
Write Bytes 2, 1  
Write Bytes 2, 1, 0  
Write Byte 3 DQ[31:24]  
Write Bytes 3, 0  
Write Bytes 3, 1  
Write Bytes 3, 1, 0  
Write Bytes 3, 2  
Write Bytes 3, 2, 0  
Write Bytes 3, 2, 1  
Write All Bytes  
1
0
1
1
0
1
0
1
1
1
1
0
1
1
0
1
0
1
0
1
1
0
1
0
0
1
0
1
0
1
1
0
1
0
0
1
0
0
1
1
1
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
0
0
0
1
1
0
0
0
0
1
0
0
0
1
1
0
0
0
0
Write All Bytes  
0
X
X
X
X
Notes:  
4. X = don't care,1 = Logic HIGH, 0 = Logic LOW.  
5. The SRAM always initiates a Read cycle when ADSP asserted, regardless of the state of GW, BWE, or BW[3:0]. Writes may occur only on subsequent clocks  
after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the Write cycle to allow the outputs to three-state. OE  
is a don't care for the remainder of the Write cycle.  
6. OE is asynchronous and is not sampled with the clock rise. It is masked internally during Write cycles. During a Read cycle DQ = High-Z when OE is inactive  
or when the device is deselected, and DQ = data when OE is active.  
Document #: 38-05141 Rev. *A  
Page 7 of 17  
CY7C1339B  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Static Discharge Voltage .......................................... >2001V  
(per MIL-STD-883, Method 3015)  
Storage Temperature ..................................... −65°C to +150°C  
Latch-Up Current.................................................... >200 mA  
Ambient Temperature with  
Power Applied.................................................. −55°C to +125°C  
Operating Range  
Supply Voltage on VDD Relative to GND.........−0.5V to +4.6V  
Ambient  
Range  
Commercial  
Industrial  
Temperature[8]  
0°C to +70°C  
VDD  
VDDQ  
DC Voltage Applied to Outputs  
in High Z State[7] ....................................... −0.5V to VDD + 0.5V  
3.3V  
2.5V 5%  
5%/+10% 3.3V /+10%  
DC Input Voltage[7].................................... −0.5V to VDD + 0.5V  
40°C to +85°C  
Current into Outputs (LOW).........................................20 mA  
Electrical Characteristics Over the Operating Range  
Parameter  
VDD  
Description  
Test Conditions  
Min.  
3.135  
2.375  
2.4  
Max.  
3.6  
Unit  
V
Power Supply Voltage 3.3V 5%/+10%  
VDDQ  
I/O Supply Voltage  
2.5V 5% to 3.3V +10%  
3.6  
V
VOH  
Output HIGH Voltage  
VDDQ = 3.3V, VDD = Min., IOH = 4.0 mA  
VDDQ = 2.5V, VDD = Min., IOH = 2.0 mA  
VDDQ = 3.3V, VDD = Min., IOL = 8.0 mA  
V
2.0  
V
VOL  
VIH  
VIL  
IX  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage[7]  
0.4  
0.7  
V
V
DDQ = 2.5V, VDD = Min., IOL = 2.0 mA  
V
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
GND VI VDDQ  
2.0  
1.7  
VDD + 0.3V  
VDD + 0.3V  
0.8  
V
V
0.3  
0.3  
5  
V
0.7  
V
Input Load Current  
except ZZ and MODE  
5
µA  
Input Current of MODE Input = VSS  
Input = VDDQ  
30  
5  
µA  
µA  
µA  
µA  
µA  
5
Input Current of ZZ  
Input = VSS  
Input = VDDQ  
30  
5
IOZ  
IDD  
Output Leakage  
Current  
GND VI VDDQ, Output Disabled  
5  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
6-ns cycle, 166 MHz  
7.5-ns cycle, 133 MHz  
10-ns cycle, 100 MHz  
6-ns cycle, 166 MHz  
7.5-ns cycle, 133 MHz  
10-ns cycle, 100 MHz  
All speeds  
420  
375  
325  
150  
125  
115  
10  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Current  
f = fMAX = 1/tCYC  
ISB1  
Automatic CS  
Power-Down  
CurrentTTL Inputs  
Max. VDD, Device Deselected,  
VIN VIH or VIN VIL  
f = fMAX = 1/tCYC  
ISB2  
Automatic CS  
Power-Down  
CurrentCMOS Inputs f = 0  
Max. VDD, Device Deselected,  
VIN 0.3V or VIN > VDDQ 0.3V,  
ISB3  
Automatic CS  
Power-Down  
CurrentCMOS Inputs f = fMAX = 1/tCYC  
Max. VDD, Device Deselected, or 6-ns cycle, 166 MHz  
125  
95  
mA  
mA  
mA  
mA  
VIN 0.3V or VIN > VDDQ 0.3V  
7.5-ns cycle, 133 MHz  
10-ns cycle, 100 MHz  
85  
ISB4  
Automatic CS  
Power-Down  
CurrentTTL Inputs  
Max. VDD, Device Deselected,  
VIN VIH or VIN VIL, f = 0  
18  
Notes:  
7. Minimum voltage equals 2.0V for pulse durations of less than 20 ns.  
8. A is the case temperature.  
T
Document #: 38-05141 Rev. *A  
Page 8 of 17  
CY7C1339B  
Capacitance[9]  
Parameter  
Description  
Input Capacitance  
Test Conditions  
TQFP Max.  
BGA Max.  
Unit  
pF  
CIN  
TA = 25°C, f = 1 MHz,  
VDD = 3.3V  
VDDQ = 3.3V  
4
4
4
6
6
8
CCLK  
CI/O  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
pF  
AC Test Loads and Waveforms  
R= 317/1667Ω  
[10]  
3.3/2.5V  
OUTPUT  
ALL INPUT PULSES  
90%  
3.0/2.5V  
GND  
OUTPUT  
R = 50Ω  
90%  
10%  
Z = 50Ω  
0
10%  
L
5 pF  
R= 351/1538Ω  
1V/ns  
1V/ns  
V = 1.5V for 3.3 V  
L
DDQ  
1.25V for 2.5V V  
DDQ  
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Thermal Resistance[9]  
Description  
Test Conditions  
Symbol  
TQFP Typ.  
BGA  
Units  
Thermal Resistance  
(Junction to Ambient)  
StillAir, solderedona4×4.5inch,  
2-layer printed circuit board  
QJA  
41.83  
47.63  
°C/W  
Thermal Resistance  
(Junction to Case)  
QJC  
9.99  
11.71  
°C/W  
Note:  
9. Tested initially and after any design or process changes that may affect these parameters.  
10. Input waveform should have a slew rate of 1 V/ns.  
Document #: 38-05141 Rev. *A  
Page 9 of 17  
CY7C1339B  
Switching Characteristics Over the Operating Range[10, 12, 13]  
-166  
-133  
-100  
Parameter  
tCYC  
tCH  
Description  
Clock Cycle Time  
Min.  
6.0  
1.7  
1.7  
1.5  
0.5  
Max.  
Min.  
7.5  
1.9  
1.9  
1.5  
0.5  
Max.  
Min.  
10  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock HIGH  
3.5  
3.5  
1.5  
0.5  
tCL  
Clock LOW  
tAS  
Address Set-Up Before CLK Rise  
Address Hold After CLK Rise  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
ADSP, ADSC Set-up Before CLK Rise  
ADSP, ADSC Hold After CLK Rise  
BWE, GW, BW[3:0] Set-up Before CLK Rise  
BWE, GW, BW[3:0] Hold After CLK Rise  
ADV Set-Up Before CLK Rise  
ADV Hold After CLK Rise  
tAH  
tCO  
3.5  
4.0  
5.5  
tDOH  
tADS  
tADH  
tWES  
tWEH  
tADVS  
tADVH  
tDS  
1.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
1.5  
0.5  
2.0  
0.5  
2.0  
2.5  
0.5  
2.5  
0.5  
2.5  
0.5  
1.5  
0.5  
2.5  
0.5  
2.0  
2.5  
0.5  
2.5  
0.5  
2.5  
0.5  
1.5  
0.5  
2.5  
0.5  
Data Input Set-up Before CLK Rise  
Data Input Hold After CLK Rise  
Chip Select Set-up  
tDH  
tCES  
tCEH  
tCHZ  
tCLZ  
Chip Select Hold After CLK Rise  
Clock to High-Z[12]  
Clock to Low-Z[12]  
OE HIGH to Output High-Z[12, 13]  
OE LOW to Output Low-Z[12, 13]  
OE LOW to Output Valid[12]  
3.5  
3.5  
3.5  
3.5  
3.5  
4.0  
3.5  
5.5  
5.5  
0
0
0
0
0
0
tEOHZ  
tEOLZ  
tEOV  
Notes:  
11. Unless otherwise noted, test conditions assume signal transition time of 3.0/2.5 ns or less, timing reference levels of 1.5/1.25V, input pulse levels of 0 to  
3.0/2.5V for 3.3/2.5V VDDQ respectively, and output loading of the specified IOL/IOH and load capacitance. Shown in (a) and (c) of AC test loads diagram.  
12. tCHZ, tCLZ, tEOV, tEOLZ, and tEOHZ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured 200 mv from  
steady-state voltage.  
13. At any given voltage and temperature, tEOHZ is less than tEOLZ and tCHZ is less than tCLZ  
.
Document #: 38-05141 Rev. *A  
Page 10 of 17  
CY7C1339B  
Switching Waveforms  
Write Cycle Timing[14, 15]  
Single Write  
tCYC  
tADH  
Burst Write  
Pipelined Write  
tCH  
Unselected  
CLK  
tADS  
tCL  
ADSP ignored with CE1 inactive  
ADSP  
ADSC  
ADV  
tADH  
tADS  
ADSC initiated Write  
tADVH  
tADVS  
tAS  
ADV Must Be Inactive for ADSP Write  
WD3  
ADD  
GW  
WE  
WD1  
WD2  
tAH  
tWH  
tWH  
tWS  
tWS  
tCES  
tCEH  
CE1 masks ADSP  
CE1  
CE2  
tCEH  
tCES  
Unselected with CE2  
CE3  
tCES  
tCEH  
OE  
tDH  
tDS  
High-Z  
High-Z  
Data In  
3a  
2a  
1a  
2b  
2c  
2d  
= DONT CARE  
= UNDEFINED  
Notes:  
14. WE is the combination of BWE, BW[3:0], and GW to define a Write cycle (see Write Cycle Descriptions table).  
15. WDx stands for Write Data to Address X.  
Document #: 38-05141 Rev. *A  
Page 11 of 17  
CY7C1339B  
Switching Waveforms (continued)  
Read Cycle Timing[14, 16]  
Burst Read  
Single Read  
tCYC  
Unselected  
tCH  
Pipelined Read  
CLK  
tADH  
tADS  
tCL  
ADSP ignored with CE1 inactive  
ADSP  
tADS  
ADSC initiated Read  
ADSC  
ADV  
tADVS  
tADH  
Suspend Burst  
tADVH  
tAS  
ADD  
GW  
RD1  
RD3  
RD2  
tAH  
tWS  
tWS  
tWH  
WE  
tCES  
tCEH  
tWH  
CE1 masks ADSP  
CE1  
Unselected with CE2  
CE2  
tCES  
tCEH  
CE3  
OE  
tCES  
tDOE  
tCEH  
tOEHZ  
tDOH  
tCO  
Data Out  
2c  
1a  
2d  
3a  
2a  
2b  
tCLZ  
tCHZ  
= DONT CARE  
= UNDEFINED  
Note:  
16. RDx stands for Read Data from Address X.  
Document #: 38-05141 Rev. *A  
Page 12 of 17  
CY7C1339B  
Switching Waveforms (continued)  
Read/Write Cycle Timing[14, 15, 16, 17]  
Single Read  
tCYC  
Single Write  
tCH  
Unselected  
Burst Read  
Pipelined Read  
CLK  
tADH  
tADS  
tCL  
ADSP ignored with CE1 inactive  
ADSP  
ADSC  
ADV  
tADS  
tADVS  
tADH  
tAS  
tADVH  
WD2  
ADD  
GW  
RD1  
RD3  
tAH  
tWS  
tWS  
tWH  
WE  
tCES  
tCEH  
tWH  
CE1 masks ADSP  
CE1  
CE2  
tCES  
tCEH  
CE3  
OE  
tCES  
tDOE  
tCEH  
tOEHZ  
tDS  
tDH  
tDOH  
See Note 17  
2a  
tOELZ  
tCO  
3b  
Out  
3c  
Out  
3a  
Out  
3d  
Out  
Data In/Out  
1a  
2a  
In  
Out  
Out  
tCHZ  
= UNDEFINED  
= DONT CARE  
Note:  
17. Data bus is driven by SRAM, but data is not guaranteed.  
Document #: 38-05141 Rev. *A  
Page 13 of 17  
CY7C1339B  
Switching Waveforms (continued)  
ZZ Mode Timing [18, 19]  
CLK  
ADSP  
HIGH  
ADSC  
CE1  
LOW  
CE2  
HIGH  
CE3  
ZZ  
tZZS  
IDD  
IDD(active)  
tZZREC  
IDDZZ  
I/Os  
Three-state  
Notes:  
18. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.  
19. I/Os are in three-state when exiting ZZ sleep mode.  
Document #: 38-05141 Rev. *A  
Page 14 of 17  
CY7C1339B  
Ordering Information  
Speed  
Package  
Name  
Operating  
Range  
(MHz)  
Ordering Code  
Package Type  
100-lead Thin Quad Flat Pack  
119-ball BGA  
166  
CY7C1339B-166AC  
CY7C1339B-166BGC  
CY7C1339B-133AC  
CY7C1339B-133BGC  
CY7C1339B-133AI  
CY7C1339B-133BGI  
CY7C1339B-100AC  
CY7C1339B-100BGC  
CY7C1339B-100AI  
CY7C1339B-100BGI  
A101  
BG119  
A101  
Commercial  
Commercial  
Industrial  
133  
100  
100-lead Thin Quad Flat Pack  
119-ball BGA  
BG119  
A101  
100-lead Thin Quad Flat Pack  
119-ball BGA  
BG119  
A101  
100-lead Thin Quad Flat Pack  
119-ball BGA  
Commercial  
Industrial  
BG119  
A101  
100-lead Thin Quad Flat Pack  
119-ball BGA  
BG119  
Package Diagrams  
100-pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
51-85050-A  
Document #: 38-05141 Rev. *A  
Page 15 of 17  
CY7C1339B  
Package Diagrams (continued)  
119-Lead PBGA (14 x 22 x 2.4 mm) BG119  
51-85115-*A  
i486 is a trademark and Intel and Pentium are registered trademarks of Intel Corporation. PowerPC is a registered trademark of  
IBM Corporation. All product and company names mentioned in this document may be trademarks of their respective holders.  
Document #: 38-05141 Rev. *A  
Page 16 of 17  
© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C1339B  
Document Title: CY7C1339B 128K x 32 Synchronous Pipelined Cache RAM  
Document Number: 38-05141  
Issue  
Date  
Orig. of  
Change  
REV.  
**  
ECN NO.  
109885  
113899  
Description of Change  
09/15/01  
03/29/02  
SZV  
SKX  
Change from Spec number: 38-00936 to 38-05141  
*A  
Changed the JTAG pins on the BGA package to DNU pins.  
Added BGA capacitance.  
Added thermal resistance table for both TQFP and BGA.  
Document #: 38-05141 Rev. *A  
Page 17 of 17  

相关型号:

CY7C1339B-100BGI

128K x 32 Synchronous Pipelined Cache RAM
CYPRESS

CY7C1339B-100BGIT

Cache SRAM, 128KX32, 5.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119
CYPRESS

CY7C1339B-133AC

128K x 32 Synchronous Pipelined Cache RAM
CYPRESS

CY7C1339B-133ACT

Cache SRAM, 128KX32, 4ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1339B-133AI

128K x 32 Synchronous Pipelined Cache RAM
CYPRESS

CY7C1339B-133AIT

Cache SRAM, 128KX32, 4ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1339B-133BGC

128K x 32 Synchronous Pipelined Cache RAM
CYPRESS

CY7C1339B-133BGCT

Cache SRAM, 128KX32, 4ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119
CYPRESS

CY7C1339B-133BGI

128K x 32 Synchronous Pipelined Cache RAM
CYPRESS

CY7C1339B-133BGIT

Cache SRAM, 128KX32, 4ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119
CYPRESS

CY7C1339B-166AC

128K x 32 Synchronous Pipelined Cache RAM
CYPRESS

CY7C1339B-166ACT

Cache SRAM, 128KX32, 3.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS