CY7C1351F-133AI [CYPRESS]

4-Mb (128K x 36) Flow-through SRAM with NoBL⑩ Architecture; 4 -MB ( 128K ×36 )与NoBL⑩架构流通式SRAM
CY7C1351F-133AI
型号: CY7C1351F-133AI
厂家: CYPRESS    CYPRESS
描述:

4-Mb (128K x 36) Flow-through SRAM with NoBL⑩ Architecture
4 -MB ( 128K ×36 )与NoBL⑩架构流通式SRAM

静态存储器
文件: 总15页 (文件大小:427K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1351F  
4-Mb (128K x 36) Flow-through SRAM with  
NoBL™ Architecture  
• Burst Capability—linear or interleaved burst order  
• Low standby power  
Features  
• Can support up to 133-MHz bus operations with zero  
Functional Description[1]  
wait states  
— Data is transferred on every clock  
The CY7C1351F is a 3.3V, 128K x 36 Synchronous  
Flow-through Burst SRAM designed specifically to support  
unlimited true back-to-back Read/Write operations without the  
insertion of wait states. The CY7C1351F is equipped with the  
advanced No Bus Latency™ (NoBL™) logic required to  
enable consecutive Read/Write operations with data being  
transferred on every clock cycle. This feature dramatically  
improves the throughput of data through the SRAM, especially  
in systems that require frequent Write-Read transitions.  
• Pin compatible and functionally equivalent to ZBT™  
devices  
• Internally self-timed output buffer control to eliminate  
the need to use OE  
• Registered inputs for flow-through operation  
• Byte Write capability  
• 128K x 36 common I/O architecture  
• 2.5V / 3.3V I/O power supply  
• Fast clock-to-output times  
— 6.5 ns (for 133-MHz device)  
— 7.5 ns (for 117-MHz device)  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. The clock input is qualified by  
the Clock Enable (CEN) signal, which when deasserted  
suspends operation and extends the previous clock cycle.  
Maximum access delay from the clock rise is 6.5 ns (133-MHz  
device).  
— 8.0 ns (for 100-MHz device)  
— 11.0 ns (for 66-MHz device)  
Write operations are controlled by the four Byte Write Select  
(BW[A:D]) and a Write Enable (WE) input. All writes are  
conducted with on-chip synchronous self-timed write circuitry.  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output three-state control. In order to avoid bus  
contention, the output drivers are synchronously three-stated  
during the data portion of a write sequence.  
• Clock Enable (CEN) pin to suspend operation  
• Synchronous self-timed writes  
• Asynchronous Output Enable  
• JEDEC-standard 100 TQFP and 119 BGA packages  
Logic Block Diagram  
ADDRESS  
A0, A1, A  
REGISTER  
A1  
A1'  
A0'  
D1  
A0  
Q1  
Q0  
D0  
MODE  
BURST  
LOGIC  
CE  
ADV/LD  
C
CLK  
CEN  
C
WRITE ADDRESS  
REGISTER  
O
U
T
P
U
T
D
A
T
S
E
N
S
ADV/LD  
A
B
U
F
MEMORY  
ARRAY  
BWA  
BWB  
BWC  
BWD  
WRITE  
DRIVERS  
E
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
S
T
E
E
R
I
DQs  
DQP  
DQP  
DQP  
DQP  
A
B
C
D
A
M
P
F
E
R
S
S
WE  
E
N
G
INPUT  
REGISTER  
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
SLEEP  
Control  
ZZ  
1
Note:  
1. For best–practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Document #: 38-05210 Rev. *B  
Revised January 12, 2004  
CY7C1351F  
Selection Guide  
133 MHz  
6.5  
117 MHz  
7.5  
100 MHz  
8.0  
66 MHz  
11.0  
195  
Unit  
ns  
mA  
mA  
Maximum Access Time  
Maximum Operating Current  
Maximum CMOS Standby Current  
225  
40  
220  
40  
205  
40  
40  
Shaded areas contain advance information. Please contact your local Cypress sales representative for availability of these parts.  
Pin Configurations  
100-lead TQFP  
DQP  
DQ  
DQ  
V
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
1
2
3
4
5
6
7
8
DQP  
B
C
C
C
DQ  
B
DQ  
B
V
DDQ  
DDQ  
V
V
SS  
SS  
DQ  
DQ  
C
B
BYTE B  
DQ  
C
BYTE C  
DQ  
B
DQ  
DQ  
C
B
DQ  
C
9
DQ  
B
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
SS  
V
V
DDQ  
DDQ  
DQ  
DQ  
C
B
DQ  
C
NC  
DQ  
B
CY7C1351F  
V
SS  
V
NC  
DD  
NC  
V
DD  
V
ZZ  
SS  
DQ  
DQ  
DQ  
V
D
A
A
DQ  
D
V
DDQ  
DDQ  
V
V
SS  
SS  
DQ  
DQ  
DQ  
DQ  
DQ  
V
D
A
A
A
A
DQ  
D
BYTE D  
BYTE A  
DQ  
D
DQ  
D
V
SS  
SS  
V
V
DDQ  
DDQ  
DQ  
DQ  
D
A
DQ  
D
DQ  
A
DQP  
DQP  
D
A
Document #: 38-05210 Rev. *B  
Page 2 of 15  
CY7C1351F  
Pin Configurations (continued)  
119-Ball BGA  
2
A
1
3
A
4
NC  
5
A
6
A
7
VDDQ  
VDDQ  
A
B
C
D
E
F
G
H
J
NC  
NC  
CE2  
A
A
A
A
A
NC  
NC  
ADV/LD  
VDD  
NC  
CE1  
OE  
NC  
WE  
VDD  
CLK  
CE3  
A
DQC  
DQC  
VDDQ  
DQC  
DQC  
VDDQ  
DQD  
DQPC  
DQC  
DQC  
DQC  
DQC  
VDD  
DQD  
VSS  
VSS  
VSS  
BWC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
BWB  
VSS  
VSS  
VSS  
DQPB  
DQB  
DQB  
DQB  
DQB  
VDD  
DQB  
DQB  
VDDQ  
DQB  
DQB  
VDDQ  
DQA  
K
DQA  
L
M
N
DQD  
VDDQ  
DQD  
DQD  
DQD  
DQD  
BWD  
VSS  
VSS  
NC  
CEN  
A1  
BWA  
VSS  
VSS  
DQA  
DQA  
DQA  
DQA  
VDDQ  
DQA  
P
R
T
DQD  
NC  
NC  
DQPD  
A
NC  
VSS  
MODE  
A
A0  
VDD  
A
VSS  
NC  
A
DQPA  
A
NC  
DQA  
NC  
ZZ  
VDDQ  
NC  
NC  
NC  
NC  
NC  
VDDQ  
U
Pin Definitions  
Name  
A0, A1, A  
TQFP  
BGA  
I/O  
Input-  
Description  
Address Inputs used to select one of the 128K address lo-  
37,36,32,33,34, P4,N4,A2,C2,  
35,44,45,46,47, R2,A3,B3,C3, Synchronous cations. Sampled at the rising edge of the CLK. A[1:0] are fed  
48,49,50,81,82, T3,T4,A5,B5,  
to the two-bit burst counter.  
99,100  
93,94,95,96  
88  
C5,T5,A6,C6,  
R6  
L5,G5,G3,L3  
Input-  
Byte Write Inputs, active LOW. Qualified with WE to conduct  
BW[A:D]  
WE  
Synchronous writes to the SRAM. Sampled on the rising edge of CLK.  
H4  
Input-  
Write Enable Input, active LOW. Sampled on the rising edge  
Synchronous of CLK if CEN is active LOW. This signal must be asserted LOW  
to initiate a write sequence.  
85  
B4  
Input-  
Advance/Load Input. Used to advance the on-chip address  
ADV/LD  
Synchronous counter or load a new address. When HIGH (and CEN is as-  
serted LOW) the internal burst counter is advanced. When  
LOW, a new address can be loaded into the device for an ac-  
cess. After being deselected, ADV/LD should be driven LOW in  
order to load a new address.  
CLK  
89  
98  
97  
K4  
E4  
B2  
Input-Clock Clock Input. Used to capture all synchronous inputs to the de-  
vice. CLK is qualified with CEN. CLK is only recognized if CEN  
is active LOW.  
Input-  
Chip Enable 1 Input, active LOW. Sampled on the rising edge  
CE1  
CE2  
Synchronous of CLK. Used in conjunction with CE2, and CE3 to select/dese-  
lect the device.  
Input-  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge  
Synchronous ofCLK. Used inconjunction with CE1 andCE3 toselect/deselect  
the device.  
Document #: 38-05210 Rev. *B  
Page 3 of 15  
CY7C1351F  
Pin Definitions  
Name  
TQFP  
BGA  
I/O  
Description  
92  
B6  
Input-  
Chip Enable 3 Input, active LOW. Sampled on the rising edge  
CE3  
Synchronous of CLK. Used in conjunctionwith CE1 andCE2 to select/deselect  
the device.  
86  
F4  
Input-  
Output Enable, asynchronous input, active LOW. Combined  
OE  
Asynchronous with the synchronous logic block inside the device to control the  
direction of the I/O pins. When LOW, the I/O pins are allowed  
to behave as outputs. When deasserted HIGH, I/O pins are  
three-stated, and act as input data pins. OE is masked during  
the data portion of a write sequence, during the first clock when  
emerging from a deselected state, when the device has been  
deselected.  
87  
64  
M4  
T7  
Input-  
Clock Enable Input, active LOW. When asserted LOW the  
CEN  
ZZ  
Synchronous Clock signal is recognized by the SRAM. When deasserted  
HIGH the Clock signal is masked. Since deasserting CEN does  
not deselect the device, CEN can be used to extend the previ-  
ous cycle when required.  
Input-  
ZZ “sleep” Input. This active HIGH input places the device in  
Asynchronous a non-time critical “sleep” condition with data integrity pre-  
served. During normal operation, this pin can be connected to  
Vss or left floating.  
DQs  
52,53,56,57,58, K6,L6,M6,N6,  
I/O-  
Bidirectional Data I/O Lines. As inputs, they feed into an  
59,62,63,68,69, K7,L7,N7,P7, Synchronous on-chip data register that is triggered by the rising edge of CLK.  
72,73,74,75,78, E6,F6,G6,H6,  
79,2,3,6,7,8,9, D7,E7,G7,H7,  
12,13,18,19,22, D1,E1,G1,H1,  
23,24,25,28,29 E2,F2,G2,H2,  
K1,L1,N1,P1,  
As outputs, they deliver the data contained in the memory loca-  
tion specified by address during the clock rise of the read cycle.  
The direction of the pins is controlled by OE and the internal  
control logic. When OE is asserted LOW, the pins can behave  
as outputs. When HIGH, DQs and DQP[A:D] are placed in a  
three-state condition. The outputs are automatically three-stat-  
ed during the data portion of a write sequence, during the first  
clock when emerging from a deselected state, and when the  
device is deselected, regardless of the state of OE.  
K2,L2,M2,N2  
DQP[A:D]  
MODE  
51,80,1,30  
31  
P6,D6,D2,P2  
R3  
I/O-  
BidirectionalDataParityI/OLines. Functionally, thesesignals  
Synchronous are identical to DQs. During write sequences, DQP[A:D] is con-  
trolled by BW[A:D] correspondingly.  
Input  
Mode Input. Selects the burst order of the device.  
When tied to Gnd selects linear burst sequence. When tied to  
VDD or left floating selects interleaved burst sequence.  
Strap Pin  
VDD  
15,41,65,91  
J2,C4,J4,R4, Power Supply Power supply inputs to the core of the device.  
J6  
VDDQ  
4,11,20,27,54, A1,F1,J1,M1, I/O Power Sup- Power supply for the I/O circuitry.  
61,70,77  
U1,A7,F7,J7,  
M7,U7  
ply  
VSS  
NC  
5,10,17,21,26, D3,E3,F3,H3,  
Ground  
Ground for the device.  
40,55,60,67,71, J3,K3,M3,N3,  
76,90,  
P3,D5,E5,F5,  
H5,J5,K5,M5,  
N5,P5  
14,16,38,39,42, B1,C1,R1,T1,  
No Connects. Not Internally connected to the die.  
43,66,83,84  
T2,U2,U3,A4,  
D4,G4,L4,U4,  
U5,T6,U6,B7,  
C7,R5,R7,T7  
Document #: 38-05210 Rev. *B  
Page 4 of 15  
CY7C1351F  
beginning of a burst cycle. Therefore, the type of access (Read  
or Write) is maintained throughout the burst sequence.  
Functional Overview  
The CY7C1351F is a synchronous flow-through burst SRAM  
designed specifically to eliminate wait states during  
Write-Read transitions. All synchronous inputs pass through  
input registers controlled by the rising edge of the clock. The  
clock signal is qualified with the Clock Enable input signal  
(CEN). If CEN is HIGH, the clock signal is not recognized and  
all internal states are maintained. All synchronous operations  
are qualified with CEN. Maximum access delay from the clock  
rise (tCDV) is 6.5 ns (133-MHz device).  
Accesses can be initiated by asserting all three Chip Enables  
(CE1, CE2, CE3) active at the rising edge of the clock. If Clock  
Enable (CEN) is active LOW and ADV/LD is asserted LOW,  
the address presented to the device will be latched. The  
access can either be a read or write operation, depending on  
the status of the Write Enable (WE). BW[A:D] can be used to  
conduct byte write operations.  
Single Write Accesses  
Write access are initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, and (3) the write signal WE  
is asserted LOW. The address presented to the address bus  
is loaded into the Address Register. The write signals are  
latched into the Control Logic block. The data lines are  
automatically three-stated regardless of the state of the OE  
input signal. This allows the external logic to present the data  
on DQs and DQP[A:D]  
.
On the next clock rise the data presented to DQs and DQP[A:D]  
(or a subset for byte write operations, see truth table for  
details) inputs is latched into the device and the write is  
complete. Additional accesses (Read/Write/Deselect) can be  
initiated on this cycle.  
Write operations are qualified by the Write Enable (WE). All  
writes are simplified with on-chip synchronous self-timed write  
circuitry.  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) simplify depth expansion.  
All operations (Reads, Writes, and Deselects) are pipelined.  
ADV/LD should be driven LOW once the device has been  
deselected in order to load a new address for the next  
operation.  
The data written during the Write operation is controlled by  
BW[A:D] signals. The CY7C1351F provides byte write  
capability that is described in the truth table. Asserting the  
Write Enable input (WE) with the selected Byte Write Select  
input will selectively write to only the desired bytes. Bytes not  
selected during a byte write operation will remain unaltered. A  
synchronous self-timed write mechanism has been provided  
to simplify the write operations. Byte write capability has been  
included in order to greatly simplify Read/Modify/Write  
sequences, which can be reduced to simple byte write opera-  
tions.  
Single Read Accesses  
A read access is initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, (3) the Write Enable input  
signal WE is deasserted HIGH, and 4) ADV/LD is asserted  
LOW. The address presented to the address inputs is latched  
into the Address Register and presented to the memory array  
and control logic. The control logic determines that a read  
access is in progress and allows the requested data to  
propagate to the output buffers. The data is available within 6.5  
ns (133-MHz device) provided OE is active LOW. After the first  
clock of the read access, the output buffers are controlled by  
OE and the internal control logic. OE must be driven LOW in  
order for the device to drive out the requested data. On the  
subsequent clock, another operation (Read/Write/Deselect)  
can be initiated. When the SRAM is deselected at clock rise  
by one of the chip enable signals, its output will be three-stated  
immediately.  
Because the CY7C1351F is a common I/O device, data should  
not be driven into the device while the outputs are active. The  
Output Enable (OE) can be deasserted HIGH before  
presenting data to the DQs and DQP[A:D] inputs. Doing so will  
three-state the output drivers. As a safety precaution, DQs and  
DQP[A:D].are automatically three-stated during the data  
portion of a write cycle, regardless of the state of OE.  
Burst Write Accesses  
The CY7C1351F has an on-chip burst counter that allows the  
user the ability to supply a single address and conduct up to  
four Write operations without reasserting the address inputs.  
ADV/LD must be driven LOW in order to load the initial  
address, as described in the Single Write Access section  
above. When ADV/LD is driven HIGH on the subsequent clock  
rise, the Chip Enables (CE1, CE2, and CE3) and WE inputs are  
ignored and the burst counter is incremented. The correct  
BW[A:D] inputs must be driven in each cycle of the burst write,  
in order to write the correct bytes of data.  
Burst Read Accesses  
The CY7C1351F has an on-chip burst counter that allows the  
user the ability to supply a single address and conduct up to  
four Reads without reasserting the address inputs. ADV/LD  
must be driven LOW in order to load a new address into the  
SRAM, as described in the Single Read Access section above.  
The sequence of the burst counter is determined by the MODE  
input signal. A LOW input on MODE selects a linear burst  
mode, a HIGH selects an interleaved burst sequence. Both  
burst counters use A0 and A1 in the burst sequence, and will  
wrap around when incremented sufficiently. A HIGH input on  
ADV/LD will increment the internal burst counter regardless of  
the state of chip enable inputs or WE. WE is latched at the  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the “sleep” mode. CE1, CE2, and CE3, must remain inactive for  
the duration of tZZREC after the ZZ input returns LOW.  
Document #: 38-05210 Rev. *B  
Page 5 of 15  
CY7C1351F  
Interleaved Burst Address Table (MODE =  
Linear Burst Address Table (MODE = GND)  
Floating or VDD  
)
First  
Second  
Address  
A1, A0  
Third  
Address  
A1, A0  
Fourth  
Address  
A1, A0  
Address  
A1, A0  
First  
Second  
Address  
A1, A0  
Third  
Address  
A1, A0  
Fourth  
Address  
A1, A0  
Address  
A1, A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
tZZS  
Description  
Snooze mode standby current  
Device operation to ZZ  
Test Conditions  
ZZ > VDD 0.2V  
ZZ > VDD 0.2V  
Min.  
Max.  
40  
2tCYC  
Unit  
mA  
ns  
tZZREC  
tZZI  
tRZZI  
ZZ recovery time  
ZZ active to snooze current  
ZZ inactive to exit snooze current  
ZZ < 0.2V  
This parameter is sampled  
This parameter is sampled  
2tCYC  
0
ns  
ns  
ns  
2tCYC  
Truth Table[2, 3, 4, 5, 6, 7, 8 ]  
Address  
Operation  
Deselect Cycle  
Deselect Cycle  
Deselect Cycle  
Continue Deselect Cycle  
Used  
None  
CE1 CE2 CE3 ZZ ADV/LD WE BWX OE CEN CLK  
DQ  
H
X
X
X
L
X
X
L
X
H
X
H
X
X
L
L
L
L
L
L
L
L
L
H
L
X
X
X
X
H
X
X
X
X
X
X
X
X
X
L
L
L
L
L
L
L->H Three-state  
L->H Three-state  
L->H Three-state  
L->H Three-state  
L->H Data Out (Q)  
None  
None  
None  
External  
READ Cycle  
(Begin Burst)  
READ Cycle  
Next  
External  
Next  
X
L
X
H
X
H
X
H
X
X
X
X
L
L
L
L
L
L
L
L
L
H
H
L
X
H
X
L
X
X
X
L
L
H
H
X
X
X
X
X
X
L
L
L
L
L
L
L
H
X
L->H Data Out (Q)  
L->H Three-state  
L->H Three-state  
L->H Data In (D)  
L->H Data In (D)  
L->H Three-state  
L->H Three-state  
(Continue Burst)  
NOP/DUMMY READ  
(Begin Burst)  
DUMMY READ  
(Continue Burst)  
X
L
X
L
H
L
WRITE Cycle  
External  
Next  
(Begin Burst)  
WRITE Cycle  
X
L
X
L
H
L
X
L
L
(Continue Burst)  
NOP/WRITE ABORT  
None  
H
H
X
X
(Begin Burst)  
WRITE ABORT  
(Continue Burst)  
Next  
X
X
X
X
X
X
H
X
X
X
X
X
IGNORE CLOCK  
Current  
None  
L->H  
X
EDGE (Stall)  
SNOOZE MODE  
Three-state  
Notes:  
2. X = Don’t Care.” H= Logic HIGH, L = Logic LOW. BWx = 0 signifies at least one Byte Write Select is active, BWx = Valid signifies that the desired byte write  
selects are asserted, see truth table for details.  
3. Write is defined by BW  
, and WE. See truth table for Read/Write.  
[A:D]  
4. When a write cycle is detected, all I/Os are three-stated, even during byte writes.  
5. The DQs and DQP  
pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
[A:D]  
6. CEN = H, inserts wait states.  
7. Device will power-up deselected and the I/Os in a three-state condition, regardless of OE.  
8. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle DQs and DQP  
= Three-state when  
[A:D]  
OE is inactive or when the device is deselected, and DQs and DQP  
= data when OE is active.  
[A:D]  
Document #: 38-05210 Rev. *B  
Page 6 of 15  
CY7C1351F  
Partial Truth Table for Read/Write [2, 3, 9]  
Function  
Read  
BWA  
X
BWB  
X
BWC  
X
BWD  
X
WE  
H
Read  
H
L
L
L
L
L
L
X
H
L
H
H
H
L
X
H
H
L
H
H
L
X
H
H
H
L
X
H
H
H
H
L
Write – No bytes written  
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Byte C– (DQC and DQPC)  
Write Byte D– (DQD and DQPD)  
H
L
Write All Bytes  
L
Note:  
9. Table only lists a partial listing of the byte write combinatios. Any combination of BW  
is valid. Appropriate write will be done based on which byte write is active.  
[A:D]  
Document #: 38-05210 Rev. *B  
Page 7 of 15  
CY7C1351F  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage.......................................... > 2001V  
(Above which the useful life may be impaired. For user guide-  
(per MIL-STD-883, Method 3015)  
lines, not tested.)  
Latch-up Current.................................................... > 200 mA  
Storage Temperature .................................65°C to +150°C  
Operating Range  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Ambient  
Supply Voltage on VDD Relative to GND ...... –0.5V to +4.6V  
Range Temperature (TA)  
VDD  
VDDQ  
DC Voltage Applied to Outputs  
Com’l  
Ind’l  
0°C to +70°C  
40°C to +85°C  
3.3V - 5%/+10% 2.5V - 5% to  
in three-state....................................... –0.5V to VDDQ + 0.5V  
VDD  
DC Input Voltage....................................–0.5V to VDD + 0.5V  
Electrical Characteristics Over the Operating Range [10,11]  
Parameter  
VDD  
VDDQ  
VOH  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min.  
3.135  
2.375  
2.4  
Max.  
3.6  
VDD  
Unit  
V
V
V
V
V
V
V
V
Output HIGH Voltage  
VDDQ = 3.3V, VDD = Min., IOH = –4.0 mA  
VDDQ = 2.5V, VDD = Min., IOH = –1.0 mA  
VDDQ = 3.3V, VDD = Min., IOL = 8.0 mA  
DDQ = 2.5V, VDD = Min., IOL = 1.0 mA  
VDDQ = 3.3V  
DDQ = 2.5V  
2.0  
VOL  
VIH  
VIL  
IX  
Output LOW Voltage  
0.4  
0.4  
VDD + 0.3V  
VDD + 0.3V  
0.8  
V
Input HIGH Voltage  
Input HIGH Voltage  
Input LOW Voltage[10]  
Input LOW Voltage[10]  
2.0  
1.7  
–0.3  
–0.3  
5  
V
VDDQ = 3.3V  
VDDQ = 2.5V  
V
V
µA  
0.7  
5
Input Load Current (except GND VI VDDQ  
ZZ and MODE)  
Input Current of MODE  
Input = VSS  
Input = VDD  
Input = VSS  
–30  
–5  
µA  
µA  
µA  
5
Input Current of ZZ  
Input = VDD  
GND VI VDD, Output Disabled  
30  
5
µA  
µA  
IOZ  
IOS  
IDD  
Output Leakage Current  
–5  
Output Short Circuit Current VDD = Max., VOUT = GND  
VDD Operating Supply Cur- VDD = Max., IOUT = 0 mA,  
–300  
225  
220  
205  
195  
90  
85  
80  
60  
40  
µA  
7.5-ns cycle, 133 MHz  
8.5-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
15-ns cycle, 66 MHz  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
rent  
f = fMAX= 1/tCYC  
ISB1  
Automatic CE Power-down VDD = Max, Device Deselected, 7.5-ns cycle, 133 MHz  
Current—TTL Inputs  
V
IN VIH or VIN VIL, f = fMAX  
,
8.5-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
15-ns cycle, 66 MHz  
inputs switching  
ISB2  
Automatic CE Power-down VDD = Max, Device Deselected, All speeds  
Current—CMOS Inputs IN VDD – 0.3V or VIN 0.3V,  
f = 0, inputs static  
V
Shaded areas contain advance information.  
Notes:  
10. Overshoot: VIH(AC) < VDD +1.5V (Pulse width less than tCYC/2), undershoot: VIL(AC)> -2V (Pulse width less than tCYC/2).  
11. T  
: Assumes a linear ramp from 0V to VDD (min.) within 200ms. During this time VIH < VDD and VDDQ < VDD.  
Power-up  
Document #: 38-05210 Rev. *B  
Page 8 of 15  
CY7C1351F  
Electrical Characteristics Over the Operating Range (continued)[10,11]  
Parameter  
ISB3  
Description  
Test Conditions  
Min.  
Max.  
75  
70  
65  
45  
Unit  
mA  
mA  
mA  
mA  
mA  
Automatic CE Power-down VDD = Max, Device Deselected, 7.5-ns cycle, 133 MHz  
Current—CMOS Inputs  
VIN VDDQ – 0.3V or VIN 0.3V,  
8.5-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
15-ns cycle, 66 MHz  
f = fMAX, inputs switching  
ISB4  
Automatic CE Power-down VDD = Max, Device Deselected, All speeds  
Current—TTL Inputs IN VDD – 0.3V or VIN 0.3V, f =  
0, inputs static  
45  
V
Thermal Resistance[12]  
TQFP  
BGA  
Parameters  
Description  
Test Conditions  
Package  
Package  
Unit  
ΘJA  
Thermal Resistance  
Test conditions follow standard test  
41.83  
47.63  
°C/W  
(Junction to Ambient) methods and procedures for measur-  
ing thermal impedance, per EIA /  
Thermal Resistance  
ΘJC  
9.99  
11.71  
°C/W  
JESD51.  
(Junction to Case)  
Capacitance[12]  
BGA  
TQFP  
Parameter  
Description  
Input Capacitance  
Clock Input Capacitance  
I/O Capacitance  
Test Conditions  
Package  
Package  
Unit  
CIN  
TA = 25°C, f = 1 MHz,  
5
5
5
5
5
7
pF  
pF  
pF  
V
DD = 3.3V  
CCLOCK  
CI/O  
V
DDQ=3.3V  
AC Test Loads and Waveforms  
3.3V I/O Test Load  
R = 317Ω  
3.3V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDD  
OUTPUT  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
L
GND  
5 pF  
R = 351Ω  
1ns  
1ns  
V = 1.5V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDD  
90%  
10%  
Z = 50Ω  
0
10%  
L
GND  
1ns  
5 pF  
R =1538Ω  
1ns  
V = 1.25V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Note:  
12. Tested initially and after any design or process changes that may affect these parameters.  
Document #: 38-05210 Rev. *B  
Page 9 of 15  
CY7C1351F  
Switching Characteristics Over the Operating Range[17, 18]  
133 MHz 117 MHz 100 MHz  
66 MHz  
Parameter  
tPOWER  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Unit  
VDD(Typical) to the first Access[13]  
1
1
1
1
ms  
Clock  
tCYC  
tCH  
Clock Cycle Time  
Clock HIGH  
Clock LOW  
7.5  
2.5  
2.5  
8.5  
3.0  
3.0  
10  
4.0  
4.0  
15  
5.0  
5.0  
ns  
ns  
ns  
tCL  
Output Times  
tCDV  
tDOH  
tCLZ  
tCHZ  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z[14, 15, 16]  
6.5  
7.5  
8.0  
11.0 ns  
ns  
2.0  
0
2.0  
0
2.0  
0
2.0  
0
ns  
Clock to High-Z14, 15, 16]  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
5.0 ns  
6.0 ns  
ns  
tOEV  
OE LOW to Output Valid  
OE LOW to Output Low-Z[14, 15, 16]  
OE HIGH to Output High-Z[14, 15, 16]  
tOELZ  
tOEHZ  
Set-up Times  
tAS  
tALS  
tWES  
tCENS  
tDS  
tCES  
0
0
0
0
3.5  
3.5  
3.5  
6.0 ns  
Address Set-up Before CLK Rise  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
ns  
ns  
ns  
ns  
ns  
ns  
ADV/LD Set-up Before CLK Rise  
WE, BW[A:D] Set-Up Before CLK Rise  
CEN Set-up Before CLK Rise  
Data Input Set-up Before CLK Rise  
Chip Enable Set-Up Before CLK Rise  
Hold Times  
tAH  
tALH  
tWEH  
tCENH  
tDH  
Address Hold After CLK Rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ADV/LD Hold after CLK Rise  
WE, BW[A:D] Hold After CLK Rise  
CEN Hold After CLK Rise  
Data Input Hold After CLK Rise  
tCEH  
Chip Enable Hold After CLK Rise  
Shaded areas contain advance information.  
Notes:  
13. This part has a voltage regulator internally; tpower is the time that the power needs to be supplied above VDD minimum initially before a read or write operation  
can be initiated.  
14. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
OEHZ  
CHZ CLZ OELZ  
15. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
CLZ  
OEHZ  
OELZ  
CHZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve Three-state prior to Low-Z under the same system conditions  
16. This parameter is sampled and not 100% tested.  
17. Timing reference level is 1.5V when V  
=3.3V and is 1.25V when V  
= 2.5V.  
DDQ  
DDQ  
18. Test conditions shown in (a) of AC Test Loads, unless otherwise noted.  
Document #: 38-05210 Rev. *B  
Page 10 of 15  
CY7C1351F  
Switching Waveforms  
Read/Write Waveforms[19, 20, 21]  
t
1
2
3
4
5
6
7
8
9
10  
CYC  
t
CLK  
CEN  
t
t
t
t
t
CENS  
CES  
CENH  
CEH  
CL  
CH  
CE  
ADV/LD  
WE  
BW[A:D]  
A1  
A2  
A4  
A3  
t
A5  
A6  
A7  
ADDRESS  
DQ  
CDV  
t
t
AS  
AH  
t
t
t
t
CHZ  
DOH  
OEV  
CLZ  
D(A1)  
t
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6)  
D(A7)  
t
OEHZ  
t
DS  
DH  
t
DOH  
t
OELZ  
OE  
COMMAND  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
D(A2+1)  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
Q(A4+1)  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
DON’T CARE  
4
UNDEFINED  
6
NOP, STALL and DESELECT Cycles[19, 20, 22]  
1
2
3
5
7
8
9
10  
CLK  
CEN  
CE  
ADV/LD  
WE  
BW[A:D]  
ADDRESS  
A1  
A2  
A3  
A4  
A5  
t
CHZ  
D(A1)  
Q(A2)  
Q(A3)  
D(A4)  
Q(A5)  
DOH  
DQ  
t
COMMAND  
WRITE  
D(A1)  
READ  
Q(A2)  
STALL  
READ  
Q(A3)  
WRITE  
D(A4)  
STALL  
NOP  
READ  
Q(A5)  
DESELECT  
CONTINUE  
DESELECT  
DON’T CARE  
UNDEFINED  
Document #: 38-05210 Rev. *B  
Page 11 of 15  
CY7C1351F  
Switching Waveforms  
ZZ Mode Timing[23,24]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Ordering Information  
Speed  
Package  
Name  
Operating  
Range  
(MHz)  
Ordering Code  
Package Type  
133  
CY7C1351F-133AC  
CY7C1351F-133BGC  
CY7C1351F-133AI  
CY7C1351F-133BGI  
CY7C1351F-117AC  
CY7C1351F-117BGC  
CY7C1351F-117AI  
CY7C1351F-117BGI  
CY7C1351F-100AC  
CY7C1351F-100BGC  
CY7C1351F-100AI  
CY7C1351F-100BGI  
CY7C1351F-66AC  
CY7C1351F-66BGC  
CY7C1351F-66AI  
A101  
BG119  
A101  
BG119  
A101  
BG119  
A101  
BG119  
A101  
BG119  
A101  
BG119  
A101  
BG119  
A101  
BG119  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Ball BGA 14 x 22 x 2.4 mm  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Ball BGA 14 x 22 x 2.4 mm  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Ball BGA 14 x 22 x 2.4 mm  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Ball BGA 14 x 22 x 2.4 mm  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Ball BGA 14 x 22 x 2.4 mm  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Ball BGA 14 x 22 x 2.4 mm  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Ball BGA 14 x 22 x 2.4 mm  
Commercial  
Industrial  
117  
100  
66  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Ball BGA 14 x 22 x 2.4 mm  
CY7C1351F-66BGI  
Shaded areas contain advance information. Please contain your local sales representative for more information on ordering these parts.  
Notes:  
For this waveform ZZ is tied low.  
19.  
20. When CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH, CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
21. Order of the Burst sequence is determined by the status of the MODE (0= Linear, 1= Interleaved). Burst operations are optional.  
22. The IGNORE CLOCK EDGE or STALL cycle (Clock 3) illustrates CEN being used to create a pause. A write is not performed during this cycle.  
23. Device must be deselected when entering ZZ mode. See truth table for all possible signal conditions to deselect the device.  
24. DQs are in high-Z when exiting ZZ sleep mode.  
Document #: 38-05210 Rev. *B  
Page 12 of 15  
CY7C1351F  
Package Diagrams  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
51-85050-*A  
Document #: 38-05210 Rev. *B  
Page 13 of 15  
CY7C1351F  
Package Diagrams (continued)  
119-Lead PBGA (14 x 22 x 2.4 mm) BG119  
51-85115-*B  
Intel and Pentium are registered trademarks of Intel Corporation. ZBT is a trademark of Integrated Device Technology. NoBL and  
No Bus Latency are trademarks of Cypress Semiconductor. All product and company names mentioned in this document are the  
trademarks of their respective holders. All product and company names mentioned in this document may be the trademarks of  
their respective holders.  
Document #: 38-05210 Rev. *B  
Page 14 of 15  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C1351F  
Document History Page  
Document Title: CY7C1351F 4-Mb (128K x 36) Flow-through SRAM with NoBL™ Architecture  
Document Number: 38-05210  
Orig. of  
REV.  
**  
*A  
ECN NO. Issue Date Change  
Description of Change  
119833  
123846  
200664  
01/07/03  
01/18/03  
See ECN  
HGK  
AJH  
SWI  
New Data Sheet  
Added power-up requirements to AC test loads and waveforms information  
Final Data Sheet  
*B  
Document #: 38-05210 Rev. *B  
Page 15 of 15  

相关型号:

CY7C1351F-133BGC

4-Mb (128K x 36) Flow-through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1351F-133BGI

4-Mb (128K x 36) Flow-through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1351F-66AC

4-Mb (128K x 36) Flow-through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1351F-66AI

4-Mb (128K x 36) Flow-through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1351F-66BGC

4-Mb (128K x 36) Flow-through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1351F-66BGI

4-Mb (128K x 36) Flow-through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1351G

4-Mbit (128K x 36) Flow-through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1351G-100AXC

4-Mbit (128K x 36) Flow-through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1351G-100AXCT

ZBT SRAM, 128KX36, 8ns, CMOS, PQFP100, 20 X 14 MM, 1.40 MM HEIGHT, LEAD FREE, MS-026, TQFP-100
CYPRESS

CY7C1351G-100AXI

4-Mbit (128K x 36) Flow-through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1351G-100AXIT

ZBT SRAM, 128KX36, 8ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, LEAD FREE, MS-026, TQFP-100
CYPRESS

CY7C1351G-100BGC

4-Mbit (128K x 36) Flow-through SRAM with NoBL⑩ Architecture
CYPRESS