CY7C1361C-133AJXC [CYPRESS]

9-Mbit (256K x 36/512K x 18) Flow-Through SRAM; 9兆位( 256K ×36 / 512K ×18 )流通型SRAM
CY7C1361C-133AJXC
型号: CY7C1361C-133AJXC
厂家: CYPRESS    CYPRESS
描述:

9-Mbit (256K x 36/512K x 18) Flow-Through SRAM
9兆位( 256K ×36 / 512K ×18 )流通型SRAM

静态存储器
文件: 总31页 (文件大小:562K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1361C  
CY7C1363C  
9-Mbit (256K x 36/512K x 18) Flow-Through SRAM  
Features  
Functional Description[1]  
• Supports 100, 133-MHz bus operations  
• Supports 100-MHz bus operations (Automotive)  
• 256K × 36/512K × 18 common I/O  
The CY7C1361C/CY7C1363C is a 3.3V, 256K x 36/512K x 18  
Synchronous Flow-through SRAMs, respectively designed to  
interface with high-speed microprocessors with minimum glue  
logic. Maximum access delay from clock rise is 6.5 ns  
(133-MHz version). A 2-bit on-chip counter captures the first  
address in a burst and increments the address automatically  
for the rest of the burst access. All synchronous inputs are  
gated by registers controlled by a positive-edge-triggered  
Clock Input (CLK). The synchronous inputs include all  
addresses, all data inputs, address-pipelining Chip Enable  
(CE1), depth-expansion Chip Enables (CE2 and CE3[2]), Burst  
Control inputs (ADSC, ADSP, and ADV), Write Enables (BWx,  
and BWE), and Global Write (GW). Asynchronous inputs  
include the Output Enable (OE) and the ZZ pin.  
• 3.3V –5% and +10% core power supply (VDD  
)
• 2.5V or 3.3V I/O power supply (VDDQ  
)
• Fast clock-to-output times  
— 6.5 ns (133-MHz version)  
• Provide high-performance 2-1-1-1 access rate  
User-selectable burst counter supporting Intel®  
Pentium® interleaved or linear burst sequences  
• Separate processor and controller address strobes  
• Synchronous self-timed write  
The CY7C1361C/CY7C1363C allows either interleaved or  
linear burst sequences, selected by the MODE input pin. A  
HIGH selects an interleaved burst sequence, while a LOW  
selects a linear burst sequence. Burst accesses can be  
initiated with the Processor Address Strobe (ADSP) or the  
cache Controller Address Strobe (ADSC) inputs. Address  
advancement is controlled by the Address Advancement  
(ADV) input.  
• Asynchronous output enable  
• Available in lead-free 100-Pin TQFP package, lead-free  
and non lead-free 119-Ball BGA package and 165-Ball  
FBGA package  
• TQFP Available with 3-Chip Enable and 2-Chip Enable  
• IEEE 1149.1 JTAG-Compatible Boundary Scan  
•“ZZ” Sleep Mode option  
Addresses and chip enables are registered at rising edge of  
clock when either Address Strobe Processor (ADSP) or  
Address Strobe Controller (ADSC) are active. Subsequent  
burst addresses can be internally generated as controlled by  
the Advance pin (ADV).  
The CY7C1361C/CY7C1363C operates from a +3.3V core  
power supply while all outputs may operate with either a +2.5  
or +3.3V supply. All inputs and outputs are JEDEC-standard  
JESD8-5-compatible.  
Selection Guide  
133 MHz  
6.5  
100 MHz  
8.5  
Unit  
ns  
Maximum Access Time  
Maximum Operating Current  
250  
180  
mA  
mA  
mA  
Maximum CMOS Standby Current  
Comm/Ind’l  
Automotive  
40  
40  
60  
Notes:  
1. For best-practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
2. CE is for A version of TQFP (3 Chip Enable Option) and 165 FBGA package only. 119 BGA is offered only in 2 Chip Enable.  
3
Cypress Semiconductor Corporation  
Document #: 38-05541 Rev. *F  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised September 14, 2006  
[+] Feedback  
CY7C1361C  
CY7C1363C  
Logic Block Diagram – CY7C1361C (256K x 36)  
ADDRESS  
REGISTER  
A0, A1, A  
A[1:0]  
MODE  
ADV  
CLK  
Q1  
BURST  
COUNTER  
AND LOGIC  
Q0  
CLR  
ADSC  
ADSP  
DQ  
BYTE  
WRITE REGISTER  
D, DQPD  
DQ  
BYTE  
WRITE REGISTER  
D, DQPD  
BW  
D
DQ  
BYTE  
WRITE REGISTER  
C, DQPC  
DQ  
BYTE  
WRITE REGISTER  
C, DQPC  
BW  
C
OUTPUT  
BUFFERS  
DQs  
MEMORY  
ARRAY  
SENSE  
AMPS  
DQP  
DQP  
DQP  
A
DQ  
BYTE  
WRITE REGISTER  
B, DQPB  
B
C
DQ  
BYTE  
WRITE REGISTER  
B, DQPB  
BW  
B
DQPD  
DQ  
BYTE  
WRITE REGISTER  
A, DQPA  
DQ  
A, DQPA  
BW  
A
BYTE  
BWE  
WRITE REGISTER  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
CE1  
CE2  
CE3  
OE  
SLEEP  
CONTROL  
ZZ  
Logic Block Diagram – CY7C1363C (512K x 18)  
ADDRESS  
REGISTER  
A0,A1,A  
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQ  
B,DQPB  
DQ  
B,DQPB  
WRITE DRIVER  
WRITE REGISTER  
BW  
B
A
MEMORY  
ARRAY  
OUTPUT  
BUFFERS  
DQs  
DQP  
DQP  
SENSE  
AMPS  
A
B
DQ  
A,DQPA  
DQA,DQPA  
WRITE REGISTER  
WRITE DRIVER  
BW  
BWE  
GW  
INPUT  
REGISTERS  
ENABLE  
REGISTER  
CE  
CE  
CE  
1
2
3
OE  
SLEEP  
CONTROL  
ZZ  
Document #: 38-05541 Rev. *F  
Page 2 of 31  
[+] Feedback  
CY7C1361C  
CY7C1363C  
Pin Configurations  
100-Pin TQFP Pinout (3 Chip Enables) (A version)  
DQPC  
1
DQPB  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
NC  
VDDQ  
VSSQ  
NC  
A
NC  
NC  
VDDQ  
VSSQ  
NC  
DQPA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
VSS  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
2
DQC  
VDDQ  
VSSQ  
DQC  
3
4
5
6
DQC  
7
NC  
DQC  
8
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS/DNU  
VDD  
DQC  
9
10  
11  
9
VSSQ  
VDDQ  
DQC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
12  
DQC  
13  
VSS/DNU  
14  
VDD  
15  
NC  
VDD  
ZZ  
CY7C1363C  
(512K x 18)  
CY7C1361C  
(256K x 36)  
NC  
16  
NC  
VSS  
VDD  
ZZ  
VSS  
17  
DQD  
18  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
DQPA  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQPB  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
NC  
DQD  
19  
20  
21  
VDDQ  
VSSQ  
DQD  
22  
DQD  
23  
DQD  
24  
DQD  
25  
26  
27  
NC  
VSSQ  
VDDQ  
DQD  
DQD  
29  
VSSQ  
VDDQ  
NC  
NC  
NC  
28  
DQPD  
30  
Document #: 38-05541 Rev. *F  
Page 3 of 31  
[+] Feedback  
CY7C1361C  
CY7C1363C  
Pin Configurations (continued)  
100-Pin TQFP Pinout (2 Chip Enables) (AJ Version)  
DQPC  
DQC  
DQC  
VDDQ  
VSSQ  
DQC  
DQC  
DQC  
DQC  
VSSQ  
VDDQ  
DQC  
DQC  
VSS/DNU  
DQPB  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
NC  
VDDQ  
VSSQ  
NC  
A
NC  
NC  
VDDQ  
VSSQ  
NC  
DQPA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
VSS  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS/DNU  
VDD  
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDD  
NC  
VSS  
DQD  
NC  
VDD  
ZZ  
CY7C1363C  
(512K x 18)  
CY7C1361C  
(256K x 36)  
NC  
VSS  
VDD  
ZZ  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
DQPA  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQPB  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
NC  
DQD  
VDDQ  
VSSQ  
DQD  
DQD  
DQD  
DQD  
NC  
VSSQ  
VDDQ  
DQD  
DQD  
DQPD  
VSSQ  
VDDQ  
NC  
NC  
NC  
Document #: 38-05541 Rev. *F  
Page 4 of 31  
[+] Feedback  
CY7C1361C  
CY7C1363C  
Pin Configurations (continued)  
119-Ball BGA Pinout (2 Chip Enables with JTAG)  
CY7C1361C (256K x 36)  
1
2
3
4
5
6
7
A
VDDQ  
A
A
A
A
VDDQ  
ADSP  
B
C
NC/288M  
NC/144M  
CE2  
A
A
A
A
A
A
A
NC/512M  
NC/1G  
ADSC  
VDD  
D
E
F
DQC  
DQC  
VDDQ  
DQPC  
DQC  
VSS  
VSS  
VSS  
NC  
CE1  
OE  
VSS  
VSS  
VSS  
DQPB  
DQB  
DQB  
DQB  
DQC  
DQB  
VDDQ  
G
H
J
DQC  
DQC  
VDDQ  
DQD  
DQC  
DQC  
VDD  
DQB  
DQB  
VDD  
DQA  
DQB  
DQB  
VDDQ  
DQA  
ADV  
BWC  
VSS  
NC  
BWB  
VSS  
NC  
GW  
VDD  
K
DQD  
VSS  
CLK  
NC  
VSS  
L
M
N
DQD  
VDDQ  
DQD  
DQD  
DQD  
DQD  
DQA  
DQA  
DQA  
DQA  
VDDQ  
DQA  
BWD  
VSS  
VSS  
BWA  
VSS  
VSS  
BWE  
A1  
DQD  
NC  
DQPD  
A
VSS  
A0  
VSS  
NC  
DQPA  
A
DQA  
NC  
P
R
MODE  
VDD  
T
NC  
NC/72M  
TMS  
A
A
A
NC/36M  
NC  
ZZ  
VDDQ  
TDI  
TCK  
TDO  
VDDQ  
U
CY7C1363C (512K x 18)  
2
A
1
3
A
4
5
6
7
VDDQ  
NC/512M  
NC/1G  
NC  
VDDQ  
A
A
A
B
C
D
E
F
ADSP  
NC/288M  
NC/144M  
DQB  
CE2  
A
A
A
ADSC  
VDD  
A
A
A
A
NC  
DQB  
NC  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
DQPA  
NC  
NC  
DQA  
CE1  
OE  
VDDQ  
DQA  
VDDQ  
NC  
DQB  
NC  
VDD  
NC  
DQA  
VDD  
DQA  
NC  
VDDQ  
G
H
J
BWB  
VSS  
NC  
ADV  
DQB  
VDDQ  
GW  
VDD  
NC  
K
NC  
DQB  
VSS  
CLK  
NC  
VSS  
NC  
DQA  
L
M
N
P
DQB  
VDDQ  
DQB  
NC  
NC  
DQB  
NC  
VSS  
VSS  
VSS  
VSS  
DQA  
NC  
NC  
VDDQ  
NC  
BWA  
VSS  
BWE  
A1  
VSS  
VSS  
DQA  
NC  
DQPB  
A0  
DQA  
R
T
NC  
A
A
MODE  
A
VDD  
NC/36M  
TCK  
NC  
A
A
A
NC  
ZZ  
NC/72M  
VDDQ  
TMS  
TDI  
TDO  
NC  
VDDQ  
U
Document #: 38-05541 Rev. *F  
Page 5 of 31  
[+] Feedback  
CY7C1361C  
CY7C1363C  
Pin Configurations (continued)  
165-Ball FBGA Pinout (3 Chip Enable)  
CY7C1361C (256K x 36)  
1
2
A
3
CE1  
4
BWC  
5
BWB  
6
CE3  
7
8
9
ADV  
10  
A
11  
NC  
NC/288M  
NC/144M  
DQPC  
BWE  
GW  
VSS  
VSS  
ADSC  
A
B
C
D
A
CE2  
VDDQ  
VDDQ  
BWD  
VSS  
BWA  
VSS  
VSS  
CLK  
VSS  
VSS  
OE  
VSS  
VDD  
ADSP  
VDDQ  
VDDQ  
A
NC/576M  
DQPB  
DQB  
NC  
DQC  
NC/1G  
DQB  
DQC  
VDD  
DQC  
DQC  
DQC  
DQC  
VSS  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQB  
DQB  
DQB  
NC  
DQB  
E
F
DQC  
DQC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQB  
DQB  
ZZ  
G
H
J
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
K
L
DQD  
DQPD  
NC  
DQD  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
A
M
N
P
NC/18M  
A1  
NC/72M  
TDI  
TDO  
A0  
MODE  
NC/36M  
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1363C (512K x 18)  
1
2
A
3
CE1  
4
BWB  
5
NC  
6
CE  
7
8
9
ADV  
10  
A
11  
A
NC/288M  
NC/144M  
NC  
BWE  
GW  
VSS  
VSS  
VSS  
ADSC  
A
3
A
CE2  
VDDQ  
VDDQ  
NC  
VSS  
VDD  
BWA  
VSS  
VSS  
CLK  
VSS  
VSS  
OE  
VSS  
VDD  
ADSP  
VDDQ  
VDDQ  
A
NC/576M  
DQPA  
DQA  
B
C
D
NC  
NC/1G  
NC  
NC  
DQB  
NC  
DQB  
DQB  
DQB  
VSS  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
E
F
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQA  
DQA  
ZZ  
NC  
G
H
J
VSS  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
NC  
NC  
NC  
K
L
NC  
NC  
DQB  
DQPB  
NC  
NC  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC/18M  
A1  
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
A
M
N
P
NC/72M  
TDI  
TDO  
MODE  
NC/36M  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 38-05541 Rev. *F  
Page 6 of 31  
[+] Feedback  
CY7C1361C  
CY7C1363C  
Pin Definitions  
Name  
I/O  
Description  
A0, A1, A  
Input-  
Address Inputs used to select one of the address locations. Sampled at the rising  
Synchronous edge of the CLK if ADSP or ADSC is active LOW, and CE1, CE2, and CE3[2] are sampled  
active. A[1:0] feed the 2-bit counter.  
BWA,BWB  
BWC,BWD  
Input-  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes to the  
Synchronous SRAM. Sampled on the rising edge of CLK.  
GW  
CLK  
CE1  
Input-  
Global Write Enable Input, active LOW. When asserted LOW on the rising edge of CLK, a  
Synchronous global write is conducted (ALL bytes are written, regardless of the values on BWX and BWE).  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. Also used to increment  
the burst counter when ADV is asserted LOW, during a burst operation.  
Input-  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in  
Synchronous conjunction with CE2 and CE3[2] to select/deselect the device. ADSP is ignored if CE1 is  
HIGH. CE1 is sampled only when a new external address is loaded.  
CE2  
Input-  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in  
Synchronous conjunction with CE1 and CE3[2] to select/deselect the device. CE2 is sampled only when  
a new external address is loaded.  
[2]  
CE3  
Input-  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in  
Synchronous conjunction with CE1 and CE2 to select/deselect the device.CE3 is sampled only when a  
new external address is loaded.  
OE  
Input-  
Output Enable, asynchronous input, active LOW. Controls the direction of the I/O pins.  
Asynchronous When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are  
tri-stated, and act as input data pins. OE is masked during the first clock of a read cycle  
when emerging from a deselected state.  
ADV  
Input-  
Advance Input signal, sampled on the rising edge of CLK. When asserted, it automat-  
Synchronous ically increments the address in a burst cycle.  
ADSP  
Input-  
Address Strobe from Processor, sampled on the rising edge of CLK, active LOW.  
Synchronous When asserted LOW, addresses presented to the device are captured in the address  
registers. A[1:0] are also loaded into the burst counter. When ADSP and ADSC are both  
asserted, only ADSP is recognized. ASDP is ignored when  
is deasserted HIGH.  
CE1  
ADSC  
Input-  
Address Strobe from Controller, sampled on the rising edge of CLK, active LOW.  
Synchronous When asserted LOW, addresses presented to the device are captured in the address  
registers. A[1:0] are also loaded into the burst counter. When ADSP and ADSC are both  
asserted, only ADSP is recognized.  
BWE  
ZZ  
Input-  
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal  
Synchronous must be asserted LOW to conduct a byte write.  
Input-  
ZZ “sleep” Input, active HIGH. When asserted HIGH places the device in a  
Asynchronous non-time-critical “sleep” condition with data integrity preserved. For normal operation,  
this pin has to be LOW or left floating. ZZ pin has an internal pull-down.  
I/O-  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is  
DQs  
Synchronous triggered by the rising edge of CLK. As outputs, they deliver the data contained in the  
memory location specified by the addresses presented during the previous clock rise of  
the read cycle. The direction of the pins is controlled by OE. When OE is asserted LOW,  
the pins behave as outputs. When HIGH, DQs and DQPX are placed in a tri-state  
condition.The outputs are automatically tri-stated during the data portion of a write  
sequence, during the first clock when emerging from a deselected state, and when the  
device is deselected, regardless of the state of OE.  
I/O-  
Bidirectional Data Parity I/O Lines. Functionally, these signals are identical to DQs.  
DQPX  
Synchronous During write sequences, DQPX is controlled by BWX correspondingly.  
MODE  
Input-  
Static  
Selects Burst Order. When tied to GND selects linear burst sequence. When tied to VDD  
or left floating selects interleaved burst sequence. This is a strap pin and should remain  
static during device operation. Mode Pin has an internal pull-up.  
VDD  
Power Supply Power supply inputs to the core of the device.  
I/O Power Supply Power supply for the I/O circuitry.  
VDDQ  
Document #: 38-05541 Rev. *F  
Page 7 of 31  
[+] Feedback  
CY7C1361C  
CY7C1363C  
Pin Definitions (continued)  
Name  
I/O  
Description  
VSS  
Ground  
Ground for the core of the device.  
Ground for the I/O circuitry.  
VSSQ  
TDO  
I/O Ground  
JTAG serial output Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If the  
Synchronous JTAG feature is not being utilized, this pin should be left unconnected. This pin is not  
available on TQFP packages.  
TDI  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG  
Synchronous feature is not being utilized, this pin can be left floating or connected to VDD through a pull  
up resistor. This pin is not available on TQFP packages.  
TMS  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG  
Synchronous feature is not being utilized, this pin can be disconnected or connected to VDD. This pin  
is not available on TQFP packages.  
TCK  
NC  
JTAG-  
Clock  
Clock input to the JTAG circuitry. If the JTAG feature is not being utilized, this pin must  
be connected to VSS. This pin is not available on TQFP packages.  
No Connects. Not internally connected to the die. 18M, 36M, 72M, 144M, 288M, 576M  
and 1G are address expansion pins and are not internally connected to the die.  
VSS/DNU  
Ground/DNU  
This pin can be connected to Ground or should be left floating.  
Document #: 38-05541 Rev. *F  
Page 8 of 31  
[+] Feedback  
CY7C1361C  
CY7C1363C  
active, (2) ADSC is asserted LOW, (3) ADSP is deasserted  
HIGH, and (4) the write input signals (GW, BWE, and BWX)  
indicate a write access. ADSC is ignored if ADSP is active  
LOW.  
Functional Overview  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. Maximum access delay from  
the clock rise (tCDV) is 6.5 ns (133-MHz device).  
The addresses presented are loaded into the address register  
and the burst counter/control logic and delivered to the  
memory core. The information presented to DQ[A:D] will be  
written into the specified address location. Byte writes are  
allowed. All I/Os are tri-stated when a write is detected, even  
a byte write. Since this is a common I/O device, the  
asynchronous OE input signal must be deasserted and the  
I/Os must be tri-stated prior to the presentation of data to DQs.  
As a safety precaution, the data lines are tri-stated once a write  
cycle is detected, regardless of the state of OE.  
The CY7C1361C/CY7C1363C supports secondary cache in  
systems utilizing either a linear or interleaved burst sequence.  
The interleaved burst order supports Pentium and i486™  
processors. The linear burst sequence is suited for processors  
that utilize a linear burst sequence. The burst order is  
user-selectable, and is determined by sampling the MODE  
input. Accesses can be initiated with either the Processor  
Address Strobe (ADSP) or the Controller Address Strobe  
(ADSC). Address advancement through the burst sequence is  
controlled by the ADV input. A two-bit on-chip wraparound  
burst counter captures the first address in a burst sequence  
and automatically increments the address for the rest of the  
burst access.  
Burst Sequences  
The CY7C1361C/CY7C1363C provides an on-chip two-bit  
wraparound burst counter inside the SRAM. The burst counter  
is fed by A[1:0], and can follow either a linear or interleaved  
burst order. The burst order is determined by the state of the  
MODE input. A LOW on MODE will select a linear burst  
sequence. A HIGH on MODE will select an interleaved burst  
order. Leaving MODE unconnected will cause the device to  
default to a interleaved burst sequence.  
Byte write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BWX) inputs. A Global Write  
Enable (GW) overrides all byte write inputs and writes data to  
all four bytes. All writes are simplified with on-chip  
synchronous self-timed write circuitry.  
Three synchronous Chip Selects (CE1, CE2, CE3[2]) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output tri-state control. ADSP is ignored if CE1  
is HIGH.  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Single Read Accesses  
Address  
A1: A0  
A single read access is initiated when the following conditions  
are satisfied at clock rise: (1) CE1, CE2, and CE3 are all  
[2]  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
asserted active, and (2) ADSP or ADSC is asserted LOW (if  
the access is initiated by ADSC, the write inputs must be  
deasserted during this first cycle). The address presented to  
the address inputs is latched into the address register and the  
burst counter/control logic and presented to the memory core.  
If the OE input is asserted LOW, the requested data will be  
available at the data outputs a maximum to tCDV after clock  
rise. ADSP is ignored if CE1 is HIGH.  
Linear Burst Address Table (MODE = GND)  
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Single Write Accesses Initiated by ADSP  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) CE1, CE2, CE3 are all asserted  
[2]  
active, and (2) ADSP is asserted LOW. The addresses  
presented are loaded into the address register and the burst  
inputs (GW, BWE, and BWX)are ignored during this first clock  
cycle. If the write inputs are asserted active (see Write Cycle  
Descriptions table for appropriate states that indicate a write)  
on the next clock rise, the appropriate data will be latched and  
written into the device.Byte writes are allowed. All I/Os are  
tri-stated during a byte write.Since this is a common I/O  
device, the asynchronous OE input signal must be deasserted  
and the I/Os must be tri-stated prior to the presentation of data  
to DQs. As a safety precaution, the data lines are tri-stated  
once a write cycle is detected, regardless of the state of OE.  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the “sleep” mode. CE1, CE2, CE3[2], ADSP, and ADSC must  
remain inactive for the duration of tZZREC after the ZZ input  
returns LOW.  
Single Write Accesses Initiated by ADSC  
This write access is initiated when the following conditions are  
satisfied at clock rise: (1) CE1, CE2, and CE3[2] are all asserted  
Document #: 38-05541 Rev. *F  
Page 9 of 31  
[+] Feedback  
CY7C1361C  
CY7C1363C  
ZZ Mode Electrical Characteristics  
Parameter  
Description  
Test Conditions  
ZZ > VDD – 0.2V  
Min.  
Max.  
50  
Unit  
mA  
mA  
ns  
IDDZZ  
Sleep mode standby current  
Comm/ind’l  
Automotive  
60  
tZZS  
Device operation to ZZ  
ZZ recovery time  
ZZ > VDD – 0.2V  
2tCYC  
tZZREC  
tZZI  
ZZ < 0.2V  
2tCYC  
0
ns  
ZZ active to sleep current  
ZZ Inactive to exit sleep current  
This parameter is sampled  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
ns  
Truth Table [3, 4, 5, 6, 7]  
Address  
Used CE1 CE2 CE3 ZZ ADSP  
Cycle Description  
ADSC ADV WRITE OE CLK  
DQ  
Deselected Cycle, Power-down None  
Deselected Cycle, Power-down None  
Deselected Cycle, Power-down None  
Deselected Cycle, Power-down None  
Deselected Cycle, Power-down None  
H
L
X
L
X
X
H
X
X
X
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
L
L-H  
L-H  
L-H  
L-H  
L-H  
X
Tri-state  
Tri-state  
Tri-state  
Tri-state  
Tri-state  
Tri-state  
L
X
L
L
L
H
H
X
L
X
X
L
X
X
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
L
Sleep Mode, Power-down  
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
Write Cycle, Begin Burst  
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
None  
External  
External  
External  
External  
External  
Next  
X
X
X
L
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
Q
Tri-state  
L
L
L
H
X
L
D
Q
L
L
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
L
L
L
H
H
H
H
H
H
L
Tri-state  
Q
L
L
L
H
L
X
X
H
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
Tri-state  
Next  
L
H
L
Next  
L
Q
Next  
L
H
X
X
L
Tri-state  
Next  
L
D
Next  
L
L
D
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
Q
H
L
Tri-state  
Q
H
X
X
Tri-state  
D
D
L
Notes:  
3. X=”Don't Care.” H = Logic HIGH, L = Logic LOW.  
4. WRITE = L when any one or more Byte Write enable signals and BWE = L or GW = L. WRITE = H when all Byte write enable signals, BWE, GW = H.  
5. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
6. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks after  
X
the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state. OE is a don't  
care for the remainder of the write cycle.  
7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tri-state when OE is  
inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).  
Document #: 38-05541 Rev. *F  
Page 10 of 31  
[+] Feedback  
CY7C1361C  
CY7C1363C  
Partial Truth Table for Read/Write[3, 8]  
Function (CY7C1361C)  
Read  
GW  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
BWE  
H
L
BWD  
X
H
H
H
H
H
H
H
H
L
BWC  
X
H
H
H
H
L
BWB  
BWA  
X
H
L
X
H
H
L
Read  
Write Byte (A, DQPA)  
L
Write Byte (B, DQPB)  
L
H
L
Write Bytes (B, A, DQPA, DQPB)  
Write Byte (C, DQPC)  
L
L
L
H
H
L
H
L
Write Bytes (C, A, DQPC, DQPA)  
Write Bytes (C, B, DQPC, DQPB)  
Write Bytes (C, B, A, DQPC, DQPB, DQPA)  
Write Byte (D, DQPD)  
L
L
L
L
H
L
L
L
L
L
H
H
H
H
L
H
H
L
H
L
Write Bytes (D, A, DQPD, DQPA)  
Write Bytes (D, B, DQPD, DQPA)  
Write Bytes (D, B, A, DQPD, DQPB, DQPA)  
Write Bytes (D, B, DQPD, DQPB)  
Write Bytes (D, B, A, DQPD, DQPC, DQPA)  
Write Bytes (D, C, A, DQPD, DQPB, DQPA)  
Write All Bytes  
L
L
L
L
H
L
L
L
L
L
L
H
H
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
Write All Bytes  
X
X
X
X
X
Truth Table for Read/Write[3, 8]  
GW  
H
BWE  
BWB  
X
BWA  
Function (CY7C1363C)  
Read  
H
L
L
L
L
X
X
H
L
Read  
H
H
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write All Bytes  
H
H
H
L
H
L
H
L
Write All Bytes  
L
X
X
Note:  
8. Table only lists a partial listing of the byte write combinations. Any Combination of BW is valid Appropriate write will be done based on which byte write is active.  
X
Document #: 38-05541 Rev. *F  
Page 11 of 31  
[+] Feedback  
CY7C1361C  
CY7C1363C  
Test MODE SELECT (TMS)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this ball unconnected if the TAP is not used. The ball is  
pulled up internally, resulting in a logic HIGH level.  
The CY7C1361C/CY7C1363C incorporates a serial boundary  
scan test access port (TAP) in the BGA package only. The  
TQFP package does not offer this functionality. This part  
operates in accordance with IEEE Standard 1149.1-1900, but  
doesn’t have the set of functions required for full 1149.1  
compliance. These functions from the IEEE specification are  
excluded because their inclusion places an added delay in the  
critical speed path of the SRAM. Note the TAP controller  
functions in a manner that does not conflict with the operation  
of other devices using 1149.1 fully compliant TAPs. The TAP  
operates using JEDEC-standard 3.3V or 2.5V I/O logic levels.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. TDI  
is internally pulled up and can be unconnected if the TAP is  
unused in an application. TDI is connected to the most signif-  
icant bit (MSB) of any register. (See Tap Controller Block  
Diagram.)  
The CY7C1361C/CY7C1363C contains a TAP controller,  
instruction register, boundary scan register, bypass register,  
and ID register.  
Test Data-Out (TDO)  
Disabling the JTAG Feature  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See Tap Controller State Diagram.)  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull-up resistor. TDO should be  
left unconnected. Upon power-up, the device will come up in  
a reset state which will not interfere with the operation of the  
device.  
TAP Controller Block Diagram  
0
Bypass Register  
TAP Controller State Diagram  
2
1
0
0
0
TEST-LOGIC  
1
Selection  
Circuitry  
RESET  
0
Instruction Register  
31 30 29  
Identification Register  
S
election  
TDI  
TDO  
Circuitr  
y
.
.
. 2 1  
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
x
.
.
.
.
. 2 1  
1
1
CAPTURE-DR  
CAPTURE-IR  
Boundary Scan Register  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
TCK  
TMS  
1
1
EXIT1-DR  
EXIT1-IR  
TAP CONTROLLER  
0
0
PAUSE-DR  
0
PAUSE-IR  
0
1
1
Performing a TAP Reset  
0
0
EXIT2-DR  
1
EXIT2-IR  
1
A RESET is performed by forcing TMS HIGH (VDD) for five  
rising edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is  
operating.  
UPDATE-DR  
UPDATE-IR  
1
0
1
0
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
TAP Registers  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
Test Access Port (TAP)  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
Document #: 38-05541 Rev. *F  
Page 12 of 31  
[+] Feedback  
CY7C1361C  
CY7C1363C  
TDI and TDO balls as shown in the Tap Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
through the instruction register through the TDI and TDO balls.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all  
0s. EXTEST is not implemented in this SRAM TAP controller,  
and therefore this device is not compliant to 1149.1. The TAP  
controller does recognize an all-0 instruction.  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test data path.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between  
the two instructions. Unlike the SAMPLE/PRELOAD  
instruction, EXTEST places the SRAM outputs in a High-Z  
state.  
Boundary Scan Register  
IDCODE  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used  
to capture the contents of the I/O ring.  
The IDCODE instruction is loaded into the instruction register  
upon power-up or whenever the TAP controller is given a test  
logic reset state.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI and the LSB is connected to TDO.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1-mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the in-  
struction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is cap-  
tured in the boundary scan register.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is possi-  
ble that during the Capture-DR state, an input or output will  
undergo a transition. The TAP may then try to capture a signal  
while in transition (metastable state). This will not harm the  
device, but there is no guarantee as to the value that will be  
captured. Repeatable results may not be possible.  
TAP Instruction Set  
Overview  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in the  
Instruction Codes table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller's capture set-up plus  
hold times (tCS and tCH). The SRAM clock input might not be  
captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE/PRELOAD instruction. If this  
is an issue, it is still possible to capture all other signals and  
simply ignore the value of the CK and CK# captured in the  
boundary scan register.  
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the I/O  
buffers. The SRAM does not implement the 1149.1 commands  
EXTEST or INTEST or the PRELOAD portion of  
SAMPLE/PRELOAD; rather, it performs a capture of the I/O  
ring when these instructions are executed.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the bound-  
ary scan register between the TDI and TDO pins.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
Document #: 38-05541 Rev. *F  
Page 13 of 31  
[+] Feedback  
CY7C1361C  
CY7C1363C  
PRELOAD allows an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells  
prior to the selection of another boundary scan test operation.  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO balls. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
The shifting of data for the SAMPLE and PRELOAD phases  
can occur concurrently when required—that is, while data  
captured is shifted out, the preloaded data can be shifted in.  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics Over the Operating Range[9, 10]  
Parameter  
Clock  
tTCYC  
tTF  
Parameter  
Min.  
Max.  
Unit  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH Time  
TCK Clock LOW Time  
50  
ns  
MHz  
ns  
20  
tTH  
20  
20  
tTL  
ns  
Output Times  
tTDOV TCK Clock LOW to TDO Valid  
tTDOX TCK Clock LOW to TDO Invalid  
Set-up Times  
tTMSS TMS Set-Up to TCK Clock Rise  
tTDIS  
10  
ns  
ns  
0
5
5
5
ns  
ns  
ns  
TDI Set-Up to TCK Clock Rise  
Capture Set-Up to TCK Rise  
tCS  
Hold Times  
tTMSH  
tTDIH  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tCH  
Capture Hold after Clock Rise  
Notes:  
9. t and t refer to the setup and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
10. Test conditions are specified using the load in TAP AC test conditions. t /t = 1 ns.  
R
F
Document #: 38-05541 Rev. *F  
Page 14 of 31  
[+] Feedback  
CY7C1361C  
CY7C1363C  
3.3V TAP AC Test Conditions  
2.5V TAP AC Test Conditions  
Input pulse levels ................................................ VSS to 3.3V  
Input rise and fall times................................................... 1 ns  
Input timing reference levels...........................................1.5V  
Output reference levels...................................................1.5V  
Test load termination supply voltage...............................1.5V  
Input pulse levels.................................................VSS to 2.5V  
Input rise and fall time .....................................................1 ns  
Input timing reference levels......................................... 1.25V  
Output reference levels ................................................ 1.25V  
Test load termination supply voltage ............................ 1.25V  
3.3V TAP AC Output Load Equivalent  
2.5V TAP AC Output Load Equivalent  
1.5V  
1.25V  
50  
50  
TDO  
TDO  
ZO= 50Ω  
ZO= 50Ω  
20pF  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; VDD = 3.3V ±0.165V unless otherwise noted)[11]  
Parameter  
Description  
Description  
IOH = –4.0 mA  
OH = –1.0 mA  
Conditions  
VDDQ = 3.3V  
Min.  
2.4  
2.0  
2.9  
2.1  
Max.  
Unit  
V
VOH1  
Output HIGH Voltage  
I
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
V
VOH2  
VOL1  
VOL2  
VIH  
Output HIGH Voltage  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
IOH = –100 µA  
V
V
IOL = 8.0 mA  
0.4  
0.4  
V
I
OL = 8.0 mA  
V
IOL = 100 µA  
0.2  
V
VDDQ = 2.5V  
0.2  
V
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
2.0  
1.7  
VDD + 0.3  
VDD + 0.3  
0.7  
V
V
VIL  
–0.5  
–0.3  
–5  
V
VDDQ = 2.5V  
0.7  
V
IX  
GND < VIN < VDDQ  
5
µA  
Identification Register Definitions  
CY7C1361C  
(256K x36)  
CY7C1363C  
(512K x18)  
Instruction Field  
Revision Number (31:29)  
Device Depth (28:24)[12]  
Description  
000  
01011  
000  
Describes the version number.  
Reserved for Internal Use  
01011  
Device Width (23:18) 119-BGA  
Device Width (23:18) 165-FBGA  
Cypress Device ID (17:12)  
Cypress JEDEC ID Code (11:1)  
ID Register Presence Indicator (0)  
101001  
000001  
100110  
00000110100  
1
101001  
000001  
010110  
Defines memory type and architecture  
Defines memory type and architecture  
Defines width and density  
00000110100 Allows unique identification of SRAM vendor.  
Indicates the presence of an ID register.  
1
Notes:  
11. All voltages referenced to V (GND).  
SS  
12. Bit #24 is “1” in the Register Definitions for both 2.5V and 3.3V versions of this device.  
Document #: 38-05541 Rev. *F  
Page 15 of 31  
[+] Feedback  
CY7C1361C  
CY7C1363C  
Scan Register Sizes  
Register Name  
Bit Size (x 36)  
Bit Size (x 18)  
Instruction  
3
3
Bypass  
1
1
ID  
32  
71  
71  
32  
71  
71  
Boundary Scan Order (119-ball BGA package)  
Boundary Scan Order (165-ball FBGA package)  
Identification Codes  
Instruction  
EXTEST  
Code  
Description  
000  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register between TDI and TDO.  
This operation does not affect SRAM operations.  
SAMPLE Z  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
Document #: 38-05541 Rev. *F  
Page 16 of 31  
[+] Feedback  
CY7C1361C  
CY7C1363C  
119-Ball BGA Boundary Scan Order  
CY7C1361C (256K x 36)  
CY7C1363C (512K x 18)  
Signal  
Signal  
Signal  
Name  
Signal  
Name  
Bit # ball ID  
Name  
CLK  
GW  
BWE  
OE  
Bit # ball ID  
Bit #  
1
ball ID  
Name  
CLK  
GW  
Bit #  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
ball ID  
1
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
P4  
N4  
R6  
T5  
A0  
A1  
P4  
A0  
K4  
H4  
M4  
F4  
B4  
A4  
G4  
C3  
B3  
D6  
H7  
G6  
E6  
D7  
E7  
F6  
G7  
H6  
T7  
K7  
L6  
K4  
H4  
2
2
N4  
A1  
3
A
3
M4  
BWE  
OE  
R6  
A
4
A
4
F4  
T5  
A
5
ADSC  
ADSP  
ADV  
A
T3  
A
5
B4  
ADSC  
ADSP  
ADV  
A
T3  
A
6
R2  
R3  
P2  
A
6
A4  
R2  
A
7
MODE  
DQPD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
Internal  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQPC  
A
7
G4  
R3  
MODE  
Internal  
Internal  
Internal  
Internal  
DQPB  
DQB  
8
8
C3  
Internal  
Internal  
Internal  
Internal  
P2  
9
A
P1  
9
B3  
A
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
DQPB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
ZZ  
L2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
T2  
A
K1  
Internal  
Internal  
Internal  
D6  
Internal  
Internal  
Internal  
DQPA  
DQA  
DQA  
DQA  
DQA  
ZZ  
N2  
N1  
M2  
L1  
N1  
M2  
DQB  
E7  
L1  
DQB  
K2  
F6  
K2  
DQB  
Internal  
H1  
G2  
E2  
G7  
Internal  
H1  
Internal  
DQB  
H6  
T7  
G2  
DQB  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQPA  
A
K7  
DQA  
DQA  
DQA  
DQA  
Internal  
Internal  
Internal  
Internal  
Internal  
A
E2  
DQB  
D1  
H2  
G1  
F2  
L6  
D1  
DQB  
N6  
P7  
N7  
M6  
L7  
N6  
Internal  
Internal  
Internal  
Internal  
Internal  
C2  
Internal  
Internal  
Internal  
Internal  
Internal  
A
P7  
Internal  
Internal  
Internal  
Internal  
Internal  
T6  
E1  
D2  
C2  
A2  
K6  
P6  
T4  
A3  
C5  
B5  
A5  
C6  
A6  
B6  
A
A2  
A
E4  
CE1  
CE2  
BWD  
BWC  
BWB  
BWA  
Internal  
E4  
CE1  
A
B2  
A3  
A
B2  
CE2  
A
L3  
C5  
A
Internal  
Internal  
G3  
Internal  
Internal  
BWB  
BWA  
Internal  
A
G3  
G5  
L5  
B5  
A
A
A5  
A
A
C6  
A
L5  
A
Internal  
A6  
A
Internal  
A
B6  
A
Document #: 38-05541 Rev. *F  
Page 17 of 31  
[+] Feedback  
CY7C1361C  
CY7C1363C  
165-Ball FBGA Boundary Scan Order  
CY7C1361C (256K x 36)  
CY7C1363C (512K x 18)  
Signal  
Signal  
Name  
Signal  
Name  
Signal  
Name  
Bit # ball ID  
Name  
CLK  
GW  
BWE  
OE  
Bit #  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
ball ID  
R6  
P6  
R4  
P4  
R3  
P3  
R1  
N1  
L2  
Bit # ball ID  
Bit #  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
ball ID  
R6  
1
B6  
B7  
A0  
A1  
1
B6  
B7  
CLK  
GW  
A0  
A1  
2
2
P6  
3
A7  
A
3
A7  
BWE  
OE  
R4  
A
4
B8  
A
4
B8  
P4  
A
5
A8  
ADSC  
ADSP  
ADV  
A
A
5
A8  
ADSC  
ADSP  
ADV  
A
R3  
A
6
B9  
A
6
B9  
P3  
A
7
A9  
MODE  
DQPD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
Internal  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQPC  
A
7
A9  
R1  
MODE  
Internal  
Internal  
Internal  
Internal  
DQPB  
DQB  
8
B10  
A10  
C11  
E10  
F10  
G10  
D10  
D11  
E11  
F11  
G11  
H11  
J10  
K10  
L10  
M10  
J11  
K11  
L11  
M11  
N11  
R11  
R10  
P10  
R9  
8
B10  
Internal  
Internal  
Internal  
Internal  
N1  
9
A
9
A10  
A
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
DQPB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
ZZ  
K2  
J2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
A11  
A
Internal  
Internal  
Internal  
C11  
Internal  
Internal  
Internal  
DQPA  
DQA  
DQA  
DQA  
DQA  
ZZ  
M2  
M1  
L1  
M1  
L1  
DQB  
K1  
J1  
D11  
K1  
DQB  
E11  
J1  
DQB  
Internal  
G2  
F2  
F11  
Internal  
G2  
Internal  
DQB  
G11  
H11  
F2  
DQB  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQPA  
A
E2  
D2  
G1  
F1  
J10  
DQA  
DQA  
DQA  
DQA  
Internal  
Internal  
Internal  
Internal  
Internal  
A
E2  
DQB  
K10  
D2  
DQB  
L10  
Internal  
Internal  
Internal  
Internal  
Internal  
B2  
Internal  
Internal  
Internal  
Internal  
Internal  
A
M10  
Internal  
Internal  
Internal  
Internal  
Internal  
R11  
E1  
D1  
C1  
B2  
A2  
A
A2  
A
A3  
B3  
B4  
A4  
A5  
B5  
A6  
CE1  
CE2  
BWD  
BWC  
BWB  
BWA  
CE3  
A3  
CE1  
A
R10  
P10  
A
B3  
CE2  
A
A
Internal  
Internal  
A4  
Internal  
Internal  
BWB  
BWA  
CE3  
A
R9  
A
P9  
A
P9  
A
R8  
A
R8  
A
B5  
P8  
A
P8  
A
A6  
P11  
A
P11  
A
Document #: 38-05541 Rev. *F  
Page 18 of 31  
[+] Feedback  
CY7C1361C  
CY7C1363C  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage........................................... >2001V  
(per MIL-STD-883, Method 3015)  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-up Current..................................................... >200 mA  
Storage Temperature ................................65°C to + 150°C  
Operating Range  
Ambient Temperature with  
Power Applied............................................55°C to + 125°C  
Ambient  
Temperature  
Range  
VDD  
VDDQ  
Supply Voltage on VDD Relative to GND....... –0.5V to + 4.6V  
Supply Voltage on VDDQ Relative to GND .....0.5V to + VDD  
Commercial 0°C to +70°C 3.3V – 5%/+10% 2.5V – 5%  
to VDD  
Industrial  
–40°C to +85°C  
DC Voltage Applied to Outputs  
in tri-state ............................................ –0.5V to VDDQ + 0.5V  
Automotive –40°C to +125°C  
DC Input Voltage....................................–0.5V to VDD + 0.5V  
[13, 14]  
Electrical Characteristics Over the Operating Range  
Parameter  
VDD  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min.  
3.135  
3.135  
2.375  
2.4  
Max.  
3.6  
Unit  
V
VDDQ  
for 3.3V I/O  
for 2.5V I/O  
VDD  
V
2.625  
V
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH Voltage  
Output LOW Voltage  
for 3.3V I/O, IOH = 4.0 mA  
for 2.5V I/O, IOH = 1.0 mA  
for 3.3V I/O, IOL= 8.0 mA  
for 2.5V I/O, IOL= 1.0 mA  
V
2.0  
V
0.4  
V
0.4  
VDD + 0.3V  
VDD + 0.3V  
0.8  
V
Input HIGH Voltage[13] for 3.3V I/O  
2.0  
1.7  
V
for 2.5V I/O  
V
Input LOW Voltage[13] for 3.3V I/O  
for 2.5V I/O  
–0.3  
–0.3  
–5  
V
0.7  
V
Input Leakage Current GND VI VDDQ  
except ZZ and MODE  
5
µA  
Input Current of MODE Input = VSS  
Input = VDD  
–30  
–5  
µA  
µA  
µA  
µA  
µA  
mA  
5
Input Current of ZZ  
Input = VSS  
Input = VDD  
30  
5
IOZ  
IDD  
Output Leakage Current GND < VI < VDDQ, Output Disabled  
VDD Operating Supply VDD = Max., IOUT = 0 mA, 7.5-ns cycle,133 MHz  
10-ns cycle,100 MHz  
–5  
250  
180  
110  
150  
Current  
f = fMAX = 1/tCYC  
ISB1  
Automatic CE  
Power-down  
Max. VDD, Device Deselected, All speeds (Comm/Ind’l)  
VIN> VIH or VIN < VIL, f = fMAX,  
mA  
mA  
10-ns cycle,100 MHz  
Current—TTL Inputs  
inputs switching  
(Automotive)  
ISB2  
Automatic CE  
Power-down  
Max. VDD, Device Deselected, All speeds  
40  
mA  
VIN > VDD – 0.3V or VIN < 0.3V,  
Current—CMOS Inputs f = 0, inputs static  
ISB3  
Automatic CE  
Power-down  
Current—CMOS Inputs f = fMAX, inputs switching  
Max. VDD, Device Deselected, All speeds (Comm/Ind’l)  
100  
120  
mA  
mA  
VIN > VDDQ – 0.3V or VIN < 0.3V,  
10-ns cycle,100 MHz  
(Automotive)  
ISB4  
Automatic CE  
Power-down  
Current—TTL Inputs  
Max. VDD, Device Deselected, All speeds (Comm/Ind’l)  
40  
60  
mA  
mA  
VIN > VIH or VIN < VIL  
10-ns cycle,100 MHz  
f = 0, inputs static  
(Automotive)  
Notes:  
13. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > –2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
14. T  
: Assumes a linear ramp from 0V to V (min.) within 200ms. During this time V < V and V  
< V  
.
Power-up  
DD  
IH  
DD  
DDQ  
DD  
Document #: 38-05541 Rev. *F  
Page 19 of 31  
[+] Feedback  
CY7C1361C  
CY7C1363C  
Capacitance[15]  
100 TQFP 119 BGA 165 FBGA  
Parameter  
Description  
Input Capacitance  
Test Conditions  
Max.  
Max.  
Max.  
Unit  
pF  
CIN  
TA = 25°C, f = 1 MHz,  
5
5
5
5
5
7
5
5
7
VDD = 3.3V  
CCLK  
CI/O  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
VDDQ = 2.5V  
pF  
Thermal Resistance[15]  
100 TQFP  
Package  
119 BGA  
Package  
165 FBGA  
Package  
Parameter  
Description  
Test Conditions  
Unit  
ΘJA  
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow standard  
test methods and procedures  
for measuring thermal  
29.41  
34.1  
16.8  
°C/W  
ΘJC  
Thermal Resistance  
(Junction to Case)  
6.31  
14.0  
3.0  
°C/W  
impedance, per EIA/JESD51  
AC Test Loads and Waveforms  
3.3V I/O Test Load  
R = 317Ω  
3.3V  
OUTPUT  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
L
GND  
5 pF  
INCLUDING  
R = 351Ω  
1 ns  
1 ns  
V = 1.5V  
T
JIG AND  
SCOPE  
(a)  
(b)  
(c)  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50Ω  
0
10%  
L
5 pF  
R = 1538Ω  
1 ns  
1 ns  
V = 1.25V  
T
INCLUDING  
JIG AND  
SCOPE  
(a)  
(b)  
(c)  
Note:  
15. Tested initially and after any design or process change that may affect these parameters.  
Document #: 38-05541 Rev. *F  
Page 20 of 31  
[+] Feedback  
CY7C1361C  
CY7C1363C  
Switching Characteristics Over the Operating Range[20, 21]  
–133  
–100  
Parameter  
tPOWER  
Clock  
tCYC  
Description  
VDD(Typical) to the first Access[16]  
Min.  
Max.  
Min.  
Max.  
Unit  
1
1
ms  
Clock Cycle Time  
Clock HIGH  
7.5  
3.0  
3.0  
10  
4.0  
4.0  
ns  
ns  
ns  
tCH  
tCL  
Clock LOW  
Output Times  
tCDV  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z[17, 18, 19]  
6.5  
8.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
2.0  
0
2.0  
0
tCLZ  
tCHZ  
Clock to High-Z[17, 18, 19]  
3.5  
3.5  
3.5  
3.5  
tOEV  
OE LOW to Output Valid  
tOELZ  
tOEHZ  
Set-up Times  
tAS  
OE LOW to Output Low-Z[17, 18, 19]  
OE HIGH to Output High-Z[17, 18, 19]  
0
0
3.5  
3.5  
Address Set-up Before CLK Rise  
ADSP, ADSC Set-up Before CLK Rise  
ADV Set-up Before CLK Rise  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADS  
tADVS  
tWES  
GW, BWE, BW[A:D] Set-up Before CLK Rise  
Data Input Set-up Before CLK Rise  
Chip Enable Set-up  
tDS  
tCES  
Hold Times  
tAH  
Address Hold After CLK Rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADH  
ADSP, ADSC Hold After CLK Rise  
GW, BWE, BW[A:D] Hold After CLK Rise  
ADV Hold After CLK Rise  
tWEH  
tADVH  
tDH  
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
tCEH  
Notes:  
16. This part has a voltage regulator internally; t  
is the time that the power needs to be supplied above V (minimum) initially, before a read or write operation  
DD  
POWER  
can be initiated.  
17. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
OEHZ  
CHZ CLZ OELZ  
18. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
OEHZ  
OELZ  
CHZ  
CLZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions.  
19. This parameter is sampled and not 100% tested.  
20. Timing reference level is 1.5V when V  
= 3.3V and is 1.25V when V  
= 2.5V.  
DDQ  
DDQ  
21. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
Document #: 38-05541 Rev. *F  
Page 21 of 31  
[+] Feedback  
CY7C1361C  
CY7C1363C  
Timing Diagrams  
Read Cycle Timing[22]  
t
CYC  
t
CLK  
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
ADDRESS  
t
t
WES  
WEH  
GW, BWE,BW  
X
Deselect Cycle  
t
t
CES  
CEH  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
t
CDV  
OEV  
OELZ  
t
t
OEHZ  
CHZ  
t
DOH  
t
CLZ  
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2 + 3)  
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A1)  
Data Out (Q)  
High-Z  
t
CDV  
Burst wraps around  
to its initial state  
Single READ  
BURST  
READ  
DON’T CARE  
UNDEFINED  
Note:  
22. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
Document #: 38-05541 Rev. *F  
Page 22 of 31  
[+] Feedback  
CY7C1361C  
CY7C1363C  
Timing Diagrams (continued)  
Write Cycle Timing[22, 23]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Byte write signals are ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BWE,  
BW  
X
t
t
WEH  
WES  
GW  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
ADV suspends burst  
OE  
t
t
DH  
DS  
Data in (D)  
High-Z  
D(A2)  
D(A2 + 1)  
D(A2 + 1)  
D(A2 + 2)  
D(A2 + 3)  
D(A3)  
D(A3 + 1)  
D(A3 + 2)  
D(A1)  
t
OEHZ  
Data Out (Q)  
BURST READ  
BURST WRITE  
Extended BURST WRITE  
Single WRITE  
DON’T CARE  
UNDEFINED  
Note:  
23.  
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW LOW.  
X
Document #: 38-05541 Rev. *F  
Page 23 of 31  
[+] Feedback  
CY7C1361C  
CY7C1363C  
Timing Diagrams (continued)  
Read/Write Cycle Timing[22, 24, 25]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE, BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
DS  
t
OELZ  
t
High-Z  
D(A3)  
D(A5)  
D(A6)  
Data In (D)  
t
OEHZ  
CDV  
Data Out (Q)  
Q(A1)  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
Back-to-Back  
Back-to-Back READs  
Single WRITE  
BURST READ  
WRITEs  
DON’T CARE  
UNDEFINED  
Notes:  
24. The data bus (Q) remains in high-Z following a WRITE cycle, unless a new read access is initiated by ADSP or ADSC.  
25.  
GW is HIGH.  
Document #: 38-05541 Rev. *F  
Page 24 of 31  
[+] Feedback  
CY7C1361C  
CY7C1363C  
Timing Diagrams (continued)  
ZZ Mode Timing[26, 27]  
CLK  
ZZ  
t
t
ZZ  
ZZREC  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes:  
26. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.  
27. DQs are in high-Z when exiting ZZ sleep mode.  
Document #: 38-05541 Rev. *F  
Page 25 of 31  
[+] Feedback  
CY7C1361C  
CY7C1363C  
Ordering Information  
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or  
visit www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
Part and Package Type  
133 CY7C1361C-133AXC  
CY7C1363C-133AXC  
CY7C1361C-133AJXC  
CY7C1363C-133AJXC  
CY7C1361C-133BGC  
CY7C1363C-133BGC  
CY7C1361C-133BGXC  
CY7C1363C-133BGXC  
CY7C1361C-133BZC  
CY7C1363C-133BZC  
CY7C1361C-133BZXC  
CY7C1363C-133BZXC  
CY7C1361C-133AXI  
CY7C1363C-133AXI  
CY7C1361C-133AJXI  
CY7C1363C-133AJXI  
CY7C1361C-133BGI  
CY7C1363C-133BGI  
CY7C1361C-133BGXI  
CY7C1363C-133BGXI  
CY7C1361C-133BZI  
CY7C1363C-133BZI  
CY7C1361C-133BZXI  
CY7C1363C-133BZXI  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
(3 Chip Enable)  
Commercial  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
(2 Chip Enable)  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Lead-Free  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Lead-Free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
(3 Chip Enable)  
lndustrial  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
(2 Chip Enable)  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Lead-Free  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Lead-Free  
Document #: 38-05541 Rev. *F  
Page 26 of 31  
[+] Feedback  
CY7C1361C  
CY7C1363C  
Ordering Information (continued)  
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or  
visit www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
Part and Package Type  
100 CY7C1361C-100AXC  
CY7C1363C-100AXC  
CY7C1361C-100AJXC  
CY7C1363C-100AJXC  
CY7C1361C-100BGC  
CY7C1363C-100BGC  
CY7C1361C-100BGXC  
CY7C1363C-100BGXC  
CY7C1361C-100BZC  
CY7C1363C-100BZC  
CY7C1361C-100BZXC  
CY7C1363C-100BZXC  
CY7C1361C-100AXI  
CY7C1363C-100AXI  
CY7C1361C-100AJXI  
CY7C1363C-100AJXI  
CY7C1361C-100BGI  
CY7C1363C-100BGI  
CY7C1361C-100BGXI  
CY7C1363C-100BGXI  
CY7C1361C -100BZI  
CY7C1363C-100BZI  
CY7C1361C-100BZXI  
CY7C1363C-100BZXI  
100 CY7C1361C-100AXE  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
(3 Chip Enable)  
Commercial  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
(2 Chip Enable)  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Lead-Free  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Lead-Free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
(3 Chip Enable)  
lndustrial  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
(2 Chip Enable)  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Lead-Free  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Lead-Free  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
Automotive  
Document #: 38-05541 Rev. *F  
Page 27 of 31  
[+] Feedback  
CY7C1361C  
CY7C1363C  
Package Diagrams  
100-Pin TQFP (14 x 20 x 1.4 mm) (51-85050)  
16.00 0.20  
1.40 0.05  
14.00 0.10  
100  
81  
80  
1
0.30 0.08  
0.65  
TYP.  
12° 1°  
(8X)  
SEE DETAIL  
A
30  
51  
31  
50  
0.20 MAX.  
1.60 MAX.  
R 0.08 MIN.  
0.20 MAX.  
0° MIN.  
SEATING PLANE  
STAND-OFF  
0.05 MIN.  
0.15 MAX.  
NOTE:  
0.25  
1. JEDEC STD REF MS-026  
GAUGE PLANE  
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH  
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE  
R 0.08 MIN.  
0.20 MAX.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH  
3. DIMENSIONS IN MILLIMETERS  
0°-7°  
0.60 0.15  
0.20 MIN.  
51-85050-*B  
1.00 REF.  
DETAIL  
A
Document #: 38-05541 Rev. *F  
Page 28 of 31  
[+] Feedback  
CY7C1361C  
CY7C1363C  
Package Diagrams (continued)  
119-Ball BGA (14 x 22 x 2.4 mm) (51-85115)  
Ø0.05 M C  
Ø0.25 M C A B  
A1 CORNER  
Ø0.75 0.15(119X)  
Ø1.00(3X) REF.  
1
2
3
4
5
6
7
7
6
5
4
3
2
1
A
B
C
D
E
A
B
C
D
E
F
F
G
H
G
H
J
K
L
J
K
L
M
N
P
R
T
M
N
P
R
T
U
U
1.27  
0.70 REF.  
A
3.81  
12.00  
7.62  
B
14.00 0.20  
0.15(4X)  
30° TYP.  
51-85115-*B  
SEATING PLANE  
C
Document #: 38-05541 Rev. *F  
Page 29 of 31  
[+] Feedback  
CY7C1361C  
CY7C1363C  
Package Diagrams (continued)  
165-Ball FBGA (13 x 15 x 1.4 mm) (51-85180)  
BOTTOM VIEW  
PIN 1 CORNER  
TOP VIEW  
Ø0.05 M C  
PIN 1 CORNER  
Ø0.25 M C A B  
-0.06  
Ø0.50
(165X)  
+0.14  
1
2
3
4
5
6
7
8
9
10  
11  
11 10  
9
8
7
6
5
4
3
2
1
A
A
B
B
C
D
C
D
E
E
F
F
G
G
H
J
H
J
K
K
L
L
M
M
N
P
R
N
P
R
A
A
1.00  
5.00  
10.00  
13.00 0.10  
B
B
13.00 0.10  
0.15(4X)  
NOTES :  
SOLDER PAD TYPE : NON-SOLDER MASK DEFINED (NSMD)  
PACKAGE WEIGHT : 0.475g  
JEDECREFERENCE: MO-216 / DESIGN 4.6C  
PACKAGE CODE : BB0AC  
SEATING PLANE  
C
51-85180-*A  
i486 is a trademark, and Intel and Pentium are registered trademarks of Intel Corporation. PowerPC is a trademark of IBM  
Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05541 Rev. *F  
Page 30 of 31  
© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
[+] Feedback  
CY7C1361C  
CY7C1363C  
Document History Page  
Document Title: CY7C1361C/CY7C1363C 9-Mbit (256K x 36/512K x 18) Flow-Through SRAM  
Document Number: 38-05541  
Orig. of  
REV.  
**  
ECN NO. Issue Date  
Change  
Description of Change  
241690  
278969  
332059  
See ECN  
See ECN  
See ECN  
RKF  
New data sheet  
*A  
RKF  
Changed Boundary Scan order to match the B rev of these devices.  
*B  
PCI  
Removed 117-MHz Speed Bin  
Address expansion pins/balls in the pinouts for all packages are modified  
as per JEDEC standard  
Added Address Expansion pins in the Pin Definitions Table  
Changed Device Width (23:18) for 119-BGA from 000001 to 101001  
Added separate row for 165 -FBGA Device Width (23:18)  
Changed IDDZZ from 35 mA to 50 mA  
Changed ISB1 and ISB3 from 40 mA to 110 and 100 mA, respectively  
Modified VOL, VOH test conditions  
Corrected ISB4 Test Condition from (VIN VDD – 0.3V or VIN 0.3V) to  
(VIN VIH or VIN VIL) in the Electrical Characteristics table  
Changed ΘJA and ΘJc for TQFP Package from 25 and 9 °C/W to 29.41  
and 6.13 °C/W  
respectively  
Changed ΘJA and ΘJc for BGA Package from 25 and 6°C/W to 34.1 and  
14.0 °C/W  
respectively  
Changed ΘJA and ΘJc for FBGA Package from 27 and 6 °C/W to 16.8  
and 3.0 °C/W respectively  
Added lead-free information for 100-pin TQFP, 119 BGA and 165 FBGA  
packages  
Updated Ordering Information Table  
*C  
*D  
377095  
408298  
See ECN  
See ECN  
PCI  
Changed ISB2 from 30 to 40 mA  
Modified test condition in note# 14 from VIH < VDD to VIH < VDD  
RXU  
Changed address of Cypress Semiconductor Corporation on Page# 1  
from “3901 North First Street” to “198 Champion Court”  
Changed tri state to tri-state.  
Modified “Input Load” to “Input Leakage Current except ZZ and MODE”  
in the Electrical Characteristics Table.  
Replaced Package Name column with Package Diagram in the Ordering  
Information table.  
Updated the ordering information.  
*E  
*F  
433033  
501793  
See ECN  
See ECN  
NXR  
VKN  
Included Automotive range.  
Added the Maximum Rating for Supply Voltage on VDDQ Relative to GND  
Changed tTH, tTL from 25 ns to 20 ns and tTDOV from 5 ns to 10 ns in TAP  
AC Switching Characteristics table.  
Updated the Ordering Information table.  
Document #: 38-05541 Rev. *F  
Page 31 of 31  
[+] Feedback  

相关型号:

CY7C1361C-133AJXI

9-Mbit (256K x 36/512K x 18) Flow-Through SRAM
CYPRESS

CY7C1361C-133AXC

9-Mbit (256K x 36/512K x 18) Flow-Through SRAM
CYPRESS

CY7C1361C-133AXI

9-Mbit (256K x 36/512K x 18) Flow-Through SRAM
CYPRESS

CY7C1361C-133AXIT

Standard SRAM, 256KX36, 6.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, LEAD FREE, MS-026, TQFP-100
CYPRESS

CY7C1361C-133BGC

9-Mbit (256K x 36/512K x 18) Flow-Through SRAM
CYPRESS

CY7C1361C-133BGI

9-Mbit (256K x 36/512K x 18) Flow-Through SRAM
CYPRESS

CY7C1361C-133BGXC

9-Mbit (256K x 36/512K x 18) Flow-Through SRAM
CYPRESS

CY7C1361C-133BGXI

9-Mbit (256K x 36/512K x 18) Flow-Through SRAM
CYPRESS

CY7C1361C-133BZC

9-Mbit (256K x 36/512K x 18) Flow-Through SRAM
CYPRESS

CY7C1361C-133BZI

9-Mbit (256K x 36/512K x 18) Flow-Through SRAM
CYPRESS

CY7C1361C-133BZXC

9-Mbit (256K x 36/512K x 18) Flow-Through SRAM
CYPRESS

CY7C1361C-133BZXI

9-Mbit (256K x 36/512K x 18) Flow-Through SRAM
CYPRESS