CY7C1356B-250BZC [CYPRESS]

ZBT SRAM, 512KX18, 2.6ns, CMOS, PBGA165, 13 X 15 MM, 1.20 MM HEIGHT, FBGA-165;
CY7C1356B-250BZC
型号: CY7C1356B-250BZC
厂家: CYPRESS    CYPRESS
描述:

ZBT SRAM, 512KX18, 2.6ns, CMOS, PBGA165, 13 X 15 MM, 1.20 MM HEIGHT, FBGA-165

时钟 静态存储器 内存集成电路
文件: 总25页 (文件大小:717K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1354B  
CY7C1356B  
PRELIMINARY  
256K x 36/512K x 18 Pipelined SRAM with  
NoBL™ Architecture  
Latency(NoBL ) logic, respectively. They are designed  
specifically to support unlimited true back-to-back Read/Write  
Features  
• Pin-compatible and functionally equivalent to ZBT™  
• Supports 250-MHz bus operations with zero wait states  
— Available speed grades are 250, 200 and 166 MHz  
operations without the insertion of wait states. The  
CY7C1354B and CY7C1356B are equipped with the  
advanced (NoBL) logic required to enable consecutive  
Read/Write operations with data being transferred on every  
clock cycle. This feature dramatically improves the throughput  
of data through the SRAM, especially in systems that require  
frequent Write/Read transitions. The CY7C1354B and  
CY7C1356B are pin compatible and functionally equivalent to  
ZBT devices.  
• Internally self-timed output buffer control to eliminate  
the need to use asynchronous OE  
• Fully registered (inputs and outputs) for pipelined  
operation  
• Byte Write capability  
• Separate VDDQ for 3.3V or 2.5V I/O  
• Single 3.3V power supply  
• Fast clock-to-output times  
— 2.6 ns (for 250-MHz device)  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock. The  
clock input is qualified by the Clock Enable (CEN) signal,  
which when deasserted suspends operation and extends the  
previous clock cycle. Maximum access delay from the clock  
rise is 2.6 ns (250-MHz device).  
— 3.0ns (for 200-MHz device)  
— 3.5 ns (for 166-MHz device)  
• Clock Enable (CEN) pin to suspend operation  
• Synchronous self-timed writes  
• Available in 100 TQFP, 119 BGA, and 165 fBGA  
packages  
Write operations are controlled by the Byte Write Selects  
(BWSaBWSd for CY7C1354B and BWSaBWSb for  
CY7C1356B) and a Write Enable (WE) input. All writes are  
conducted with on-chip synchronous self-timed write circuitry.  
• IEEE 1149.1 JTAG-compatible Boundary Scan  
• Burst capability—linear or interleaved burst order  
•“ZZ” Sleep Mode option and Stop Clock option  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output three-state control. In order to avoid bus  
contention, the output drivers are synchronously three-stated  
during the data portion of a write sequence.  
Functional Description  
The CY7C1354B and CY7C1356B are 3.3V, 256K x 36 and  
512K x 18 Synchronous pipelined burst SRAMs with No Bus  
Logic Block Diagram  
D
CLK  
Data-In REG.  
CE  
Q
ADV/LD  
A
x
CEN  
CE  
CONTROL  
and WRITE  
LOGIC  
256KX36/  
512KX18  
MEMORY  
ARRAY  
1
CE  
CE  
2
DQ  
x
3
WE  
DQP  
x
CY7C1354B CY7C1356B  
BWS  
x
X = 17:0  
X = 18:0  
A
X
Mode  
X = a, b, c, d X = a, b  
DQ  
X
X = a, b, c, d X = a, b  
X = a, b, c, d X = a, b  
DQP  
X
BWS  
X
OE  
Selection Guide  
CY7C1354B-250  
CY7C1356B-250  
CY7C1354B-200  
CY7C1356B-200  
CY7C1354B-166  
CY7C1356B-166  
Unit  
ns  
Maximum Access Time  
2.6  
250  
30  
3.0  
220  
30  
3.5  
180  
30  
Maximum Operating Current  
Coml  
mA  
mA  
Maximum CMOS Standby Current Coml  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
Document #: 38-05114 Rev. **  
Revised August 16, 2002  
CY7C1354B  
CY7C1356B  
PRELIMINARY  
Pin Configurations  
100-pin TQFP Packages  
DQPc  
DQc  
DQc  
1
2
3
4
5
6
7
8
NC  
NC  
NC  
1
2
3
4
5
6
7
8
A
NC  
NC  
78  
DQPb  
DQb  
DQb  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
80  
79  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
NC  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VSS  
DQc  
DQc  
VSS  
NC  
NC  
DQb  
DQb  
VSS  
DQb  
DQb  
DQb  
DQb  
VSS  
VDDQ  
DQb  
DQb  
VSS  
NC  
DQPa  
DQa  
DQa  
VSS  
VDDQ  
DQa  
DQa  
VSS  
DQc  
DQc  
VSS  
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDDQ  
VDDQ  
DQc  
DQc  
NC  
VDD  
NC  
VSS  
DQd  
DQb  
DQb  
NC  
VDD  
NC  
VSS  
CY7C1354B  
(256K x 36)  
NC  
VDD  
ZZ  
CY7C1356B  
(512K x 18)  
VDD  
ZZ  
DQa  
DQa  
DQb  
DQa  
DQa  
VDDQ  
VSS  
DQa  
DQa  
NC  
DQd  
VDDQ  
VSS  
DQd  
DQd  
DQd  
DQd  
VSS  
DQb  
VDDQ  
VSS  
VDDQ  
VSS  
DQa  
DQa  
DQb  
DQb  
DQa DQPb  
DQa  
VSS  
VDDQ  
DQa  
DQa  
DQPa  
NC  
VSS  
VDDQ  
NC  
VSS  
VDDQ  
NC  
NC  
NC  
VDDQ  
DQd  
DQd  
DQPd  
NC  
NC  
NC  
Document #: 38-05114 Rev. **  
Page 2 of 25  
CY7C1354B  
CY7C1356B  
PRELIMINARY  
Pin Configurations (continued)  
119-ball BGA Pinout  
CY7C1354B (256K x 36)7 x 17 BGA  
1
2
3
4
5
6
7
VDDQ  
A
A
E(18)  
A
A
VDDQ  
A
NC  
NC  
CE2  
A
A
A
ADV/LD  
VDD  
A
A
CE3  
A
NC  
NC  
B
C
D
E
F
G
H
J
DQc  
DQPc  
DQc  
VSS  
NC  
VSS  
VSS  
VSS  
BWS  
DQPb  
DQ  
b
DQ  
VSS  
VSS  
CE1  
OE  
A
DQ  
DQb  
VDDQ  
DQb  
c
b
VDDQ  
DQ  
DQb  
c
DQ  
DQc  
BWSc  
VSS  
DQ  
c
b
b
DQc  
DQ  
WE  
VDD  
CLK  
NC  
CEN  
A1  
DQb  
VDD  
DQ  
VSS  
NC  
c
b
VDDQ  
VDD  
DQd  
NC  
VDDQ  
DQa  
DQ  
VSS  
VSS  
BWSa  
VSS  
DQ  
K
L
d
a
DQd  
VDDQ  
DQd  
DQ  
BWSd  
VSS  
DQa  
DQ  
d
a
DQd  
DQ  
VDDQ  
M
N
P
a
DQ  
VSS  
VSS  
DQa  
DQ  
d
a
DQ  
DQPd  
A
VSS  
A0  
VSS  
DQP  
DQa  
NC  
d
a
NC  
NC  
MODE  
A
VDD  
A
NC  
A
A
R
T
E(72)  
TMS  
E(36)  
NC  
ZZ  
VDDQ  
TDI  
TCK  
TDO  
VDDQ  
U
CY7C1356B (512K x 18)7 x 17 BGA  
1
2
3
4
5
6
7
VDDQ  
A
A
E(18)  
A
A
VDDQ  
A
B
C
D
E
F
NC  
NC  
CE2  
A
A
ADV/LD  
VDD  
A
CE3  
A
NC  
NC  
A
A
DQb  
NC  
NC  
DQb  
NC  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
DQPa  
NC  
NC  
CE1  
DQa  
VDDQ  
VDDQ  
OE  
DQa  
NC  
DQb  
VDDQ  
DQb  
NC  
VDD  
BWSb  
VSS  
NC  
A
VSS  
VSS  
NC  
NC  
DQa  
VDD  
DQa  
NC  
VDDQ  
G
H
J
WE  
VDD  
NC  
DQb  
VDDQ  
DQb  
NC  
DQb  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
MODE  
A
CLK  
NC  
VSS  
BWSa  
VSS  
VSS  
VSS  
NC  
NC  
DQa  
NC  
DQa  
NC  
A
DQa  
NC  
K
L
DQb  
NC  
CEN  
A1  
VDDQ  
NC  
M
N
P
R
T
DQPb  
A
A0  
DQa  
NC  
NC  
VDD  
E(36)  
TCK  
E(72)  
VDDQ  
A
A
A
ZZ  
TMS  
TDI  
TDO  
NC  
VDDQ  
U
Document #: 38-05114 Rev. **  
Page 3 of 25  
CY7C1354B  
CY7C1356B  
PRELIMINARY  
Pin Configurations (continued)  
165-Ball fBGA Pinout  
CY7C1354B (256K x 36)13 x 15 fBGA  
1
2
A
3
CE1  
4
BWc  
5
BWb  
6
CE3  
7
8
9
A
10  
A
11  
NC  
E(288)  
CEN  
WE  
VSS  
VSS  
VSS  
ADV/LD  
A
B
C
D
NC  
A
CE2  
VDDQ  
VDDQ  
BWd  
VSS  
VDD  
BWa  
VSS  
VSS  
CLK  
VSS  
VSS  
OE  
VSS  
VDD  
E(18)  
VDDQ  
VDDQ  
A
E(144)  
DQPb  
DQb  
DQPc  
DQc  
NC  
DQc  
NC  
DQb  
DQc  
DQc  
DQc  
DQc  
VDD  
DQd  
DQd  
DQd  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQb  
DQb  
DQb  
NC  
DQb  
E
F
DQc  
DQc  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQb  
DQb  
ZZ  
G
H
J
DQd  
DQd  
DQd  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
K
L
DQd  
DQPd  
NC  
DQd  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
TDI  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQa  
NC  
A
DQa  
DQPa  
NC  
M
N
P
E(72)  
TDO  
MODE  
E(36)  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
CY7C1356B (512K x 18)13 x 15 fBGA  
1
E(288)  
NC  
2
A
3
CE1  
4
BWc  
5
BWb  
6
CE3  
7
8
9
A
10  
A
11  
A
CEN  
WE  
VSS  
VSS  
VSS  
ADV/LD  
A
B
C
D
A
CE2  
VDDQ  
VDDQ  
BWd  
VSS  
VDD  
VDD  
BWa  
VSS  
VSS  
CLK  
VSS  
VSS  
VSS  
OE  
VSS  
VDD  
VDD  
E(18)  
VDDQ  
VDDQ  
A
E(144)  
DQPb  
DQb  
DQb  
NC  
NC  
NC  
NC  
NC  
NC  
DQb  
DQb  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VDDQ  
VDDQ  
VDDQ  
NC  
E
F
NC  
NC  
DQb  
DQb  
VDD  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
NC  
NC  
DQb  
DQb  
ZZ  
G
H
J
NC  
NC  
DQb  
DQb  
VDDQ  
VDDQ  
DQa  
DQa  
NC  
NC  
VDDQ  
VDDQ  
VSS  
VSS  
VDDQ  
VDDQ  
NC  
K
L
DQb  
NC  
NC  
VDD  
VDD  
VSS  
VSS  
VSS  
NC  
A1  
VSS  
VDD  
VDD  
VSS  
DQa  
DQa  
NC  
A
NC  
DQb  
DQPb  
NC  
VDDQ  
VDDQ  
A
VSS  
NC  
VSS  
NC  
VDDQ  
VDDQ  
A
NC  
NC  
NC  
M
N
P
NC  
E(72)  
TDI  
TDO  
A
A
A
A
MODE  
E(36)  
A
TMS  
A0  
TCK  
A
A
A
R
Document #: 38-05114 Rev. **  
Page 4 of 25  
CY7C1354B  
CY7C1356B  
PRELIMINARY  
Pin Definitions  
Pin Name  
I/O Type  
Pin Description  
A0  
A1  
A
Input-  
Synchronous  
Address Inputs used to select one of the address locations. Sampled at the rising edge of  
the CLK.  
BWSa  
BWSb  
BWSc  
BWSd  
Input-  
Synchronous  
Byte Write Select Inputs, active LOW. Qualified with WE to conduct writes to the SRAM.  
Sampled on the rising edge of CLK. BWSa controls DQa and DQPa, BWSb controls DQb and  
DQPb, BWSc controls DQc and DQPc, BWSd controls DQd and DQPd.  
WE  
Input-  
Synchronous  
Write Enable Input, active LOW. Sampled on the rising edge of CLK if CEN is active LOW. This  
signal must be asserted LOW to initiate a write sequence.  
ADV/LD  
Input-  
Synchronous  
Advance/Load Input used to advance the on-chip address counter or load a new address.  
When HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When LOW, a  
new address can be loaded into the device for an access. After being deselected, ADV/LD should  
be driven LOW in order to load a new address.  
CLK  
CE1  
CE2  
CE3  
OE  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. CLK is qualified with CEN.  
CLK is only recognized if CEN is active LOW.  
Input-  
Synchronous  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
CE2 and CE3 to select/deselect the device.  
Input-  
Synchronous  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction  
with CE1 and CE3 to select/deselect the device.  
Input-  
Synchronous  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
CE1 and CE2 to select/deselect the device.  
Input-  
Output Enable, active LOW. Combined with the synchronous logic block inside the device to  
Asynchronous control the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs.  
When deasserted HIGH, I/O pins are three-stated, and act as input data pins. OE is masked  
during the data portion of a write sequence, during the first clock when emerging from a  
deselected state and when the device has been deselected.  
CEN  
Input-  
Synchronous  
Clock Enable Input, active LOW. When asserted LOW the clock signal is recognized by the  
SRAM. When deasserted HIGH the clock signal is masked. Since deasserting CEN does not  
deselect the device, CEN can be used to extend the previous cycle when required.  
DQa  
DQb  
DQc  
DQd  
I/O-  
Synchronous  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is triggered  
by the rising edge of CLK. As outputs, they deliver the data contained in the memory location  
specified by A[17:0] during the previous clock rise of the read cycle. The direction of the pins is  
controlled by OE and the internal control logic. When OE is asserted LOW, the pins can behave  
as outputs. When HIGH, DQaDQd are placed in a three-state condition. The outputs are  
automatically three-stated during the data portion of a write sequence, during the first clock when  
emerging from a deselected state, and when the device is deselected, regardless of the state of  
OE.  
DQPa  
DQPb  
DQPc  
DQPd  
I/O-  
Synchronous  
Bidirectional Data Parity I/O lines. Functionally, these signals are identical to DQ[31:0]. During  
write sequences, DQPa is controlled by BWSa, DQPb is controlled by BWSb, DQPc is controlled  
by BWSc, and DQPd is controlled by BWSd.  
MODE  
Input Strap Pin Mode Input. Selects the burst order of the device. Tied HIGH selects the interleaved burst order.  
Pulled LOW selects the linear burst order. MODE should not change states during operation.  
When left floating MODE will default HIGH, to an interleaved burst order.  
TDO  
TDI  
JTAG serial output Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK.  
Synchronous  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK.  
Synchronous  
TMS  
Test Mode Select This pin controls the Test Access Port state machine. Sampled on the rising edge of TCK.  
Synchronous  
TCK  
VDD  
JTAG-Clock  
Clock input to the JTAG circuitry.  
Power Supply  
Power supply for the 3.3V control logic.  
VDDQ  
I/O Power Supply Either 3.3V or 2.5V power supply for the I/O circuitry.  
Document #: 38-05114 Rev. **  
Page 5 of 25  
CY7C1354B  
CY7C1356B  
PRELIMINARY  
Pin Definitions  
Pin Name  
VSS  
I/O Type  
Pin Description  
Ground  
Ground for the device. Should be connected to ground of the system.  
No connects.  
NC  
E(18,36,7  
2, 144,  
288)  
These pins are not connected. They will be used for expansion to the 18M, 36M, 72M, 144M  
and 288M densities.  
ZZ  
Input-  
ZZ sleepInput. This active HIGH input places the device in a non-time critical sleepcondition  
Asynchronous with data integrity preserved. During normal operation, this pin can be connected to Vss or left  
floating.  
Therefore, when the SRAM is deselected at clock rise by one  
of the chip enable signals, its output will three-state following  
the next clock rise.  
Introduction  
Functional Overview  
The CY7C1354B and CY7C1356B are synchronous-pipelined  
Burst NoBL SRAMs designed specifically to eliminate wait  
states during Write/Read transitions. All synchronous inputs  
pass through input registers controlled by the rising edge of  
the clock. The clock signal is qualified with the Clock Enable  
input signal (CEN). If CEN is HIGH, the clock signal is not  
recognized and all internal states are maintained. All  
synchronous operations are qualified with CEN. All data  
outputs pass through output registers controlled by the rising  
edge of the clock. Maximum access delay from the clock rise  
(tCO) is 2.6 ns (250-MHz device).  
Burst Read Accesses  
The CY7C1354B and CY7C1356B have an on-chip burst  
counter that allows the user the ability to supply a single  
address and conduct up to four Reads without reasserting the  
address inputs. ADV/LD must be driven LOW in order to load  
a new address into the SRAM, as described in the Single Read  
Access section above. The sequence of the burst counter is  
determined by the MODE input signal. A LOW input on MODE  
selects a linear burst mode, a HIGH selects an interleaved  
burst sequence. Both burst counters use A0 and A1 in the  
burst sequence, and will wrap-around when incremented suffi-  
ciently. A HIGH input on ADV/LD will increment the internal  
burst counter regardless of the state of chip enables inputs or  
WE. WE is latched at the beginning of a burst cycle. Therefore,  
the type of access (Read or Write) is maintained throughout  
the burst sequence.  
Accesses can be initiated by asserting all three Chip Enables  
(CE1, CE2, CE3) active at the rising edge of the clock. If Clock  
Enable (CEN) is active LOW and ADV/LD is asserted LOW,  
the address presented to the device will be latched. The  
access can either be a read or write operation, depending on  
the status of the Write Enable (WE). BWS[d:a] can be used to  
conduct byte write operations.  
Single Write Accesses  
Write operations are qualified by the Write Enable (WE). All  
writes are simplified with on-chip synchronous self-timed write  
circuitry.  
Write access are initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, and (3) the write signal WE  
is asserted LOW. The address presented to A0A16 is loaded  
into the Address Register. The write signals are latched into  
the Control Logic block.  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) simplify depth expansion.  
All operations (Reads, Writes, and Deselects) are pipelined.  
ADV/LD should be driven LOW once the device has been  
deselected in order to load a new address for the next  
operation.  
On the subsequent clock rise the data lines are automatically  
three-stated regardless of the state of the OE input signal. This  
allows the external logic to present the data on DQ and DQP  
(DQa,b,c,d/DQPa,b for CY7C1354B and DQa,b/DQPa,b for  
CY7C1356B). In addition, the address for the subsequent  
access (Read/Write/Deselect) is latched into the Address  
Register (provided the appropriate control signals are  
asserted).  
Single Read Accesses  
A read access is initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, (3) the Write Enable input  
signal WE is deasserted HIGH, and (4) ADV/LD is asserted  
LOW. The address presented to the address inputs is latched  
into the Address Register and presented to the memory core  
and control logic. The control logic determines that a read  
access is in progress and allows the requested data to  
propagate to the input of the output register. At the rising edge  
of the next clock the requested data is allowed to propagate  
through the output register and onto the data bus within 3.0 ns  
(200-MHz device) provided OE is active LOW. After the first  
clock of the read access the output buffers are controlled by  
OE and the internal control logic. OE must be driven LOW in  
order for the device to drive out the requested data. During the  
second clock, a subsequent operation (Read/Write/Deselect)  
can be initiated. Deselecting the device is also pipelined.  
On the next clock rise the data presented to DQ and DQP  
(DQa,b,c,d/DQPa,b for CY7C1354B  
& DQa,b/DQPa,b for  
CY7C1356B) (or a subset for byte write operations, see Write  
Cycle Description table for details) inputs is latched into the  
device and the write is complete.  
The data written during the Write operation is controlled by  
BWS (BWSa,b,c,d for CY7C1354B and BWSa,b for  
CY7C1356B) signals. The CY7C1354B/56BV25 provides byte  
write capability that is described in the Write Cycle Description  
table. Asserting the Write Enable input (WE) with the selected  
Byte Write Select (BWS) input will selectively write to only the  
desired bytes. Bytes not selected during a byte write operation  
will remain unaltered. A Synchronous self-timed write  
mechanism has been provided to simplify the write operations.  
Document #: 38-05114 Rev. **  
Page 6 of 25  
CY7C1354B  
CY7C1356B  
PRELIMINARY  
Byte write capability has been included in order to greatly  
simplify Read/Modify/Write sequences, which can be reduced  
to simple byte write operations.  
address, as described in the Single Write Access section  
above. When ADV/LD is driven HIGH on the subsequent clock  
rise, the chip enables (CE1, CE2, and CE3) and WE inputs are  
ignored and the burst counter is incremented. The correct  
BWS (BWSa,b,c,d for CY7C1354B and BWSa,b for  
CY7C1356B) inputs must be driven in each cycle of the burst  
write in order to write the correct bytes of data.  
Because the CY7C1354B and CY7C1356B are common I/O  
devices, data should not be driven into the device while the  
outputs are active. The Output Enable (OE) can be deasserted  
HIGH before presenting data to the DQ and DQP  
(DQa,b,c,d/DQPa,b for CY7C1354B and DQa,b/DQPa,b for  
CY7C1356B) inputs. Doing so will three-state the output  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation sleepmode. Two  
clock cycles are required to enter into or exit from this sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the sleepmode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the sleepmode. CE1, CE2, CE3, ADSP, and ADSC must  
remain inactive for the duration of tZZREC after the ZZ input  
returns LOW.  
drivers. As a safety precaution, DQ and DQP (DQa,b,c,d  
/
DQPa,b for CY7C1354B and DQa,b/DQPa,b for CY7C1356B)  
are automatically three-stated during the data portion of a write  
cycle, regardless of the state of OE.  
Burst Write Accesses  
The CY7C1354B/56B has an on-chip burst counter that allows  
the user the ability to supply a single address and conduct up  
to four WRITE operations without reasserting the address  
inputs. ADV/LD must be driven LOW in order to load the initial  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Snooze mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
ZZ > VDD 0.2V  
Min  
Max  
35  
Unit  
mA  
ns  
tZZS  
ZZ > VDD 0.2V  
ZZ < 0.2V  
2tCYC  
tZZREC  
2tCYC  
ns  
Cycle Description Truth Table[1, 2, 3, 4, 5, 6]  
Address  
Used  
Operation  
CE CEN ADV/LD/ WE BWSx CLK  
Comments  
Deselected External  
Suspend  
1
X
0
0
1
0
0
0
L
X
0
0
1
X
X
1
X
X
L-H I/Os three-state following next recognized clock.  
L-H Clock ignored, all operations suspended.  
L-H Address latched.  
Begin Read External  
Begin Write External  
X
0
0
Valid  
X
L-H Address latched, data presented two valid clocks later.  
Burst Read Internal  
Operation  
X
X
L-H Burst Read operation. Previous access was a Read  
operation. Addresses incremented internally in  
conjunction with the state of Mode.  
Burst Write Internal  
Operation  
X
0
1
X
Valid  
L-H Burst Write operation. Previous access was a Write  
operation. Addresses incremented internally in  
conjunction with the state of MODE. Bytes written are  
determined by BWS[d:a]  
.
Interleaved Burst Sequence  
Linear Burst Sequence  
First  
Second  
Third  
Fourth  
First  
Second  
Third  
Fourth  
Address  
Address  
Address  
A[1:0]  
10  
Address  
Address  
Address  
Address  
Address  
A[1:0]  
00  
A[1:0]  
01  
A[1:0]  
11  
A[1:0]  
00  
A[1:0]  
01  
A[1:0]  
10  
A[1:0]  
11  
01  
00  
11  
10  
01  
10  
11  
00  
10  
11  
00  
01  
10  
11  
00  
01  
11  
10  
01  
00  
11  
00  
01  
10  
Notes:  
1. X = don't care,1 = Logic HIGH, 0 = Logic LOW, CE stands for ALL Chip Enables active. BWS = 0 signifies at least one Byte Write Select is active, BWS  
=
x
x
Valid signifies that the desired byte write selects are asserted, see Write Cycle Description table for details.  
2. Write is defined by WE and BWS . See Write Cycle Description table for details.  
x
3. The DQ and DQP pins are controlled by the current cycle and the OE signal.  
4. CEN = 1 inserts wait states.  
5. Device will power-up deselected and the I/Os in a three-state condition, regardless of OE.  
6. OE assumed LOW.  
Document #: 38-05114 Rev. **  
Page 7 of 25  
CY7C1354B  
CY7C1356B  
PRELIMINARY  
Write Cycle Description[1, 2]  
Function (CY7C1354B)  
Read  
WE  
1
BWSd  
BWSc  
BWSb  
BWSa  
X
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
X
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
X
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
X
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Write No bytes written  
Write Byte 0 (DQa and DQPa)  
Write Byte 1 (DQb and DQPb)  
Write Bytes 1, 0  
0
0
0
0
Write Byte 2 (DQc and DQPc)  
Write Bytes 2, 0  
0
0
Write Bytes 2, 1  
0
Write Bytes 2, 1, 0  
0
Write Byte 3 (DQd and DQPd)  
Write Bytes 3, 0  
0
0
Write Bytes 3, 1  
0
Write Bytes 3, 1, 0  
0
Write Bytes 3, 2  
0
Write Bytes 3, 2, 0  
0
Write Bytes 3, 2, 1  
0
Write All Bytes  
0
Function (CY7C1356B)  
WE  
1
BWSb  
BWSa  
Read  
x
1
1
0
0
x
1
0
1
0
Write No Bytes Written  
Write Byte 0 (DQa and DQPa)  
Write Byte 1 (DQb and DQPb)  
Write Both Bytes  
0
0
0
0
Test Access PortTest Clock  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
The CY7C1354B/CY7C1356B incorporates a serial boundary  
scan Test Access Port (TAP) in the BGA package only. The  
TQFP package does not offer this functionality. This port  
operates in accordance with IEEE Standard 1149.1-1900, but  
does not have the set of functions required for full 1149.1  
compliance. These functions from the IEEE specification are  
excluded because their inclusion places an added delay in the  
critical speed path of the SRAM. Note that the TAP controller  
functions in a manner that does not conflict with the operation  
of other devices using 1149.1 fully compliant TAPs. The TAP  
operates using JEDEC standard 3.3V I/O logic levels.  
Test Mode Select  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this pin unconnected if the TAP is not used. The pin is  
pulled up internally, resulting in a logic HIGH level.  
Test Data-In (TDI)  
The TDI pin is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see the TAP  
Controller State Diagram. TDI is internally pulled up and can  
be unconnected if the TAP is unused in an application. TDI is  
connected to the Most Significant Bit (MSB) on any register.  
Disabling the JTAG Feature  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull-up resistor. TDO should  
be left unconnected. Upon power-up, the device will come up  
in a reset state which will not interfere with the operation of the  
device.  
Test Data Out (TDO)  
The TDO output pin is used to serially clock data-out from the  
registers. The output is active depending upon the current  
Document #: 38-05114 Rev. **  
Page 8 of 25  
CY7C1354B  
CY7C1356B  
PRELIMINARY  
state of the TAP state machine (see TAP Controller State  
Diagram). The output changes on the falling edge of TCK.  
TDO is connected to the Least Significant Bit (LSB) of any  
register.  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
Performing a TAP Reset  
TAP Instruction Set  
A Reset is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This RESET does not affect the operation of  
the SRAM and may be performed while the SRAM is  
operating. At power-up, the TAP is reset internally to ensure  
that TDO comes up in a High-Z state.  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in the  
Instruction Code table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented. The TAP controller  
cannot be used to load address, data, or control signals into  
the SRAM and cannot preload the Input or Output buffers. The  
SRAM does not implement the 1149.1 commands EXTEST or  
INTEST or the PRELOAD portion of SAMPLE/PRELOAD;  
rather it performs a capture of the Inputs and Output ring when  
these instructions are executed.  
TAP Registers  
Registers are connected between the TDI and TDO pins and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction registers. Data is serially loaded into the TDI pin  
on the rising edge of TCK. Data is output on the TDO pin on  
the falling edge of TCK.  
Instruction Register  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO pins.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO pins as shown in the TAP Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
EXTEST  
When the TAP controller is in the CaptureIR state, the two least  
significant bits are loaded with a binary 01pattern to allow for  
fault isolation of the board level serial test path.  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all  
0s. EXTEST is not implemented in the TAP controller, and  
therefore this device is not compliant to the 1149.1 standard.  
Bypass Register  
The TAP controller does recognize an all-0 instruction. When  
an EXTEST instruction is loaded into the instruction register,  
the SRAM responds as if a SAMPLE/PRELOAD instruction  
has been loaded. There is one difference between the two  
instructions. Unlike the SAMPLE/PRELOAD instruction,  
EXTEST places the SRAM outputs in a High-Z state.  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain states. The bypass  
register is a single-bit register that can be placed between TDI  
and TDO pins. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
IDCODE  
Boundary Scan Register  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO pins and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state. The IDCODE instruction  
is loaded into the instruction register upon power-up or  
whenever the TAP controller is given a test logic reset state.  
The boundary scan register is connected to all the input and  
output pins on the SRAM. Several no connect (NC) pins are  
also included in the scan register to reserve pins for higher  
density devices. The x36 configuration has a xx-bit-long  
register, and the x18 configuration has a yy-bit-long register.  
The boundary scan register is loaded with the contents of the  
RAM Input and Output ring when the TAP controller is in the  
Capture-DR state and is then placed between the TDI and  
TDO pins when the controller is moved to the Shift-DR state.  
The EXTEST, SAMPLE/PRELOAD and SAMPLE Z instruc-  
tions can be used to capture the contents of the Input and  
Output ring.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO pins when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI, and the LSB is connected to TDO.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so  
the TAP controller is not fully 1149.1-compliant.  
Identification (ID) Register  
When the SAMPLE/PRELOAD instructions are loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
Document #: 38-05114 Rev. **  
Page 9 of 25  
CY7C1354B  
CY7C1356B  
PRELIMINARY  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 10 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is  
possible that during the Capture-DR state, an input or output  
will undergo a transition. The TAP may then try to capture a  
signal while in transition (metastable state). This will not harm  
the device, but there is no guarantee as to the value that will  
be captured. Repeatable results may not be possible.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO pins.  
Note that since the PRELOAD part of the command is not  
implemented, putting the TAP into the Update to the  
Update-DR state while performing a SAMPLE/PRELOAD  
instruction will have the same effect as the Pause-DR  
command.  
Bypass  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controllers capture set-up plus  
hold times (tCS and tCH). The SRAM clock input might not be  
captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE/PRELOAD instruction. If this  
is an issue, it is still possible to capture all other signals and  
simply ignore the value of the CK and CK# captured in the  
boundary scan register.  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO pins. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
Document #: 38-05114 Rev. **  
Page 10 of 25  
CY7C1354B  
CY7C1356B  
PRELIMINARY  
TAP Controller State Diagram[7]  
TEST-LOGIC  
1
RESET  
1
1
1
TEST-LOGIC/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
1
1
CAPTURE-DR  
CAPTURE-DR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
EXIT1-DR  
0
1
EXIT1-IR  
0
1
0
0
PAUSE-DR  
1
PAUSE-IR  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
1
0
0
Note:  
7. The 0/1 next to each state represents the value at TMS at the rising edge of TCK.  
Document #: 38-05114 Rev. **  
Page 11 of 25  
CY7C1354B  
CY7C1356B  
PRELIMINARY  
TAP Controller Block Diagram  
0
Bypass Register  
Selection  
Circuitry  
Selection  
Circuitry  
2
1
1
1
0
TDO  
Instruction Register  
TDI  
29  
Identification Register  
31 30  
.
.
2
0
0
.
68 .  
.
.
2
Boundary Scan Register  
TCK  
TMS  
TAP Controller  
TAP Electrical Characteristics Over the Operating Range[8, 9]  
Parameter  
Description  
Test Conditions  
IOH = 2.0 mA, VDDQ = 3.3V  
Min.  
2.0  
1.7  
2.0  
2.0  
Max.  
Unit  
V
VOH1  
Output HIGH Voltage  
IOH = 2.0 mA, VDDQ = 2.5V  
IOH = 100 µA, VDDQ = 3.3V  
IOH = 100 µA, VDDQ = 2.5V  
IOL = 2.0 mA  
V
VOH2  
Output HIGH Voltage  
V
V
VOL1  
VOL2  
VIH  
VIL  
IX  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
0.7  
0.2  
V
IOL = 100 µA  
V
1.7  
0.3  
30  
30  
VDD + 0.3  
0.7  
V
V
GND VI VDDQ  
30  
µA  
µA  
IX  
Input Load Current TMS and TDI GND VI VDDQ  
30  
[10, 11]  
TAP AC Switching Characteristics Over the Operating Range  
Parameter  
tTCYC  
Description  
Min.  
Max.  
Unit  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH  
100  
ns  
MHz  
ns  
tTF  
10  
tTH  
40  
40  
tTL  
TCK Clock LOW  
ns  
Set-up Times  
tTMSS  
TMS Set-up to TCK Clock Rise  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
10  
10  
10  
ns  
ns  
ns  
tTDIS  
tCS  
Notes:  
8. All voltage referenced to ground.  
9. Overshoot: VIH(AC) < VDD + 1.5V for t < tTCYC/2; undershoot: VIL(AC) < 0.5V for t < tTCYC/2; power-up: VIH < 2.6V and VDD < 2.4V and VDDQ < 1.4V for t < 200 ms.  
10. tCS and tCH refer to the set-up and hold time requirements of latching data from the boundary scan register.  
11. Test conditions are specified using the load in TAP AC test conditions. tR/tF = 1 ns.  
Document #: 38-05114 Rev. **  
Page 12 of 25  
CY7C1354B  
CY7C1356B  
PRELIMINARY  
TAP AC Switching Characteristics Over the Operating Range (continued)[10, 11]  
Parameter  
Hold Times  
tTMSH  
Description  
Min.  
Max.  
Unit  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
10  
10  
10  
ns  
ns  
ns  
tTDIH  
tCH  
Capture Hold after clock rise  
Output Times  
tTDOV TCK Clock LOW to TDO Valid  
tTDOX TCK Clock LOW to TDO Invalid  
20  
ns  
ns  
0
TAP Timing and Test Conditions  
1.5V for 3.3V V  
1.25V for 2.5V V  
ALL INPUT PULSES  
1.5V or 1.25V  
DDQ  
DDQ  
3.0V or 2.5V  
1.5 ns  
0V  
50Ω  
1.5 ns  
TDO  
Z = 50Ω  
0
C = 20 pF  
L
tTL  
tTH  
(a)  
GND  
Test Clock  
TCK  
tTCYC  
tTMSS  
tTMSH  
Test Mode Select  
TMS  
tTDIS  
tTDIH  
Test Data-In  
TDI  
Test Data-Out  
TDO  
tTDOV  
tTDOX  
Identification Register Definitions  
Instruction Field  
Value  
Description  
Revision Number (31:28)  
Device Depth (27:23)  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Reserved for version number.  
Defines depth of SRAM.  
Defines width of the SRAM.  
Reserved for future use.  
Device Width (22:18)  
Cypress Device ID (17:12)  
Cypress JEDEC ID (11:1)  
ID Register Presence (0)  
Allows unique identification of SRAM vendor.  
Indicate the presence of an ID register.  
Document #: 38-05114 Rev. **  
Page 13 of 25  
CY7C1354B  
CY7C1356B  
PRELIMINARY  
Scan Register Sizes  
Register Name  
Instruction  
Bit Size  
3
Bypass  
1
ID  
32  
69  
Boundary Scan  
Identification Codes  
Instruction  
EXTEST  
Code  
Description  
000 Captures the Input/Output ring contents. Places the boundary scan register between the TDI and  
TDO. Forces all SRAM outputs to High-Z state. This instruction is not 1149.1-compliant.  
IDCODE  
001 Loads the ID register with the vendor ID code and places the register between TDI and TDO. This  
operation does not affect SRAM operation.  
SAMPLE Z  
RESERVED  
010 Captures the Input/Output contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
011  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD 100 Capturesthe Input/Output ringcontents. Placestheboundaryscanregister betweenTDI andTDO.  
Does not affect the SRAM operation. This instruction does not implement 1149.1 preload function  
and is therefore not 1149.1-compliant.  
RESERVED  
RESERVED  
BYPASS  
101 Do Not Use: This instruction is reserved for future use.  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM operation.  
Boundary Scan Exit Order (x36)  
Boundary Scan Exit Order (x36) (continued)  
Bit #  
1
Signal Name  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
119-Ball ID  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
165-Ball ID  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Bit #  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
Signal Name  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
119-Ball ID  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
165-Ball ID  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Document #: 38-05114 Rev. **  
Page 14 of 25  
CY7C1354B  
CY7C1356B  
PRELIMINARY  
Boundary Scan Exit Order (x36) (continued)  
Boundary Scan Exit Order (x18) (continued)  
Bit #  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
Signal Name  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
119-Ball ID  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
165-Ball ID  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Bit #  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
Signal Name 119-Ball ID  
165-Ball ID  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Boundary Scan Exit Order (x18)  
Bit #  
1
Signal Name 119-Ball ID  
165-Ball ID  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
Document #: 38-05114 Rev. **  
Page 15 of 25  
CY7C1354B  
CY7C1356B  
PRELIMINARY  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage.......................................... > 2001V  
(per MIL-STD-883, Method 3015)  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-up Current.................................................... > 200 mA  
Storage Temperature ................................65×C to +150×C  
Operating Range  
Ambient Temperature with  
Power Applied............................................55×C to +125×C  
Ambient  
Supply Voltage on VDD Relative to GND........ 0.5V to +3.6V  
DC to Outputs in High-Z State[13]........ 0.5V to VDDQ + 0.5V  
DC Input Voltage[13] ............................ 0.5V to VDDQ + 0.5V  
Range  
Temperature[12]  
VDD/VDDQ  
Commercial 0°C to +70°C  
3.135 3.6V /  
3.135 3.6V or 2.375 2.9V  
Electrical Characteristics Over the Operating Range  
Parameter  
VDD  
Description  
Test Conditions  
Min.  
3.135  
3.135  
2.375  
2.4  
Max.  
3.465  
VDD  
Unit  
V
Power Supply Voltage I0H=1.0 mA  
VDDQ  
VOH  
VOL  
VIH  
VIL  
I/O Supply Voltage  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
VDDQ = 3.3V  
VDDQ = 2.5V  
V
2.9  
V
VDD = Min., IOH = 4.0 mA, VDDQ = 3.3V  
VDD = Min., IOH = 1.0 mA, VDDQ = 2.5V  
VDD = Min., IOH = 8.0 mA, VDDQ = 3.3V  
VDD = Min., IOH = 1.0 mA, VDDQ = 2.5V  
VDDQ = 3.3V  
V
2.0  
V
0.4  
V
0.4  
V
2.0  
1.7  
VDD + 0.3V  
V
VDDQ = 2.5V  
VDD + 0.3V  
0.8  
V
Input LOW Voltage[13] VDDQ = 3.3V  
0.3  
0.3  
5  
V
VDDQ = 2.5V  
0.7  
V
IX  
Input Load Current  
GND VI VDDQ  
5
µA  
µA  
µA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Input Current of MODE  
30  
5  
30  
IOZ  
IDD  
Output Leakage Current GND VI VDDQ, Output Disabled  
5
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
f = fMAX = 1/tCYC  
4.0-ns cycle, 250 MHz  
250  
220  
180  
250  
220  
180  
30  
5-ns cycle, 200 MHz  
6-ns cycle, 166 MHz  
ISB1  
Automatic CE  
Power-down  
CurrentTTL Inputs  
Max. VDD, Device Deselected, 4.0-ns cycle, 250 MHz  
V
IN VIH or VIN VIL, f = fMAX  
=
5-ns cycle, 200 MHz  
6-ns cycle, 166 MHz  
1/tCYC  
ISB2  
Automatic CE  
Power-down  
Max. VDD, Device Deselected, All speed grades  
IN 0.3V or VIN > VDDQ 0.3V,  
V
CurrentCMOS Inputs f = 0  
ISB3  
Automatic CE  
Power-down  
CurrentCMOS Inputs f = fMAX = 1/tCYC  
Max. VDD, Device Deselected, 4.0-ns cycle, 250 MHz  
250  
220  
180  
40  
mA  
mA  
mA  
mA  
VIN 0.3V or VIN > VDDQ 0.3V,  
5-ns cycle, 200 MHz  
6-ns cycle, 166 MHz  
ISB4  
Automatic CE  
Power-down  
Max. VDD, Device Deselected, All speed grades  
VIN VIH or VIN VIL, f = 0  
CurrentTTL Inputs  
Notes:  
12.  
TA is the case temperature.  
13. Minimum voltage equals 2.0V for pulse durations of less than 1 ns or -0.5V for 20 ns.  
Document #: 38-05114 Rev. **  
Page 16 of 25  
CY7C1354B  
CY7C1356B  
PRELIMINARY  
Capacitance[15]  
Parameter  
Description  
Input Capacitance  
Test Conditions  
Max.  
Unit  
pF  
CIN  
TA = 25°C, f = 1 MHz,  
VDD = 3.3V VDDQ = 2.5V  
4
4
4
CCLK  
CI/O  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
pF  
AC Test Loads and Waveforms  
R=1667/317Ω  
V
[14]  
DDQ  
OUTPUT  
ALL INPUT PULSES  
DQ  
3.0/2.5V  
90%  
10%  
90%  
10%  
Z = 50Ω  
0
1.5/1.25V  
R = 50Ω  
L
5 pF  
0V  
R = 1538/351Ω  
< 1.0 ns  
< 1.0 ns  
V = 1.5V/1.25V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Thermal Resistance  
Parameters  
Description  
Test Conditions  
BGA Typ. fBGA Typ. TQFP Typ.  
Unit Notes  
QJA  
Thermal Resistance  
(Junction to Ambient)  
Still Air, soldered on a 4.25 x  
1.125 inch, 4-layer printed  
circuit board  
25  
27  
25  
°C/W  
15  
QJC  
Thermal Resistance  
(Junction to Case)  
6
6
9
°C/W  
15  
[16, 20]  
Switching Characteristics Over the Operating Range  
-250  
-200  
-166  
Parameter  
Clock  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
tCYC  
Clock Cycle Time  
4.0  
5
6
ns  
MHz  
ns  
FMAX  
tCH  
Maximum Operating Frequency  
Clock HIGH  
250  
200  
166  
1.7  
1.7  
2.0  
2.0  
2.4  
2.4  
tCL  
Clock LOW  
ns  
Output Times  
tCO  
Data Output Valid After CLK Rise  
OE LOW to Output Valid[15, 17, 19]  
Data Output Hold After CLK Rise  
Clock to High-Z[15, 16, 17, 18, 19]  
Clock to Low-Z[15, 16, 17, 18, 19]  
OE HIGH to Output High-Z[16, 17, 19]  
OE LOW to Output Low-Z[16, 17, 19]  
2.6  
2.6  
3.0  
3.0  
3.5  
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tEOV  
tDOH  
1.25  
1.25  
1.25  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
tCHZ  
2.6  
2.6  
3.0  
3.0  
3.5  
3.5  
tCLZ  
tEOHZ  
tEOLZ  
Set-up Times  
tAS  
0
0
0
Address Set-up Before CLK Rise  
Data Input Set-up Before CLK Rise  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
tDS  
Notes:  
14. Input waveform should have a slew rate of > 1 V/ns.  
15. Tested initially and after any design or process change that may affect these parameters.  
16. Unless otherwise noted, test conditions assume signal transition time of 1 ns or less, timing reference levels of 1.5V or 1.25V, input pulse levels of 0 to 3.0V  
or 2.5V, and output loading of the specified IOL/IOH and load capacitance. Shown in (a), (b) and (c) of AC test loads.  
17.  
tCHZ, tCLZ, tOEV, tEOLZ, and tEOHZ are specified with AC test conditions shown in (a) of AC Test Loads. Transition is measured ± 200 mV from steady-state  
voltage.  
18. At any given voltage and temperature, tEOHZ is less than tEOLZ and tCHZ is less than tCLZ to eliminate bus contention between SRAMs when sharing the same  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions.  
19. This parameter is sampled and not 100% tested.  
20. AC parameters may violate minimums and maximums during the first 20 microseconds of operation.  
Document #: 38-05114 Rev. **  
Page 17 of 25  
CY7C1354B  
CY7C1356B  
PRELIMINARY  
Switching Characteristics Over the Operating Range (continued)[16, 20]  
-250  
-200  
-166  
Parameter  
tCENS  
tWES  
tALS  
Description  
CEN Set-up Before CLK Rise  
WE, BWSx Set-up Before CLK Rise  
ADV/LD Set-up Before CLK Rise  
Chip Select Set-up  
Min.  
1.2  
1.2  
1.2  
1.2  
Max.  
Min.  
1.5  
1.5  
1.5  
1.5  
Max.  
Min.  
1.5  
1.5  
1.5  
1.5  
Max.  
Unit  
ns  
ns  
ns  
tCES  
ns  
Hold Times  
tAH  
Address Hold After CLK Rise  
Data Input Hold After CLK Rise  
CEN Hold After CLK Rise  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tDH  
tCENH  
tWEH  
tALH  
WE, BWx Hold After CLK Rise  
ADV/LD Hold after CLK Rise  
Chip Select Hold After CLK Rise  
tCEH  
Shaded areas contain advance information.  
Document #: 38-05114 Rev. **  
Page 18 of 25  
CY7C1354B  
CY7C1356B  
PRELIMINARY  
Switching Waveforms  
[21]  
READ/WRITE/DESELECT Sequence  
CLK  
CEN  
tCENH  
tCENS  
tCL  
tCH  
tCYC  
tAH  
tAS  
CEN HIGH blocks  
all synchronous inputs  
WA2  
WA5  
RA1  
RA3  
RA4  
RA6  
ADDRESS  
RA7  
WE &  
BWSx  
tWS  
tWH  
tCEH  
tCES  
CE  
tDH  
tDS  
tCHZ  
tCHZ  
tDOH  
tCLZ  
tDOH  
Q4  
Q1  
Out  
D2  
In  
Data-  
In/Out  
D5  
In  
Q3  
Out  
Q6  
Out  
Q7  
Out  
Out  
Device  
originally  
tCO  
deselected  
= UNDEFINED  
= DONT CARE  
Note:  
21. The combination of WE and BWSx (x = a, b, c, d for CY7C1354B and x = a, b for CY7C1356B) define a write cycle (see Write Cycle Description table) CE is  
the combination of CE1, CE2, and CE3. All chip enables need to be active in order to select the device. Any chip enable can deselect the device. RAx stands  
for Read Address X, WAx Write Address X, Dx stands for Data-in for location X, Qx stands for Data-out for location X. ADV/LD held LOW. OE held LOW.  
Document #: 38-05114 Rev. **  
Page 19 of 25  
CY7C1354B  
CY7C1356B  
PRELIMINARY  
Switching Waveforms (continued)  
[22]  
Burst Sequences  
CLK  
tCYC  
tALH  
tALS  
ADV/LD  
tCL  
tCH  
tAH  
tAS  
RA1  
WA2  
ADDRESS  
WE  
RA3  
tWS  
tWH  
tWS  
tWH  
BWSx  
tCES  
tCEH  
CE  
tCLZ  
tCHZ  
tDH  
tDOH  
tCLZ  
Q3  
Data-  
In/Out  
Q1  
Q1+2  
Out  
Q1+3  
Out  
D2  
In  
D2+2  
In  
D2+3  
Q1+1  
Out  
D2+1  
In  
Out  
Out  
In  
Device  
originally  
deselected  
tCO  
tCO  
tDS  
= UNDEFINED  
= DONT CARE  
Note:  
22. The combination of WE and BWSx(x = a, b c, d) define a write cycle (see Write Cycle Description table). CE is the combination of CE1, CE2, and CE3. All chip  
enables need to be active in order to select the device. Any chip enable can deselect the device. RAx stands for Read Address X, WA stands for Write Address  
X, Dx stands for Data-in for location X, Qx stands for Data-out for location X. CEN held LOW. During burst writes, byte writes can be conducted by asserting the  
appropriate BWSx input signals. Burst order determined by the state of the MODE input. CEN held LOW. OE held LOW.  
Document #: 38-05114 Rev. **  
Page 20 of 25  
CY7C1354B  
CY7C1356B  
PRELIMINARY  
Switching Waveforms (continued)  
OE Timing  
OE  
tEOV  
tEOHZ  
Three-state  
I/Os  
tEOLZ  
Ordering Information  
Speed  
Package  
Operating  
Range  
(MHz)  
Ordering Code  
CY7C1354B-250AC  
CY7C1356B-250AC  
CY7C1354B-250BGC  
CY7C1356B-250BGC  
CY7C1354B-250BZC  
CY7C1356B-250BZC  
CY7C1354B-200AC  
CY7C1356B-200AC  
CY7C1354B-200BGC  
CY7C1356B-200BGC  
CY7C1354B-200BZC  
CY7C1356B-200BZC  
CY7C1354B-166AC  
CY7C1356B-166AC  
CY7C1354B-166BGC  
CY7C1356B-166BGC  
CY7C1354B-166BZC  
CY7C1356B-166BZC  
Name  
Package Type  
250  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
Commercial  
BG119 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
BB165A 165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.2 mm)  
200  
166  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
BG119 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
BB165A 165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.2 mm)  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
BG119 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
BB165A 165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.2 mm)  
Shaded areas contain advance information.  
Document #: 38-05114 Rev. **  
Page 21 of 25  
CY7C1354B  
CY7C1356B  
PRELIMINARY  
Package Diagrams  
100-pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
51-85050-A  
Document #: 38-05114 Rev. **  
Page 22 of 25  
CY7C1354B  
CY7C1356B  
PRELIMINARY  
Package Diagrams (continued)  
119-Lead BGA (14 x 22 x 2.4) BG119  
51-85115-*A  
Document #: 38-05114 Rev. **  
Page 23 of 25  
CY7C1354B  
CY7C1356B  
PRELIMINARY  
Package Diagrams (continued)  
165-ball FBGA (13 x 15 x 1.2 mm) BB165A  
51-85122-*B  
ZBT is a registered trademark of Integrated Device Technology. No Bus Latency and NoBL are trademarks of Cypress Semicon-  
ductor Corporation.  
Document #: 38-05114 Rev. **  
Page 24 of 25  
© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C1354B  
CY7C1356B  
PRELIMINARY  
Document Title: CY7C1354B/CY7C1356B 256K x 36/512K x 18 Pipelined SRAM with NoBLArchitecture  
Document Number: 38-05114  
Issue  
Date  
Orig. of  
Change  
REV.  
ECN No.  
Description of Change  
117904  
**  
08/28/02  
RCS  
New Data Sheet  
Document #: 38-05114 Rev. **  
Page 25 of 25  

相关型号:

CY7C1356BV25

256K x 36/512K x 18 Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1356BV25-166

256K x 36/512K x 18 Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1356BV25-166BGI

ZBT SRAM, 512KX18, 3.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, BGA-119
CYPRESS

CY7C1356BV25-200

256K x 36/512K x 18 Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1356BV25-225

256K x 36/512K x 18 Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1356BV25-225BZI

ZBT SRAM, 512KX18, 2.8ns, CMOS, PBGA165, 13 X 15 MM, 1.20 MM HEIGHT, FBGA-165
CYPRESS

CY7C1356C

9-Mbit (256K x 36/512K x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1356C-166AXC

9-Mbit (256K x 36/512K x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1356C-166AXCT

ZBT SRAM, 512KX18, 3.5ns, CMOS, PQFP100,
CYPRESS

CY7C1356C-166AXI

9-Mbit (256K x 36/512K x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1356C-166AXIT

ZBT SRAM, 512KX18, 3.5ns, CMOS, PQFP100,
CYPRESS

CY7C1356C-166BGC

9-Mbit (256K x 36/512K x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS