CY7C1370DV25-200AXCT [CYPRESS]

ZBT SRAM, 512KX36, 3ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, LEAD FREE, PLASTIC, MS-026, TQFP-100;
CY7C1370DV25-200AXCT
型号: CY7C1370DV25-200AXCT
厂家: CYPRESS    CYPRESS
描述:

ZBT SRAM, 512KX36, 3ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, LEAD FREE, PLASTIC, MS-026, TQFP-100

时钟 静态存储器 内存集成电路
文件: 总35页 (文件大小:679K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
THIS SPEC IS OBSOLETE  
Spec No: 38-05558  
Spec Title: CY7C1370DV25/CY7C1372DV25, 18-MBIT  
(512K X 36/1M X 18) PIPELINED SRAM WITH  
NOBL(TM) ARCHITECTURE  
Replaced by: NONE  
CY7C1370DV25  
CY7C1372DV25  
18-Mbit (512K × 36/1M × 18)  
Pipelined SRAM with NoBL™ Architecture  
18-Mbit (512K  
× 36/1M × 18) Pipelined SRAM with NoBL™ Architecture  
Features  
Functional Description  
The CY7C1370DV25 and CY7C1372DV25 are 2.5 V, 512K × 36  
Pin-compatible and funequivalent to ZBT™  
and 1M × 18 synchronous pipelined burst SRAMs with No Bus  
Latency™ (NoBL logic, respectively. They are designed to  
support unlimited true back-to-back read/write operations with  
no wait states. The CY7C1370DV25 and CY7C1372DV25 are  
equipped with the advanced NoBL logic required to enable  
consecutive read/write operations with data being transferred on  
every clock cycle. This feature dramatically improves the  
throughput of data in systems that require frequent write/read  
transitions. The CY7C1370DV25 and CY7C1372DV25 are  
pin-compatible and functionally equivalent to ZBT devices.  
Supports 200-Ms with zero wait states  
Available sand 167 MHz  
Internally sr controo eliminate the need  
to use as
Fully reoutpued operation  
Byte writ
Single 2.5 V core power
All synchronous inputs pass through input registers controlled by  
the rising edge of the clock. All data outputs pass through output  
registers controlled by the rising edge of the clock. The clock  
input is qualified by the clock enable (CEN) signal, which when  
deasserted suspends operation and extends the previous clock  
.  
2.5 V I/O power supp
Fast clock-to-output t
3.0 ns (for 200-MHz d
Clock enable (CEN) pin to suspend peration  
Synchronous self-timed writes  
operations are controlled by the byte write selects  
BWd for CY7C1370DV25 and BWa–BWb for  
1372DV25) and a write enable (WE) input. All writes are  
ucted won-chip synchronous self-timed write circuitry.  
Available in JEDEC-standard Pb-freTQFP
Pb-free 165-ball FBGA packages  
IEEE 1149.1 JTAG-compatible boundary scan  
Burst capability – linear or interleaved burst ord
“ZZ” sleep mode option and stop clock option  
ree shronous chip enables (CE1, CE2, CE3) and an  
asyncnous output enable (OE) provide for easy bank  
seleon and output three-state control. In order to avoid bus  
ctention, the output ers are synchronously three-stated  
uring the data portorite sequence.  
For a complete lof related umentation, click here.  
Selection Guide  
Description  
Maximum access time  
200 z  
.0  
7 MHz Unit  
3.
70  
ns  
Maximum operating current  
300  
mA  
mA  
Maximum CMOS standby current  
70  
Errata: For information on silicon errata, see “Errata” on page 30. Details include trigger conditions, devices affected, and proposed workaround.  
Cypress Semiconductor Corporation  
Document Number: 38-05558 Rev. *P  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised November 3, 2016  
 
 
 
CY7C1370DV25  
CY7C1372DV25  
Logic Block Diagram – CY7C1370DV25  
ADDRESS  
REGISTER 0  
A0, A1, A  
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
ADV/LD  
C
CLK  
CEN  
C
WRITE ADDRESS  
REGISTER 1  
WRITE ADDRESS  
REGISTER 2  
O
U
T
P
O
U
T
P
S
E
N
S
D
A
T
U
T
U
T
A
E
WRITE REGISTRY  
ND DATA COHERENCY  
CONTROL LOGIC  
R
E
G
I
MEMORY  
ARRAY  
B
U
F
S
T
E
E
R
I
DQs  
WRITE  
DRIVERS  
DQP  
DQP  
DQP  
DQP  
a
b
c
d
A
M
P
b
BW  
BW  
c
S
T
E
R
S
F
d
E
R
S
S
W
E
E
N
G
INPUT  
REGISTER 1  
INPUT  
REGISTER 0  
E
E
OE  
READ
CE1  
CE2  
CE3  
ROL  
ZZ  
Document Number: 38-05558 Rev. *P  
Page 2 of 34  
CY7C1370DV25  
CY7C1372DV25  
Logic Block Diagram – CY7C1372DV25  
ADDRESS  
REGISTER 0  
A0, A1, A  
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
ADV/LD  
C
WRITE DRESS  
WRITE ADDRESS  
REGISTER 2  
O
U
T
P
O
U
T
P
S
E
N
S
D
A
T
U
T
U
T
WRITE REGISTRY  
DATA COHEREN
NTROL LOGI
A
R
E
G
I
MEMORY  
ARRAY  
E
B
U
F
DQs  
DQP  
DQP  
WRITE  
DRIVERS  
BW  
S
T
E
E
R
I
A
M
P
a
F
b
S
T
E
R
S
b
E
R
S
S
N
G
WE  
E
E
INPUT  
REGISTER 1  
INPUT  
REGISTER 0  
E
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
Sleep  
Control  
ZZ  
Document Number: 38-05558 Rev. *P  
Page 3 of 34  
CY7C1370DV25  
CY7C1372DV25  
Contents  
Pin Configurations ...........................................................5  
Pin Definitions ..................................................................7  
Functional Overview ........................................................9  
Single Read Accesses ................................................9  
Burst Read Accesses ..................................................9  
Single Write Acces........................................9  
Burst Write Ac.....................................9  
Sleep Mode ..................................10  
Interleavle ...............................10  
Linear .................................10  
ZZ Moeristic.................10  
Truth Tab......................11  
Partial Trad/W..............12  
Partial Trutr Read................12  
IEEE 1149.1 Serial Bound[18]) .....13  
Disabling the JTAG .......................
Test Access Port ........................1
PERFORMING A T.........................
TAP REGISTERS .................................3  
TAP Instruction Set ........................................14  
TAP Controller State Diagram ............................15  
TAP Controller Block Diagram ..........................
TAP Timing .....................................................
TAP AC Switching Characteristics .................
2.5 V TAP AC Test Conditions ............................
2.5 V TAP AC Output Load Equivalent ............
TAP DC Electrical Characteristics and  
Instruction Codes ...........................................................19  
Boundary Scan Order ....................................................20  
Maximum Ratings ...........................................................21  
Operating Range .............................................................21  
Electrical Characteristics ...............................................21  
Capacitance ....................................................................22  
Thermal Resistance ........................................................22  
AC Test Loads and Waveforms .....................................22  
Switching Characteristics ..............................................23  
Switching Waveforms ....................................................24  
Ordering Information ......................................................26  
Ordering Code Definitions .........................................26  
Package Diagrams ..........................................................27  
Acronyms ........................................................................29  
Document Conventions .................................................29  
Units of Measure .......................................................29  
Errata ...............................................................................30  
Part Numbers Affected ..............................................30  
Product Status ...........................................................30  
Ram9 NoBL ZZ Pin & JTAG Issues  
Summary ...............................................................30  
ent History Page .................................................32  
Solutions, and Legal Information ......................34  
orldwiSales and Design Support .......................34  
Produ....................................................................34  
PS® Solutions ......................................................34  
press Developer Community .................................34  
Technical Support ..................................................34  
Operating Conditions ..........................................
Scan Register Sizes .......................................................19  
Identification Register Definitions ................................19  
Document Number: 38-05558 Rev. *P  
Page 4 of 34  
CY7C1370DV25  
CY7C1372DV25  
Pin Configurations  
Figure 1. 100-pin TQFP (14 × 20 × 1.4 mm) pinout [1]  
DQPc  
DQc  
DQc  
1
2
3
4
5
6
7
8
NC  
NC  
NC  
DDQ  
1
2
3
4
5
6
7
8
A
NC  
NC  
78  
DQPb  
DQb  
DQb  
80  
79  
78  
77  
76  
75  
74  
73  
72  
7
0  
69  
68  
67  
66  
65  
64  
63  
62  
6
54  
53  
52  
51  
80  
79  
V
V
DDQ  
V
V
V
NC  
DQPa  
DQa  
DQa  
DDQ  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DDQ  
SS  
V
V
V
SS  
SS  
SS  
DQc  
DQc  
NC  
NC  
DQb  
DQb  
DQb  
DQb  
DQc  
DQc  
DQb  
DQb  
9
9
V
V
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
10  
11  
12  
13  
14  
15  
16  
2  
23  
24  
2
27  
28  
29  
30  
V
SS  
SS  
V
V
DDQ  
DDQ  
V
DQa  
DQa  
V
NC  
Q  
DDQ  
DQc  
DQc  
NC  
D
DQb  
DQb  
NC  
C25  
(512K × 36)  
SS  
V
V
DD  
C  
DD  
CY7C1372DV25  
(1M × 18)  
NC  
NC  
V
V
ZZ  
DD  
DD  
V
SS  
ZZ  
D
DQd  
DQa  
DQa  
DQd  
V
DDQ  
V
V
DQa  
DQa  
NC  
NC  
V
V
DDQ  
V
SS  
SS  
DQd  
DQd  
DQd  
DQd  
C  
V
SS  
V
SS  
SS  
V
V
DDQ  
DD
DDQ  
DDQ  
DQd  
DQd  
DQPd  
DQa  
DQa  
DQP
C  
NC  
NC  
NC  
NC  
Note  
1. Errata: The ZZ pin (Pin 64) needs to be externally connected to ground. For more information, see “Errata” on page 30.  
Document Number: 38-05558 Rev. *P  
Page 5 of 34  
 
 
 
CY7C1370DV25  
CY7C1372DV25  
Pin Configurations (continued)  
Figure 2. 165-ball FBGA (13 × 15 × 1.4 mm) pinout [2, 3]  
CY7C1370DV25 (512K × 36)  
1
2
A
3
4
5
6
7
8
9
A
10  
A
11  
NC  
NC/576M  
NC/1G  
DQP
ADV/LD  
A
B
C
D
CE1  
BWc  
BWd  
VSS  
VDD  
BWb  
BWa  
VSS  
VSS  
CE3  
CLK  
VSS  
VSS  
CEN  
WE  
CE2  
DQ  
DDQ  
OE  
VSS  
VDD  
A
A
NC  
VSS  
VSS  
VDDQ  
VDDQ  
NC  
DQb  
DQPb  
DQb  
D
c  
NC  
VDDQ  
VD
VDD  
DD  
VDD  
VD
V
VSS  
VSS  
VSS  
VSS  
VS
VS
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQb  
DQb  
DQb  
NC  
DQb  
DQb  
DQb  
ZZ  
E
F
G
H
J
DQd  
DQd  
DQd  
DQ
Q  
VDDQ  
VDDQ  
VDDQ  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
K
L
DQd  
DQd  
NC  
VDDQ  
VD
VD
VSS  
A
VSS  
NC  
VSS  
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQa  
NC  
A
DQa  
DQPa  
M
N
P
DQPd  
NC/144M NC/72M  
MODE NC/36M  
T
TDO  
NC/288M  
A
TCK  
A
A
A
A
R
× 18)  
1
NC/576M  
NC/1G  
NC  
2
A
3
4
CE3  
7
8
9
A
10  
A
11  
A
A
B
C
D
CE1  
BWb  
NC  
CEN  
ADV/L
A
CE2  
VDDQ  
VDDQ  
BWa  
VSS  
VSS  
C
VSS  
VSS  
A
A
NC  
WE  
VSS  
VSS  
VSS  
VDD  
NC  
DQb  
VSS  
VDD  
DQ  
VDDQ  
NC  
NC  
DQPa  
DQa  
NC  
NC  
NC  
DQb  
DQb  
DQb  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VS  
VSS  
VSS  
VS
VSS  
VSS  
D  
D  
VDD  
VDD  
VDD  
VDD  
VD  
VDDQ  
VDDQ  
VDD
NC  
C  
DQa  
DQa  
DQa  
ZZ  
E
F
NC  
G
H
J
NC  
NC  
DQb  
DQb  
DQb  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQ
Qa  
Qa  
C  
NC  
K
L
NC  
NC  
DQb  
NC  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
VD
DDQ  
NC  
A
NC  
NC  
M
N
P
DQPb  
NC/144M NC/72M  
MODE NC/36M  
TDI  
TDO  
NC/288M  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Notes  
2. Errata: The ZZ ball (H11) needs to be externally connected to ground. For more information, see “Errata” on page 30.  
3. Errata: The JTAG testing should be performed with these devices in BYPASS mode as the JTAG functionality is not guaranteed. For more information, see “Errata”  
on page 30.  
Document Number: 38-05558 Rev. *P  
Page 6 of 34  
 
 
 
CY7C1370DV25  
CY7C1372DV25  
Pin Definitions  
Pin Name  
I/O Type  
Pin Description  
A0, A1, A  
Input-  
synchronous  
Address inputs used to select one of the address locations. Sampled at the rising edge of the CLK.  
BWa, BWb,  
Input-  
Byte write select inputs, active LOW. Qualified with WE to conduct writes to the SRAM. Sampled on  
BWc, BWd synchroing edge of CLK. BWa controls DQa and DQPa, BWb controls DQb and DQPb, BWc controls DQc  
Pc, BWd controls DQd and DQPd.  
WE  
nable input, active LOW. Sampled on the rising edge of CLK if CEN is active LOW. This signal  
e assered LOW to initiate a write sequence.  
ADV/LD  
ance/ut used to advance the on-chip address counter or load a new address. When  
IGH (sserted LOW) the internal burst counter is advanced. When LOW, a new address  
can be device for an access. After being deselected, ADV/LD should be driven LOW in  
oraddress.  
CLK  
CE1  
CE2  
CE3  
OE  
Input-clock ed to capall synchronous inputs to the device. CLK is qualified with CEN. CLK is  
ized if CEs acLOW.  
Inpu
le 1 inpactive LW. Sampled on the rising edge of CLK. Used in conjunction with CE2  
synchronoto select/elect thevice.  
Input-  
Chip enab2 inpctive HIGH. Sampled on the rising edge of CLK. Used in conjunction with CE1  
synchronous and CE3 select/deect the dev
Input-  
Chip ele 3 inpuctive n the rising edge of CLK. Used in conjunction with CE1  
synchronous and CE2 elect/delect
Input-  
Output enable, active the syhronous logic block inside the device to control  
asynchronous the direction of the I/O /O pine allowed to behave as outputs. When deasserted  
HIGH, I/O pins are ths inpuata pins. OE is masked during the data portion of a  
write sequence, durinhen erging from a deselected state and when the device has  
been deselected.  
CEN  
DQS  
Input-  
Clock enable input, active LOW. Whasserted LOW the oignal is recognized by the SRAM.  
synchronous When deasserted HIGH the clock sigis masked. Since dssertiN does not deselect the device,  
CEN can be used to extend the prous cycle when reired.  
I/O-  
Bidirectional data I/O lines. As inthey feed in-chip data reger that is triggered by the  
synchronous rising edge of CLK. As outputs, they dthe dacontain the memory tion specified by A[17:0]  
during the previous clock rise of the read cyclThe directiof the pins is olled by OE and the  
internal control logic. When OE is asserted Lthe pins can behave as outp. HIGH, DQa–DQd  
are placed in a three-state condition. The outare automatically threeted durg the data portion  
of a write sequence, during the first clock when ging from a deseled state, and n the device  
is deselected, regardless of the state of OE.  
DQPX  
I/O-  
Bidirectional data parity I/O lines. Functionally, these signaare identical DQs. Dwrite  
synchronous sequences, DQPa is controlled by BWa, DQPb is controlled BWb, DQPc is ntrolled by Bc, and  
DQPd is controlled by BWd.  
MODE  
Input strap pin Mode input. Selects the burst order of the device. Tied HIGH selects the terleaverst order. Pulled  
LOW selects the linear burst order. MODE should not change states dng operation. hen left floating  
MODE will default HIGH, to an interleaved burst order.  
Document Number: 38-05558 Rev. *P  
Page 7 of 34  
 
CY7C1370DV25  
CY7C1372DV25  
Pin Definitions (continued)  
Pin Name  
I/O Type  
Pin Description  
TDO [4]  
JTAG serial Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK.  
output  
synchronous  
TDI [4]  
JTAG serial Serial data-in to the JTAG circuit. Sampled on the rising edge of TCK.  
inpu
sync
TMS [4]  
n controls the Test access port state machine. Sampled on the rising edge of TCK.  
TCK [4]  
VDD  
lock iJTAG circuitry.  
y Powts to the core of the device.  
VDDQ  
power r the I/O circuitry.  
supply  
VSS  
NC  
Grou
the dee. Shoue connected to ground of the system.  
ects. Thin is not cnected to the die.  
NC/36M,  
NC/72M,  
NC/144M,  
NC/288M,  
NC/576M,  
NC/1G  
e pins are nonnectd. They will be used for expansion to the 36M, 72M, 144M, 288M, 576M,  
and 1G dsities.  
ZZ [5]  
Input-  
ZZ “sleep” input. Thiaces tdevice in a non-time critical “sleep” condition with  
asynchronous data integrity preservation, is pin has to be LOW or left floating. ZZ pin has an  
internal pull-down.  
Notes  
4. Errata: The JTAG testing should be performed with these devices in BYPASS mode as the JTAG functionality is not guaranteed. For more information, see “Errata”  
on page 30.  
5. Errata: The ZZ pin needs to be externally connected to ground. For more information, see “Errata” on page 30.  
Document Number: 38-05558 Rev. *P  
Page 8 of 34  
 
 
CY7C1370DV25  
CY7C1372DV25  
ADV/LD will increment the internal burst counter regardless of  
the state of chip enables inputs or WE. WE is latched at the  
beginning of a burst cycle. Therefore, the type of access (read  
or write) is maintained throughout the burst sequence.  
Functional Overview  
The  
CY7C1370DV25  
and  
CY7C1372DV25  
are  
synchronous-pipelined Burst NoBL SRAMs designed  
specifically to eliminate wait states during write/read transitions.  
All synchronous inputs pass through input registers controlled by  
the rising edge of the clock. The clock signal is qualified with the  
clock enable input signal (C. If CEN is HIGH, the clock signal  
is not recognized anl states are maintained. All  
synchronous operd with CEN. All data outputs  
pass through oulled by the rising edge of the  
clock. Maximthe clock rise (tCO) is 3.0 ns  
(200-MHz d
Single Write Accesses  
Write access are initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are all asserted active, and (3) the write signal WE is  
asserted LOW. The address presented is loaded into the  
address register. The write signals are latched into the control  
logic block.  
On the subsequent clock rise the data lines are automatically  
three-stated regardless of the state of the OE input signal. This  
allows the external logic to present the data on DQ and DQP  
(DQa,b,c,d/DQPa,b,c,d for CY7C1370DV25 and DQa,b/DQPa,b for  
CY7C1372DV25). In addition, the address for the subsequent  
access (read/write/deselect) is latched into the address register  
(provided the appropriate control signals are asserted).  
Accesses asserte chip enables  
(CE1, CEe risinclock. If clock  
enable (CW anerted LOW, the  
address prethe deviThe access can  
either be a read or write ong on the tus of  
the write enable (WE). Bd to condt byite  
operations.  
On the next clock rise the data presented to DQ and DQP  
(DQa,b,c,d/DQPa,b,c,d for CY7C1370DV25 & DQa,b/DQPa,b for  
CY7C1372DV25) (or a subset for byte write operations, see  
e Cycle Description table for details) inputs is latched into the  
and the write is complete.  
Write operations are quarite enabWE). All es  
are simplified with on-chip nous self-timrite ciritry.  
Three synchronous chip enables (1, CE2, 3) and an  
asynchronous output enable (OE) slify depth pansion
operations (reads, writes, and desel) are piped. A
should be driven LOW once the devas bdes
order to load a new address for the next ration.  
ta written during the write operation is controlled by BW  
,c,d for CY7C1370DV25 and BWa,b for CY7C1372DV25)  
s. The CY7C1370DV25/CY7C1372DV25 provides byte  
capaty that is described in the Write Cycle Description  
ble. Aerting the write enable input (WE) with the selected  
byte te select (BW) input will selectively write to only the  
ded bytes. Bytes noselected during a byte write operation  
Single Read Accesses  
A read access is initiated when the following
satisfied at clock rise: (1) CEN is asserted LOW,
and CE3 are all asserted active, (3) the write enable inignal  
WE is deasserted HIGH, and (4) ADV/LD is asserted LOW. The  
address presented to the address inputs is latched into the  
address register and presented to the memory core and cont
logic. The control logic determines that a read access is in  
progress and allows the requested data to propagate to the input  
of the output register. At the rising edge of the next clock the  
requested data is allowed to propagate through the output  
register and onto the data bus within 3.0ns (200-MHz device)  
provided OE is active LOW. After the first clock of the read  
access the output buffers are controlled by OE and the internal  
control logic. OE must be driven LOW in order for the device to  
drive out the requested data. During the second clock, a  
subsequent operation (read/write/deselect) can be initiated.  
Deselecting the device is also pipelined. Therefore, when the  
SRAM is deselected at clock rise by one of the chip enable  
signals, its output will three-state following the next clock rise.  
remain unalter
A
synchronous self-timed write  
mechanism has beprod to simplify the write operations.  
Byte write capabhas beeluded in order to greatly simplify  
read/modify/wsequences, hich can be reduced to simple  
byte write ors.  
causthe C1370DV25 aCY7C1372DV25 are  
commI/O devicesdata should noiven into the device  
whie outputs are active. The utpuable (OE) can be  
deassHIGH before preseng data to the DQ and DQP  
(DQa,b,c,dPa,b,c,d for CY7370DV25 and /DQPa,b for  
CY7C137225) inputs. ng so will th-sthe output  
drivers. As  
a
safprecautioDQ DQP  
(DQa,b,c,d/DQPa,b,c,d fCY7C1370DVand DQa,b/DPa,b for  
CY7C1372DV25) aautomatically tated during the data  
portion of a write cycle, regardlesf the of OE.  
Burst Write Accesses  
The CY7C1370DV25/CY7C1DV25 has an on-chip burst  
counter that allows the user the to supply a single address  
and conduct up to four write operas without reasserting the  
address inputs. ADV/LD must be driven LOW in order to load the  
initial address, as described in Single Write Accesses on page 9.  
When ADV/LD is driven HIGH on the subsequent clock rise, the  
chip enables (CE1, CE2, and CE3) and WE inputs are ignored  
and the burst counter is incremented. The correct BW (BWa,b,c,d  
for CY7C1370DV25 and BWa,b for CY7C1372DV25) inputs must  
be driven in each cycle of the burst write in order to write the  
correct bytes of data.  
Burst Read Accesses  
The CY7C1370DV25 and CY7C1372DV25 have an on-chip  
burst counter that allows the user the ability to supply a single  
address and conduct up to four reads without reasserting the  
address inputs. ADV/LD must be driven LOW in order to load a  
new address into the SRAM, as described in Single Read  
Accesses. The sequence of the burst counter is determined by  
the MODE input signal. A LOW input on MODE selects a linear  
burst mode, a HIGH selects an interleaved burst sequence. Both  
burst counters use A0 and A1 in the burst sequence, and will  
wrap around when incremented sufficiently. A HIGH input on  
Document Number: 38-05558 Rev. *P  
Page 9 of 34  
 
 
CY7C1370DV25  
CY7C1372DV25  
Sleep Mode  
Linear Burst Address Table  
The ZZ input pin is an asynchronous input. Asserting ZZ places  
the SRAM in a power conservation “sleep” mode. Two clock  
cycles are required to enter into or exit from this “sleep” mode.  
While in this mode, data integrity is guaranteed. Accesses  
pending when entering the “sleep” mode are not considered valid  
nor is the completion of the operation guaranteed. The device  
must be deselected prior ng the “sleep” mode. CE1, CE2,  
and CE3, must remae duration of tZZREC after the  
ZZ input returns
(MODE = GND)  
First  
Address  
A1:A0  
Second  
Address  
A1:A0  
Third  
Address  
A1:A0  
Fourth  
Address  
A1:A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
InterleaveTable  
(MODE =
First  
Address  
A1:A0  
d  
dress  
A1:A0  
Fourth  
Address  
A1:
00  
01  
10  
11  
01  
0
11  
10  
00  
0
11  
10  
01  
00  
ZZ Mode Electrical Characteris
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
onditis  
Min  
Max  
80  
Unit  
mA  
ns  
tZZS  
V  
Z
2tCYC  
2tCYC  
tZZREC  
tZZI  
ns  
ZZ active to sleep current  
This parametesampled  
2tCYC  
ns  
tRZZI  
ZZ Inactive to exit sleep current This paramr is sampled  
0
ns  
Document Number: 38-05558 Rev. *P  
Page 10 of 34  
CY7C1370DV25  
CY7C1372DV25  
Truth Table  
The truth table for CY7C1370DV25/CY7C1372DV25 follows. [6, 7, 8, 9, 10, 11, 12]  
Operation  
Address Used CE ZZ ADV/LD WE BWx OE CEN CLK  
DQ  
Deselect cycle  
None  
None  
H
X
L
L
L
L
L
L
L
L
L
L
L
L
H
L
H
L
X
X
H
X
H
X
L
X
X
X
X
X
X
L
X
X
L
L
L
L
L
L
L
L
L
L
L
H
X
L–H  
L–H  
Tri-state  
Tri-state  
Continue deselect cy
Read cycle (beg
Read cycle (
NOP/dumm
Dummy r
Write cyc
Write cycle burst)  
NOP/write abort (begin b
Write abort (continue
Ignore clock edge (stal
Sleep mode  
External  
Next  
L–H Data out (Q)  
L–H Data out (Q)  
X
L
H
L
L
External  
Next  
H
H
X
X
X
X
X
X
L–H  
L–H  
Tri-state  
Tri-state  
X
L
H
L
External  
Next  
L–H Data in (D)  
L–H Data in (D)  
X
L
H
L
X
L
L
ne  
H
H
X
X
L–H  
L–H  
L–H  
X
Tri-state  
Tri-state  
t  
X
X
X
H
X
X
X
X
X
Cent  
None  
Tri-state  
Notes  
6. X = “Don't Care”, H = Logic HIGH, L = Logic LOW, CE stands for all chip enables active. BWx = L signifies at least one byte write select is active, BW = valid signifies  
x
that the desired byte write selects are asserted, see Write Cycle Description table for details.  
7. Write is defined by WE and BW . See Write Cycle Description table for details.  
X
8. When a write cycle is detected, all I/Os are tri-stated, even during byte writes.  
9. The DQ and DQP pins are controlled by the current cycle and the OE signal.  
10. CEN = H inserts wait states.  
11. Device will power-up deselected and the I/Os in a tri-state condition, regardless of OE.  
12. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles.During a read cycle DQ and DQP = three-state when OE is  
s
X
inactive or when the device is deselected, and DQ = data when OE is active.  
s
13. Table only lists a partial listing of the byte write combinations. Any Combination of BW is valid. Appropriate write will be done based on which byte write is active.  
X
Document Number: 38-05558 Rev. *P  
Page 11 of 34  
 
 
 
 
 
 
CY7C1370DV25  
CY7C1372DV25  
Partial Truth Table for Read/Write  
The partial truth table for Read/Write for CY7C1370DV25 follows. [14, 15, 16, 17]  
Function (CY7C1370DV25)  
WE  
H
L
BWd  
X
H
H
H
H
H
H
H
H
L
BWc  
X
H
H
H
H
L
BWb  
X
H
H
L
BWa  
X
H
L
Read  
Write – No bytes writ
Write byte a – (D
Write byte b
Write bytes
L
L
H
L
L
L
Write bytc)  
Write byt
L
H
H
L
H
L
L
L
Write bytes
L
L
H
L
Write bytes c, b, a  
L
L
L
Write byte d – (DQd a
Write bytes d, a  
L
H
H
H
H
L
H
H
L
H
L
L
L
Write bytes d, b  
L
L
H
L
Write bytes d, b, a  
L
L
L
Write bytes d, c  
L
H
H
L
H
L
Write bytes d, c, a  
L
L
Write bytes d, c, b  
L
L
L
H
L
Write all bytes  
L
L
L
L
Partial Truth Table for Read/Write  
The partial truth table for Read/Write for CY7C1372DV25 follo[14, 15, 16, 17]  
Function (CY7C1372DV25)  
WE  
H
BWb  
BWa  
x
Read  
x
H
H
L
Write – no bytes written  
Write byte a – (DQa and DQPa)  
Write byte b – (DQb and DQPb)  
Write both bytes  
H
L
L
L
L
L
Notes  
14. X = “Don't Care”, H = Logic HIGH, L = Logic LOW, CE stands for all chip enables active. BWx = L signifies at least one byte write select is active, BW = valid signifies  
x
that the desired byte write selects are asserted, see Write Cycle Description table for details.  
15. Write is defined by WE and BW . See Write Cycle Description table for details.  
X
16. When a write cycle is detected, all I/Os are tri-stated, even during byte writes.  
17. Table only lists a partial listing of the byte write combinations. Any Combination of BW is valid. Appropriate write will be done based on which byte write is active.  
X
Document Number: 38-05558 Rev. *P  
Page 12 of 34  
 
 
 
CY7C1370DV25  
CY7C1372DV25  
IEEE 1149.1 Serial Boundary Scan (JTAG [18]  
)
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a high Z state.  
The CY7C1370DV25/CY7C1372DV25 incorporates a serial  
boundary scan test access port (TAP).This part is fully compliant  
with 1149.1. The TAP operates using JEDEC-standard 3.3 V or  
2.5 V I/O logic levels.  
TAP Registers  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test circuitry.  
Only one register can be selected at a time through the  
instruction register. Data is serially loaded into the TDI ball on the  
rising edge of TCK. Data is output on the TDO ball on the falling  
edge of TCK.  
The CY7C1370DV25/CY7C1372DV25 contains  
a
TAP  
controller, instruction reundary scan register, bypass  
register, and ID regi
Disabling th
Instruction Register  
It is possiblAM witut using the JTAG  
feature. To troller, ust be tied LOW  
(VSS) to the dand TMS are  
internally may d. They may  
alternately to VDp resistor. TDO  
should be leonnected, the device will  
come up in a reset state whre with thation  
of the device.  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the TDI  
and TDO balls as shown in the TAP Controller Block Diagram on  
page 16. Upon power-up, the instruction register is loaded with  
the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as described  
in the previous section.  
When the TAP controller is in the Capture-IR state, the two least  
significant bits are loaded with a binary “01” pattern to allow for  
fault isolation of the board-level serial test data path.  
Test Access Port (T
Test Clock (TCK)  
s Register  
The test clock is used only with the Tcontrollel inputs
captured on the rising edge of TCKoutputs adrive
the falling edge of TCK.  
e time when serially shifting data through registers, it is  
mes advantageous to skip certain chips. The bypass  
er is a single-bit register that can be placed between the  
and TDballs. This allows data to be shifted through the  
Test Mode Select (TMS)  
The TMS input is used to give commands to the T
and is sampled on the rising edge of TCK. It is allo
this ball unconnected if the TAP is not used. The b
internally, resulting in a logic HIGH level.  
AM wminimal delay. The bypass register is set LOW (VSS  
when tBYPASS instruction is executed.  
)
Bndary Scan Regist
he boundary scan egiis connected to all the input and  
bidirectional balls n the SR
Test Data-In (TDI)  
The TDI ball is used to serially input information into the registe
and can be connected to the input of any of the registers. Th
register between TDI and TDO is chosen by the instruction that  
is loaded into the TAP instruction register. For information on  
loading the instruction register, see TAP Controller State  
Diagram on page 15. TDI is internally pulled up and can be  
unconnected if the TAP is unused in an application. TDI is  
connected to the most significant bit (MSB) of any register.  
The boundaran register is loaded with the contents of the  
RAM I/O riwhe TAP contros in the Capture-DR state  
d is tplacetween the TDd TDO balls when the  
contror is moveto the Shift-ate. The EXTEST,  
SAE/PRELOAD and SAMPLE nstns can be used to  
captue contents of the I/O ri.  
The BouScan Order oage 20 show er in which  
the bits are nnected. Eacbit correspondo onhe bumps  
on the SRAM package. e MSB of the ister is ccted to  
TDI and the LSB is cected to TDO
Test Data-Out (TDO)  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current state  
of the TAP state machine (see Instruction Codes on page 19).  
The output changes on the falling edge of TCK. TDO is  
connected to the least significant bit (LSB) of any register.  
Identification (ID) Register  
The ID register is loaded wia vendor-spific, 32-bit code  
during the Capture-DR stahen the IDCODE command is  
loaded in the instruction registhe IDCODE is hardwired into  
the SRAM and can be shifted oen the TAP controller is in  
the Shift-DR state. The ID register a vendor code and other  
information described in Identification Register Definitions on  
page 19.  
Performing a TAP Reset  
A RESET is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This RESET does not affect the operation of the  
SRAM and may be performed while the SRAM is operating.  
Note  
18. Errata: The JTAG testing should be performed with these devices in BYPASS mode as the JTAG functionality is not guaranteed. For more information, see “Errata”  
on page 30.  
Document Number: 38-05558 Rev. *P  
Page 13 of 34  
 
 
CY7C1370DV25  
CY7C1372DV25  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller’s capture set-up plus  
hold times (tCS and tCH). The SRAM clock input might not be  
captured correctly if there is no way in a design to stop (or slow)  
the clock during a SAMPLE/PRELOAD instruction. If this is an  
issue, it is still possible to capture all other signals and simply  
ignore the value of the CK and CK captured in the boundary scan  
register.  
TAP Instruction Set  
Overview  
Eight different instructions are possible with the three bit  
instruction register. All combinations are listed in the Instruction  
Codes table. Three of these instructions are listed as  
RESERVED and should not be used. The other five instructions  
are described in detail bel
Instructions are loacontroller during the Shift-IR  
state when the iis placed between TDI and  
TDO. During ns are shifted through the  
instruction rI and TO balls. To execute  
the instruct, the Ttroller needs to be  
moved inte.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the boundary  
scan register between the TDI and TDO pins.  
PRELOAD allows an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells prior  
to the selection of another boundary scan test operation.  
EXTEST  
The shifting of data for the SAMPLE and PRELOAD phases can  
occur concurrently when required – that is, while data captured  
is shifted out, the preloaded data can be shifted in.  
The EXTEST instruction end data to be driven  
out through the system oinstructioscts  
the boundary scan reected foserial ass  
between the TDI and DR conter state.  
BYPASS  
When the BYPASS instruction is loaded in the instruction register  
and the TAP is placed in a Shift-DR state, the bypass register is  
d between the TDI and TDO balls. The advantage of the  
S instruction is that it shortens the boundary scan path  
ultiple devices are connected together on a board.  
IDCODE  
The IDCODE instruction causes a vdor-speci32-bit cod
to be loaded into the instruction ster. It alplaces
instruction register between the TDd TDO bs and
the IDCODE to be shifted out of teviwhen
controller enters the Shift-DR state.  
ST Output Bus Tri-State  
E Stanrd 1149.1 mandates that the TAP controller be able  
put thoutput bus into a tri-state mode.  
The IDCODE instruction is loaded into the instru
upon power-up or whenever the TAP controller
logic reset state.  
The undary scan register has a special bit located at bbit #89  
(f165-ball FBGA page). When this scan cell, called the  
xtest output bus trtis latched into the preload register  
during the “UpdatR” stathe TAP controller, it will directly  
control the statf the output bus) pins, when the EXTEST is  
entered as thrent instruction. When HIGH, it will enable the  
utput bufs te the output When LOW, this bit will  
ace thoutput bo a high Z con.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register to  
be connected between the TDI and TDO balls when the TA
controller is in a Shift-DR state. It also places all SRAM outpu
into a high Z state.  
SAMPLE/PRELOAD  
This can be set by entering tPLE/PRELOAD or  
EXTcommand, and then shiftthe dered bit into that cell,  
during “Shift-DR” state. ring “Update,” the value  
loaded inat shift-registcell will latche preload  
register. When the EXTEinstruction is nteres bit will  
directly control the outpQ-bus pins. Ne that this bpreset  
HIGH to enable the put when the e is powered-up, and  
also when the TAP ontroller is in Togic-Reset” state.  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because there  
is a large difference in the clock frequencies, it is possible that  
during the Capture-DR state, an input or output will undergo a  
transition. The TAP may then try to capture a signal while in  
transition (metastable state). This will not harm the device, but  
there is no guarantee as to the value that will be captured.  
Repeatable results may not be possible.  
Reserved  
These instructions are not emented but are reserved for  
future use. Do not use these intions.  
Document Number: 38-05558 Rev. *P  
Page 14 of 34  
 
 
 
 
CY7C1370DV25  
CY7C1372DV25  
TAP Controller State Diagram  
TEST-LOGIC  
1
RESET  
0
1
1
1
RU
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
1
1
EXIT1-DR  
EXIT1-IR  
0
0
PAUSE-IR  
0
1
0
XIT2-D
EXIT2-IR  
1
UPD-DR  
UTE-IR  
1
0
1
The 0/1 next to each state represents the value of TMS at the rising edge of TCK.  
Document Number: 38-05558 Rev. *P  
Page 15 of 34  
CY7C1370DV25  
CY7C1372DV25  
TAP Controller Block Diagram  
0
0
Bypass Register  
2
1
Selection  
Circuitry  
Instruction Register  
31 30 29 .  
S
election  
TDO  
Circuitr  
y
.
.
2
1
0
Identification Register  
x
.
.
.
.
. 2 1 0  
Boundary Scan Register  
P CONTROLLER  
T
T
TAP Timing  
ng  
1
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDO
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
Document Number: 38-05558 Rev. *P  
Page 16 of 34  
CY7C1370DV25  
CY7C1372DV25  
TAP AC Switching Characteristics  
Over the Operating Range  
Parameter [19, 20]  
Clock  
Description  
Min  
Max  
Unit  
tTCYC  
TCK cle time  
ency  
time  
W time  
50  
20  
ns  
MHz  
ns  
tTF  
tTH  
20  
20  
tTL  
ns  
Output Ti
tTDOV  
k LOW
clock Llid  
0
10  
ns  
ns  
tTDOX  
Set-up Times  
tTMSS  
TMS clock rise  
TDlock ris
Captuo TCK rise  
5
5
5
ns  
ns  
ns  
tTDIS  
tCS  
Hold Times  
tTMSH  
tTDIH  
TMS hold after Tclock rise  
TDI hold after cloise  
5
5
5
ns  
ns  
ns  
tCH  
Capture hold after ce  
Notes  
19. t and t refer to the set-up and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
20. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1 ns.  
R
F
Document Number: 38-05558 Rev. *P  
Page 17 of 34  
 
 
CY7C1370DV25  
CY7C1372DV25  
2.5 V TAP AC Test Conditions  
2.5 V TAP AC Output Load Equivalent  
1.25V  
Input pulse levels ...............................................VSS to 2.5 V  
Input rise and fall time ....................................................1 ns  
Input timing reference levels ....................................... 1.25 V  
Output reference levels .............................................. 1.25 V  
Test load termination suge .......................... 1.25 V  
50Ω  
TDO  
ZO= 50Ω  
20pF  
TAP DC aracand Operating Conditions  
(0 °C < TA D = 2.5 ss otherwise noted)  
Parameter [21]  
Outpu
Outpu
Output LOage  
Output LOW voltage  
Input HIGH voltage  
Input LOW voltage  
Input load current  
Test Conditions  
IOH = –mA, VDDQ = 2.5 V  
IOH = –0 µA, VDDQ = 2.5 V  
OL = 80 mA, VDDQ = 2.5 V  
Min  
2.0  
2.1  
Max  
Unit  
V
VOH1  
VOH2  
VOL1  
VOL2  
VIH  
0.4  
V
V
L = 100 µ
VDDQ = 2.5 V  
0.2  
V
VDDQ = 2.5 V  
VDDQ = 2.5 V  
1.7  
–0.3  
–5  
VDD + 0.3  
0.7  
V
VIL  
V
IX  
5
µA  
Note  
21. All voltages referenced to V (GND).  
SS  
Document Number: 38-05558 Rev. *P  
Page 18 of 34  
 
CY7C1370DV25  
CY7C1372DV25  
Scan Register Sizes  
Register Name  
Bit Size (× 18)  
Bit Size (× 36)  
Instruction  
3
1
3
1
Bypass  
ID  
32  
89  
32  
89  
Boundary scaGA package)  
Identifir De
Ins
Revision number (31:29)  
Cypress device ID (28:
Cypress JEDEC ID (1
370DV25  
CY7C1372DV25  
000  
Description  
000  
Reserved for version number.  
Reserved for future use.  
101100100101
00010100  
01011001000100101  
00000110100  
Allows unique identification of  
SRAM vendor.  
ID register presence (0)  
1
Indicate the presence of an ID  
register.  
Instruction Codes  
Instruction  
Code  
Description  
EXTEST  
000  
Captures I/O ts. Placthe boundary scan gister between TDI and TDO. Forces  
all SRAM outputs to high Z se.  
IDCODE  
001  
010  
Loads the ID register with e vendor ID code aplaces tgister between TDI and TDO.  
This operation does noect SRAM operas.  
SAMPLE Z  
Captures I/O ring contentsces the bodaan register ben TDI and TDO. Forces  
all SRAM output drivers to a h Z st.  
RESERVED  
011  
100  
Do Not Use: This instruction is reed for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places toundary scan register tween TDI and TDO. Does  
not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future u.  
Places the bypass register between TDI and TDOThis operatiodot affect SRAM  
operations.  
Document Number: 38-05558 Rev. *P  
Page 19 of 34  
 
CY7C1370DV25  
CY7C1372DV25  
Boundary Scan Order  
165-ball FBGA [22, 23]  
Bit #  
1
Ball ID  
Bit #  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
4
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Ball ID  
D10  
C11  
A11  
B11  
A10  
B10  
A9  
Bit #  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
0  
81  
82  
83  
85  
86  
87  
8
89  
Ball ID  
G1  
D2  
E2  
N6  
2
3
4
F2  
5
G2  
H1  
H3  
J1  
8  
R9  
8
B9  
9
H11  
N11  
M11  
L11  
K11  
J11  
M10  
L10  
K10  
J10  
H9  
C10  
A8  
K1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
L1  
B8  
M1  
J2  
A7  
7  
K2  
6  
L2  
A6  
M2  
N1  
N2  
P1  
B5  
5  
A4  
B4  
R1  
R2  
P3  
B3  
A3  
A
R3  
P2  
H10  
G11  
F11  
E11  
D11  
G10  
F10  
E10  
2  
R4  
4  
B1  
A1  
P6  
C1  
D1  
R6  
Internal  
E1  
F1  
Notes  
22. Balls which are NC (No Connect) are pre-set LOW.  
23. Bit# 89 is pre-set HIGH.  
Document Number: 38-05558 Rev. *P  
Page 20 of 34  
 
CY7C1370DV25  
CY7C1372DV25  
DC input voltage ................................. –0.5 V to VDD + 0.5 V  
Current into outputs (LOW) ........................................ 20 mA  
Maximum Ratings  
Exceeding maximum ratings may shorten the useful life of the  
device. User guidelines are not tested.  
Static discharge voltage  
(per MIL-STD-883, method 3015) ..........................> 2001 V  
Storage temperature ................................ –65 °C to +150 °C  
Latch-up current ....................................................> 200 mA  
Ambient temperature with  
power applied .......................................... –55 °C to +125 °C  
Operating Range  
Supply voltage on VND .......–0.5 V to +3.6 V  
Supply voltage oGND ...... –0.5 V to +VDD  
DC to outputs ....–0.5 V to VDDQ + 0.5 V  
Range  
Ambient Temperature  
VDD/VDDQ  
Commercial  
0 °C to +70 °C  
2.5 V ± 5%  
Electrictics  
Over the e  
Parameter [
Powee  
I/O
Test Conditions  
Min  
2.375  
2.375  
2.0  
Max  
Unit  
VDD  
VDDQ  
VOH  
VOL  
VIH  
2.625  
V
V
for 2.I/O  
VDD  
Outputage  
Output LOW voltag
Input HIGH volta26]  
Input LOW voltag6]  
for 2V I/O, IOH = 1.0 mA  
for 2.5 V I/O, I1.0 mA  
for 2.5
V
0.4  
V
1.7  
VDD + 0.3 V  
V
VIL  
fo
–0.3  
–5  
0.7  
5
V
IX  
Input leakage currept ZZ 
and MODE  
A  
Input current of MODE  
–30  
5
A  
A  
A  
A  
A  
mA  
Input current of ZZ  
VSS  
–5  
Input = VD
30  
5
IOZ  
IDD  
Output leakage current  
VDD operating supply  
GND VDD, output disab
–5  
VDD = MaxT = 0 mA,  
f = fMAX = 1/t
.0-nscycle,  
MHz  
300  
6.0-nscycle,  
167 MHz  
275  
0  
14
70  
mA  
mA  
mA  
mA  
ISB1  
Automatic CE power-down  
current – TTL inputs  
Max. VDD, device desed,  
VIN VIH or VIN VIL,  
f = fMAX = 1/tCYC  
5.0-nscycle
200 MHz  
6.0-ncle,  
16Hz  
ISB2  
Automatic CE power-down  
current – CMOS inputs  
Max. VDD, device deselected,  
VIN 0.3 V or VIN > VDDQ 0.3 V, grades  
f = 0  
Aspeed  
ISB3  
Automatic CE power-down  
current – CMOS Inputs  
Max. VDD, device deselected,  
VIN 0.3 V or VIN > VDDQ 0.3 V, 200 MHz  
f = fMAX = 1/tCYC  
5.0-nscyc
130  
125  
80  
mA  
mA  
mA  
6.0-nscycle,  
167 MHz  
ISB4  
Automatic CE power-down  
current—TTL Inputs  
Max. VDD, device deselected,  
VIN VIH or VIN VIL, f = 0  
All speed  
grades  
Notes  
24. Overshoot: V  
< V + 1.5 V (Pulse width less than t  
/2), undershoot: V  
> –2 V (Pulse width less than t  
/2).  
CYC  
IH(AC)  
DD  
CYC  
IL(AC)  
25. T  
: Assumes a linear ramp from 0 V to V  
within 200 ms. During this time V < V and V  
< V  
.
Power-up  
DD(min)  
IH  
DD  
DDQ  
DD  
26. Tested initially and after any design or process change that may affect these parameters.  
Document Number: 38-05558 Rev. *P  
Page 21 of 34  
 
 
 
 
 
 
CY7C1370DV25  
CY7C1372DV25  
Capacitance  
100-pin TQFP 165-ball FBGA  
Parameter [27]  
Description  
Input capacitance  
Test Conditions  
Unit  
Package  
Package  
CIN  
TA = 25 C, f = 1 MHz,  
DD = 2.5 V, VDDQ = 2.5 V  
5
5
5
9
9
9
pF  
pF  
pF  
V
CCLK  
CI/O  
Clock icitance  
Iitance  
Therma
100-pin TQFP 165-ball FBGA  
Paramet
Descr
Test Conditions  
Unit  
Package  
Package  
JA  
Thermal re
(junction
Test conditions follow standard test  
and procedures for  
28.66  
20.7  
C/W  
measurthermal impedance, per  
EIA/JES1.  
JC  
Ther
(juncti
4.08  
4.0  
C/W  
AC Test Loads and Waverms  
Fig4. AWaveforms  
2.5 V I/O Test Load  
2.5 V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
OUTPUT  
R = 50   
90%  
10%  
Z = 50   
0
10
L
GND  
5 pF  
= 1538   
1 ns  
s  
V = 1.25 V  
T
INCLUDING  
JIG AND  
SCOPE  
(c
(a)  
(b)  
Note  
27. Tested initially and after any design or process change that may affect these parameters.  
Document Number: 38-05558 Rev. *P  
Page 22 of 34  
 
 
 
 
CY7C1370DV25  
CY7C1372DV25  
Switching Characteristics  
Over the Operating Range  
-200  
-167  
Unit  
Parameter [28, 29]  
Description  
Min  
Max  
Min  
Max  
[30]  
tPower  
Clock  
tCYC  
o the first access read or write  
1
1
ms  
ime  
operauency  
HIGH  
5
200  
6
167  
ns  
MHz  
ns  
FMAX  
tCH  
2.0  
2.0  
2.2  
2.2  
tCL  
lock LO
ns  
Output Times  
tCO  
Dafter CLise  
Out valid  
3.0  
3.0  
3.4  
3.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tEOV  
tDOH  
Data hold fter CLe  
Clock to high Z , 32, 33]  
Clock to low Z , 32, 33]  
OE HIGH to ou31, 32
OE LOW to output low Z [31, 3
1.3  
1.3  
tCHZ  
3.0  
3.4  
tCLZ  
1.3  
1.3  
tEOHZ  
tEOLZ  
Set-up Times  
tAS  
3.0  
3.4  
0
Address set-up before CLK
Data input set-up before CLK ri
CEN set-up before CLK rise  
WE, BWx set-up before CLK rise  
ADV/LD set-up before CLK rise  
Chip select set-up  
1.4  
1.4  
1.4  
1.4  
4  
1.4  
1.5  
1.5  
1.5  
1.5  
1
ns  
ns  
ns  
ns  
ns  
ns  
tDS  
tCENS  
tWES  
tALS  
tCES  
Hold Times  
tAH  
Address hold after CLK rise  
Data input hold after CLK rise  
CEN hold after CLK rise  
4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tDH  
tCENH  
tWEH  
WE, BWx hold after CLK rise  
ADV/LD hold after CLK rise  
Chip select hold after CLK rise  
tALH  
tCEH  
Notes  
28. Timing reference 1.25 V when V  
= 2.5 V.  
DDQ  
29. Test conditions shown in (a) of Figure 4 on page 22 unless otherwise noted.  
30. This part has a voltage regulator internally; t is the time power needs to be supplied above V  
initially, before a read or write operation can be initiated.  
Power  
DD(minimum)  
31. t  
, t  
, t  
, and t  
are specified with AC test conditions shown in (b) of Figure 4 on page 22. Transition is measured ± 200 mV from steady-state voltage.  
CHZ CLZ EOLZ  
EOHZ  
32. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same data  
EOHZ  
EOLZ  
CHZ  
CLZ  
bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve  
high Z prior to low Z under the same system conditions.  
33. This parameter is sampled and not 100% tested.  
Document Number: 38-05558 Rev. *P  
Page 23 of 34  
 
 
 
 
 
 
CY7C1370DV25  
CY7C1372DV25  
Switching Waveforms  
Figure 5. Read/Write Cycle Timing [34, 35, 36]  
1
2
3
4
5
6
7
8
9
10  
t
CYC  
CLK  
t
t
CE
CL  
CH  
CE
A
BW  
x
A4  
CO  
A3  
A5  
A6  
A7  
ADDRESS  
t
t
t
D
t
t
t
DOH  
OEV  
CHZ  
t
t
AS  
AH  
Data  
D(A1)  
D(A2)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6)  
In-Out (DQ)  
t
OEHZ  
t
DOH  
t
OELZ  
OE  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
)  
BT  
AD  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
D(A2+1)  
(A4+1)  
DON’T CARE  
UNDEFINED  
Notes  
34. For this waveform ZZ is tied LOW.  
35. When CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH, CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
36. Order of the Burst sequence is determined by the status of the MODE (0 = Linear, 1 = Interleaved). Burst operations are optional.  
Document Number: 38-05558 Rev. *P  
Page 24 of 34  
 
 
 
CY7C1370DV25  
CY7C1372DV25  
Switching Waveforms (continued)  
Figure 6. NOP, STALL and DESELECT Cycles [37, 38, 39]  
1
2
3
4
5
6
7
8
9
10  
CLK  
CEN  
B
A3  
A4  
A5  
ADDRESS  
t
CHZ  
D(A4)  
(A1)  
Q(A2)  
Q(A3)  
Q(A5)  
Data  
In-Out (DQ)  
WRITE  
D(A1)  
READ  
Q(A2)  
STALL  
REA
Q
ALL  
NOP  
READ  
Q(A5)  
DESELECT  
CONTINUE  
DESELECT  
CARE  
UNDEFINED  
Figude Timg [40, 41]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
DEST or READ Only  
(except ZZ)  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes  
37. For this waveform ZZ is tied LOW.  
38. When CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH, CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
39. The Ignore Clock Edge or Stall cycle (Clock 3) illustrated CEN being used to create a pause. A write is not performed during this cycle  
40. Device must be deselected when entering ZZ mode. See cycle description table for all possible signal conditions to deselect the device.  
41. I/Os are in high Z when exiting ZZ sleep mode.  
Document Number: 38-05558 Rev. *P  
Page 25 of 34  
 
 
 
 
CY7C1370DV25  
CY7C1372DV25  
Ordering Information  
Cypress offers other versions of this type of product in different configurations and features. The following table contains only the  
list of parts that are currently available.  
For a complete listing of all options, visit the Cypress website at www.cypress.com and refer to the product summary page at  
http://www.cypress.com/procts, or contact your local sales representative.  
Cypress maintains a work of offices, solution centers, manufacturer’s representatives and distributors. To find the office  
closest to you, v.cypress.com/go/datasheet/offices.  
Speed  
(MHz)  
ackage  
gram  
Operating  
Range  
Part and Package Type  
de  
167 67AX
C25-167
050 100-pin TQFP (14 × 20 × 1.4 mm) Pb-free  
Commercial  
CY7C1370DV25
51-8518ball FBGA (13 × 15 × 1.4 mm)  
51-850 100n TQFP (14 × 20 × 1.4 mm) Pb-free  
51180 165all FBGA (13 × 15 × 1.4 mm)  
200 CY7C1370D
CY7C1370DV
Commercial  
Ordering Code Definitions  
CY  
7
C 137X D V25 - XXXX  
X
C
T
C to +7C  
ent = ded  
XX = r BZ  
TQFP  
-ball FBA  
Speed GradeXX = 167 MHz or 0 M
V25 = 2.5 VDD  
Process Tology: D 9
Part IdentifierX = 10 or 13
1370 = PL, 512Kb × (18Mb)  
1372 = PL, 1Mb × 8Mb)  
Technology Code: C = OS  
Marketing Code: 7 = SRA
Company ID: CY = Cypress  
Document Number: 38-05558 Rev. *P  
Page 26 of 34  
 
 
CY7C1370DV25  
CY7C1372DV25  
Package Diagrams  
Figure 8. 100-pin TQFP (14 × 20 × 1.4 mm) A100RA Package Outline, 51-85050  
51-85050 *E  
Document Number: 38-05558 Rev. *P  
Page 27 of 34  
 
CY7C1370DV25  
CY7C1372DV25  
Package Diagrams (continued)  
Figure 9. 165-ball FBGA (13 × 15 × 1.4 mm) BB165D/BW165D (0.5 Ball Diameter) Package Outline, 51-85180  
585180 *F  
Document Number: 38-05558 Rev. *P  
Page 28 of 34  
CY7C1370DV25  
CY7C1372DV25  
Acronyms  
Document Conventions  
Units of Measure  
Acronym  
Description  
CE  
Chip Enable  
Clock Enable  
Symbol  
°C  
Unit of Measure  
CEN  
CMOS  
EIA  
degree Celsius  
megahertz  
microampere  
milliampere  
millimeter  
millisecond  
millivolt  
Complementary Metal Oxide Semiconductor  
Electrolliance  
Finray  
MHz  
µA  
mA  
mm  
ms  
mV  
ns  
FBGA  
I/O  
JEDEC  
JTAG  
LSB  
ces Enng Council  
Grou
ficant
Most Significa
nanosecond  
ohm  
MSB  
NoBL  
OE  
No Bus La
%
percent  
Output E
pF  
V
picofarad  
volt  
SRAM  
TAP  
Static Randos Memory  
Test Access Port  
watt  
TCK  
TDI  
Test Clock  
Test Data-In  
TDO  
TMS  
TQFP  
TTL  
Test Data-Out  
Test Mode Select  
Thin Quad Flat Pack  
Transistor-Transistor Logic  
Write Enable  
WE  
Document Number: 38-05558 Rev. *P  
Page 29 of 34  
 
 
CY7C1370DV25  
CY7C1372DV25  
Errata  
This section describes the Ram9 NoBL ZZ pin and JTAG issues. Details include trigger conditions, the devices affected, proposed  
workaround and silicon revision applicability. Please contact your local Cypress sales representative if you have further questions.  
Part Numbers Affected  
& Revision  
Package Type  
100-pin TQFP  
165-ball FBGA  
Operating Range  
18MbAMs: CY7C137*DV25  
Commercial  
Product
All of the 9 18Mare qualified and available in production quantities.  
Ram9 NoBin & JTta Summary  
The following table defineplicable to Ram9 18Mb NoBL family devices.  
Item  
Issues  
Descrin  
Device  
Fix Status  
1. ZZ Pin  
When asserted GH, thpin places  
deviceinasleconditiothdataint
preserved.ThZ pin curry does
an internal pown resir and
cannot be left ting ernally
during normal moperat
18M-Ram9 (90nm)  
For the 18M Ram9 (90 nm)  
devices, there is no plan to fix  
this issue.  
2. JTAG  
During JTAG test mode, the
18M-R9 (90nm)  
This issue will be fixed in the  
new revision, which use the  
65 nm technology. Please  
contact your local sales rep for  
availability.  
Functionality circuitry does not perform a
datasheet.However, it is p
the JTAG test with these deS  
mode”.  
Document Number: 38-05558 Rev. *P  
Page 30 of 34  
 
CY7C1370DV25  
CY7C1372DV25  
1. ZZ Pin Issue  
PROBLEM DEFINITION  
The problem occurs only when the device is operated in the normal mode with ZZ pin left floating. The ZZ pin on the SRAM  
device does not have an internal pull-down resistor. Switching noise in the system may cause the SRAM to recognize a HIGH  
on the ZZ input, which may cause the SRAM to enter sleep mode. This could result in incorrect or undesirable operation of the  
SRAM.  
TRIGGER CONDI
Device operaleft floating.  
SCOP
Wheting, the evice delivers incorrect data.  
WO
Tie nally t
FIX STATUS  
For the 18M Rames, there no plfix this issue.  
2. JTAG Functionality  
PROBLEM DEFINITION  
The problem occurs only whehe device peratt mode.During this mode, the JTAG circuitry can perform  
incorrectly by delivering the inrect datr the length.  
TRIGGER CONDITIONS  
Several conditions can trigger this failure m
1. The device can deliver an incorrect lengoperg in JTAG mode.  
2. Some Byte Write inputs only recognize a el when JTAG mode.  
3. Incorrect JTAG data can be read from the hen the input is tied HIGH g JTAG operation.  
SCOPE OF IMPACT  
The device fails for JTAG test. This does not impact thmal functionalithe device.  
WORKAROUND  
1.Perform JTAG testing with these devices in “BYPASS mode”.  
2.Do not use JTAG test.  
FIX STATUS  
This issue will be fixed in the new revision, which use the 65 nm technology. Please conct your local ss rep foilability  
Document Number: 38-05558 Rev. *P  
Page 31 of 34  
CY7C1370DV25  
CY7C1372DV25  
Document History Page  
Document Title: CY7C1370DV25/CY7C1372DV25, 18-Mbit (512K × 36/1M × 18) Pipelined SRAM with NoBL™ Architecture  
Document Number: 38-05558  
Orig. of  
Change  
Rev.  
ECN No.  
Issue Date  
Description of Change  
**  
25450
2
CN  
N  
RKF  
New data sheet.  
*A  
SYT  
Updated Selection Guide (Removed 225 MHz frequency related information).  
Updated IEEE 1149.1 Serial Boundary Scan (JTAG [18]) (Edited description  
for non-compliance with 1149.1).  
Updated Electrical Characteristics (Removed 225 MHz frequency related  
information).  
Updated Switching Characteristics (Removed 225 MHz frequency related  
information).  
Updated Ordering Information (Added Pb-free information for 100-pin TQFP,  
ball BGA and 165-ball FBGA package) and added comment for ‘Pb-free  
BG kages availability’ below the Ordering Information.  
*B  
32607
P
UpdaPin Configurations (Address expansion pins/balls in the pinouts for  
all pages are modified as per JEDEC standard).  
Updted IEEE 1149.1 Serial Boundary Scan (JTAG [18]) (Updated TAP  
Instruction Sdated OVERVIEW (description), updated EXTEST  
(descriEXTEST Output Bus Tri-State)).  
Updaracteristics (Modified Test Conditions for VOL, VOH  
p
sistance (Changed JA and JC for 100-pin TQFP  
d 6 Cto 28.66 and 4.08 C/W respectively, changed  
19-balGA Package from 45 and 7 C/W to 23.8 and  
ctivelyhanged JA and JC for FBGA Package from 46 and  
.7 and 0 C/W respectively).  
Orderinnformation (Updateart numbers) and removed comment  
for ‘Pb-free Backages availabilibthe Ordering Information  
*C  
418125  
See ECN  
NXR  
Changed tus from Preliminao Final.  
Changedress of Cypress miconductoorporation from “3901 North  
First Stre“198 Chamurt”.  
Updated Eleal Charteristihanged the diption of IX parameter  
from Input LoaCurreto Input Lge Current, cd the minimum and  
maximum values oparameter (corresponding tnpurrent of MODE)  
from –5 A and 30 –30A and 5 A, changehe minium and maximum  
values of IX parameter responding to Inpurrent of ZZ) fr–30 A and  
5 A to –5 A and 30 Adated Note 25
Updated Ordering Informaton (Updated rt numbers).  
*D  
475677  
See ECN  
VKN  
Updated TAP AC Switching Charactetics (Changed nimum valuef tTH  
and tTL parameters from 25 ns to ns, and maximlue of tTDOV  
parameter from 5 ns to 10 ns).  
,
Updated Maximum Ratings (Added the Maximm Rating fupply Voltage  
on VDDQ Relative to GND).  
Updated Ordering Information (Updated pambers).  
*E  
*F  
2897278  
3031731  
03/22/2010  
09/16/2010  
NJY  
NJY  
Updated Ordering Information (Removed obsopart numbers).  
Updated Package Diagrams.  
Updated Ordering Information (Updated part numbers) and added Ordering  
Code Definitions.  
Added Acronyms and Units of Measure.  
Minor edits.  
Updated to new template.  
*G  
*H  
3050869  
3067198  
10/07/2010  
10/20/2010  
NJY  
NJY  
Updated Ordering Information (Removed CY7C1370DV25-167BZI,  
CY7C1370DV25-250AXC, and CY7C1370DV25-167AXI).  
Updated Ordering Information (Updated part numbers).  
Document Number: 38-05558 Rev. *P  
Page 32 of 34  
CY7C1370DV25  
CY7C1372DV25  
Document History Page (continued)  
Document Title: CY7C1370DV25/CY7C1372DV25, 18-Mbit (512K × 36/1M × 18) Pipelined SRAM with NoBL™ Architecture  
Document Number: 38-05558  
Orig. of  
Rev.  
ECN No.  
Issue Date  
Description of Change  
Updated Package Diagrams.  
Change  
*I  
3378887  
357576
09/21/2011  
PRIT  
*J  
012 NJY / PRIT Updated Features(Removed250MHzfrequencyrelatedinformation, removed  
119-ball BGA package related information).  
Updated Selection Guide (Removed 250 MHz frequency related information).  
Updated Pin Configurations (Removed 119-ball BGA package related  
information).  
Updated Scan Register Sizes (Removed 119-ball BGA package related  
information).  
Removed Boundary Scan Order (Corresponding to 119-ball BGA package).  
Updated Operating Range (Removed Industrial Temperature Range).  
Updated Electrical Characteristics (Removed 250 MHz frequency related  
ation).  
Updd Capacitance (Removed 119-ball BGA package related information).  
UpdaThermal Resistance (Removed 119-ball BGA package related  
infortion).  
Updted Switching Characteristics (Removed 250 MHz frequency related  
information).  
Updateagrams (Removed 119-ball BGA package related  
infor
*K  
3753130  
09/24/201
P
grams (spec 51-85180 (Changed revision from *E to  
*L  
3981545  
4070450  
04/25/2013  
07/20/2013  
PRIT  
PRIT  
*M  
otnot(Note 1, 2, 3, 4, 5, 18).  
Confirations:  
ote 1 areferred the same e in Figure 1.  
Added Note 2and referred the se e in Figure 2.  
Updated PiDefinitions:  
Added N4 and referred thame note in O, TDI, TMS, TCK pins.  
Added Nand referred me note in ZZ pi.  
Updated IE149.1 Sel Bary Scan (JTA8]):  
Added Note 1nd rered the snote in JTAG e heading.  
Updated to new temate.  
*N  
*O  
4151890  
4572829  
10/09/2013  
11/18/2014  
PRIT  
PRIT  
Updated Errata.  
Updated Functional Detion:  
Added “For a complete lisrelated docuentation, click re.he end.  
Updated Package Diagrams:  
spec 51-85050 – Changed revision f*D to *E.  
*P  
5508335  
11/03/2016  
PRIT  
Obsolete document.  
Completing Sunset Review.  
Document Number: 38-05558 Rev. *P  
Page 33 of 34  
CY7C1370DV25  
CY7C1372DV25  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
Automotive  
ypress.com/go/automotive  
cypress.com/go/clocks  
cypress.com/go/interface  
ypress.m/go/powerpsoc  
ss.com/go/plc  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP  
Clocks & Buffers  
Interface  
Cypress Developer Community  
Lighting & P
Community | Forums | Blogs | Video | Training  
Technical Support  
Memory  
go/memory  
com/go/psoc  
cypress.com/go/support  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
ss.com/goch  
cypress.cm/go/U
press.cogo/wirele
© Cypress Semiconductor Corporation, 2004-2016. The information contained herein is subject to change without notice. Cypress Smiconductor Corporaasso responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress productnot warror intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, ss does not aits products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The sion of Cypress procts in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license , use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product ed only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code excas specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 38-05558 Rev. *P  
Revised November 3, 2016  
Page 34 of 34  
NoBL and No Bus Latency are trademarks of Cypress Semiconductor Corporation. ZBT is a trademark of Integrated Device Technology, Inc. All products and company names mentioned in this  
document may be the trademarks of their respective holders.  

相关型号:

CY7C1370DV25-200AXI

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1370DV25-200BGC

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS
CYPRESS

CY7C1370DV25-200BGI

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1370DV25-200BGXC

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1370DV25-200BGXI

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1370DV25-200BZC

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1370DV25-200BZI

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1370DV25-200BZIT

ZBT SRAM, 512KX36, 3ns, CMOS, PBGA165, 13 X 15 MM, 1.40 MM HEIGHT, MO-216, FBGA-165
CYPRESS

CY7C1370DV25-200BZXC

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1370DV25-200BZXI

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1370DV25-250

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS