CY7C1351B-117BGC [CYPRESS]

ZBT SRAM, 128KX36, 7.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119;
CY7C1351B-117BGC
型号: CY7C1351B-117BGC
厂家: CYPRESS    CYPRESS
描述:

ZBT SRAM, 128KX36, 7.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119

静态存储器
文件: 总16页 (文件大小:270K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
351B  
PRELIMINARY  
CY7C1351B  
128Kx36 Flow-Through SRAM with NoBL™ Architecture  
Features  
Functional Description  
Pincompatible andfunctionallyequivalenttoZBT™ de-  
The CY7C1351B is a 3.3V, 128K by 36 Synchronous  
Flow-Through Burst SRAM designed specifically to support  
unlimited true back-to-back Read/Write operations without the  
insertion of wait states. The CY7C1351B is equipped with the  
advanced No Bus Latency(NoBL) logic required to en-  
able consecutive Read/Write operations with data being trans-  
ferred on every clock cycle. This feature dramatically improves  
the throughput of data through the SRAM, especially in sys-  
tems that require frequent Write/Read transitions. The  
CY7C1351B is pin/functionally compatible to ZBT SRAMs  
IDT71V547, MT55L128L36F, and MCM63Z737.  
vices IDT71V547, MT55L128L36F, and MCM63Z737  
• Supports 66-MHz bus operations with zero wait states  
— Data is transferred on every clock  
• Internally self-timed output buffer control to eliminate  
the need to use OE  
• Registered inputs for Flow-Through operation  
• Byte Write capability  
• 128K x 36 common I/O architecture  
• Single 3.3V power supply  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock.The clock input is qualified by  
the Clock Enable (CEN) signal, which, when deasserted, sus-  
pends operation and extends the previous clock cycle. Maxi-  
mum access delay from the clock rise is 7.5 ns (117-MHz  
device).  
• Fast clock-to-output times  
— 7.5 ns (for 117-MHz device)  
— 8.5 ns (for 100-MHz device)  
— 11.0 ns (for 66-MHz device)  
— 12.0 ns (for 50-MHz device)  
Write operations are controlled by the four Byte Write Select  
(BWS[3:0]) and a Write Enable (WE) input. All writes are con-  
ducted with on-chip synchronous self-timed write circuitry.  
— 14.0 ns (for 40-MHz device)  
• Clock Enable (CEN) pin to suspend operation  
• Synchronous self-timed writes  
• Asynchronous Output Enable  
• Standard 100 TQFP and 119 BGA packages  
• Burst Capability—linear or interleaved burst order  
Low standby power  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank se-  
lection and output three-state control. In order to avoid bus  
contention, the output drivers are synchronously three-stated  
during the data portion of a write sequence.  
Logic Block Diagram  
36  
D
CLK  
Data-In REG.  
CE  
Q
36  
ADV/LD  
17  
A
[16:0]  
CEN  
CONTROL  
and WRITE  
LOGIC  
36  
128KX36  
CE  
1
CE  
2
MEMORY  
DQ  
ARRAY  
[31:0]  
CE  
3
17  
DP  
WE  
[3:0]  
BWS  
[3:0]  
Mode  
OE  
.
Selection Guide  
7C1351B-117 7C1351B-100 7C1351B-66 7C1351B-50 7C1351B-40  
Maximum Access Time (ns)  
7.5  
8.5  
11.0  
12.0  
14.0  
Maximum Operating Current  
(mA)  
Commercial  
Commercial  
375 mA  
350 mA  
250 mA  
200 mA  
175 mA  
Maximum CMOS Standby  
Current (mA)  
5 mA  
5 mA  
5 mA  
5 mA  
5 mA  
Cypress Semiconductor Corporation  
Document #: 38-05208 Rev. *A  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Revised November 19, 2002  
PRELIMINARY  
CY7C1351B  
Pin Configuration  
100-Pin TQFP  
DP  
DP  
2
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
1
DQ  
DQ  
16  
2
15  
DQ  
17  
3
DQ  
14  
V
DDQ  
4
V
DDQ  
V
SS  
5
V
SS  
DQ  
DQ  
DQ  
DQ  
V
DQ  
DQ  
DQ  
DQ  
V
18  
19  
20  
21  
6
13  
12  
11  
10  
7
8
9
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
SS  
V
V
DDQ  
DDQ  
CY7C1351B  
DQ  
DQ  
DQ  
DQ  
V
22  
23  
9
8
V
V
SS  
SS  
SS  
DD  
V
V
DD  
DD  
V
V
V
SS  
SS  
DQ  
DQ  
V
DQ  
DQ  
V
24  
25  
7
6
DDQ  
DDQ  
SS  
V
V
SS  
DQ  
DQ  
DQ  
DQ  
DQ  
V
26  
27  
28  
29  
5
4
3
2
DQ  
DQ  
DQ  
V
SS  
SS  
V
V
DDQ  
DDQ  
DQ  
DQ  
DQ  
DQ  
DP  
30  
31  
1
0
DP  
3
0
Document #: 38-05208 Rev. *A  
Page 2 of 16  
PRELIMINARY  
CY7C1351B  
Pin Configuration  
119-Ball Bump BGA  
CY7C1351B (128K x 36) - 7 x 17 BGA  
1
2
3
4
5
6
7
V
A
A
16M  
A
A
V
DDQ  
A
B
C
D
E
F
DDQ  
NC  
NC  
DQ  
CE  
A
A
A
ADV/LD  
A
A
CE  
A
NC  
NC  
DQ  
2
3
b
V
DD  
DP  
V
NC  
V
DP  
c
c
SS  
SS  
SS  
SS  
SS  
SS  
b
DQ  
DQ  
DQ  
V
V
CE  
V
V
DQ  
DQ  
DQ  
b
c
c
c
1
b
b
V
OE  
V
DDQ  
DDQ  
DQ  
DQ  
DQ  
V
BWS  
8M  
BWS  
DQ  
DQ  
V
DQ  
G
H
J
c
c
c
c
c
b
b
b
b
b
DQ  
V
WE  
V
DQ  
SS  
SS  
V
V
V
V
V
DDQ  
DDQ  
DD  
SS(1)  
DD  
SS(1)  
DD  
DQ  
DQ  
V
CLK  
NC  
V
DQ  
DQ  
K
d
d
d
SS  
SS  
a
a
DQ  
DQ  
DQ  
BWS  
BWS  
DQ  
DQ  
DQ  
DP  
DQ  
L
M
N
P
d
d
a
a
a
a
a
V
V
V
V
DDQ  
CEN  
A1  
DDQ  
d
SS  
SS  
DQ  
DQ  
V
V
DQ  
d
d
d
SS  
SS  
a
a
DQ  
DP  
A
V
A0  
V
DQ  
d
SS  
SS  
a
NC  
NC  
MODE  
A
V
V
A
NC  
NC  
R
T
DD  
SS  
64M  
TMS  
A
A
32M  
V
TDI  
TCK  
TDO  
DNU  
V
DDQ  
U
DDQ  
Document #: 38-05208 Rev. *A  
Page 3 of 16  
PRELIMINARY  
CY7C1351B  
Pin Definitions  
Name  
I/O  
Description  
A[16:0]  
Input-  
Synchronous  
Address Inputs used to select one of the 133,072 address locations. Sampled at the rising  
edge of the CLK.  
BWS[3:0]  
Input-  
Synchronous  
Byte Write Select Inputs, active LOW. Qualified with WE to conduct writes to the SRAM.  
Sampled on the rising edge of CLK. BWS0 controls DQ[7:0] and DP0, BWS1 controls DQ[15:8]  
and DP1, BWS2 controls DQ[23:16] and DP2, BWS3 controls DQ[31:24] and DP3.  
WE  
Input-  
Write Enable Input, active LOW. Sampled on the rising edge of CLK if CEN is active LOW.  
Synchronous  
This signal must be asserted LOW to initiate a write sequence.  
ADV/LD  
Input-  
Synchronous  
Advance/Load input used to advance the on-chip address counter or load a new ad-  
dress. When HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When  
LOW, a new address can be loaded into the device for an access. After being deselected,  
ADV/LD should be driven LOW in order to load a new address.  
CLK  
CE1  
CE2  
CE3  
OE  
Input-Clock  
Clock Input. Used to capture all synchronous inputs to the device. CLK is qualified with CEN.  
CLK is only recognized if CEN is active LOW.  
Input-  
Synchronous  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction  
with CE2 and CE3 to select/deselect the device.  
Input-  
Synchronous  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction  
with CE1 and CE3 to select/deselect the device.  
Input-  
Synchronous  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction  
with CE1 and CE2 to select/deselect the device.  
Input-  
Asynchronous  
Output Enable, active LOW. Combined with the synchronous logic block inside the device to  
control the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs.  
When deasserted HIGH, I/O pins are three-stated, and act as input data pins. OE is masked  
during the data portion of a write sequence, during the first clock when emerging from a  
deselected state and when the device has been deselected.  
CEN  
Input-  
Synchronous  
Clock Enable Input, active LOW. When asserted LOW the clock signal is recognized by the  
SRAM. When deasserted HIGH the clock signal is masked. Since deasserting CEN does not  
deselect the device, CEN can be used to extend the previous cycle when required.  
DQ[31:0]  
I/O-  
Synchronous  
Bidirectional Data I/O Lines. As inputs, they feed into an on-chip data register that is triggered  
by the rising edge of CLK. As outputs, they deliver the data contained in the memory location  
specified by A[16:0] during the previous clock rise of the read cycle. The direction of the pins is  
controlled by OE and the internal control logic. When OE is asserted LOW, the pins can behave  
as outputs. When HIGH, DQ[31:0] are placed in a three-state condition. The outputs are auto-  
matically three-stated during the data portion of a write sequence, during the first clock when  
emerging from a deselected state, and when the device is deselected, regardless of the state  
of OE.  
DP[3:0]  
MODE  
I/O-  
Synchronous  
Bidirectional Data Parity I/O Lines. Functionally, these signals are identical to DQ[31:0]. Dur-  
ing write sequences, DP0 is controlled by BWS0, DP1 is controlled by BWS1, DP2 is controlled  
by BWS2, and DP3 is controlled by BWS3.  
Input  
Strap pin  
Mode Input. Selects the burst order of the device. Tied HIGH selects the interleaved burst  
order. Pulled LOW selects the linear burst order. MODE should not change states during  
operation. When left floating MODE will default HIGH, to an interleaved burst order.  
VDD  
Power Supply  
Power supply inputs to the core of the device. Should be connected to 3.3V power supply.  
Power supply for the I/O circuitry. Should be connected to a 3.3V power supply.  
VDDQ  
I/O Power  
Supply  
VSS  
NC  
Ground  
-
Ground for the device. Should be connected to ground of the system.  
No Connects. Reserved for address inputs for depth expansion. Pins 83 and 84 will be used  
for 256K and 512K depths respectively.  
DNU  
-
Do Not Use pins. These pins should be left floating or tied to VSS.  
Document #: 38-05208 Rev. *A  
Page 4 of 16  
PRELIMINARY  
CY7C1351B  
input signal. A LOW input on MODE selects a linear burst  
mode, a HIGH selects an interleaved burst sequence. Both  
burst counters use A0 and A1 in the burst sequence, and will  
wrap around when incremented sufficiently. A HIGH input on  
ADV/LD will increment the internal burst counter regardless of  
the state of chip enables inputs or WE. WE is latched at the  
beginning of a burst cycle. Therefore, the type of access (Read  
or Write) is maintained throughout the burst sequence.  
Introduction  
Functional Overview  
The CY7C1351B is a Synchronous Flow-Through Burst  
SRAM designed specifically to eliminate wait states during  
Write-Read transitions. All synchronous inputs pass through  
input registers controlled by the rising edge of the clock. The  
clock signal is qualified with the Clock Enable input signal  
(CEN). If CEN is HIGH, the clock signal is not recognized and  
all internal states are maintained. All synchronous operations  
are qualified with CEN. Maximum access delay from the clock  
rise (tCDV) is 7.5 ns (117-MHz device).  
Single Write Accesses  
Write access are initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, and (3) the write signal WE  
is asserted LOW. The address presented to A0A16 is loaded  
into the Address Register. The write signals are latched into  
the Control Logic block. The data lines are automatically  
three-stated regardless of the state of the OE input signal. This  
allows the external logic to present the data on DQ[31:0] and  
Accesses can be initiated by asserting all three Chip Enables  
(CE1, CE2, CE3) active at the rising edge of the clock. If Clock  
Enable (CEN) is active LOW and ADV/LD is asserted LOW,  
the address presented to the device will be latched. The ac-  
cess can either be a Read or Write operation, depending on  
the status of the Write Enable (WE). BWS[3:0] can be used to  
conduct byte write operations.  
DP[3:0]  
.
On the next clock rise the data presented to DQ[31:0] and  
DP[3:0] (or a subset for byte write operations, see Write Cycle  
Description table for details) inputs is latched into the device  
and the write is complete. Additional accesses  
(Read/Write/Deselect) can be initiated on this cycle.  
Write operations are qualified by the Write Enable (WE). All  
writes are simplified with on-chip synchronous self-timed write  
circuitry.  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) simplify depth expansion.  
All operations (Reads, Writes, and Deselects) are pipelined.  
ADV/LD should be driven LOW once the device has been de-  
selected in order to load a new address for the next operation.  
The data written during the Write operation is controlled by  
BWS[3:0] signals. The CY7C1351B provides byte write capa-  
bility that is described in the Write Cycle Description table.  
Asserting the Write Enable input (WE) with the selected Byte  
Write Select (BWS[3:0]) input will selectively write to only the  
desired bytes. Bytes not selected during a byte write operation  
will remain unaltered. A synchronous self-timed write mecha-  
nism has been provided to simplify the write operations. Byte  
write capability has been included in order to greatly simplify  
Read/Modify/Write sequences, which can be reduced to sim-  
ple byte write operations.  
Single Read Accesses  
A read access is initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2  
and CE3 are ALL asserted active, (3) the Write Enable input  
signal WE is deasserted HIGH, and 4) ADV/LD is asserted  
LOW. The address presented to the address inputs (A0A16  
)
is latched into the Address Register and presented to the  
memory core and control logic. The control logic determines  
that a read access is in progress and allows the requested  
data to propagate to the output buffers. The data is available  
within 7.5 ns (117-MHz device) provided OE is active LOW.  
After the first clock of the read access the output buffers are  
controlled by OE and the internal control logic. OE must be  
driven LOW in order for the device to drive out the requested  
data. On the subsequent clock, another operation  
(Read/Write/Deselect) can be initiated. When the SRAM is de-  
selected at clock rise by one of the chip enable signals, its  
output will three-stated immediately.  
Because the CY7C1351B is a common I/O device, Data  
should not be driven into the device while the outputs are ac-  
tive. The Output Enable (OE) can be deasserted HIGH before  
presenting data to the DQ[31:0] and DP[3:0] inputs. Doing so will  
three-state the output drivers. As a safety precaution, DQ[31:0]  
and DP[3:0].are automatically three-stated during the data por-  
tion of a write cycle, regardless of the state of OE.  
Burst Write Accesses  
The CY7C1351B has an on-chip burst counter that allows the  
user the ability to supply a single address and conduct up to  
four Write operations without reasserting the address inputs.  
ADV/LD must be driven LOW in order to load the initial ad-  
dress, as described in the Single Write Access section above.  
When ADV/LD is driven HIGH on the subsequent clock rise,  
the chip enables (CE1, CE2, and CE3) and WE inputs are ig-  
nored and the burst counter is incremented. The correct  
BWS[3:0] inputs must be driven in each cycle of the burst write  
in order to write the correct bytes of data.  
Burst Read Accesses  
The CY7C1351B has an on-chip burst counter that allows the  
user the ability to supply a single address and conduct up to  
four Reads without reasserting the address inputs. ADV/LD  
must be driven LOW in order to load a new address into the  
SRAM, as described in the Single Read Access section above.  
The sequence of the burst counter is determined by the MODE  
Document #: 38-05208 Rev. *A  
Page 5 of 16  
PRELIMINARY  
CY7C1351B  
.
Cycle Description Truth Table[1, 2, 3, 4, 5, 6]  
ADV/L  
D
Address  
Operation  
Used  
CE  
CEN  
WE  
BWSx  
CLK  
L-H  
Comments  
Deselected  
External  
1
0
L
X
X
I/Os three-state following next  
recognized clock.  
Suspend  
-
X
1
X
X
X
L-H  
Clock ignored, all operations  
suspended.  
Begin Read  
Begin Write  
External  
External  
0
0
0
0
0
0
1
0
X
L-H  
Address latched.  
Valid L-H  
L-H  
Address latched, data presented two  
valid clocks later.  
Burst Read  
Operation  
Internal  
X
0
1
X
X
Burst Read operation. Previous ac-  
cess was a Read operation. Ad-  
dresses incremented internally in  
conjunction with the state of MODE.  
Burst Write  
Operation  
Internal  
X
0
1
X
Valid L-H  
Burst Write operation. Previous ac-  
cess was a Write operation. Address-  
es incremented internally in conjunc-  
tion with the state of MODE. Bytes  
written are determined by BWS[3:0]  
.
Notes:  
1. X = Don't Care, 1 = Logic HIGH, 0 = Logic LOW, CE stands for ALL Chip Enables active. BWS = 0 signifies at least one Byte Write Select is active, BWS  
x
x
= Valid signifies that the desired byte write selects are asserted, see Write Cycle Description table for details.  
2. Write is defined by WE and BWS  
. See Write Cycle Description table for details.  
[3:0]  
3. The DQ and DP pins are controlled by the current cycle and the OE signal.  
4. CEN=1 inserts wait states.  
5. Device will power-up deselected and the I/Os in a three-state condition, regardless of OE.  
6. OE assumed LOW.  
Document #: 38-05208 Rev. *A  
Page 6 of 16  
PRELIMINARY  
CY7C1351B  
Interleaved Burst Sequence  
Linear Burst Sequence  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
Ax+1, Ax  
Ax+1, Ax  
Ax+1, Ax  
Ax+1, Ax  
Ax+1, Ax  
Ax+1, Ax  
Ax+1, Ax  
Ax+1, Ax  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
Write Cycle Description[1, 2]  
Function  
WE  
1
BWS3  
BWS2  
BWS1  
BWS0  
Read  
X
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
X
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
X
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
X
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Write No bytes written  
Write Byte 0 (DQ[7:0] and DP0)  
Write Byte 1 (DQ[15:8] and DP1)  
Write Bytes 1, 0  
0
0
0
0
Write Byte 2 (DQ[23:16] and DP2)  
Write Bytes 2, 0  
0
0
Write Bytes 2, 1  
0
Write Bytes 2, 1, 0  
0
Write Byte 3 (DQ[31:24] and DP3)  
Write Bytes 3, 0  
0
0
Write Bytes 3, 1  
0
Write Bytes 3, 1, 0  
0
Write Bytes 3, 2  
0
Write Bytes 3, 2, 0  
0
Write Bytes 3, 2, 1  
0
Write All Bytes  
0
Document #: 38-05208 Rev. *A  
Page 7 of 16  
PRELIMINARY  
CY7C1351B  
Current into Outputs (LOW) ........................................ 20 mA  
Maximum Ratings  
Static Discharge Voltage........................................... >2001V  
(per MIL-STD-883, Method 3015)  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-Up Current.................................................... >200 mA  
Storage Temperature ..................................... −65°C to +150°C  
Ambient Temperature with  
Power Applied.................................................. −55°C to +125°C  
Operating Range  
Ambient  
Supply Voltage on VDD Relative to GND.........0.5V to +4.6V  
Range  
Coml  
Temperature[8]  
VDD/VDDQ  
DC Voltage Applied to Outputs  
in High Z State[7]......................................0.5V to VDDQ + 0.5V  
0°C to +70°C  
3.3V ± 5%  
DC Input Voltage[7]..................................0.5V to VDDQ + 0.5V  
Electrical Characteristics Over the Operating Range  
Parameter  
VDD  
Description  
Test Conditions  
Min.  
Max.  
3.465  
3.465  
Unit  
Power Supply Voltage  
I/O Supply Voltage  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
3.135  
3.135  
2.4  
V
V
V
V
V
VDDQ  
VOH  
VDD = Min., IOH = 4.0 mA[9]  
VDD = Min., IOL = 8.0 mA[9]  
VOL  
0.4  
VIH  
2.0  
VDD +  
0.3V  
0.8  
5
VIL  
IX  
Input LOW Voltage[7]  
Input Load Current  
0.3  
5  
V
GND VI VDDQ  
mA  
mA  
mA  
Input Current of MODE  
30  
5  
30  
5
IOZ  
ICC  
Output Leakage  
Current  
GND VI VDDQ, Output Disabled  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
f = fMAX = 1/tCYC  
8.5-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
15-ns cycle, 66 MHz  
20-ns cycle, 50 MHz  
25-ns cycle, 40 MHz  
8.5-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
15-ns cycle, 66 MHz  
20-ns cycle, 50 MHz  
25-ns cycle, 40 MHz  
All speed grades  
375  
350  
250  
200  
175  
90  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
ISB1  
Automatic CE  
Power-Down  
CurrentTTL Inputs  
Max. VDD, Device Deselected,  
VIN VIH or VIN VIL  
f = fMAX = 1/tCYC  
80  
60  
40  
35  
ISB2  
Automatic CE  
Power-Down  
CurrentCMOS  
Inputs  
Max. VDD, Device Deselected,  
5
VIN 0.3V or VIN > VDDQ 0.3V,  
f =0  
ISB3  
Automatic CE  
Power-Down  
CurrentCMOS  
Inputs  
Max. VDD, Device Deselected, or 8.5-ns cycle, 117 MHz  
80  
70  
50  
40  
35  
mA  
mA  
mA  
mA  
mA  
VIN 0.3V or VIN > VDDQ 0.3V  
10-ns cycle, 100 MHz  
15-ns cycle, 66 MHz  
20-ns cycle, 50 MHz  
25-ns cycle, 40 MHz  
f = fMAX = 1/tCYC  
Notes:  
7. Minimum voltage equals 2.0V for pulse duration less than 20 ns.  
8. A is the case temperature.  
T
9. The load used for VOH and VOL testing is shown in figure (b) of the AC Test Loads.  
Document #: 38-05208 Rev. *A  
Page 8 of 16  
PRELIMINARY  
CY7C1351B  
Capacitance[10]  
Parameter  
Description  
Test Conditions  
Max.  
Unit  
pF  
CIN  
Input Capacitance  
TA = 25°C, f = 1 MHz,  
VDD = 3.3V  
VDDQ = 3.3V  
4
4
4
CCLK  
CI/O  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
pF  
AC Test Loads and Waveforms  
R = 317Ω  
3.3V  
OUTPUT  
OUTPUT  
ALL INPUT PULSES  
Z = 50Ω  
0
3.0V  
R = 50Ω  
L
5 pF  
R = 351Ω  
GND  
V = 1.5V  
L
INCLUDING  
JIG AND  
SCOPE  
(a)  
(b)  
Thermal Resistance  
Description  
Test Conditions  
Symbol  
TQFP Typ.  
Units  
Notes  
Thermal Resistance  
(Junction to Ambient)  
Still Air, soldered on a 4.25 x 1.125 inch,  
4-layer printed circuit board  
ΘJA  
28  
°C/W  
10  
Thermal Resistance  
(Junction to Case)  
ΘJC  
4
°C/W  
10  
Note:  
10. Tested initially and after any design or process change that may affect these parameters.  
Document #: 38-05208 Rev. *A  
Page 9 of 16  
PRELIMINARY  
CY7C1351B  
Switching Characteristics Over the Operating Range[11, 12, 13]  
-117  
-100  
-66  
-50  
-40  
Parameter  
Clock  
tCYC  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Unit  
Clock Cycle Time  
8.5  
10.0  
15  
20  
ns  
MHz  
ns  
FMAX  
Maximum Operating Frequency  
Clock HIGH  
117  
100  
66  
50  
40  
tCH  
1.9  
1.9  
1.9  
1.9  
5.0  
5.0  
6.0  
6.0  
7.0  
7.0  
tCL  
Clock LOW  
ns  
Output Times  
tCDV  
Data Output Valid After CLK  
Rise  
7.5  
4.2  
8.5  
5.0  
11.0  
6.0  
12.0  
7.0  
14.0  
8.0  
ns  
tEOV  
tDOH  
OE LOW to Output Valid[10,11]  
ns  
ns  
Data Output Hold After CLK  
Rise  
1.5  
1.5  
1.5  
3.0  
0
1.5  
3.0  
0
1.5  
3.0  
tCHZ  
tCLZ  
Clock to High-Z[10,11,12,13]  
Clock to Low-Z[10,11,12,13]  
1.5  
3
4.2  
4.2  
1.5  
3
5.0  
5.0  
5.0  
6.0  
5.0  
7.0  
5.0  
8.0  
ns  
ns  
ns  
tEOHZ  
OE HIGH to Output  
High-Z[10,11,12,13]  
tEOLZ  
OE LOW to Output  
Low-Z[10,11,12,13]  
0
0
ns  
Set-up Times  
tAS  
Address Set-up Before CLK  
Rise  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.5  
ns  
ns  
tDS  
Data Input Set-up Before CLK  
Rise  
tCENS  
tWES  
CEN Set-up Before CLK Rise  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.5  
2.5  
ns  
ns  
WE, BWSx Set-up Before CLK  
Rise  
tALS  
ADV/LD Set-up Before CLK  
Rise  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.5  
2.5  
ns  
ns  
tCES  
Chip Select Set-up  
Hold Times  
tAH  
Address Hold After CLK Rise  
Data Input Hold After CLK Rise  
CEN Hold After CLK Rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
ns  
ns  
ns  
ns  
ns  
ns  
tDH  
tCENH  
tWEH  
WE, BWSx Hold After CLK Rise 0.5  
ADV/LD Hold After CLK Rise 0.5  
Chip Select Hold After CLK Rise 0.5  
tALH  
tCEH  
Notes:  
11. tCHZ, tCLZ, tOEV, tEOLZ, and tEOHZ are specified with AC test conditions shown in part (a) of AC Test Loads. Transition is measured ± 200 mV from steady-state  
voltage.  
12. At any given voltage and temperature, tEOHZ is less than tEOLZ and tCHZ is less than tCLZ to eliminate bus contention between SRAMs when sharing the same  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions.  
13. This parameter is sampled and not 100% tested. tCHZ, tCLZ, tOEV, tEOLZ and tEOHZ are specified with AC test conditions shown in part (a) of AC Test Loads.  
Transition is measured +200 mV from steady  
Document #: 38-05208 Rev. *A  
Page 10 of 16  
PRELIMINARY  
CY7C1351B  
Switching Waveforms  
Read/Write/Deselect Sequence  
CLK  
tCENH  
tCENH  
tCENS  
tCENS  
tCL  
tCH  
tCYC  
CEN  
tAS  
WA2  
WA5  
RA1  
RA3  
RA4  
RA6  
RA7  
ADDRESS  
tAH  
WE  
tWS  
tWH  
tCES  
tCEH  
CE  
tDOH  
tCHZ  
tDOH  
tCLZ  
tCHZ  
Q6  
Out  
Q4  
Out  
D5  
In  
Data-  
In/Out  
D2  
In  
Q7  
Out  
Q3  
Out  
Q1  
Out  
Device  
tCDV  
originally  
deselected  
WE is the combination of WE & BWSx to define a write cycle (see Write Cycle Description table).  
CE is the combination of CE1, CE2, and CE3. All chip selects need to be active in order to select  
the device. Any chip select can deselect the device. RAx stands for Read Address X, WAx stands for  
Write Address X, Dx stands for Data-in X, Qx stands for Data-out X.  
= UNDEFINED  
= DONT CARE  
Document #: 38-05208 Rev. *A  
Page 11 of 16  
PRELIMINARY  
CY7C1351B  
Switching Waveforms (continued)  
Burst Sequences  
CLK  
tALH  
tALS  
tCL  
tCH  
tCYC  
ADV/LD  
tAH  
tAS  
RA1  
WA2  
ADDRESS  
WE  
RA3  
tWS  
tWH  
tWS  
tWH  
BWS[3:0]  
tCES  
tCEH  
CE  
tCLZ  
tCHZ  
tDH  
tDOH  
tCLZ  
Q3  
Out  
Q1  
Q1+2  
Out  
Q1+3  
Out  
D2  
In  
D2+2  
In  
D2+3  
In  
Data-  
In/Out  
Q1+1  
Out  
D2+1  
In  
Q3+1  
Out  
Out  
tCDV  
tCDV  
tDS  
Device  
originally deselected  
The combination of WE & BWS[3:0] defines a write cycle (see Write Cycle Description table).  
CE is the combination of CE1, CE2, and CE3. All chip enables need to be active in order to select  
the device. Any chip enable can deselect the device. RAx stands for Read Address X, WAx stands for  
Write Address X, Dx stands for Data-in for location X, Qx stands for Data-out for location X. CEN held  
LOW. During burst writes, byte writes can be conducted by asserting the appropriate BWS[3:0] input signals.  
Burst order determined by the state of the MODE input. CEN held LOW. OE held LOW.  
= UNDEFINED  
= DONT CARE  
Document #: 38-05208 Rev. *A  
Page 12 of 16  
PRELIMINARY  
CY7C1351B  
Switching Waveforms (continued)  
OE Timing  
OE  
tEOV  
tEOHZ  
Three-state  
I/Os  
tEOLZ  
Ordering Information  
Speed  
Package  
Name  
Operating  
Range  
(MHz)  
117  
100  
66  
Ordering Code  
Package Type  
CY7C1351B-117AC  
CY7C1351B-100AC  
CY7C1351B-66AC  
CY7C1351B-50AC  
CY7C1351B-40AC  
CY7C1351B-117BGC  
CY7C1351B-100BGC  
CY7C1351B-66BGC  
CY7C1351B-50BGC  
CY7C1351B-40BGC  
A101  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Lead PBGA (14 x 22 x 2.4 mm)  
Commercial  
50  
40  
117  
100  
66  
BG119  
Commercial  
119-Lead PBGA (14 x 22 x 2.4 mm)  
119-Lead PBGA (14 x 22 x 2.4 mm)  
50  
119-Lead PBGA (14 x 22 x 2.4 mm)  
40  
119-Lead PBGA (14 x 22 x 2.4 mm)  
Document #: 38-05208 Rev. *A  
Page 13 of 16  
PRELIMINARY  
CY7C1351B  
Package Diagrams  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
51-85050-*A  
Document #: 38-05208 Rev. *A  
Page 14 of 16  
PRELIMINARY  
CY7C1351B  
Package Diagrams (continued)  
119-Lead PBGA (14 x 22 x 2.4 mm) BG119  
51-85115-*B  
NoBL and No Bus Latency are trademarks of Cypress Semiconductor Corporation.  
ZBT is a trademark of Integrated Device Technology.  
All product and company names mentioned in this document may be the trademarks of their respective holders.  
Document #: 38-05208 Rev. *A  
Page 15 of 16  
© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
PRELIMINARY  
CY7C1351B  
Document History Page  
Document Title: CY7C1351B 128K x 36 Flow-Through SRAM with NoBLArchitecture  
Document Number: 38-05208  
Issue  
Date  
Orig. of  
Change  
REV.  
**  
ECN NO.  
115440  
Description of Change  
Change from Spec number: 38-00691 to 38-05208  
Updated package diagram 51-85115 (BG119) to rev. *B  
05/06/02  
11/21/02  
DSG  
DSG  
*A  
121535  
Document #: 38-05208 Rev. *A  
Page 16 of 16  

相关型号:

CY7C1351B-40AC

ZBT SRAM, 128KX36, 14ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1351B-66BGC

ZBT SRAM, 128KX36, 11ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119
CYPRESS

CY7C1351F

4-Mb (128K x 36) Flow-through SRAM with NoB TM Architecture
CYPRESS

CY7C1351F-100AC

4-Mb (128K x 36) Flow-through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1351F-100AI

4-Mb (128K x 36) Flow-through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1351F-100BGC

4-Mb (128K x 36) Flow-through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1351F-100BGI

4-Mb (128K x 36) Flow-through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1351F-117AC

4-Mb (128K x 36) Flow-through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1351F-117AI

4-Mb (128K x 36) Flow-through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1351F-117BGC

4-Mb (128K x 36) Flow-through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1351F-117BGI

4-Mb (128K x 36) Flow-through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1351F-133AC

4-Mb (128K x 36) Flow-through SRAM with NoBL⑩ Architecture
CYPRESS