CY7C1372DV25-200AXI [CYPRESS]

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture; 18兆位( 512K ×36 / 1M ×18 )流水线式SRAM与NoBL⑩架构
CY7C1372DV25-200AXI
型号: CY7C1372DV25-200AXI
厂家: CYPRESS    CYPRESS
描述:

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
18兆位( 512K ×36 / 1M ×18 )流水线式SRAM与NoBL⑩架构

存储 内存集成电路 静态存储器 时钟
文件: 总30页 (文件大小:422K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
18-Mbit (512K x 36/1M x 18) Pipelined SRAM  
with NoBL™ Architecture  
Features  
Functional Description  
• Pin-compatible and functionally equivalent to ZBT™  
• Supports 250-MHz bus operations with zero wait states  
— Available speed grades are 250, 200, and 167 MHz  
The CY7C1370DV25 and CY7C1372DV25 are 2.5V, 512K x  
36 and 1 Mbit x 18 Synchronous pipelined burst SRAMs with  
No Bus Latency™ (NoBL) logic, respectively. They are  
designed to support unlimited true back-to-back Read/Write  
operations with no wait states. The CY7C1370DV25 and  
CY7C1372DV25 are equipped with the advanced (NoBL) logic  
required to enable consecutive Read/Write operations with  
data being transferred on every clock cycle. This feature  
dramatically improves the throughput of data in systems that  
require frequent Write/Read transitions. The CY7C1370DV25  
and CY7C1372DV25 are pin-compatible and functionally  
equivalent to ZBT devices.  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock. The  
clock input is qualified by the Clock Enable (CEN) signal,  
which when deasserted suspends operation and extends the  
previous clock cycle.  
Write operations are controlled by the Byte Write Selects  
(BWa–BWd for CY7C1370DV25 and BWa–BWb for  
CY7C1372DV25) and a Write Enable (WE) input. All writes are  
conducted with on-chip synchronous self-timed write circuitry.  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output three-state control. In order to avoid bus  
contention, the output drivers are synchronously three-stated  
during the data portion of a write sequence.  
• Internally self-timed output buffer control to eliminate  
the need to use asynchronous OE  
• Fully registered (inputs and outputs) for pipelined  
operation  
• Byte Write capability  
• Single 2.5V power supply  
• 2.5V I/O power supply  
• Fast clock-to-output times  
— 2.6 ns (for 250-MHz device)  
— 3.0 ns (for 200-MHz device)  
— 3.4 ns (for 167-MHz device)  
• Clock Enable (CEN) pin to suspend operation  
• Synchronous self-timed writes  
• Available in lead-free 100 TQFP, 119 BGA, and 165 fBGA  
packages  
• IEEE 1149.1 JTAG Boundary Scan  
• Burst capability—linear or interleaved burst order  
• “ZZ” Sleep Mode option and Stop Clock option  
Logic Block Diagram-CY7C1370DV25 (512K x 36)  
ADDRESS  
REGISTER 0  
A0, A1, A  
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
C
ADV/LD  
C
CLK  
CEN  
WRITE ADDRESS  
REGISTER 1  
WRITE ADDRESS  
REGISTER 2  
O
O
S
U
D
A
T
U
T
P
T
P
E
N
S
U
T
U
T
ADV/LD  
A
E
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
R
E
G
I
MEMORY  
ARRAY  
B
U
F
S
T
E
E
R
I
DQs  
DQP  
DQP  
DQP  
DQP  
WRITE  
DRIVERS  
BW  
BW  
a
a
b
c
d
A
M
P
b
BW  
BW  
c
S
T
E
R
S
F
d
E
R
S
S
WE  
E
E
N
G
INPUT  
REGISTER 1  
INPUT  
REGISTER 0  
E
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
SLEEP  
CONTROL  
ZZ  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Document #: 38-05558 Rev. *A  
Revised November 9, 2004  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
Logic Block Diagram-CY7C1372DV25 (1M x 18)  
ADDRESS  
REGISTER 0  
A0, A1, A  
A1  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
A0  
BURST  
LOGIC  
MODE  
C
ADV/LD  
C
CLK  
CEN  
WRITE ADDRESS  
REGISTER 1  
WRITE ADDRESS  
REGISTER 2  
O
U
T
P
O
U
T
P
S
E
N
S
D
A
T
U
T
U
T
ADV/LD  
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
A
R
E
G
I
S
T
E
R
S
MEMORY  
ARRAY  
E
B
DQs  
U
WRITE  
DRIVERS  
BW  
BW  
a
S
T
E
E
R
I
A
M
P
F
F
E
R
S
DQP  
DQP  
a
b
b
S
N
G
WE  
E
E
INPUT  
REGISTER 1  
INPUT  
REGISTER 0  
E
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
Sleep  
Control  
ZZ  
Selection Guide  
CY7C1370DV25-250  
CY7C1372DV25-250  
CY7C1370DV25-200  
CY7C1372DV25-200  
CY7C1370DV25-167  
CY7C1372DV25-167  
Unit  
ns  
mA  
mA  
Maximum Access Time  
Maximum Operating Current  
Maximum CMOS Standby Current  
2.6  
350  
70  
3.0  
300  
70  
3.4  
275  
70  
Shaded areas contain advance information. Please contact your local Cypress sales representative for availability of these parts.  
Document #: 38-05558 Rev. *A  
Page 2 of 30  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
Pin Configurations  
100-pin TQFP Packages  
DQPc  
DQc  
1
NC  
NC  
NC  
DDQ  
1
A
DQPb  
DQb  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
80  
2
2
NC  
79  
DQc  
3
DQb  
3
NC  
78  
V
V
4
DDQ  
4
V
V
DDQ  
SS  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DDQ  
SS  
V
5
V
V
5
SS  
V
SS  
DQc  
6
NC  
6
NC  
DQb  
DQc  
7
DQb  
NC  
7
DQPa  
DQa  
DQa  
DQc  
DQc  
8
DQb  
DQb  
DQb  
DQb  
8
9
9
V
V
SS  
DDQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
V
SS  
SS  
V
V
DDQ  
V
DDQ  
DDQ  
DQc  
DQc  
NC  
DQb  
DQb  
DQb  
DQa  
DQa  
DQb  
NC  
V
V
SS  
CY7C1370DV25  
(512K × 36)  
SS  
V
V
DD  
NC  
DD  
NC  
CY7C1372DV25  
(1M × 18)  
NC  
NC  
V
V
DD  
DD  
V
V
SS  
SS  
ZZ  
ZZ  
DQd  
DQd  
DQb  
DQb  
DQa  
DQa  
DQa  
DQa  
V
V
V
V
DDQ  
DDQ  
V
V
DQa  
DQa  
DDQ  
SS  
DDQ  
SS  
V
V
SS  
SS  
DQd  
DQd  
DQd  
DQd  
DQb  
DQb  
DQa  
DQa  
NC  
DQa DQPb  
DQa  
NC  
NC  
V
SS  
V
V
V
SS  
DDQ  
SS  
SS  
DDQ  
V
V
DDQ  
DDQ  
V
V
DQd  
DQa  
NC  
NC  
NC  
NC  
NC  
NC  
DQd  
DQa  
DQPd  
DQPa  
Document #: 38-05558 Rev. *A  
Page 3 of 30  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
Pin Configurations (continued)  
119-ball BGA Pinout  
CY7C1370DV25 (512K × 36) – BGA  
1
VDDQ  
2
A
3
A
4
A
5
A
6
A
7
VDDQ  
A
NC  
NC  
DQc  
DQc  
VDDQ  
DQc  
CE2  
A
DQPc  
A
A
VSS  
VSS  
VSS  
BWc  
VSS  
NC  
VSS  
BWd  
VSS  
VSS  
VSS  
MODE  
A
ADV/LD  
VDD  
NC  
A
A
VSS  
VSS  
VSS  
BWb  
VSS  
NC  
VSS  
BWa  
VSS  
VSS  
VSS  
CE3  
A
DQPb  
NC  
NC  
DQb  
B
C
D
E
F
G
H
J
K
L
DQc  
DQc  
DQc  
DQc  
VDD  
DQd  
DQd  
DQd  
DQd  
DQPd  
CE1  
DQb  
DQb  
DQb  
DQb  
VDD  
DQa  
DQa  
DQa  
DQa  
DQPa  
DQb  
VDDQ  
DQb  
DQb  
VDDQ  
DQa  
DQa  
VDDQ  
DQa  
DQa  
OE  
A
WE  
VDD  
CLK  
NC  
DQc  
VDDQ  
DQd  
DQd  
VDDQ  
DQd  
DQd  
NC  
NC  
VDDQ  
M
N
P
CEN  
A1  
A0  
VDD  
A
TCK  
A
E(72)  
TMS  
A
E(36)  
NC  
NC  
ZZ  
VDDQ  
R
NC  
A
TDO  
T
TDI  
U
CY7C1372DV25 (1M x 18) – BGA  
1
2
3
4
5
6
7
VDDQ  
A
A
A
A
A
VDDQ  
A
B
C
D
E
F
G
H
J
NC  
NC  
DQb  
NC  
VDDQ  
NC  
DQb  
VDDQ  
NC  
DQb  
VDDQ  
DQb  
NC  
CE2  
A
NC  
DQb  
NC  
DQb  
NC  
VDD  
DQb  
NC  
DQb  
NC  
DQPb  
A
A
A
VSS  
VSS  
VSS  
A
A
NC  
NC  
NC  
DQa  
VDDQ  
DQa  
NC  
VDDQ  
DQa  
NC  
VDDQ  
NC  
CE3  
A
DQPa  
NC  
DQa  
NC  
DQa  
VDD  
NC  
DQa  
NC  
DQa  
NC  
A
ADV/LD  
VDD  
NC  
VSS  
VSS  
VSS  
NC  
VSS  
NC  
CE1  
OE  
A
BWb  
VSS  
NC  
VSS  
NC  
VSS  
VSS  
VSS  
MODE  
A
WE  
VDD  
CLK  
NC  
VSS  
K
L
BWa  
VSS  
VSS  
VSS  
NC  
A
M
N
P
R
T
CEN  
A1  
A0  
VDD  
E(36)  
TCK  
DQa  
NC  
ZZ  
VDDQ  
NC  
E(72)  
VDDQ  
A
TMS  
A
NC  
TDI  
TDO  
U
Document #: 38-05558 Rev. *A  
Page 4 of 30  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
Pin Configurations (continued)  
165-Ball fBGA Pinout  
CY7C1370DV25 (512K × 36) – fBGA  
1
2
3
4
5
BWb  
6
7
8
9
10  
11  
NC  
E(144)  
DQPb  
DQb  
E(288)  
NC  
A
ADV/LD  
A
A
A
B
C
D
E
F
G
H
J
K
L
CE1  
BWc  
CE3  
CLK  
VSS  
VSS  
CEN  
WE  
VSS  
VSS  
A
NC  
DQc  
CE2  
VDDQ  
VDDQ  
OE  
VSS  
VDD  
A
VDDQ  
VDDQ  
A
NC  
DQb  
BWd  
VSS  
VDD  
BWa  
VSS  
VSS  
DQPc  
DQc  
DQc  
DQc  
DQc  
DQc  
NC  
DQd  
DQd  
DQd  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
DQb  
DQb  
DQb  
NC  
DQa  
DQa  
DQa  
DQb  
DQc  
DQc  
NC  
DQd  
DQd  
DQd  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQb  
DQb  
ZZ  
DQa  
DQa  
DQa  
DQd  
DQPd  
NC  
DQd  
NC  
E(72)  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
TDI  
VSS  
NC  
A1  
VSS  
NC  
TDO  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQa  
NC  
A
DQa  
DQPa  
NC  
M
N
P
MODE  
E(36)  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
CY7C1372DV25 (1M × 18) – fBGA  
1
E(288)  
NC  
NC  
NC  
NC  
NC  
NC  
2
3
4
BWb  
NC  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
5
6
7
CEN  
WE  
VSS  
VSS  
8
9
10  
11  
A
E(144)  
DQPa  
DQa  
A
NC  
CE3  
A
A
A
B
C
D
E
F
G
H
J
K
L
CE1  
ADV/LD  
A
NC  
DQb  
DQb  
DQb  
DQb  
NC  
NC  
NC  
NC  
CE2  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
BWa  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
CLK  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
A
NC  
NC  
NC  
NC  
NC  
OE  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
DQa  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQa  
DQa  
ZZ  
NC  
NC  
NC  
NC  
NC  
DQb  
DQb  
DQb  
DQa  
DQa  
DQa  
DQb  
DQPb  
NC  
NC  
NC  
E(72)  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
TDI  
VSS  
NC  
A1  
VSS  
NC  
TDO  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQa  
NC  
A
NC  
NC  
NC  
M
N
P
MODE  
E(36)  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 38-05558 Rev. *A  
Page 5 of 30  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
Pin Definitions  
Pin Name  
I/O Type  
Pin Description  
A0  
A1  
A
Input-  
Address Inputs used to select one of the address locations. Sampled at the rising edge of  
Synchronous  
the CLK.  
BWa  
BWb  
BWc  
BWd  
Input-  
Byte Write Select Inputs, active LOW. Qualified with WE to conduct writes to the SRAM.  
Sampled on the rising edge of CLK. BWa controls DQa and DQPa, BWb controls DQb and DQPb,  
BWc controls DQc and DQPc, BWd controls DQd and DQPd.  
Synchronous  
Input-  
Write Enable Input, active LOW. Sampled on the rising edge of CLK if CEN is active LOW. This  
WE  
Synchronous  
signal must be asserted LOW to initiate a write sequence.  
Input-  
Advance/Load Input used to advance the on-chip address counter or load a new address.  
When HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When LOW, a  
new address can be loaded into the device for an access. After being deselected, ADV/LD should  
be driven LOW in order to load a new address.  
ADV/LD  
Synchronous  
CLK  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. CLK is qualified with CEN.  
CLK is only recognized if CEN is active LOW.  
Input-  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
CE1  
CE2  
Synchronous  
CE2 and CE3 to select/deselect the device.  
Input-  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with  
Synchronous  
CE1 and CE3 to select/deselect the device.  
Input-  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
CE3  
OE  
Synchronous  
CE1 and CE2 to select/deselect the device.  
Input-  
Output Enable, active LOW. Combined with the synchronous logic block inside the device to  
Asynchronous control the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs.  
When deasserted HIGH, I/O pins are three-stated, and act as input data pins. OE is masked  
during the data portion of a write sequence, during the first clock when emerging from a  
deselected state and when the device has been deselected.  
Input-  
Clock Enable Input, active LOW. When asserted LOW the clock signal is recognized by the  
SRAM. When deasserted HIGH the clock signal is masked. Since deasserting CEN does not  
deselect the device, CEN can be used to extend the previous cycle when required.  
CEN  
DQS  
Synchronous  
I/O-  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is triggered  
by the rising edge of CLK. As outputs, they deliver the data contained in the memory location  
specified by A[17:0] during the previous clock rise of the read cycle. The direction of the pins is  
controlled by OE and the internal control logic. When OE is asserted LOW, the pins can behave  
as outputs. When HIGH, DQa–DQd are placed in a three-state condition. The outputs are  
automatically three-stated during the data portion of a write sequence, during the first clock when  
emerging from a deselected state, and when the device is deselected, regardless of the state of  
OE.  
Synchronous  
DQPX  
I/O-  
Bidirectional Data Parity I/O lines. Functionally, these signals are identical to DQs. During write  
sequences, DQPa is controlled by BWa, DQPb is controlled by BWb, DQPc is controlled by BWc,  
and DQPd is controlled by BWd.  
Synchronous  
MODE  
Input Strap Pin Mode Input. Selects the burst order of the device. Tied HIGH selects the interleaved burst order.  
Pulled LOW selects the linear burst order. MODE should not change states during operation.  
When left floating MODE will default HIGH, to an interleaved burst order.  
TDO  
TDI  
JTAG serial output Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK.  
Synchronous  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK.  
Synchronous  
TMS  
Test Mode Select This pin controls the Test Access Port state machine. Sampled on the rising edge of TCK.  
Synchronous  
TCK  
VDD  
VDDQ  
JTAG-Clock  
Clock input to the JTAG circuitry.  
Power Supply Power supply inputs to the core of the device.  
I/O Power Supply Power supply for the I/O circuitry.  
Document #: 38-05558 Rev. *A  
Page 6 of 30  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
Pin Definitions (continued)  
Pin Name  
I/O Type  
Pin Description  
VSS  
NC  
Ground  
Ground for the device. Should be connected to ground of the system.  
No connects. This pin is not connected to the die.  
E(36,72,  
These pins are not connected. They will be used for expansion to the 36M, 72M, 144M and  
144, 288)  
288M densities.  
ZZ  
Input-  
ZZ “sleep” Input. This active HIGH input places the device in a non-time critical “sleep” condition  
Asynchronous with data integrity preserved. During normal operation, this pin can be connected to VSS or left  
floating.  
of the chip enable signals, its output will three-state following  
Introduction  
Functional Overview  
the next clock rise.  
Burst Read Accesses  
The  
CY7C1370DV25  
and  
CY7C1372DV25  
are  
The CY7C1370DV25 and CY7C1372DV25 have an on-chip  
burst counter that allows the user the ability to supply a single  
address and conduct up to four Reads without reasserting the  
address inputs. ADV/LD must be driven LOW in order to load  
a new address into the SRAM, as described in the Single Read  
Access section above. The sequence of the burst counter is  
determined by the MODE input signal. A LOW input on MODE  
selects a linear burst mode, a HIGH selects an interleaved  
burst sequence. Both burst counters use A0 and A1 in the  
burst sequence, and will wrap around when incremented suffi-  
ciently. A HIGH input on ADV/LD will increment the internal  
burst counter regardless of the state of chip enables inputs or  
WE. WE is latched at the beginning of a burst cycle. Therefore,  
the type of access (Read or Write) is maintained throughout  
the burst sequence.  
synchronous-pipelined Burst NoBL SRAMs designed specifi-  
cally to eliminate wait states during Write/Read transitions. All  
synchronous inputs pass through input registers controlled by  
the rising edge of the clock. The clock signal is qualified with  
the Clock Enable input signal (CEN). If CEN is HIGH, the clock  
signal is not recognized and all internal states are maintained.  
All synchronous operations are qualified with CEN. All data  
outputs pass through output registers controlled by the rising  
edge of the clock. Maximum access delay from the clock rise  
(tCO) is 2.6 ns (250-MHz device).  
Accesses can be initiated by asserting all three Chip Enables  
(CE1, CE2, CE3) active at the rising edge of the clock. If Clock  
Enable (CEN) is active LOW and ADV/LD is asserted LOW,  
the address presented to the device will be latched. The  
access can either be a read or write operation, depending on  
the status of the Write Enable (WE). BWX can be used to  
conduct byte write operations.  
Write operations are qualified by the Write Enable (WE). All  
writes are simplified with on-chip synchronous self-timed write  
circuitry.  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) simplify depth expansion.  
All operations (Reads, Writes, and Deselects) are pipelined.  
ADV/LD should be driven LOW once the device has been  
deselected in order to load a new address for the next  
operation.  
Single Write Accesses  
Write access are initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, and (3) the write signal WE  
is asserted LOW. The address presented is loaded into the  
Address Register. The write signals are latched into the  
Control Logic block.  
On the subsequent clock rise the data lines are automatically  
three-stated regardless of the state of the OE input signal. This  
allows the external logic to present the data on DQ and DQP  
(DQa,b,c,d/DQPa,b,c,d for CY7C1370DV25 and DQa,b/DQPa,b  
for CY7C1372DV25). In addition, the address for the subse-  
quent access (Read/Write/Deselect) is latched into the  
Address Register (provided the appropriate control signals are  
asserted).  
Single Read Accesses  
A read access is initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, (3) the Write Enable input  
signal WE is deasserted HIGH, and (4) ADV/LD is asserted  
LOW. The address presented to the address inputs is latched  
into the Address Register and presented to the memory core  
and control logic. The control logic determines that a read  
access is in progress and allows the requested data to  
propagate to the input of the output register. At the rising edge  
of the next clock the requested data is allowed to propagate  
through the output register and onto the data bus within 2.6 ns  
(250-MHz device) provided OE is active LOW. After the first  
clock of the read access the output buffers are controlled by  
OE and the internal control logic. OE must be driven LOW in  
order for the device to drive out the requested data. During the  
second clock, a subsequent operation (Read/Write/Deselect)  
can be initiated. Deselecting the device is also pipelined.  
Therefore, when the SRAM is deselected at clock rise by one  
On the next clock rise the data presented to DQ and DQP  
(DQa,b,c,d/DQPa,b,c,d for CY7C1370DV25 & DQa,b/DQPa,b for  
CY7C1372DV25) (or a subset for byte write operations, see  
Write Cycle Description table for details) inputs is latched into  
the device and the write is complete.  
The data written during the write operation is controlled by BW  
(BWa,b,c,d for CY7C1370DV25 and BWa,b for CY7C1372DV25)  
signals. The CY7C1370DV25/CY7C1372DV25 provides byte  
write capability that is described in the Write Cycle Description  
table. Asserting the Write Enable input (WE) with the selected  
Byte Write Select (BW) input will selectively write to only the  
desired bytes. Bytes not selected during a byte write operation  
will remain unaltered.  
A synchronous self-timed write  
mechanism has been provided to simplify the write operations.  
Byte write capability has been included in order to greatly  
Document #: 38-05558 Rev. *A  
Page 7 of 30  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
simplify Read/Modify/Write sequences, which can be reduced  
Sleep Mode  
to simple byte write operations.  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the “sleep” mode. CE1, CE2, and CE3, must remain inactive  
for the duration of tZZREC after the ZZ input returns LOW.  
Because the CY7C1370DV25 and CY7C1372DV25 are  
common I/O devices, data should not be driven into the device  
while the outputs are active. The Output Enable (OE) can be  
deasserted HIGH before presenting data to the DQ and DQP  
(DQa,b,c,d/DQPa,b,c,d for CY7C1370DV25 and DQa,b/DQPa,b  
for CY7C1372DV25) inputs. Doing so will three-state the  
output drivers. As a safety precaution, DQand DQP (DQa,b,c,d  
/
DQPa,b,c,d for CY7C1370DV25 and DQa,b/DQPa,b for  
CY7C1372DV25) are automatically three-stated during the  
data portion of a write cycle, regardless of the state of OE.  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
Burst Write Accesses  
First  
Second  
Third  
Fourth  
The CY7C1370DV25/CY7C1372DV25 has an on-chip burst  
counter that allows the user the ability to supply a single  
address and conduct up to four WRITE operations without  
reasserting the address inputs. ADV/LD must be driven LOW  
in order to load the initial address, as described in the Single  
Write Access section above. When ADV/LD is driven HIGH on  
the subsequent clock rise, the chip enables (CE1, CE2, and  
CE3) and WE inputs are ignored and the burst counter is incre-  
mented. The correct BW (BWa,b,c,d for CY7C1370DV25 and  
BWa,b for CY7C1372DV25) inputs must be driven in each  
cycle of the burst write in order to write the correct bytes of  
data.  
Address  
Address  
Address  
Address  
A1,A0  
A1,A0  
A1,A0  
A1,A0  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Linear Burst Address Table (MODE = GND)  
First  
Second  
Third  
Fourth  
Address  
Address  
Address  
Address  
A1,A0  
A1,A0  
A1,A0  
A1,A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
ZZ active to sleep current  
ZZ Inactive to exit sleep current  
Test Conditions  
ZZ > VDD 0.2V  
ZZ > VDD 0.2V  
ZZ < 0.2V  
This parameter is sampled  
This parameter is sampled  
Min.  
Max.  
80  
2tCYC  
Unit  
mA  
ns  
ns  
ns  
tZZS  
tZZREC  
tZZI  
tRZZI  
2tCYC  
0
2tCYC  
ns  
Document #: 38-05558 Rev. *A  
Page 8 of 30  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
Truth Table[1, 2, 3, 4, 5, 6, 7]  
Address  
Used  
None  
None  
External  
Next  
External  
Next  
External  
Next  
None  
Next  
Operation  
Deselect Cycle  
CE  
H
X
L
X
L
X
L
X
L
ZZ  
L
L
L
L
L
L
L
L
L
L
L
H
ADV/LD WE BWx  
OE  
X
X
L
L
H
H
X
X
X
X
X
X
CEN CLK  
L-H  
DQ  
L
H
L
H
L
X
X
H
X
H
X
L
X
X
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
Three-State  
Three-State  
Data Out (Q)  
Data Out (Q)  
Three-State  
Three-State  
Data In (D)  
Data In (D)  
Three-State  
Three-State  
Continue Deselect Cycle  
Read Cycle (Begin Burst)  
Read Cycle (Continue Burst)  
NOP/Dummy Read (Begin Burst)  
Dummy Read (Continue Burst)  
Write Cycle (Begin Burst)  
Write Cycle (Continue Burst)  
NOP/Write Abort (Begin Burst)  
Write Abort (Continue Burst)  
Ignore Clock Edge (Stall)  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
H
L
H
L
H
X
X
X
L
X
X
X
L
H
H
X
X
X
X
X
L-H  
Current  
None  
H
X
L-H  
X
Sleep Mode  
Three-State  
Notes:  
1. X = “Don't Care”, H = Logic HIGH, L = Logic LOW, CE stands for ALL Chip Enables active. BWx = L signifies at least one Byte Write Select is active, BW = Valid  
x
signifies that the desired byte write selects are asserted, see Write Cycle Description table for details.  
2. Write is defined by WE and BW . See Write Cycle Description table for details.  
X
3. When a write cycle is detected, all I/Os are tri-stated, even during byte writes.  
4. The DQ and DQP pins are controlled by the current cycle and the OE signal.  
5. CEN = H inserts wait states.  
6. Device will power-up deselected and the I/Os in a tri-state condition, regardless of OE.  
7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles.During a read cycle DQ and DQP = Three-state when OE  
s
X
is inactive or when the device is deselected, and DQ = data when OE is active.  
s
8. Table only lists a partial listing of the byte write combinations. Any Combination of BW is valid. Appropriate write will be done based on which byte write is active.  
X
Document #: 38-05558 Rev. *A  
Page 9 of 30  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
Partial Write Cycle Description[1, 2, 3, 8]  
Function (CY7C1370DV25)  
BWd  
X
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
BWc  
X
H
H
H
H
L
L
L
L
H
H
H
H
L
L
L
L
BWb  
X
H
H
L
BWa  
X
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
WE  
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
Read  
Write – No bytes written  
Write Byte a – (DQa and DQPa)  
Write Byte b – (DQb and DQPb)  
Write Bytes b, a  
Write Byte c – (DQc and DQPc)  
Write Bytes c, a  
Write Bytes c, b  
Write Bytes c, b, a  
Write Byte d – (DQd and DQPd)  
Write Bytes d, a  
Write Bytes d, b  
L
H
H
L
L
H
H
L
Write Bytes d, b, a  
Write Bytes d, c  
Write Bytes d, c, a  
Write Bytes d, c, b  
L
H
H
L
Write All Bytes  
L
L
Function (CY7C1372DV25)  
WE  
BWb  
BWa  
Read  
H
L
L
L
L
x
H
H
L
x
H
L
H
L
Write – No Bytes Written  
Write Byte a – (DQa and DQPa)  
Write Byte b – (DQb and DQPb)  
Write Both Bytes  
L
The CY7C1370DV25/CY7C1372DV25 contains  
a
TAP  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
controller, instruction register, boundary scan register, bypass  
register, and ID register.  
The CY7C1370DV25/CY7C1372DV25 incorporates a serial  
boundary scan test access port (TAP) in the BGA package  
only. The TQFP package does not offer this functionality. This  
part operates in accordance with IEEE Standard 1149.1-1900,  
but doesn’t have the set of functions required for full 1149.1  
compliance. These functions from the IEEE specification are  
excluded because their inclusion places an added delay in the  
critical speed path of the SRAM. Note the TAP controller  
functions in a manner that does not conflict with the operation  
of other devices using 1149.1 fully compliant TAPs. The TAP  
operates using JEDEC-standard 2.5V I/O logic levels.  
Disabling the JTAG Feature  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull-up resistor. TDO should be  
left unconnected. Upon power-up, the device will come up in  
a reset state which will not interfere with the operation of the  
device.  
Document #: 38-05558 Rev. *A  
Page 10 of 30  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
TAP Controller State Diagram  
TAP Controller Block Diagram  
TEST-LOGIC  
1
0
RESET  
0
Bypass Register  
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
2
1
0
0
0
Selection  
Circuitry  
Instruction Register  
31 30 29  
Identification Register  
Selection  
1
1
TDI  
TDO  
CAPTURE-DR  
CAPTURE-IR  
Circuitr  
y
.
.
.
2
1
0
0
0
SHIFT-DR  
0
SHIFT-IR  
0
x
.
.
.
.
. 2 1 0  
1
1
1
1
Boundary Scan Register  
TAP CONTROLLER  
EXIT1-DR  
EXIT1-IR  
0
0
PAUSE-DR  
0
PAUSE-IR  
0
TCK  
TMS  
1
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
Performing a TAP Reset  
1
0
1
0
A RESET is performed by forcing TMS HIGH (VDD) for five  
rising edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is  
operating.  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
Test Access Port (TAP)  
TAP Registers  
Test Clock (TCK)  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Test Mode Select (TMS)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this ball unconnected if the TAP is not used. The ball is  
pulled up internally, resulting in a logic HIGH level.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO balls as shown in the Tap Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test data path.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see figure. TDI  
is internally pulled up and can be unconnected if the TAP is  
unused in an application. TDI is connected to the most signif-  
icant bit (MSB) of any register. (See Tap Controller Block  
Diagram.)  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
Test Data-Out (TDO)  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See Tap Controller State Diagram.)  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR  
Document #: 38-05558 Rev. *A  
Page 11 of 30  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used  
to capture the contents of the I/O ring.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI and the LSB is connected to TDO.  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
The IDCODE instruction is loaded into the instruction register  
upon power-up or whenever the TAP controller is given a test  
logic reset state.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the in-  
struction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is cap-  
tured in the boundary scan register.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is possi-  
ble that during the Capture-DR state, an input or output will  
undergo a transition. The TAP may then try to capture a signal  
while in transition (metastable state). This will not harm the  
device, but there is no guarantee as to the value that will be  
captured. Repeatable results may not be possible.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller's capture set-up plus  
hold times (tCS and tCH). The SRAM clock input might not be  
captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE/PRELOAD instruction. If this  
is an issue, it is still possible to capture all other signals and  
simply ignore the value of the CK and CK captured in the  
boundary scan register.  
TAP Instruction Set  
Overview  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in the  
Instruction Codes table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the I/O  
buffers. The SRAM does not implement the 1149.1 commands  
EXTEST or INTEST or the PRELOAD portion of  
SAMPLE/PRELOAD; rather, it performs a capture of the I/O  
ring when these instructions are executed.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the bound-  
ary scan register between the TDI and TDO pins.  
PRELOAD allows an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells pri-  
or to the selection of another boundary scan test operation.  
EXTEST  
The shifting of data for the SAMPLE and PRELOAD phases  
can occur concurrently when required—that is, while data  
captured is shifted out, the preloaded data can be shifted in.  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all  
0s. EXTEST is not implemented in this SRAM TAP controller,  
and therefore this device is not compliant to 1149.1. The TAP  
controller does recognize an all-0 instruction.  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO balls. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between  
the two instructions. Unlike the SAMPLE/PRELOAD  
instruction, EXTEST places the SRAM outputs in a High-Z  
state.  
IDCODE  
Reserved  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
Document #: 38-05558 Rev. *A  
Page 12 of 30  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics Over the Operating Range[9, 10]  
Parameter  
Clock  
tTCYC  
tTF  
tTH  
tTL  
Description  
Min.  
Max.  
Unit  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
50  
ns  
MHz  
ns  
20  
25  
25  
ns  
Output Times  
tTDOV TCK Clock LOW to TDO Valid  
tTDOX TCK Clock LOW to TDO Invalid  
Set-up Times  
tTMSS TMS Set-up to TCK Clock Rise  
tTDIS  
5
ns  
ns  
0
5
5
5
ns  
ns  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
tCS  
Hold Times  
tTMSH  
tTDIH  
TMS hold after TCK Clock Rise  
TDI Hold after Clock Rise  
Capture Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tCH  
Notes:  
9. t and t refer to the set-up and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
10. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1 ns.  
R
F
Document #: 38-05558 Rev. *A  
Page 13 of 30  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
2.5V TAP AC Test Conditions  
2.5V TAP AC Output Load Equivalent  
1.25V  
Input pulse levels ............................................... .VSS to 2.5V  
Input rise and fall time..................................................... 1 ns  
Input timing reference levels.........................................1.25V  
Output reference levels.................................................1.25V  
Test load termination supply voltage.............................1.25V  
50  
TDO  
ZO= 50Ω  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; VDD = 2.5V ±0.125V unless otherwise noted)[11]  
Parameter  
VOH1  
VOH2  
VOL1  
VOL2  
VIH  
Description  
Test Conditions  
Min.  
2.0  
2.1  
Max.  
Unit  
V
V
V
V
V
V
µA  
Output HIGH Voltage IOH = –1.0 mA, VDDQ = 2.5V  
Output HIGH Voltage IOH = –100 µA, VDDQ = 2.5V  
Output LOW Voltage IOL = 8.0 mA, VDDQ = 2.5V  
Output LOW Voltage IOL = 100 µA  
Input HIGH Voltage  
0.4  
0.2  
VDD + 0.3  
0.7  
VDDQ = 2.5V  
VDDQ = 2.5V  
VDDQ = 2.5V  
1.7  
–0.3  
–5  
VIL  
IX  
Input LOW Voltage  
Input Load Current  
GND < VIN < VDDQ  
5
Note:  
11.All voltages referenced to V (GND).  
SS  
Document #: 38-05558 Rev. *A  
Page 14 of 30  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
Identification Register Definitions  
Instruction Field  
CY7C1370DV25  
CY7C1372DV25  
Description  
Revision Number (31:29)  
000  
000  
Reserved for version number.  
Cypress Device ID (28:12)  
Cypress JEDEC ID (11:1)  
01011001000100101  
00000110100  
01011001000010101 Reserved for future use.  
00000110100  
Allows unique identification of  
SRAM vendor.  
ID Register Presence (0)  
1
1
Indicate the presence of an ID  
register.  
Scan Register Sizes  
Bit Size (x18)  
Register Name  
Bit Size (x36)  
Instruction  
3
3
Bypass  
1
1
ID  
32  
85  
89  
32  
85  
89  
Boundary Scan Order (119-ball BGA package)  
Boundary Scan Order (165-ball fBGA package)  
Identification Codes  
Instruction  
EXTEST  
Code  
000  
Description  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state.  
001  
010  
IDCODE  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
SAMPLE Z  
011  
100  
RESERVED  
SAMPLE/PRELOAD  
Do Not Use: This instruction is reserved for future use.  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation.  
101  
110  
111  
RESERVED  
RESERVED  
BYPASS  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
Document #: 38-05558 Rev. *A  
Page 15 of 30  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
119-ball BGA Boundary Scan[12, 13]  
CY7C1370DV25 (1M x 36)  
CY7C1370DV25 (1M x 36)  
Bit #  
1
2
3
4
5
6
7
8
Ball ID  
Bit #  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
Ball ID  
B6  
D4  
B4  
F4  
Bit #  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
Ball ID  
N2  
P2  
R3  
T1  
R1  
T2  
L3  
R2  
T3  
L4  
N4  
P4  
H4  
T4  
T5  
T6  
R5  
L5  
R6  
U6  
R7  
T7  
P6  
N7  
M6  
L7  
K6  
P7  
N6  
L6  
K7  
J5  
H6  
G7  
F6  
E7  
D7  
H7  
G6  
E6  
D6  
C7  
B7  
C6  
A6  
C5  
B5  
G5  
M4  
A5  
K4  
E4  
G4  
A4  
G3  
C3  
B2  
B3  
A3  
C2  
A2  
B1  
C1  
D2  
E1  
F2  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Internal  
G1  
H2  
D1  
E2  
G2  
H1  
J3  
2K  
L1  
M2  
N1  
P1  
K1  
L2  
Notes:  
12. Balls which are NC (No Connect) are pre-set LOW  
13. Bit# 85 is pre-set HIGH  
Document #: 38-05558 Rev. *A  
Page 16 of 30  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
119-ball BGA Boundary Scan Order[12, 13]  
CY7C1372DV25 (2M x 18)  
CY7C1372DV25 (2M x 18)  
Bit #  
1
2
3
4
5
6
7
8
Ball ID  
Bit #  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
Ball ID  
B6  
D4  
B4  
F4  
Bit #  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
Ball ID  
N2  
P2  
R3  
T1  
R1  
T2  
L3  
R2  
T3  
L4  
N4  
P4  
H4  
T4  
T5  
T6  
R5  
L5  
R6  
U6  
R7  
T7  
P6  
N7  
M6  
L7  
K6  
P7  
N6  
L6  
K7  
J5  
H6  
G7  
F6  
E7  
D7  
H7  
G6  
E6  
D6  
C7  
B7  
C6  
A6  
C5  
B5  
G5  
M4  
A5  
K4  
E4  
G4  
A4  
G3  
C3  
B2  
B3  
A3  
C2  
A2  
B1  
C1  
D2  
E1  
F2  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Internal  
G1  
H2  
D1  
E2  
G2  
H1  
J3  
2K  
L1  
M2  
N1  
P1  
K1  
L2  
Document #: 38-05558 Rev. *A  
Page 17 of 30  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
165-ball fBGA Boundary Scan Order[12, 14]  
CY7C1370DV25 (1M x 36)  
CY7C1370DV25 (1M x 36)  
Bit #  
1
2
3
4
5
6
7
8
Ball ID  
N6  
N7  
10N  
P11  
P8  
R8  
R9  
P9  
Bit #  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
Ball ID  
A9  
B9  
C10  
A8  
B8  
A7  
B7  
B6  
A6  
B5  
A5  
A4  
B4  
B3  
A3  
A2  
B2  
C2  
B1  
A1  
C1  
D1  
E1  
F1  
G1  
D2  
E2  
F2  
G2  
H1  
H3  
J1  
K1  
L1  
M1  
J2  
Bit #  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
Ball ID  
K2  
L2  
M2  
N1  
N2  
P1  
R1  
R2  
P3  
R3  
P2  
R4  
P4  
N5  
P6  
R6  
Internal  
9
P10  
R10  
R11  
H11  
N11  
M11  
L11  
K11  
J11  
M10  
L10  
K10  
J10  
H9  
H10  
G11  
F11  
E11  
D11  
G10  
F10  
E10  
D10  
C11  
A11  
B11  
A10  
B10  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Note:  
14. Bit# 89 is Pre-Set HIGH  
Document #: 38-05558 Rev. *A  
Page 18 of 30  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
165-ball fBGA Boundary Scan Order[12, 14]  
CY7C1372DV25 (2M x 18)  
CY7C1372DV25 (2M x 18)  
Bit #  
1
2
3
4
5
6
7
8
Ball ID  
N6  
N7  
10N  
P11  
P8  
R8  
R9  
P9  
Bit #  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
Ball ID  
A9  
B9  
C10  
A8  
B8  
A7  
B7  
B6  
A6  
B5  
A5  
A4  
B4  
B3  
A3  
A2  
B2  
C2  
B1  
A1  
C1  
D1  
E1  
F1  
G1  
D2  
E2  
F2  
G2  
H1  
H3  
J1  
K1  
L1  
M1  
J2  
Bit #  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
Ball ID  
K2  
L2  
M2  
N1  
N2  
P1  
R1  
R2  
P3  
R3  
P2  
R4  
P4  
N5  
P6  
R6  
Internal  
9
P10  
R10  
R11  
H11  
N11  
M11  
L11  
K11  
J11  
M10  
L10  
K10  
J10  
H9  
H10  
G11  
F11  
E11  
D11  
G10  
F10  
E10  
D10  
C11  
A11  
B11  
A10  
B10  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Document #: 38-05558 Rev. *A  
Page 19 of 30  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage.......................................... > 2001V  
(Above which the useful life may be impaired. For user guide-  
(per MIL-STD-883, Method 3015)  
lines, not tested.)  
Storage Temperature .................................65°C to +150°C  
Latch-up Current.................................................... > 200 mA  
Ambient Temperature with  
Operating Range  
Power Applied.............................................55°C to +125°C  
Ambient  
VDD/VDDQ  
Supply Voltage on VDD Relative to GND........ –0.5V to +3.6V  
DC to Outputs in Tri-State................... –0.5V to VDDQ + 0.5V  
DC Input Voltage....................................–0.5V to VDD + 0.5V  
Range  
Commercial  
Industrial  
Temperature  
0°C to +70°C  
–40°C to +85°C  
2.5V +_ 5%  
Electrical Characteristics Over the Operating Range[15, 16]  
Parameter  
VDD  
Description  
Test Conditions  
Min.  
2.375  
2.375  
2.0  
Max.  
2.625  
VDD  
Unit  
V
V
V
V
Power Supply Voltage  
I/O Supply Voltage  
Output HIGH Voltage  
Output LOW Voltage  
VDDQ  
VOH  
VOL  
VIH  
VIL  
VDD = Min., IOH = 1.0 mA  
VDD = Min., IOL= 1.0 mA  
0.4  
VDD + 0.3V  
Input HIGH Voltage[17] VDDQ = 2.5V  
1.7  
–0.3  
–5  
V
V
Input LOW Voltage[17] VDDQ = 2.5V  
0.7  
5
IX  
Input Load  
Input Current of MODE Input = VSS  
Input = VDD  
GND VI VDDQ  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
–5  
30  
Input Current of ZZ  
Input = VSS  
Input = VDD  
–30  
–5  
5
5
IOZ  
IDD  
Output Leakage Current GND VI VDD, Output Disabled  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
4.0-ns cycle, 250 MHz  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
350  
300  
275  
160  
150  
140  
70  
f = fMAX = 1/tCYC  
ISB1  
Automatic CE  
Max. VDD, Device Deselected, 4.0-ns cycle, 250 MHz  
Power-down  
V
IN VIH or VIN VIL, f = fMAX  
=
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
Current—TTL Inputs  
1/tCYC  
ISB2  
Automatic CE  
Power-down  
Max. VDD, Device Deselected, All speed grades  
V
IN 0.3V or VIN > VDDQ 0.3V,  
Current—CMOS Inputs f = 0  
ISB3  
Automatic CE  
Max. VDD, Device Deselected, 4.0-ns cycle, 250 MHz  
135  
130  
125  
80  
mA  
mA  
mA  
mA  
Power-down  
V
IN 0.3V or VIN > VDDQ 0.3V,  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
Current—CMOS Inputs f = fMAX = 1/tCYC  
ISB4  
Automatic CE  
Max. VDD, Device Deselected, All speed grades  
Power-down  
VIN VIH or VIN VIL, f = 0  
Current—TTL Inputs  
Shaded areas contain advance information.  
Notes:  
15. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC)> –2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
.
16. T  
: Assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V  
< V  
Power-up  
DD  
IH  
DD  
DDQ DD  
17. Tested initially and after any design or process change that may affect these parameters.  
Document #: 38-05558 Rev. *A  
Page 20 of 30  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
Capacitance[17]  
TQFP  
BGA  
fBGA  
Parameter  
CIN  
CCLK  
CI/O  
Description  
Input Capacitance  
Clock Input Capacitance  
Input/Output Capacitance  
Test Conditions  
Package  
Package  
Package  
Unit  
pF  
pF  
TA = 25°C, f = 1 MHz,  
5
5
5
8
8
8
9
9
9
V
DD = 2.5V.  
DDQ = 2.5V  
V
pF  
Thermal Resistance[17]  
TQFP  
BGA  
fBGA  
Parameter  
Description  
Test Conditions  
Package  
Package  
Package  
Unit  
ΘJA  
Thermal Resistance  
Test conditions follow standard  
test methods and procedures  
for measuring thermal  
31  
45  
46  
°C/W  
(Junction to Ambient)  
ΘJC  
Thermal Resistance  
(Junction to Case)  
6
7
3
°C/W  
impedance, per EIA / JESD51.  
AC Test Loads and Waveforms  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50Ω  
0
10%  
L
5 pF  
R = 1538Ω  
1 ns  
1 ns  
V = 1.25V  
T
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Document #: 38-05558 Rev. *A  
Page 21 of 30  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
[22, 23]  
Switching Characteristics Over the Operating Range  
-250  
-200  
-167  
Parameter  
tPower  
Clock  
tCYC  
FMAX  
tCH  
Description  
VCC (typical) to the first access read or write  
Min. Max. Min.  
Max. Min. Max.  
Unit  
ms  
[18]  
1
1
5
1
Clock Cycle Time  
Maximum Operating Frequency  
Clock HIGH  
4.0  
6
ns  
MHz  
ns  
250  
200  
167  
1.7  
1.7  
2.0  
2.0  
2.2  
2.2  
tCL  
Clock LOW  
ns  
Output Times  
tCO  
tEOV  
tDOH  
tCHZ  
Data Output Valid After CLK Rise  
OE LOW to Output Valid  
Data Output Hold After CLK Rise  
Clock to High-Z[19, 20, 21]  
Clock to Low-Z[19, 20, 21]  
OE HIGH to Output High-Z[19, 20, 21]  
OE LOW to Output Low-Z[19, 20, 21]  
2.6  
2.6  
3.0  
3.0  
3.4  
3.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1.0  
1.0  
0
1.3  
1.3  
0
1.3  
1.3  
0
2.6  
2.6  
3.0  
3.0  
3.4  
3.4  
tCLZ  
tEOHZ  
tEOLZ  
Set-up Times  
tAS  
tDS  
tCENS  
tWES  
Address Set-up Before CLK Rise  
Data Input Set-up Before CLK Rise  
CEN Set-up Before CLK Rise  
WE, BWx Set-up Before CLK Rise  
ADV/LD Set-up Before CLK Rise  
Chip Select Set-up  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tALS  
tCES  
Hold Times  
tAH  
tDH  
tCENH  
tWEH  
tALH  
Address Hold After CLK Rise  
Data Input Hold After CLK Rise  
CEN Hold After CLK Rise  
WE, BWx Hold After CLK Rise  
ADV/LD Hold after CLK Rise  
Chip Select Hold After CLK Rise  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tCEH  
Shaded areas contain advance information.  
Notes:  
18. This part has a voltage regulator internally; t  
be initiated.  
is the time power needs to be supplied above V minimum initially, before a Read or Write operation can  
DD  
Power  
19. t  
, t  
, t  
, and t  
are specified with AC test conditions shown in (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
EOHZ  
CHZ CLZ EOLZ  
20. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
EOHZ  
EOLZ  
CHZ  
CLZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions.  
21. This parameter is sampled and not 100% tested.  
22. Timing reference 1.25V when V  
= 2.5V.  
DDQ  
23. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
Document #: 38-05558 Rev. *A  
Page 22 of 30  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
Switching Waveforms  
Read/Write/Timing[24, 25, 26]  
1
2
3
4
5
6
7
8
9
10  
t
CYC  
t
CLK  
t
t
t
CENS CENH  
CL  
CH  
CEN  
t
t
CES  
CEH  
CE  
ADV/LD  
WE  
BW  
x
A1  
A2  
A4  
CO  
A3  
A5  
A6  
A7  
ADDRESS  
t
t
t
t
DS  
DH  
t
t
t
DOH  
OEV  
CLZ  
CHZ  
t
t
AS  
AH  
Data  
D(A1)  
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6)  
In-Out (DQ)  
t
OEHZ  
t
DOH  
t
OELZ  
OE  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
D(A2+1)  
Q(A4+1)  
DON’T CARE  
UNDEFINED  
Notes:  
24. For this waveform ZZ is tied LOW.  
25. When CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH, CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
26. Order of the Burst sequence is determined by the status of the MODE (0 = Linear, 1 = Interleaved). Burst operations are optional.  
Document #: 38-05558 Rev. *A  
Page 23 of 30  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
Switching Waveforms (continued)  
NOP,STALL and DESELECT Cycles[24, 25, 27]  
1
2
3
4
5
6
7
8
9
10  
CLK  
CEN  
CE  
ADV/LD  
WE  
BWx  
A1  
A2  
A3  
A4  
A5  
ADDRESS  
t
CHZ  
D(A4)  
D(A1)  
Q(A2)  
Q(A3)  
Q(A5)  
Data  
In-Out (DQ)  
WRITE  
D(A1)  
READ  
Q(A2)  
STALL  
READ  
Q(A3)  
WRITE  
D(A4)  
STALL  
NOP  
READ  
Q(A5)  
DESELECT  
CONTINUE  
DESELECT  
DON’T CARE  
UNDEFINED  
ZZ Mode Timing[28, 29]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes:  
27. The Ignore Clock Edge or Stall cycle (Clock 3) illustrated CEN being used to create a pause. A write is not performed during this cycle  
28. Device must be deselected when entering ZZ mode. See cycle description table for all possible signal conditions to deselect the device.  
29. I/Os are in High-Z when exiting ZZ sleep mode.  
Document #: 38-05558 Rev. *A  
Page 24 of 30  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
Ordering Information  
Speed  
Package  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
Package Type  
250 CY7C1370DV25-250AXC  
CY7C1372DV25-250AXC  
CY7C1370DV25-250BGC  
CY7C1372DV25-250BGC  
CY7C1370DV25-250BZC  
CY7C1372DV25-250BZC  
CY7C1370DV25-250BGXC  
CY7C1372DV25-250BGXC  
CY7C1370DV25-250BZXC  
CY7C1372DV25-250BZXC  
200 CY7C1370DV25-200AXC  
CY7C1372DV25-200AXC  
CY7C1370DV25-200BGC  
CY7C1372DV25-200BGC  
CY7C1370DV25-200BZC  
CY7C1372DV25-200BZC  
CY7C1370DV25-200BGXC  
CY7C1372DV25-200BGXC  
CY7C1370DV25-200BZXC  
CY7C1372DV25-200BZXC  
167 CY7C1370DV25-167AXC  
CY7C1372DV25-167AXC  
CY7C1370DV25-167BGC  
CY7C1372DV25-167BGC  
CY7C1370DV25-167BZC  
CY7C1372DV25-167BZC  
CY7C1370DV25-167BGXC  
CY7C1372DV25-167BGXC  
CY7C1370DV25-167BZXC  
CY7C1372DV25-167BZXC  
A101  
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm) Commercial  
BG119 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
BB165D 165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
BG119 Lead-Free 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
BB165D Lead-Free 165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.4  
mm)  
A101  
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
BG119 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
BB165D 165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
BG119 Lead-Free 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
BB165D Lead-Free 165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.4  
mm)  
A101  
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
BG119 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
BB165D 165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
BG119 Lead-Free 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
BB165D Lead-Free 165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.4  
mm)  
Document #: 38-05558 Rev. *A  
Page 25 of 30  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
Ordering Information (continued)  
Speed  
Package  
Operating  
Range  
Industrial  
(MHz)  
Ordering Code  
Name  
Package Type  
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
250 CY7C1370DV25-250AXI  
CY7C1372DV25-250AXI  
CY7C1370DV25-250BGI  
CY7C1372DV25-250BGI  
CY7C1370DV25-250BZI  
CY7C1372DV25-250BZI  
CY7C1370DV25-250BGXI  
CY7C1372DV25-250BGXI  
CY7C1370DV25-250BZXI  
CY7C1372DV25-250BZXI  
200 CY7C1370DV25-200AXI  
CY7C1372DV25-200AXI  
CY7C1370DV25-200BGI  
CY7C1372DV25-200BGI  
CY7C1370DV25-200BZI  
CY7C1372DV25-200BZI  
CY7C1370DV25-200BGXI  
CY7C1372DV25-200BGXI  
CY7C1370DV25-200BZXI  
CY7C1372DV25-200BZXI  
167 CY7C1370DV25-167AXI  
CY7C1372DV25-167AXI  
CY7C1370DV25-167BGI  
CY7C1372DV25-167BGI  
CY7C1370DV25-167BZI  
CY7C1372DV25-167BZI  
CY7C1370DV25-167BGXI  
CY7C1372DV25-167BGXI  
CY7C1370DV25-167BZXI  
CY7C1372DV25-167BZXI  
A101  
BG119 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
BB165D 165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
BG119 Lead-Free 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
BB165D Lead-Free 165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.4  
mm)  
A101  
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
BG119 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
BB165D 165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
BG119 Lead-Free 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
BB165D Lead-Free 165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.4  
mm)  
A101  
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
BG119 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
BB165D 165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
BG119 Lead-Free 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
BB165D Lead-Free 165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.4  
mm)  
Shaded areas contain advance information. Please contact your local Cypress sales representative for availability of these parts.  
Lead-free BG packages(Ordering Code: BGX) will be available in 2005.  
Document #: 38-05558 Rev. *A  
Page 26 of 30  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
Package Diagrams  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
DIMENSIONS ARE IN MILLIMETERS.  
ꢁ6.00 0.20  
ꢁ4.00 0.ꢁ0  
ꢁ.40 0.05  
ꢁ00  
ꢀꢁ  
ꢀ0  
0.30 0.0ꢀ  
0.65  
TYP.  
ꢁ2° ꢁ°  
(ꢀX)  
SEE DETAIL  
A
30  
5ꢁ  
3ꢁ  
50  
0.20 MAX.  
ꢁ.60 MAX.  
R 0.0ꢀ MIN.  
0.20 MAX.  
0° MIN.  
STAND-OFF  
0.05 MIN.  
0.ꢁ5 MAX.  
SEATING PLANE  
0.25  
GAUGE PLANE  
R 0.0ꢀ MIN.  
0.20 MAX.  
51-85050-*A  
0°-7°  
0.60 0.ꢁ5  
0.20 MIN.  
ꢁ.00 REF.  
DETAIL  
A
Document #: 38-05558 Rev. *A  
Page 27 of 30  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
Package Diagrams (continued)  
119-Lead PBGA (14 x 22 x 2.4 mm) BG119  
51-85115-*B  
Document #: 38-05558 Rev. *A  
Page 28 of 30  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
Package Diagrams (continued)  
165 FBGA 13 x 15 x 1.40 MM BB165D  
51-85180-**  
Document #: 38-05558 Rev. *A  
Page 29 of 30  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
CY7C1370DV25  
CY7C1372DV25  
PRELIMINARY  
Document History Page  
DocumentTitle:CY7C1370DV25/CY7C1372DV2518-Mbit(512Kx36/1Mx18)PipelinedSRAMwithNoBLArchitecture  
(Preliminary)  
Document Number: 38-05558  
Orig. of  
REV.  
**  
ECN No. Issue Date Change  
Description of Change  
254509  
See ECN  
RKF  
New data sheet  
*A  
288531  
See ECN  
SYT  
Edited description under “IEEE 1149.1 Serial Boundary Scan (JTAG)” for  
non-compliance with 1149.1  
Removed 225 Mhz Speed Bin  
Added lead-free information for 100-Pin TQFP, 119 BGA and 165 FBGA  
package  
Added comment of ‘Lead-free BG packages availability’ below the Ordering  
Information  
Document #: 38-05558 Rev. *A  
Page 30 of 30  

相关型号:

CY7C1372DV25-200BGC

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1372DV25-200BGI

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1372DV25-200BGXC

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1372DV25-200BGXI

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1372DV25-200BGXIT

ZBT SRAM, 1MX18, 3ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, LEAD FREE, BGA-119
CYPRESS

CY7C1372DV25-200BZC

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1372DV25-200BZCT

ZBT SRAM, 1MX18, 3ns, CMOS, PBGA165, 13 X 15 MM, 1.40 MM HEIGHT, MO-216, FBGA-165
CYPRESS

CY7C1372DV25-200BZI

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1372DV25-200BZXC

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1372DV25-200BZXI

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1372DV25-250

18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1372DV25-250AI

ZBT SRAM, 1MX18, 2.6ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS