CY7C1363D [CYPRESS]

9-Mbit (512 K x 18) Flow-Through SRAM; 9兆位( 512K的×18 )流通型SRAM
CY7C1363D
型号: CY7C1363D
厂家: CYPRESS    CYPRESS
描述:

9-Mbit (512 K x 18) Flow-Through SRAM
9兆位( 512K的×18 )流通型SRAM

静态存储器
文件: 总22页 (文件大小:755K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1363D  
9-Mbit (512 K × 18) Flow-Through SRAM  
9-Mbit (512  
K × 18) Flow-Through SRAM  
Features  
Functional Description  
Supports 133 MHz bus operations  
512 K × 18 common I/O  
The CY7C1363D is a 3.3 V, 512 K × 18 synchronous flow-through  
SRAM, respectively designed to interface with high speed  
microprocessors with minimum glue logic. Maximum access  
delay from clock rise is 6.5 ns (133 MHz version). A 2-bit on-chip  
counter captures the first address in a burst and increments the  
address automatically for the rest of the burst access. All  
synchronous inputs are gated by registers controlled by a  
positive-edge-triggered clock input (CLK). The synchronous  
inputs include all addresses, all data inputs, address-pipelining  
chip enable (CE1), depth-expansion chip enables (CE2 and  
CE3[1]), burst control inputs (ADSC, ADSP, and ADV), write  
enables (BWx, and BWE), and global write (GW). Asynchronous  
inputs include the output enable (OE) and the ZZ pin.  
3.3 V – 5% and +10% core power supply (VDD  
)
2.5 V or 3.3 V I/O power supply (VDDQ  
)
Fast clock-to-output times  
6.5 ns (133-MHz version)  
Provide high performance 2-1-1-1 access rate  
User-selectable burst counter supporting IntelPentium  
interleaved or linear burst sequences  
Separate processor and controller address strobes  
Synchronous self-timed write  
The CY7C1363D enables either interleaved or linear burst  
sequences, selected by the MODE input pin. A HIGH selects an  
interleaved burst sequence, while a LOW selects a linear burst  
sequence. Burst accesses can be initiated with the processor  
address strobe (ADSP) or the cache controller address strobe  
(ADSC) inputs. Address advancement is controlled by the  
address advancement (ADV) input.  
Asynchronous output enable  
Available in Pb-free 100-pin TQFP package  
TQFP available with 3-chip enable  
“ZZ” sleep mode option  
Addresses and chip enables are registered at rising edge of  
clock when either address strobe processor (ADSP) or address  
strobe controller (ADSC) are active. Subsequent burst  
addresses can be internally generated as controlled by the  
advance pin (ADV).  
The CY7C1363D operates from a +3.3 V core power supply  
while all outputs may operate with either a +2.5 or +3.3 V supply.  
All  
inputs  
and  
outputs  
are  
JEDEC-standard  
JESD8-5-compatible.  
Selection Guide  
Description  
Maximum access time  
133 MHz Unit  
6.5  
250  
40  
ns  
Maximum operating current  
mA  
mA  
Maximum CMOS standby current  
Industrial  
Note  
1. CE is for A version of 100-pin TQFP (3 Chip Enable Option).  
3
Cypress Semiconductor Corporation  
Document Number: 001-86215 Rev. **  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised February 20, 2013  
CY7C1363D  
Logic Block Diagram – CY7C1363D  
ADDRESS  
REGISTER  
A0,A1,A  
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQ  
B,DQP B  
DQ  
B,DQP B  
WRITE DRIVER  
WRITE REGISTER  
BW  
B
MEMORY  
ARRAY  
OUTPUT  
BUFFERS  
DQs  
DQP  
DQP  
SENSE  
AMPS  
A
B
DQ  
A,DQP A  
DQ A,DQP A  
WRITE REGISTER  
WRITE DRIVER  
BW  
A
BWE  
GW  
INPUT  
REGISTERS  
ENABLE  
REGISTER  
CE  
CE  
1
2
3
CE  
OE  
SLEEP  
CONTROL  
ZZ  
Document Number: 001-86215 Rev. **  
Page 2 of 22  
CY7C1363D  
Contents  
Pin Configurations ...........................................................4  
Pin Definitions ..................................................................5  
Functional Overview ........................................................6  
Single Read Accesses ................................................6  
Single Write Accesses Initiated by ADSP ...................6  
Single Write Accesses Initiated by ADSC ...................7  
Burst Sequences .........................................................7  
Interleaved Burst Address Table .................................7  
Linear Burst Address Table .........................................7  
Sleep Mode .................................................................7  
ZZ Mode Electrical Characteristics ..............................7  
Truth Table ........................................................................8  
Partial Truth Table for Read/Write ..................................9  
Maximum Ratings ...........................................................10  
Operating Range .............................................................10  
Neutron Soft Error Immunity .........................................10  
Electrical Characteristics ...............................................10  
Capacitance ....................................................................11  
Thermal Resistance ........................................................11  
AC Test Loads and Waveforms .....................................12  
Switching Characteristics ..............................................13  
Timing Diagrams ............................................................14  
Ordering Information ......................................................18  
Ordering Code Definitions .........................................18  
Package Diagrams ..........................................................19  
Acronyms ........................................................................20  
Document Conventions .................................................20  
Units of Measure .......................................................20  
Document History Page .................................................21  
Sales, Solutions, and Legal Information ......................22  
Worldwide Sales and Design Support .......................22  
Products ....................................................................22  
PSoC Solutions .........................................................22  
Document Number: 001-86215 Rev. **  
Page 3 of 22  
CY7C1363D  
Pin Configurations  
Figure 1. 100-pin TQFP (14 × 20 × 1.4 mm) pinout (3 Chip Enables - A version)  
NC  
NC  
NC  
VDDQ  
VSSQ  
NC  
A
NC  
NC  
VDDQ  
VSSQ  
NC  
DQPA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
VSS  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS/DNU  
VDD  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
CY7C1363D  
(512 K × 18)  
NC  
VSS  
VDD  
ZZ  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQPB  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
NC  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
Document Number: 001-86215 Rev. **  
Page 4 of 22  
CY7C1363D  
Pin Definitions  
Name  
I/O  
Description  
A0, A1, A  
Input-  
Address inputs used to select one of the address locations. Sampled at the rising edge of the CLK  
synchronous if ADSP or ADSC is active LOW, and CE1, CE2, and CE3[2] are sampled active. A[1:0] feed the 2-bit  
counter.  
BWA,BWB  
GW  
Input-  
Byte write select inputs, active LOW. Qualified with BWE to conduct byte writes to the SRAM. Sampled  
synchronous on the rising edge of CLK.  
Input-  
Global write enable input, active LOW. When asserted LOW on the rising edge of CLK, a global write is  
synchronous conducted (all bytes are written, regardless of the values on BWX and BWE).  
CLK  
Input-  
clock  
Clock input. Used to capture all synchronous inputs to the device. Also used to increment the burst  
counter when ADV is asserted LOW, during a burst operation.  
CE1  
Input-  
Chip enable 1 input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE2  
synchronous and CE3[2] to select/deselect the device. ADSP is ignored if CE1 is HIGH. CE1 is sampled only when a  
new external address is loaded.  
CE2  
Input-  
Chip enable 2 input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with CE1  
synchronous and CE3[2] to select/deselect the device. CE2 is sampled only when a new external address is loaded.  
[2]  
CE3  
Input- Chip enable 3 input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE1  
synchronous and CE2 to select/deselect the device. CE3 is sampled only when a new external address is loaded.  
Input- Output enable, asynchronous input, active LOW. Controls the direction of the I/O pins. When LOW,  
OE  
asynchronous the I/O pins behave as outputs. When deasserted HIGH, I/O pins are tristated, and act as input data pins.  
OE is masked during the first clock of a read cycle when emerging from a deselected state.  
ADV  
Input-  
Advance input signal, sampled on the rising edge of CLK. When asserted, it automatically  
synchronous increments the address in a burst cycle.  
ADSP  
Input-  
Address strobe from processor, sampled on the rising edge of CLK, active LOW. When asserted  
synchronous LOW, addresses presented to the device are captured in the address registers. A[1:0] are also loaded  
into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. ASDP is  
ignored when  
is deasserted HIGH.  
CE1  
ADSC  
Input-  
Address strobe from controller, sampled on the rising edge of CLK, active LOW. When asserted  
synchronous LOW, addresses presented to the device are captured in the address registers. A[1:0] are also loaded  
into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized.  
BWE  
ZZ  
Input-  
Byte write enable input, active LOW. Sampled on the rising edge of CLK. This signal must be asserted  
synchronous LOW to conduct a byte write.  
Input-  
ZZ “sleep” input, active HIGH. When asserted HIGH places the device in a non-time-critical “sleep”  
asynchronous condition with data integrity preserved. For normal operation, this pin has to be LOW or left floating. ZZ  
pin has an internal pull down.  
I/O-  
Bidirectional data I/O lines. As inputs, they feed into an on-chip data register that is triggered by the  
DQs  
synchronous rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by the  
addresses presented during the previous clock rise of the read cycle. The direction of the pins is  
controlled by OE. When OE is asserted LOW, the pins behave as outputs. When HIGH, DQs and DQPX  
are placed in a tristate condition.The outputs are automatically tristated during the data portion of a write  
sequence, during the first clock when emerging from a deselected state, and when the device is  
deselected, regardless of the state of OE.  
I/O-  
Bidirectional data parity I/O lines. Functionally, these signals are identical to DQs. During write  
DQPX  
synchronous sequences, DQPX is controlled by BWX correspondingly.  
MODE  
Input-  
static  
Selects burst order. When tied to GND selects linear burst sequence. When tied to VDD or left floating  
selects interleaved burst sequence. This is a strap pin and should remain static during device operation.  
Mode Pin has an internal pull-up.  
VDD  
Power supply Power supply inputs to the core of the device.  
Note  
2. CE is for A version of 100-pin TQFP (3 Chip Enable Option).  
3
Document Number: 001-86215 Rev. **  
Page 5 of 22  
CY7C1363D  
Pin Definitions (continued)  
Name  
VDDQ  
I/O  
Description  
I/O power Power supply for the I/O circuitry.  
supply  
VSS  
VSSQ  
NC  
Ground  
Ground for the core of the device.  
I/O ground Ground for the I/O circuitry.  
No connects. Not internally connected to the die. 18M, 36M, 72M, 144M, 288M, 576M, and 1G are  
address expansion pins and are not internally connected to the die.  
VSS/DNU  
Ground/DNU This pin can be connected to ground or should be left floating.  
Single Read Accesses  
Functional Overview  
A single read access is initiated when the following conditions  
are satisfied at clock rise: (1) CE1, CE2, and CE3 are all  
All synchronous inputs pass through input registers controlled by  
the rising edge of the clock. Maximum access delay from the  
clock rise (tCDV) is 6.5 ns (133 MHz device).  
[3]  
asserted active and (2) ADSP or ADSC is asserted LOW (if the  
access is initiated by ADSC, the write inputs must be deasserted  
during this first cycle). The address presented to the address  
inputs is latched into the address register and the burst  
counter/control logic and presented to the memory core. If the  
OE input is asserted LOW, the requested data will be available  
at the data outputs a maximum to tCDV after clock rise. ADSP is  
ignored if CE1 is HIGH.  
The CY7C1363D supports secondary cache in systems using  
either a linear or interleaved burst sequence. The interleaved  
burst order supports Pentium and i486™ processors. The linear  
burst sequence is suited for processors that use a linear burst  
sequence. The burst order is user-selectable, and is determined  
by sampling the MODE input. Accesses can be initiated with  
either the processor address strobe (ADSP) or the controller  
address strobe (ADSC). Address advancement through the  
burst sequence is controlled by the ADV input. A two-bit on-chip  
wraparound burst counter captures the first address in a burst  
sequence and automatically increments the address for the rest  
of the burst access.  
Single Write Accesses Initiated by ADSP  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) CE1, CE2, CE3[3] are all asserted active  
and (2) ADSP is asserted LOW. The addresses presented are  
loaded into the address register and the burst inputs (GW, BWE,  
and BWX) are ignored during this first clock cycle. If the write  
inputs are asserted active (see Partial Truth Table for Read/Write  
on page 11 for appropriate states that indicate a write) on the  
next clock rise, the appropriate data will be latched and written  
into the device.Byte writes are allowed. All I/Os are tristated  
during a byte write. Since this is a common I/O device, the  
asynchronous OE input signal must be deasserted and the I/Os  
must be tristated prior to the presentation of data to DQs. As a  
safety precaution, the data lines are tristated once a write cycle  
is detected, regardless of the state of OE.  
Byte write operations are qualified with the byte write enable  
(BWE) and byte write select (BWX) inputs. A global write enable  
(GW) overrides all byte write inputs and writes data to all four  
bytes. All writes are simplified with on-chip synchronous  
self-timed write circuitry.  
Three synchronous chip selects (CE1, CE2, CE3[3]) and an  
asynchronous output enable (OE) provide for easy bank  
selection and output tristate control. ADSP is ignored if CE1 is  
HIGH.  
Note  
3. CE is for A version of 100-pin TQFP (3 Chip Enable Option).  
3
Document Number: 001-86215 Rev. **  
Page 6 of 22  
CY7C1363D  
Single Write Accesses Initiated by ADSC  
This write access is initiated when the following conditions are  
satisfied at clock rise: (1) CE1, CE2, and CE3[4] are all asserted  
active, (2) ADSC is asserted LOW, (3) ADSP is deasserted  
HIGH, and (4) the write input signals (GW, BWE, and BWX)  
indicate a write access. ADSC is ignored if ADSP is active LOW.  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
First  
Address  
A1:A0  
Second  
Address  
A1:A0  
Third  
Address  
A1:A0  
Fourth  
Address  
A1:A0  
The addresses presented are loaded into the address register  
and the burst counter/control logic and delivered to the memory  
core. The information presented to DQ[A:B] is written into the  
specified address location. Byte writes are allowed. All I/Os are  
tristated when a write is detected, even a byte write. Since this  
is a common I/O device, the asynchronous OE input signal must  
be deasserted and the I/Os must be tristated prior to the  
presentation of data to DQs. As a safety precaution, the data  
lines are tristated once a write cycle is detected, regardless of  
the state of OE.  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Linear Burst Address Table  
(MODE = GND)  
Burst Sequences  
First  
Address  
A1:A0  
Second  
Address  
A1:A0  
Third  
Address  
A1:A0  
Fourth  
Address  
A1:A0  
The CY7C1363D provides an on-chip two-bit wraparound burst  
counter inside the SRAM. The burst counter is fed by A[1:0], and  
can follow either a linear or interleaved burst order. The burst  
order is determined by the state of the MODE input. A LOW on  
MODE will select a linear burst sequence. A HIGH on MODE  
selects an interleaved burst order. Leaving MODE unconnected  
causes the device to default to a interleaved burst sequence.  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ places  
the SRAM in a power conservation ‘sleep’ mode. Two clock  
cycles are required to enter into or exit from this ‘sleep’ mode.  
While in this mode, data integrity is guaranteed. Accesses  
pending when entering the ‘sleep’ mode are not considered valid  
nor is the completion of the operation guaranteed. The device  
must be deselected prior to entering the ‘sleep’ mode. CE1, CE2,  
CE3[4], ADSP, and ADSC must remain inactive for the duration  
of tZZREC after the ZZ input returns LOW.  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Test Conditions  
Industrial  
Min  
Max  
Unit  
Sleep mode standby current  
ZZ > VDD– 0.2 V  
50  
mA  
tZZS  
Device operation to ZZ  
ZZ recovery time  
ZZ > VDD – 0.2 V  
ZZ < 0.2 V  
2tCYC  
2tCYC  
ns  
ns  
ns  
ns  
tZZREC  
tZZI  
ZZ active to sleep current  
This parameter is sampled  
2tCYC  
tRZZI  
ZZ Inactive to exit sleep current This parameter is sampled  
0
Note  
4. CE is for A version of 100-pin TQFP (3 Chip Enable Option).  
3
Document Number: 001-86215 Rev. **  
Page 7 of 22  
CY7C1363D  
Truth Table  
The Truth Table for CY7C1363D follows. [5, 6, 7, 8, 9]  
Cycle Description  
Address Used CE1 CE2 CE3 ZZ ADSP ADSC ADV WRITE OE CLK  
DQ  
Deselected cycle, power-down  
Deselected cycle, power-down  
Deselected cycle, power-down  
Deselected cycle, power-down  
Deselected cycle, power-down  
Sleep mode, power-down  
Read cycle, begin burst  
None  
None  
H
L
X
L
X
X
H
X
X
X
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
L
L–H Tri-state  
L–H Tri-state  
L–H Tri-state  
L–H Tri-state  
L–H Tri-state  
None  
L
X
L
L
None  
L
H
H
X
L
None  
X
X
L
X
X
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
L
None  
X
X
X
L
X
Tri-state  
Q
External  
External  
External  
External  
External  
Next  
L–H  
Read cycle, begin burst  
L
L
L
H
X
L
L–H Tri-state  
D
Q
Write cycle, begin burst  
L
L
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
L–H  
L–H  
Read cycle, begin burst  
L
L
L
H
H
H
H
H
H
L
Read cycle, begin burst  
L
L
L
H
L
L–H Tri-state  
Q
Read cycle, continue burst  
Read cycle, continue burst  
Read cycle, continue burst  
Read cycle, continue burst  
Write cycle, continue burst  
Write cycle, continue burst  
Read cycle, suspend burst  
Read cycle, suspend burst  
Read cycle, suspend burst  
Read cycle, suspend burst  
Write cycle, suspend burst  
Write cycle, suspend burst  
X
X
H
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
L–H  
L–H Tri-state  
L–H  
L–H Tri-state  
Next  
L
H
L
Next  
L
Q
Next  
L
H
X
X
L
Next  
L
L–H  
L–H  
L–H  
D
D
Q
Next  
L
L
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
H
L
L–H Tri-state  
L–H  
L–H Tri-state  
Q
H
X
X
L–H  
L–H  
D
D
L
Notes  
5. X = “Don't Care.” H = Logic HIGH, L = Logic LOW.  
6. WRITE = L when any one or more byte write enable signals and BWE = L or GW = L. WRITE = H when all byte write enable signals, BWE, GW = H.  
7. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
8. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks after  
X
the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state. OE is a don't care  
for the remainder of the write cycle.  
9. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tri-state when OE is inactive  
or when the device is deselected, and all data bits behave as output when OE is active (LOW).  
Document Number: 001-86215 Rev. **  
Page 8 of 22  
CY7C1363D  
Partial Truth Table for Read/Write  
The Partial Truth Table for Read/Write for CY7C1363D follows. [10, 11]  
GW  
H
BWE  
BWB  
X
BWA  
X
Function (CY7C1363D)  
Read  
Read  
H
L
L
L
L
X
H
H
H
Write byte A – (DQA and DQPA)  
Write byte B – (DQB and DQPB)  
Write all bytes  
H
H
L
H
L
H
H
L
L
Write all bytes  
L
X
X
Notes  
10. X = “Don't Care.” H = Logic HIGH, L = Logic LOW.  
11. Table only lists a partial listing of the byte write combinations. Any Combination of BW is valid Appropriate write will be done based on which byte write is active.  
X
Document Number: 001-86215 Rev. **  
Page 9 of 22  
CY7C1363D  
Maximum Ratings  
Operating Range  
Ambient  
Temperature  
Exceeding maximum ratings may impair the useful life of the  
device. These user guidelines are not tested.  
Range  
VDD  
VDDQ  
Industrial  
–40 °C to +85 °C 3.3 V– 5% / 2.5 V – 5% to  
Storage temperature ............................... –65 °C to + 150 °C  
+ 10%  
VDD  
Ambient temperature with  
power applied ......................................... –55 °C to + 125 °C  
Neutron Soft Error Immunity  
Supply voltage on VDD relative to GND ......–0.5 V to + 4.6 V  
Supply voltage on VDDQ relative to GND ..... –0.5 V to + VDD  
Test  
Parameter Description  
Conditions  
Typ Max* Unit  
DC voltage applied to outputs  
in tri-state ..........................................–0.5 V to VDDQ + 0.5 V  
LSBU  
LMBU  
SEL  
Logical  
single-bit  
upsets  
25 °C  
25 °C  
85 °C  
361 394  
FIT/  
Mb  
DC input voltage .................................0.5 V to VDD + 0.5 V  
Current into outputs (LOW) ........................................ 20 mA  
Logical  
multi-bit  
upsets  
0
0
0.01 FIT/  
Mb  
Static discharge voltage  
(per MIL-STD-883, method 3015) ......................... > 2001 V  
Single event  
latch up  
0.1  
FIT/  
Dev  
Latch-up current ................................................... > 200 mA  
* No LMBU or SEL events occurred during testing; this column represents a  
2
statistical , 95% confidence limit calculation. For more details refer to  
Application Note AN54908 “Accelerated Neutron SER Testing and Calculation of  
Terrestrial Failure Rates”  
Electrical Characteristics  
Over the Operating Range  
Parameter [12, 13]  
Description  
Power supply voltage  
I/O supply voltage  
Test Conditions  
Min  
3.135  
3.135  
2.375  
2.4  
Max  
Unit  
V
VDD  
3.6  
VDDQ  
for 3.3 V I/O  
for 2.5 V I/O  
VDD  
V
2.625  
V
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH voltage  
Output LOW voltage  
Input HIGH voltage[12]  
Input LOW voltage[12]  
for 3.3 V I/O, IOH =4.0 mA  
for 2.5 V I/O, IOH =1.0 mA  
for 3.3 V I/O, IOL=8.0 mA  
for 2.5 V I/O, IOL= 1.0 mA  
for 3.3 V I/O  
V
2.0  
0.4  
V
V
0.4  
V
2.0  
VDD + 0.3 V  
V
for 2.5 V I/O  
1.7  
V
DD + 0.3 V  
V
for 3.3 V I/O  
–0.3  
–0.3  
–5  
0.8  
0.7  
5
V
for 2.5 V I/O  
V
Input leakage current except ZZ GND VI VDDQ  
and MODE  
A  
Input current of MODE  
Input = VSS  
–30  
5
A  
A  
A  
A  
A  
Input = VDD  
Input current of ZZ  
Input = VSS  
–5  
Input = VDD  
30  
5
IOZ  
Output leakage current  
GND < VI < VDDQ, output disabled  
–5  
Notes  
12. Overshoot: V  
< V + 1.5 V (Pulse width less than t  
/2), undershoot: V  
> –2 V (Pulse width less than t  
/2).  
IH(AC)  
DD  
CYC  
IL(AC)  
CYC  
13. T  
: Assumes a linear ramp from 0 V to V  
within 200 ms. During this time V < V and V  
V  
.
Power-up  
DD(min)  
IH  
DD  
DDQ  
DD  
Document Number: 001-86215 Rev. **  
Page 10 of 22  
CY7C1363D  
Electrical Characteristics (continued)  
Over the Operating Range  
Parameter [12, 13]  
Description  
Test Conditions  
VDD = Max, IOUT = 0 mA,  
f = fMAX = 1/tCYC  
Min  
Max  
Unit  
IDD  
VDD operating supply current  
7.5 ns cycle,  
133 MHz  
250  
mA  
ISB1  
ISB2  
ISB3  
ISB4  
Automatic CE power-down  
current – TTL inputs  
Max VDD, device deselected,  
VIN> VIH or VIN < VIL, f = fMAX, 133 MHz  
inputs switching  
7.5 ns cycle,  
110  
40  
mA  
mA  
mA  
mA  
Automatic CE power-down  
current – CMOS inputs  
Max VDD, device deselected,  
7.5 ns cycle,  
VIN > VDD – 0.3 V or VIN < 0.3 V, 133 MHz  
f = 0, inputs static  
Automatic CE power-down  
current – CMOS inputs  
Max VDD, device deselected,  
7.5 ns cycle,  
100  
40  
VIN > VDDQ – 0.3 V or VIN < 0.3 V, 133 MHz  
f = fMAX, inputs switching  
Automatic CE power-down  
current – TTL inputs  
Max VDD, device deselected,  
7.5 ns cycle,  
133 MHz  
VIN > VIH or VIN < VIL,  
f = 0, inputs static  
Capacitance  
100-pin TQFP  
Max  
Parameter [14]  
Description  
Test Conditions  
Unit  
CIN  
Input capacitance  
TA = 25 C, f = 1 MHz,  
VDD = 3.3 V, VDDQ = 2.5 V  
5
5
5
pF  
pF  
pF  
CCLK  
CI/O  
Clock input capacitance  
Input/output capacitance  
Thermal Resistance  
100-pin TQFP  
Package  
Parameter [14]  
Description  
Test Conditions  
Unit  
JA  
Thermal resistance  
(junction to ambient)  
Test conditions follow standard test methods and proce-  
dures for measuring thermal impedance, according to  
EIA/JESD51  
29.41  
°C/W  
JC  
Thermal resistance  
(junction to case)  
6.31  
°C/W  
Note  
14. Tested initially and after any design or process change that may affect these parameters.  
Document Number: 001-86215 Rev. **  
Page 11 of 22  
CY7C1363D  
AC Test Loads and Waveforms  
Figure 2. AC Test Loads and Waveforms  
3.3 V I/O Test Load  
R = 317  
3.3 V  
OUTPUT  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
90%  
10%  
Z = 50   
0
R = 50   
10%  
L
GND  
5 pF  
R = 351   
1 ns  
1 ns  
INCLUDING  
JIG AND  
SCOPE  
V
= 1.5 V  
T
(a)  
2.5 V I/O Test Load  
(b)  
(c)  
R = 1667   
2.5 V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
OUTPUT  
90%  
10%  
Z = 50   
0
R = 50   
10%  
L
GND  
5 pF  
R = 1538   
1 ns  
1 ns  
V
= 1.25 V  
T
INCLUDING  
JIG AND  
SCOPE  
(a)  
(b)  
(c)  
Document Number: 001-86215 Rev. **  
Page 12 of 22  
CY7C1363D  
Switching Characteristics  
Over the Operating Range  
-133  
Parameter [15, 16]  
Description  
VDD(typical) to the first access [17]  
Unit  
Min  
Max  
tPOWER  
Clock  
tCYC  
1
ms  
Clock cycle time  
Clock HIGH  
7.5  
3.0  
3.0  
ns  
ns  
ns  
tCH  
tCL  
Clock LOW  
Output Times  
tCDV  
Data output valid after CLK rise  
Data output hold after CLK rise  
Clock to low Z [18, 19, 20]  
2.0  
0
6.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
tCLZ  
tCHZ  
Clock to high Z [18, 19, 20]  
3.5  
3.5  
tOEV  
OE LOW to output valid  
tOELZ  
tOEHZ  
Set-up Times  
tAS  
OE LOW to output low Z [18, 19, 20]  
OE HIGH to output high Z [18, 19, 20]  
0
3.5  
Address setup before CLK rise  
ADSP, ADSC setup before CLK rise  
ADV setup before CLK rise  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADS  
tADVS  
tWES  
GW, BWE, BW[A:B] setup before CLK rise  
Data input setup before CLK rise  
Chip enable setup  
tDS  
tCES  
Hold Times  
tAH  
Address hold after CLK rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADH  
ADSP, ADSC hold after CLK rise  
GW, BWE, BW[A:B] hold after CLK rise  
ADV hold after CLK rise  
tWEH  
tADVH  
tDH  
Data input hold after CLK rise  
Chip enable hold after CLK rise  
tCEH  
Notes  
15. Timing reference level is 1.5 V when V  
= 3.3 V and is 1.25 V when V  
= 2.5 V.  
DDQ  
DDQ  
16. Test conditions shown in (a) of Figure 2 on page 12 unless otherwise noted.  
17. This part has a voltage regulator internally; t  
is the time that the power needs to be supplied above V  
initially, before a read or write operation can  
POWER  
DD(minimum)  
be initiated.  
18. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of Figure 2 on page 12. Transition is measured ± 200 mV from steady-state voltage.  
OEHZ  
CHZ CLZ OELZ  
19. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same data  
OEHZ  
OELZ  
CHZ  
CLZ  
bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve  
high Z prior to low Z under the same system conditions.  
20. This parameter is sampled and not 100% tested.  
Document Number: 001-86215 Rev. **  
Page 13 of 22  
CY7C1363D  
Timing Diagrams  
Figure 3. Read Cycle Timing [21]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
t
t
ADH  
ADS  
ADSC  
t
t
AH  
AS  
A1  
A2  
ADDRESS  
t
t
WES  
WEH  
GW, BWE,BW  
X
Deselect Cycle  
t
t
CES  
CEH  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
t
CDV  
OEV  
OELZ  
t
t
OEHZ  
CHZ  
t
DOH  
t
CLZ  
Q(A2)  
Q(A2 + 1)  
Q(A2  
+
2)  
Q(A2  
+
3)  
Q(A2)  
Q(A2  
+
1)  
Q(A2  
+
2)  
Q(A1)  
Data Out (Q)  
High-Z  
t
CDV  
Burst wraps around  
to its initial state  
Single READ  
BURST  
READ  
DON’T CARE  
UNDEFINED  
Note  
21. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
Document Number: 001-86215 Rev. **  
Page 14 of 22  
CY7C1363D  
Timing Diagrams (continued)  
Figure 4. Write Cycle Timing [22, 23]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Byte write signals are ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BWE,  
BWX  
t
t
WEH  
WES  
GW  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
ADV suspends burst  
OE  
t
t
DH  
DS  
Data in (D)  
High-Z  
D(A2)  
D(A2  
+
1)  
D(A2  
+
1)  
D(A2  
+
2)  
D(A2  
+
3)  
D(A3)  
D(A3  
+
1)  
D(A3 + 2)  
D(A1)  
t
OEHZ  
Data Out (Q)  
BURST READ  
BURST WRITE  
Extended BURST WRITE  
Single WRITE  
DON’T CARE  
UNDEFINED  
Notes  
22. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
23.  
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW LOW.  
X
Document Number: 001-86215 Rev. **  
Page 15 of 22  
CY7C1363D  
Timing Diagrams (continued)  
Figure 5. Read/Write Cycle Timing [24, 25, 26]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE, BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
DS  
t
OELZ  
t
High-Z  
D(A3)  
D(A5)  
D(A6)  
Data In (D)  
t
OEHZ  
CDV  
Data Out (Q)  
Q(A1)  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
Back-to-Back  
WRITEs  
Back-to-Back READs  
Single WRITE  
BURST READ  
DON’T CARE  
UNDEFINED  
Notes  
24. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
25. The data bus (Q) remains in high Z following a WRITE cycle, unless a new read access is initiated by ADSP or ADSC.  
26.  
GW is HIGH.  
Document Number: 001-86215 Rev. **  
Page 16 of 22  
CY7C1363D  
Timing Diagrams (continued)  
Figure 6. ZZ Mode Timing [27, 28]  
CLK  
ZZ  
t
t
ZZ  
ZZREC  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes  
27. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.  
28. DQs are in high Z when exiting ZZ sleep mode.  
Document Number: 001-86215 Rev. **  
Page 17 of 22  
CY7C1363D  
Ordering Information  
The table below contains only the parts that are currently available. If you don’t see what you are looking for, please contact your  
local sales representative. For more information, visit the Cypress website at www.cypress.com and refer to the product summary  
page at http://www.cypress.com/products  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives and distributors. To find the office  
closest to you, visit us at http://www.cypress.com/go/datasheet/offices.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Part and Package Type  
Ordering Code  
133 CY7C1363D-133AXI  
51-85050 100-pin TQFP (14 × 20 × 1.4 mm) Pb-free (3 Chip Enable)  
lndustrial  
Ordering Code Definitions  
X
CY  
7
C
1363  
D
-
133  
A
I
Temperature Range:  
I = Industrial  
Pb-free  
Package Type:  
A = 100-pin TQFP (3 Chip Enable)  
Speed Grade: 133 MHz  
Process Technology: D90 nm  
Part Identifier:  
1363 = FT, 512 Kb × 18 (9 Mb)  
Technology Code: C = CMOS  
Marketing Code: 7 = SRAM  
Company ID: CY = Cypress  
Document Number: 001-86215 Rev. **  
Page 18 of 22  
CY7C1363D  
Package Diagrams  
Figure 7. 100-pin TQFP (14 × 20 × 1.4 mm) A100RA Package Outline, 51-85050  
51-85050 *D  
Document Number: 001-86215 Rev. **  
Page 19 of 22  
CY7C1363D  
Acronyms  
Document Conventions  
Units of Measure  
Acronym  
Description  
BGA  
CMOS  
CE  
ball grid array  
Symbol  
°C  
Unit of Measure  
complementary metal oxide semiconductor  
chip enable  
degree Celsius  
megahertz  
microampere  
milliampere  
millimeter  
millisecond  
millivolt  
MHz  
µA  
mA  
mm  
ms  
mV  
ns  
EIA  
electronic industries alliance  
fine-pitch ball grid array  
input/output  
FBGA  
I/O  
JEDEC  
LMBU  
LSB  
joint electron devices engineering council  
logical multi-bit upsets  
least significant bit  
nanosecond  
ohm  
LSBU  
MSB  
OE  
logical single-bit upsets  
most significant bit  
%
percent  
output enable  
pF  
V
picofarad  
volt  
PBGA  
SEL  
plastic ball grid array  
single event latch up  
W
watt  
SRAM  
TQFP  
TTL  
static random access memory  
thin quad flat pack  
transistor-transistor logic  
Document Number: 001-86215 Rev. **  
Page 20 of 22  
CY7C1363D  
Document History Page  
Document Title: CY7C1363D, 9-Mbit (512 K × 18) Flow-Through SRAM  
Document Number: 001-86215  
Submission  
Date  
Orig. of  
Change  
Rev.  
ECN No.  
Description of Change  
**  
3908991  
02/20/2013  
PRIT  
New data sheet.  
Document Number: 001-86215 Rev. **  
Page 21 of 22  
CY7C1363D  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
Products  
PSoC Solutions  
Automotive  
cypress.com/go/automotive  
cypress.com/go/clocks  
cypress.com/go/interface  
cypress.com/go/powerpsoc  
cypress.com/go/plc  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 5  
Clocks & Buffers  
Interface  
Lighting & Power Control  
Memory  
cypress.com/go/memory  
cypress.com/go/image  
cypress.com/go/psoc  
Optical & Image Sensing  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/go/touch  
cypress.com/go/USB  
cypress.com/go/wireless  
© Cypress Semiconductor Corporation, 2013. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any  
circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical,  
life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical  
components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 001-86215 Rev. **  
Revised February 20, 2013  
Page 22 of 22  
All products and company names mentioned in this document may be the trademarks of their respective holders.  

相关型号:

CY7C1363D-133AXI

9-Mbit (512 K x 18) Flow-Through SRAM
CYPRESS

CY7C1364B

9-Mb (256K x 32) Pipelined Sync SRAM
CYPRESS

CY7C1364B-166AC

9-Mb (256K x 32) Pipelined Sync SRAM
CYPRESS

CY7C1364B-200AC

Standard SRAM, 256KX32, 3ns, CMOS, PQFP100
CYPRESS

CY7C1364C

9-Mbit (256K x 32) Pipelined Sync SRAM
CYPRESS

CY7C1364C-166AJXC

9-Mbit (256K x 32) Pipelined Sync SRAM
CYPRESS

CY7C1364C-166AJXI

9-Mbit (256K x 32) Pipelined Sync SRAM
CYPRESS

CY7C1364C-166AXC

9-Mbit (256K x 32) Pipelined Sync SRAM
CYPRESS

CY7C1364C-166AXCT

Cache SRAM, 256KX32, 3.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, LEAD FREE, MS-026, TQFP-100
CYPRESS

CY7C1364C-166AXI

9-Mbit (256K x 32) Pipelined Sync SRAM
CYPRESS

CY7C1364C-200AJXC

9-Mbit (256K x 32) Pipelined Sync SRAM
CYPRESS

CY7C1364C-200AJXI

9-Mbit (256K x 32) Pipelined Sync SRAM
CYPRESS