CY7C1364C-250AXI [CYPRESS]

9-Mbit (256K x 32) Pipelined Sync SRAM; 9兆位( 256K ×32)流水线同步SRAM的
CY7C1364C-250AXI
型号: CY7C1364C-250AXI
厂家: CYPRESS    CYPRESS
描述:

9-Mbit (256K x 32) Pipelined Sync SRAM
9兆位( 256K ×32)流水线同步SRAM的

静态存储器
文件: 总18页 (文件大小:396K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1364C  
9-Mbit (256K x 32) Pipelined Sync SRAM  
Features  
Functional Description[1]  
• Registered inputs and outputs for pipelined operation  
• 256K × 32 common I/O architecture  
The CY7C1364C SRAM integrates 256K x 32 SRAM cells with  
advanced synchronous peripheral circuitry and a two-bit  
counter for internal burst operation. All synchronous inputs are  
gated by registers controlled by a positive-edge-triggered  
Clock Input (CLK). The synchronous inputs include all  
addresses, all data inputs, address-pipelining Chip Enable  
(CE1), depth-expansion Chip Enables (CE2 and CE3[2]), Burst  
Control inputs (ADSC, ADSP, and ADV), Write Enables  
(BW[A:D], and BWE), and Global Write (GW). Asynchronous  
inputs include the Output Enable (OE) and the ZZ pin.  
• 3.3V core power supply (VDD  
)
• 2.5V/3.3V I/O power supply (VDDQ  
)
• Fast clock-to-output times  
— 2.8 ns (for 250-MHz device)  
• Provide high-performance 3-1-1-1 access rate  
• User-selectable burst counter supporting Intel®  
Pentium® interleaved or linear burst sequences  
Addresses and chip enables are registered at rising edge of  
clock when either Address Strobe Processor (ADSP) or  
Address Strobe Controller (ADSC) are active. Subsequent  
burst addresses can be internally generated as controlled by  
the Advance pin (ADV).  
• Separate processor and controller address strobes  
• Synchronous self-timed writes  
• Asynchronous output enable  
Address, data inputs, and write controls are registered on-chip  
to initiate a self-timed Write cycle.This part supports Byte Write  
operations (see Pin Descriptions and Truth Table for further  
details). Write cycles can be one to four bytes wide as  
controlled by the Byte Write control inputs. GW when active  
• Available in JEDEC-standard lead-free 100-Pin TQFP  
package  
• TQFP Available with 3-Chip Enable and 2-Chip Enable  
• “ZZ” Sleep Mode Option  
causes all bytes to be written.  
LOW  
The CY7C1364C operates from a +3.3V core power supply  
while all outputs may operate with either a +2.5 or +3.3V  
supply. All inputs and outputs are JEDEC-standard  
JESD8-5-compatible.  
Logic Block Diagram-CY7C1364C (256K x 32)  
A0, A1, A  
ADDRESS  
REGISTER  
2
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER  
AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQ  
BYTE  
WRITE REGISTER  
D
DQ  
BYTE  
WRITE DRIVER  
D
BW  
D
DQ  
BYTE  
C
DQ  
BYTE  
C
BW  
C
OUTPUT  
BUFFERS  
WRITE DRIVER  
OUTPUT  
REGISTERS  
WRITE REGISTER  
MEMORY  
ARRAY  
SENSE  
AMPS  
DQ s  
DQ  
B
E
DQ  
B
BYTE  
WRITE DRIVER  
BYTE  
WRITE REGISTER  
BW  
BW  
B
A
DQ  
A
DQ  
A
BYTE  
WRITE DRIVER  
BYTE  
WRITE REGISTER  
BWE  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
PIPELINED  
ENABLE  
CE  
CE  
CE  
1
2
3
OE  
SLEEP  
CONTROL  
ZZ  
Notes:  
1. For best-practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
2. CE is not available on 2 Chip Enable TQFP package.  
3
Cypress Semiconductor Corporation  
Document #: 38-05689 Rev. *E  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised September 14, 2006  
[+] Feedback  
CY7C1364C  
Selection Guide  
250 MHz  
2.8  
200 MHz  
3.0  
166 MHz  
Unit  
ns  
Maximum Access Time  
3.5  
180  
40  
Maximum Operating Current  
Maximum CMOS Standby Current  
250  
220  
mA  
mA  
40  
40  
Pin Configuration  
100-Pin TQFP Pinout (2 Chip Enables) (AJ version)  
NC  
DQC  
DQC  
VDDQ  
VSSQ  
DQC  
DQC  
DQC  
DQC  
VSSQ  
VDDQ  
DQC  
DQC  
NC  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
BYTE C  
BYTE B  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDD  
NC  
VSS  
CY7C1364C  
NC  
VDD  
ZZ  
DQD  
DQD  
VDDQ  
VSSQ  
DQD  
DQD  
DQD  
DQD  
VSSQ  
VDDQ  
DQD  
DQD  
NC  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
NC  
BYTE D  
BYTE A  
Document #: 38-05689 Rev. *E  
Page 2 of 18  
[+] Feedback  
CY7C1364C  
Pin Configuration (continued)  
100-Pin TQFP Pinout (3 Chip Enables) (A version)  
NC  
DQC  
DQC  
VDDQ  
VSSQ  
DQC  
DQC  
DQC  
DQC  
VSSQ  
VDDQ  
DQC  
DQC  
NC  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
BYTE C  
BYTE B  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDD  
NC  
VSS  
CY7C1364C  
NC  
VDD  
ZZ  
DQD  
DQD  
VDDQ  
VSSQ  
DQD  
DQD  
DQD  
DQD  
VSSQ  
VDDQ  
DQD  
DQD  
NC  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
NC  
BYTE D  
BYTE A  
Document #: 38-05689 Rev. *E  
Page 3 of 18  
[+] Feedback  
CY7C1364C  
Pin Definitions  
Name  
TQFP  
I/O  
Description  
Address Inputs used to select one of the 256K address locations.  
A0, A1, A  
37, 36, 32, 33, 34, 35, 43,  
Input-  
44, 45, 46, 47, 48, 49, 50, Synchronous Sampled at the rising edge of the CLK if ADSP or ADSC is active LOW,  
81, 82, 99, 100  
and CE1, CE2, and CE3 are sampled active. A[1:0] feed the 2-bit counter.  
BWA, BWB  
BWC, BWD  
93, 94, 95, 96  
Input-  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct  
Synchronous byte writes to the SRAM. Sampled on the rising edge of CLK.  
GW  
88  
Input- Global Write Enable Input, active LOW. When asserted LOW on the  
Synchronous rising edge of CLK, a global Write is conducted (ALL bytes are written,  
regardless of the values on BW[A:D] and BWE).  
BWE  
CLK  
87  
89  
Input-  
Byte Write Enable Input, active LOW. Sampled on the rising edge of  
Synchronous CLK. This signal must be asserted LOW to conduct a Byte Write.  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. Also  
used to increment the burst counter when ADV is asserted LOW, during  
a burst operation.  
CE1  
98  
Input-  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK.  
Synchronous Used in conjunction with CE2 and CE3 to select/deselect the device.  
ADSP is ignored if CE1 is HIGH. CE1 is sampled only when a new  
external address is loaded.  
CE2  
CE3  
97  
92  
Input-  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK.  
and to select/deselect the device.  
CE2 is sampled only when a new external address is loaded.  
Synchronous Used in conjunction with  
CE1  
CE3  
Input-  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK.  
(for 3 Chip Enable Version) Synchronous Used in conjunction with CE1 and CE2 to select/deselect the  
device.CE3 is assumed active throughout this document for BGA. CE3  
is sampled only when a new external address is loaded.  
OE  
86  
Input-  
Output Enable, asynchronous input, active LOW. Controls the  
Asynchronous direction of the I/O pins. When LOW, the I/O pins behave as outputs.  
When deasserted HIGH, I/O pins are tri-stated, and act as input data  
pins. OEis masked during the first clock of a Read cycle when emerging  
from a deselected state.  
ADV  
83  
84  
Input-  
Advance Input signal, sampled on the rising edge of CLK, active  
Synchronous LOW. Whenasserted, itautomatically increments the address in a burst  
cycle.  
ADSP  
Input-  
Synchronous CLK, active LOW. When asserted LOW, A is captured in the address  
registers. A[1:0] are also loaded into the burst counter. When and  
Address Strobe from Processor, sampled on the rising edge of  
ADSP  
ADSC are both asserted, only ADSP is recognized. ASDP is ignored  
when CE1 is deasserted HIGH.  
ADSC  
ZZ  
85  
Input-  
Address Strobe from Controller, sampled on the rising edge of  
Synchronous CLK, active LOW. When asserted LOW, A is captured in the address  
registers. A[1:0] are also loaded into the burst counter. When ADSP and  
ADSC are both asserted, only ADSP is recognized.  
64  
Input-  
ZZ “sleep” Input, active HIGH. This input, when High places the  
Asynchronous device in a non-time-critical “sleep” condition with data integrity  
preserved. For normal operation, this pin has to be LOW or left floating.  
ZZ pin has an internal pull-down.  
DQs  
52, 53, 56, 57, 58, 59, 62,  
I/O-  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data  
63, 68, 69, 72, 73, 74, 75, Synchronous register that is triggered by the rising edge of CLK. As outputs, they  
78, 79, 2, 3, 6, 7, 8, 9, 12,  
13, 18, 19, 22, 23, 24, 25,  
28, 29  
deliver the data contained in the memory location specified by “A”  
during the previous clock rise of the Read cycle. The direction of the  
pins is controlled by OE. When OE is asserted LOW, the pins behave  
as outputs. When HIGH, DQ are placed in a tri-state condition.  
VDD  
VSS  
15, 41, 65, 91  
17, 40, 67, 90  
Power Supply Power supply inputs to the core of the device.  
Ground  
Ground for the core of the device.  
Document #: 38-05689 Rev. *E  
Page 4 of 18  
[+] Feedback  
CY7C1364C  
Pin Definitions (continued)  
Name  
VDDQ  
TQFP  
I/O  
Description  
4, 11, 20, 27, 54, 61, 70, 77 I/O Power Power supply for the I/O circuitry.  
Supply  
VSSQ  
5, 10, 21, 26, 55, 60, 71, 76 I/O Ground Ground for the I/O circuitry.  
MODE  
31  
Input-  
Static  
Selects Burst Order. When tied to GND selects linear burst sequence.  
When tied to VDD or left floating selects interleaved burst sequence.  
This is a strap pin and should remain static during device operation.  
Mode pin has an internal pull-up.  
NC  
1, 14, 16, 30, 38, 39, 42,  
51, 66, 80  
No Connects. Not internally connected to the die  
Single Write Accesses Initiated by ADSP  
Functional Overview  
This access is initiated when both of the following conditions  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock.  
are satisfied at clock rise: (1) ADSP is asserted LOW, and  
(2) CE1, CE2, CE3 are all asserted active. The address  
presented to A is loaded into the address register and the  
address advancement logic while being delivered to the RAM  
array. The Write signals (GW, BWE, and BW[A:D]) and ADV  
inputs are ignored during this first cycle.  
The CY7C1364C supports secondary cache in systems  
utilizing either a linear or interleaved burst sequence. The  
interleaved burst order supports Pentium and i486™  
processors. The linear burst sequence is suited for processors  
that utilize a linear burst sequence. The burst order is user  
selectable, and is determined by sampling the MODE input.  
Accesses can be initiated with either the Processor Address  
Strobe (ADSP) or the Controller Address Strobe (ADSC).  
Address advancement through the burst sequence is  
controlled by the ADV input. A two-bit on-chip wraparound  
burst counter captures the first address in a burst sequence  
and automatically increments the address for the rest of the  
burst access.  
ADSP-triggered Write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQ inputs is written into the corre-  
sponding address location in the memory array. If GW is HIGH,  
then the Write operation is controlled by BWE and BW[A:D]  
signals. The CY7C1364C provides Byte Write capability that  
is described in the Write Cycle Descriptions table. Asserting  
the Byte Write Enable input (BWE) with the selected Byte  
Write (BW[A:D]) input, will selectively write to only the desired  
bytes. Bytes not selected during a Byte Write operation will  
remain unaltered. A synchronous self-timed Write mechanism  
has been provided to simplify the Write operations.  
Byte Write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BW[A:D]) inputs. A Global Write  
Enable (GW) overrides all Byte Write inputs and writes data to  
all four bytes. All writes are simplified with on-chip  
synchronous self-timed Write circuitry.  
Because the CY7C1364C is a common I/O device, the Output  
Enable (OE) must be deasserted HIGH before presenting data  
to the DQ inputs. Doing so will tri-state the output drivers. As  
a safety precaution, DQ are automatically tri-stated whenever  
a Write cycle is detected, regardless of the state of OE.  
Three synchronous Chip Selects (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output tri-state control. ADSP is ignored if CE1  
is HIGH.  
Single Write Accesses Initiated by ADSC  
ADSC Write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deasserted HIGH, (3) CE1, CE2, CE3 are all asserted active,  
and (4) the appropriate combination of the Write inputs (GW,  
BWE, and BW[A:D]) are asserted active to conduct a Write to  
the desired byte(s). ADSC-triggered Write accesses require a  
single clock cycle to complete. The address presented to A is  
loaded into the address register and the address  
advancement logic while being delivered to the memory array.  
The ADV input is ignored during this cycle. If a global Write is  
conducted, the data presented to the DQ is written into the  
corresponding address location in the memory core. If a Byte  
Write is conducted, only the selected bytes are written. Bytes  
not selected during a Byte Write operation will remain  
unaltered. A synchronous self-timed Write mechanism has  
been provided to simplify the Write operations.  
Single Read Accesses  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW,  
(2) CE1, CE2, CE3 are all asserted active, and (3) the Write  
signals (GW, BWE) are all deasserted HIGH. ADSP is ignored  
if CE1 is HIGH. The address presented to the address inputs  
(A) is stored into the address advancement logic and the  
address register while being presented to the memory array.  
The corresponding data is allowed to propagate to the input of  
the output registers. At the rising edge of the next clock the  
data is allowed to propagate through the output register and  
onto the data bus within tCO if OE is active LOW. The only  
exception occurs when the SRAM is emerging from a  
deselected state to a selected state, its outputs are always  
tri-stated during the first cycle of the access. After the first cycle  
of the access, the outputs are controlled by the OE signal.  
Consecutive single Read cycles are supported. Once the  
SRAM is deselected at clock rise by the chip select and either  
ADSP or ADSC signals, its output will tri-state immediately.  
Because the CY7C1364C is a common I/O device, the Output  
Enable (OE) must be deasserted HIGH before presenting data  
to the DQ inputs. Doing so will tri-state the output drivers. As  
a safety precaution, DQs are automatically tri-stated whenever  
a Write cycle is detected, regardless of the state of OE.  
Document #: 38-05689 Rev. *E  
Page 5 of 18  
[+] Feedback  
CY7C1364C  
Burst Sequences  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
The CY7C1364C provides a two-bit wraparound counter, fed  
by A[1:0], that implements either an interleaved or linear burst  
sequence. The interleaved burst sequence is designed specif-  
ically to support Intel Pentium applications. The linear burst  
sequence is designed to support processors that follow a  
linear burst sequence. The burst sequence is user selectable  
through the MODE input.  
First  
Address  
A[1:0]  
Second  
Address  
A[1:0]  
Third  
Address  
A[1:0]  
Fourth  
Address  
A[1:0]  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both Read and Write burst operations are supported.  
Linear Burst Address Table (MODE = GND)  
Sleep Mode  
First  
Address  
A[1:0]  
Second  
Address  
A[1:0]  
Third  
Address  
A[1:0]  
Fourth  
Address  
A[1:0]  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the “sleep” mode. CE1, CE2, CE3, ADSP, and ADSC must  
remain inactive for the duration of tZZREC after the ZZ input  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
returns LOW  
.
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
Test Conditions  
ZZ > VDD – 0.2V  
Min.  
Max.  
Unit  
mA  
ns  
50  
tZZS  
ZZ > VDD – 0.2V  
2tCYC  
tZZREC  
tZZI  
ZZ recovery time  
ZZ < 0.2V  
2tCYC  
0
ns  
ZZ Active to Sleep current  
ZZ Inactive to exit Sleep current  
This parameter is sampled  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
ns  
Document #: 38-05689 Rev. *E  
Page 6 of 18  
[+] Feedback  
CY7C1364C  
Truth Table[3, 4, 5, 6, 7, 8]  
Address  
Next Cycle  
Unselected  
Used  
ZZ  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
CE3  
X
H
X
H
X
L
CE2  
X
X
L
CE1  
H
L
ADSP  
X
ADSC  
L
ADV  
X
X
X
X
X
X
X
L
OE  
X
X
X
X
X
X
X
H
L
DQ  
Write  
None  
Tri-State  
Tri-State  
Tri-State  
Tri-State  
Tri-State  
Tri-State  
Tri-State  
Tri-State  
DQ  
X
Unselected  
None  
L
X
X
Unselected  
None  
L
L
X
X
Unselected  
None  
X
L
L
H
H
L
L
X
Unselected  
None  
L
L
X
Begin Read  
External  
External  
Next  
H
H
X
X
X
X
X
X
X
X
X
X
H
X
X
X
X
X
L
X
X
Begin Read  
L
L
H
H
H
X
L
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
X
Continue Read  
Continue Read  
Continue Read  
Continue Read  
Suspend Read  
Suspend Read  
Suspend Read  
Suspend Read  
Begin Write  
X
X
X
X
X
X
X
X
X
X
L
X
X
H
H
X
X
H
H
X
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
X
Next  
L
Next  
L
H
L
Tri-State  
DQ  
Next  
X
L
Current  
Current  
Current  
Current  
Current  
Current  
External  
Next  
H
H
X
H
H
H
H
H
H
X
H
H
H
H
X
H
L
Tri-State  
DQ  
H
L
Tri-State  
DQ  
X
H
X
X
X
X
X
X
X
X
X
Tri-State  
Tri-State  
Tri-State  
Tri-State  
Tri-State  
Tri-State  
Tri-State  
Tri-State  
Begin Write  
Begin Write  
H
H
X
Continue Write  
Continue Write  
Suspend Write  
Suspend Write  
ZZ “Sleep”  
X
X
X
X
X
X
H
X
H
X
Next  
Current  
Current  
None  
H
X
X
Notes:  
3. X = “Don't Care.” H = Logic HIGH, L = Logic LOW.  
4. WRITE = L when any one or more Byte Write Enable signals (BW ,BW ,BW ,BW and BWE = L or GW = L. WRITE = H when all Byte Write Enable signals  
)
D
A
B
C
(BW ,BW ,BW ,BW  
5. The DQ pins are controlled by the current cycle and the  
,
.
),  
D
BWE  
=
A
B
C
GW  
H
signal.  
is asynchronous and is not sampled with the clock.  
OE  
OE  
6. CE , CE , and CE are available only in the TQFP package.  
1
2
3
7. The SRAM always initiates a Read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW  
. Writes may occur only on subsequent clocks  
[A:D]  
after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the Write cycle to allow the outputs to tri-state. OE is a  
don't care for the remainder of the Write cycle.  
8. OE is asynchronous and is not sampled with the clock rise. It is masked internally during Write cycles. During a Read cycle all data bits are tri-state when OE is  
inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).  
Document #: 38-05689 Rev. *E  
Page 7 of 18  
[+] Feedback  
CY7C1364C  
Truth Table for Read/Write[3, 4]  
Function  
Read  
GW  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
BWE  
H
L
BWD  
X
H
H
H
H
H
H
H
H
L
BWC  
X
H
H
H
H
L
BWB  
BWA  
X
H
L
X
H
H
L
Read  
Write Byte A – DQA  
Write Byte B – DQB  
Write Bytes B, A  
Write Byte C – DQC  
Write Bytes C, A  
Write Bytes C, B  
Write Bytes C, B, A  
Write Byte D – DQD  
Write Bytes D, A  
Write Bytes D, B  
Write Bytes D, B, A  
Write Bytes D, C  
Write Bytes D, C, A  
Write Bytes D, C, B  
Write All Bytes  
L
L
H
L
L
L
L
H
H
L
H
L
L
L
L
L
H
L
L
L
L
L
H
H
H
H
L
H
H
L
H
L
L
L
L
L
H
L
L
L
L
L
L
H
H
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
Write All Bytes  
X
X
X
X
X
Document #: 38-05689 Rev. *E  
Page 8 of 18  
[+] Feedback  
CY7C1364C  
DC Input Voltage................................... –0.5V to VDD + 0.5V  
Current into Outputs (LOW) .........................................20 mA  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Static Discharge Voltage .......................................... >2001V  
(per MIL-STD-883, Method 3015)  
Storage Temperature ................................. –65°C to +150°C  
Latch-up Current ..................................................... >200 mA  
Ambient Temperature with  
Power Applied ............................................ –55°C to +125°C  
Operating Range  
Supply Voltage on VDD Relative to GND........–0.5V to +4.6V  
Supply Voltage on VDDQ Relative to GND...... –0.5V to +VDD  
Ambient  
Range  
Commercial  
Industrial  
Temperature  
0°C to +70°C  
–40°C to +85°C  
VDD  
VDDQ  
3.3V –  
5%/+10%  
2.5V – 5% to  
VDD  
DC Voltage Applied to Outputs  
in tri-state.............................................–0.5V to VDDQ + 0.5V  
Electrical Characteristics Over the Operating Range [9, 10]  
Parameter  
VDD  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min.  
Max.  
Unit  
V
3.135  
3.135  
2.375  
2.4  
3.6  
VDD  
VDDQ  
for 3.3 V I/O  
for 2.5V I/O  
V
2.625  
V
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage[9]  
Input LOW Voltage[9]  
for 3.3 V I/O, IOH = –4.0 mA  
for 2.5V I/O, IOH = –1.0 mA  
for 3.3 V I/O, IOL = 8.0 mA  
for 2.5V I/O, IOL = 1.0 mA  
for 3.3 V I/O  
V
2.0  
V
0.4  
0.4  
V
V
2.0  
1.7  
VDD + 0.3V  
V
for 2.5V I/O  
V
DD + 0.3V  
V
for 3.3 V I/O  
–0.3  
–0.3  
–5  
0.8  
0.7  
5
V
for 2.5V I/O  
V
Input Leakage Current GND VI VDDQ  
except ZZ and MODE  
µA  
Input Current of MODE Input = VSS  
Input = VDD  
–30  
–5  
µA  
µA  
5
Input Current of ZZ  
Input = VSS  
Input = VDD  
µA  
30  
5
µA  
IOZ  
IDD  
Output Leakage Current GND VI VDDQ, Output Disabled  
–5  
µA  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
4-ns cycle, 250 MHz  
5-ns cycle, 200 MHz  
6-ns cycle, 166 MHz  
250  
220  
180  
130  
120  
110  
40  
mA  
mA  
mA  
mA  
Current  
f = fMAX = 1/tCYC  
ISB1  
Automatic CE  
Power-down  
Current—TTL Inputs  
VDD = Max., Device Deselected, 4-ns cycle, 250 MHz  
VIN VIH or VIN VIL,  
f = fMAX = 1/tCYC  
5-ns cycle, 200 MHz  
6-ns cycle, 166 MHz  
ISB2  
Automatic CE  
Power-down  
Current—CMOS Inputs f = 0  
VDD = Max., Device Deselected, All speeds  
VIN 0.3V or VIN > VDDQ – 0.3V,  
mA  
mA  
ISB3  
Automatic CE  
Power-down  
Current—CMOS Inputs f = fMAX = 1/tCYC  
VDD = Max., Device Deselected, 4-ns cycle, 250 MHz  
or VIN 0.3V or VIN > VDDQ – 0.3V,  
120  
110  
100  
40  
5-ns cycle, 200 MHz  
6-ns cycle, 166 MHz  
ISB4  
Automatic CE  
VDD = Max., Device Deselected, All speeds  
mA  
Power-down  
Current—TTL Inputs  
VIN VIH or VIN VIL,  
f = 0  
Notes:  
9. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > –2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
10. T  
: Assumes a linear ramp from 0Vv to V (min.) within 200 ms. During this time V < V and V  
< V  
.
Power-up  
DD  
IH  
DD  
DDQ  
DD  
Document #: 38-05689 Rev. *E  
Page 9 of 18  
[+] Feedback  
CY7C1364C  
Capacitance[11]  
100 TQFP  
Parameter  
Description  
Input Capacitance  
Test Conditions  
Max.  
Unit  
CIN  
TA = 25°C, f = 1 MHz,  
5
5
5
pF  
pF  
pF  
VDD = 3.3V  
CCLK  
CI/O  
Clock Input Capacitance  
Input/Output Capacitance  
VDDQ = 2.5V  
Thermal Resistance[11]  
Parameter  
Description  
Test Conditions  
100 TQFP Package  
Unit  
ΘJA  
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow standard test  
methods and procedures for measuring  
thermal impedance, per EIA/JESD51  
29.41  
°C/W  
ΘJC  
Thermal Resistance  
(Junction to Case)  
6.13  
°C/W  
AC Test Loads and Waveforms  
3.3V I/O Test Load  
OUTPUT  
R = 317Ω  
3.3V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
L
GND  
5 pF  
INCLUDING  
R = 351Ω  
1 ns  
1 ns  
V = 1.5V  
(a)  
T
JIG AND  
SCOPE  
(b)  
(c)  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50Ω  
0
10%  
L
5 pF  
R =1538Ω  
1 ns  
1 ns  
INCLUDING  
V = 1.25V  
T
JIG AND  
SCOPE  
(a)  
(b)  
(c)  
Note:  
11. Tested initially and after any design or process change that may affect these parameters  
Document #: 38-05689 Rev. *E  
Page 10 of 18  
[+] Feedback  
CY7C1364C  
Switching Characteristics Over the Operating Range[12,13]  
–250  
Min.  
–200  
Min.  
–166  
Parameter  
tPOWER  
Description  
VDD(Typical) to the First Access[14]  
Max.  
Max.  
Min.  
Max.  
Unit  
1
1
1
ms  
Clock  
tCYC  
Clock Cycle Time  
Clock HIGH  
4.0  
1.8  
1.8  
5.0  
2.0  
2.0  
6.0  
2.4  
2.4  
ns  
ns  
ns  
tCH  
tCL  
Clock LOW  
Output Times  
tCO  
Data Output Valid after CLK Rise  
Data Output Hold after CLK Rise  
Clock to Low-Z[15, 16, 17]  
2.8  
3.0  
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
tCLZ  
tCHZ  
Clock to High-Z[15, 16, 17]  
2.8  
2.8  
3.0  
3.0  
3.5  
3.5  
tOEV  
OE LOW to Output Valid  
tOELZ  
tOEHZ  
Set-up Times  
tAS  
OE LOW to Output Low-Z[15, 16, 17]  
OE HIGH to Output High-Z[15, 16, 17]  
0
0
0
2.8  
3.0  
3.5  
Address Set-up before CLK Rise  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADS  
ADSC, ADSP Set-up before CLK Rise  
tADVS  
tWES  
ADV Set-up before CLK Rise  
GW, BWE, BW[A:D] Set-up before CLK Rise  
Data Input Set-up before CLK Rise  
Chip Enable Set-up before CLK Rise  
tDS  
tCES  
Hold Times  
tAH  
Address Hold after CLK Rise  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADH  
ADSP, ADSC Hold after CLK Rise  
ADV Hold after CLK Rise  
tADVH  
tWEH  
GW, BWE, BW[A:D] Hold after CLK Rise  
Data Input Hold after CLK Rise  
Chip Enable Hold after CLK Rise  
tDH  
tCEH  
Notes:  
12. Timing reference level is 1.5V when V  
= 3.3V and is 1.25V when V  
= 2.5V.  
DDQ  
DDQ  
13. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
14. This part has a voltage regulator internally; t  
is the time that the power needs to be supplied above V minimum initially before a Read or Write operation  
POWER  
DD  
can be initiated.  
15. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
CHZ CLZ OELZ  
OEHZ  
16. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
CLZ  
OEHZ  
OELZ  
CHZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions.  
17. This parameter is sampled and not 100% tested.  
Document #: 38-05689 Rev. *E  
Page 11 of 18  
[+] Feedback  
CY7C1364C  
Switching Waveforms  
Read Cycle Timing[18]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Burst continued with  
new base address  
t
t
WEH  
WES  
GW, BWE,  
BW[A:D]  
Deselect  
cycle  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV  
suspends  
burst.  
t
t
OEV  
CO  
t
t
OEHZ  
t
t
CHZ  
OELZ  
DOH  
t
CLZ  
t
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2 + 3)  
Q(A2)  
Q(A2 + 1)  
Q(A1)  
Data Out (Q)  
High-Z  
CO  
Burst wraps around  
Note:  
18. On this diagram, when CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH, CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
Document #: 38-05689 Rev. *E  
Page 12 of 18  
[+] Feedback  
CY7C1364C  
Switching Waveforms (continued)  
Write Cycle Timing[18,19]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Byte write signals are  
ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BWE,  
BW[A :D]  
t
t
WEH  
WES  
GW  
CE  
t
t
CEH  
CES  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
DH  
DS  
Data In (D)  
D(A2)  
D(A2 + 1)  
D(A2 + 1)  
D(A2 + 2)  
D(A2 + 3)  
D(A3)  
D(A3 + 1)  
D(A3 + 2)  
D(A1)  
High-Z  
t
OEHZ  
Data Out (Q)  
BURST READ  
Single WRITE  
BURST WRITE  
Extended BURST WRITE  
DON’T CARE  
UNDEFINED  
Note:  
19.  
Full width Write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW  
LOW.  
[A:D]  
Document #: 38-05689 Rev. *E  
Page 13 of 18  
[+] Feedback  
CY7C1364C  
Switching Waveforms (continued)  
Read/Write Cycle Timing[18,20, 21]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE,  
BW[A:D]  
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
t
CO  
DS  
t
OELZ  
Data In (D)  
High-Z  
High-Z  
D(A3)  
D(A5)  
D(A6)  
t
t
OEHZ  
CLZ  
Data Out (Q)  
Q(A1)  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
Back-to-Back READs  
Single WRITE  
BURST READ  
Back-to-Back  
WRITEs  
DON’T CARE  
UNDEFINED  
Notes:  
20. The data bus (Q) remains in High-Z following a Write cycle unless an ADSP, ADSC, or ADV cycle is performed.  
21. GW is HIGH.  
Document #: 38-05689 Rev. *E  
Page 14 of 18  
[+] Feedback  
CY7C1364C  
Switching Waveforms (continued)  
ZZ Mode Timing[22, 23]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes:  
22. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.  
23. DQs are in High-Z when exiting ZZ sleep mode.  
Document #: 38-05689 Rev. *E  
Page 15 of 18  
[+] Feedback  
CY7C1364C  
Ordering Information  
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or  
visit www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
Part and Package Type  
166  
200  
250  
CY7C1364C-166AXC  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
(3 Chip Enable)  
Commercial  
CY7C1364C-166AJXC  
CY7C1364C-166AXI  
CY7C1364C-166AJXI  
CY7C1364C-200AXC  
CY7C1364C-200AJXC  
CY7C1364C-200AXI  
CY7C1364C-200AJXI  
CY7C1364C-250AXC  
CY7C1364C-250AJXC  
CY7C1364C-250AXI  
CY7C1364C-250AJXI  
100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
(2 Chip Enable)  
100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
(3 Chip Enable)  
Industrial  
100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
(2 Chip Enable)  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
(3 Chip Enable)  
Commercial  
Industrial  
100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
(2 Chip Enable)  
100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
(3 Chip Enable)  
100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
(2 Chip Enable)  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
(3 Chip Enable)  
Commercial  
Industrial  
100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
(2 Chip Enable)  
100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
(3 Chip Enable)  
100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
(2 Chip Enable)  
Document #: 38-05689 Rev. *E  
Page 16 of 18  
[+] Feedback  
CY7C1364C  
Package Diagram  
100-Pin TQFP (14 x 20 x 1.4 mm) (51-85050)  
16.00 0.20  
1.40 0.05  
14.00 0.10  
100  
81  
80  
1
0.30 0.08  
0.65  
TYP.  
12° 1°  
(8X)  
SEE DETAIL  
A
30  
51  
31  
50  
0.20 MAX.  
1.60 MAX.  
R 0.08 MIN.  
0.20 MAX.  
0° MIN.  
SEATING PLANE  
STAND-OFF  
0.05 MIN.  
0.15 MAX.  
NOTE:  
0.25  
1. JEDEC STD REF MS-026  
GAUGE PLANE  
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH  
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE  
R 0.08 MIN.  
0.20 MAX.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH  
3. DIMENSIONS IN MILLIMETERS  
0°-7°  
0.60 0.15  
0.20 MIN.  
51-85050-*B  
1.00 REF.  
DETAIL  
A
i486 is a trademark, and Intel and Pentium are registered trademarks, of Intel Corporation. PowerPC is a registered trademark  
of IBM Corporation. All product and company names mentioned in this document may be trademarks of their respective holders.  
Document #: 38-05689 Rev. *E  
Page 17 of 18  
© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
[+] Feedback  
CY7C1364C  
Document History Page  
Document Title: CY7C1364C 9-Mbit (256K x 32) Pipelined Sync SRAM  
Document Number: 38-05689  
Orig. of  
REV.  
**  
ECN NO. Issue Date Change  
Description of Change  
286269  
320834  
See ECN  
See ECN  
PCI  
PCI  
New data sheet  
Changed 225 MHz into 250 MHz  
*A  
Changed ΘJA and ΘJC for TQFP from 25 and 9 °C/W to 29.41 and 6.13 °C/W  
respectively  
Modified VOL, VOH test conditions  
Added Industrial Operating Range  
Changed Snooze to Sleep in the ZZ Mode Electrical Characteristics  
Shaded 250 MHz speed bin in the AC/DC table and Selection Guide  
Added AJXC package in the Ordering Information  
Updated Ordering Information Table  
*B  
*C  
377095  
408725  
See ECN  
See ECN  
PCI  
Changed ISB2 from 30 to 40 mA  
Modified test condition in note# 9 from VIH < VDD to VIH < VDD  
RXU  
Changed address of Cypress Semiconductor Corporation on Page# 1 from  
“3901 North First Street” to “198 Champion Court”  
Changed three-state to tri-state  
Converted from Preliminary to Final  
Modified “Input Load” to “Input Leakage Current except ZZ and MODE” in the  
Electrical Characteristics Table  
Replaced Package Name column with Package Diagram in the Ordering  
Information table  
Updated the ordering information  
*D  
*E  
429278  
501828  
See ECN  
See ECN  
NXR  
VKN  
Added 2.5 V I/O option  
Included 2 Chip Enable Pinout  
Updated Ordering Information Table  
Added the Maximum Rating for Supply Voltage on VDDQ Relative to GND  
Updated the Ordering Information table.  
Document #: 38-05689 Rev. *E  
Page 18 of 18  
[+] Feedback  

相关型号:

CY7C1364CV33

9-Mbit (256 K × 32) Pipelined Sync SRAM
CYPRESS

CY7C1365B

9-Mb (265K x 32) Flow-Through Sync SRAM
CYPRESS

CY7C1365B-117AC

9-Mb (265K x 32) Flow-Through Sync SRAM
CYPRESS

CY7C1365B-117AJC

9-Mb (265K x 32) Flow-Through Sync SRAM
CYPRESS

CY7C1365C

9-Mbit (256K x 32) Flow-Through Sync SRAM
CYPRESS

CY7C1365C-100AJXC

9-Mbit (256K x 32) Flow-Through Sync SRAM
CYPRESS

CY7C1365C-100AJXI

9-Mbit (256K x 32) Flow-Through Sync SRAM
CYPRESS

CY7C1365C-100AXC

9-Mbit (256K x 32) Flow-Through Sync SRAM
CYPRESS

CY7C1365C-100AXI

9-Mbit (256K x 32) Flow-Through Sync SRAM
CYPRESS

CY7C1365C-133AJXC

9-Mbit (256K x 32) Flow-Through Sync SRAM
CYPRESS

CY7C1365C-133AJXI

9-Mbit (256K x 32) Flow-Through Sync SRAM
CYPRESS

CY7C1365C-133AXC

9-Mbit (256K x 32) Flow-Through Sync SRAM
CYPRESS