CY7C1380D-200AXI [CYPRESS]

18-Mbit (512K x 36/1M x 18) Pipelined SRAM; 18兆位( 512K ×36 / 1M ×18 )流水线SRAM
CY7C1380D-200AXI
型号: CY7C1380D-200AXI
厂家: CYPRESS    CYPRESS
描述:

18-Mbit (512K x 36/1M x 18) Pipelined SRAM
18兆位( 512K ×36 / 1M ×18 )流水线SRAM

静态存储器
文件: 总30页 (文件大小:1186K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
18-Mbit (512K x 36/1M x 18) Pipelined SRAM  
Features  
Functional Description [1]  
• Supports bus operation up to 250 MHz  
• Available speed grades are 250, 200, and 167 MHz  
• Registered inputs and outputs for pipelined operation  
• 3.3V core power supply  
The  
CY7C1380D/CY7C1382D/CY7C1380F/CY7C1382F  
SRAM integrates 524,288 x 36 and 1,048,576 x 18 SRAM  
cells with advanced synchronous peripheral circuitry and a  
two-bit counter for internal burst operation. All synchronous  
inputs are gated by registers controlled by a positive edge  
triggered clock input (CLK). The synchronous inputs include  
all addresses, all data inputs, address-pipelining chip enable  
(CE1), depth-expansion chip enables (CE2 and CE3 [2]), burst  
control inputs (ADSC, ADSP, and ADV), write enables (BWX,  
and BWE), and global write (GW). Asynchronous inputs  
include the output enable (OE) and the ZZ pin.  
• 2.5V or 3.3V IO power supply  
• Fast clock-to-output times  
— 2.6 ns (for 250 MHz device)  
• Provides high-performance 3-1-1-1 access rate  
• User selectable burst counter supporting Intel® Pentium®  
interleaved or linear burst sequences  
Addresses and chip enables are registered at rising edge of  
clock when address strobe processor (ADSP) or address  
strobe controller (ADSC) are active. Subsequent burst  
addresses can be internally generated as they are controlled  
by the advance pin (ADV).  
• Separate processor and controller address strobes  
• Synchronous self-timed write  
• Asynchronous output enable  
Address, data inputs, and write controls are registered on-chip  
to initiate a self-timed write cycle.This part supports byte write  
operations (see Pin Definitions on page 6 and Truth Table [4,  
5, 6, 7, 8] on page 9 for further details). Write cycles can be one  
to two or four bytes wide as controlled by the byte write control  
inputs. GW when active LOW causes all bytes to be written.  
• Single cycle chip deselect  
• CY7C1380D/CY7C1382D available in JEDEC-standard  
Pb-free 100-pin TQFP, Pb-free and non Pb-free 165-ball  
FBGA package. CY7C1380F/CY7C1382F available in  
Pb-free and non Pb-free 119-ball BGA package  
• IEEE 1149.1 JTAG-Compatible Boundary Scan  
• ZZ sleep mode option  
The  
CY7C1380D/CY7C1382D/CY7C1380F/CY7C1382F  
operates from a +3.3V core power supply while all outputs  
operate with a +2.5 or +3.3V power supply. All inputs and  
outputs are JEDEC-standard and JESD8-5-compatible.  
Selection Guide  
250 MHz  
200 MHz  
3.0  
167 MHz  
3.4  
Unit  
ns  
Maximum Access Time  
2.6  
350  
70  
Maximum Operating Current  
Maximum CMOS Standby Current  
300  
275  
mA  
mA  
70  
70  
Notes:  
1. For best practices or recommendations, please refer to the Cypress application note AN1064, SRAM System Design Guidelines on www.cypress.com.  
2. CE CE are for TQFP and 165 FBGA packages only. 119 BGA is offered only in 1 chip enable.  
3,  
2
Cypress Semiconductor Corporation  
Document #: 38-05543 Rev. *E  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised Feburary 07, 2007  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
Logic Block Diagram – CY7C1380D/CY7C1380F [3] (512K x 36)  
A0, A1, A  
ADDRESS  
REGISTER  
2
A
[1:0]  
MODE  
Q1  
Q0  
ADV  
CLK  
BURST  
COUNTER  
AND  
CLR  
LOGIC  
ADSC  
ADSP  
DQ D , DQP  
BYTE  
WRITE REGISTER  
D
DQ D ,DQP  
BYTE  
WRITE DRIVER  
D
BW  
BW  
D
DQ C , DQP  
BYTE  
WRITE DRIVER  
C
DQ C , DQP  
BYTE  
C
C
OUTPUT  
OUTPUT  
REGISTERS  
WRITE REGISTER  
MEMORY  
ARRAY  
DQs  
SENSE  
AMPS  
BUFFERS  
E
DQP  
DQP  
DQP  
DQP  
A
DQ B , DQP  
BYTE  
WRITE DRIVER  
B
DQ B , DQP  
BYTE  
WRITE REGISTER  
B
B
C
D
BW  
B
A
DQ A , DQP  
BYTE  
WRITE DRIVER  
A
DQ A , DQP  
BYTE  
WRITE REGISTER  
A
BW  
BWE  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
PIPELINED  
ENABLE  
CE  
CE  
CE  
OE  
1
2
3
SLEEP  
CONTROL  
ZZ  
Logic Block Diagram – CY7C1382D/CY7C1382F [3] (1M x 18)  
ADDRESS  
A0, A1, A  
REGISTER  
2
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
ADSC  
DQ B, DQP  
B
DQ B, DQP  
WRITE REGISTER  
B
WRITE DRIVER  
OUTPUT  
BUFFERS  
BW  
BW  
B
DQs  
DQP  
DQP  
OUTPUT  
SENSE  
MEMORY  
ARRAY  
A
B
DQ A, DQP  
A
DQ A, DQP  
WRITE REGISTER  
A
WRITE DRIVER  
A
BWE  
INPUT  
GW  
CE  
CE2  
ENABLE  
REGISTER  
1
PIPELINED  
ENABLE  
CE3  
OE  
SLEEP  
CONTROL  
ZZ  
Note:  
3. CY7C1380F and CY7C1382F have only 1 chip enable (CE ).  
1
Document #: 38-05543 Rev. *E  
Page 2 of 30  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
Pin Configurations  
100-pin TQFP Pinout (3 Chip Enable)  
DQPC  
1
DQP  
DQ  
DQ  
VDDQ  
VSSQ  
B
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
NC  
VDDQ  
VSSQ  
NC  
NC  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
NC  
VDD  
NC  
VSS  
DQB  
DQB  
VDDQ  
VSSQ  
A
NC  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
B
2
3
4
5
6
7
8
9
DQc  
VDDQ  
VSSQ  
B
VDDQ  
VSSQ  
NC  
DQP  
DQ  
DQ  
VSSQ  
VDDQ  
DQ  
DQC  
DQC  
DQC  
DQC  
DQ  
DQ  
DQ  
DQ  
B
B
A
B
A
B
A
9
VSSQ  
VDDQ  
VSSQ  
VDDQ  
DQB  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
DQ  
C
A
DQC  
DQB  
DQ  
A
NC  
VDD  
NC  
VSS  
NC  
VDD  
ZZ  
DQA  
DQA  
VSS  
NC  
VDD  
ZZ  
DQ  
DQ  
VDDQ  
VSSQ  
DQ  
DQ  
NC  
NC  
VSSQ  
VDDQ  
NC  
CY7C1382D  
(1 Mbit x 18)  
CY7C1380D  
(512K X 36)  
VSS  
DQD  
A
DQD  
A
VDDQ  
VSSQ  
VDDQ  
VSSQ  
DQD  
DQD  
DQD  
DQD  
DQ  
DQ  
DQ  
DQ  
A
DQ  
DQ  
DQP  
B
A
A
B
A
A
B
A
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
VSSQ  
VDDQ  
VSSQ  
VDDQ  
DQD  
DQ  
DQ  
DQP  
A
DQD  
A
NC  
NC  
DQP  
D
A
Document #: 38-05543 Rev. *E  
Page 3 of 30  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
Pin Configurations (continued)  
119-Ball BGA  
Pinout  
CY7C1380F (512K x 36)  
1
2
3
4
5
6
7
A
VDDQ  
A
A
A
A
VDDQ  
ADSP  
ADSC  
VDD  
NC/288M  
NC/144M  
A
A
A
A
A
A
A
A
NC/576M  
NC/1G  
B
C
D
E
F
DQC  
DQC  
VDDQ  
DQPC  
DQC  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
DQPB  
DQB  
DQB  
DQB  
CE1  
DQC  
DQB  
VDDQ  
OE  
G
H
J
DQC  
DQC  
VDDQ  
DQD  
DQC  
DQC  
VDD  
BWC  
VSS  
NC  
BWB  
VSS  
NC  
DQB  
DQB  
VDD  
DQA  
DQB  
DQB  
VDDQ  
DQA  
ADV  
GW  
VDD  
K
DQD  
VSS  
CLK  
NC  
VSS  
DQD  
VDDQ  
DQD  
DQD  
DQD  
DQD  
DQA  
DQA  
DQA  
DQA  
VDDQ  
DQA  
L
M
N
BWD  
VSS  
VSS  
BWA  
VSS  
VSS  
BWE  
A1  
P
R
DQD  
NC  
DQPD  
A
VSS  
A0  
VSS  
NC  
DQPA  
A
DQA  
NC  
MODE  
VDD  
T
NC  
NC/72M  
TMS  
A
A
A
NC/36M  
NC  
ZZ  
U
VDDQ  
TDI  
TCK  
TDO  
VDDQ  
CY7C1382F (1M x 18)  
2
A
1
3
A
4
5
A
6
A
7
VDDQ  
NC/576M  
NC/1G  
NC  
A
B
C
D
E
F
VDDQ  
ADSP  
NC/288M  
NC/144M  
DQB  
A
A
A
A
ADSC  
VDD  
A
A
A
A
NC  
DQB  
NC  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
DQPA  
NC  
DQA  
NC  
DQA  
CE1  
VDDQ  
VDDQ  
OE  
G
H
J
NC  
DQB  
NC  
VDD  
NC  
VSS  
NC  
NC  
DQA  
VDD  
DQA  
NC  
VDDQ  
BWB  
VSS  
NC  
ADV  
DQB  
VDDQ  
GW  
VDD  
K
NC  
DQB  
VDDQ  
DQB  
NC  
DQB  
NC  
VSS  
NC  
CLK  
NC  
VSS  
NC  
DQA  
NC  
DQA  
NC  
L
M
N
P
BWA  
VSS  
DQB  
NC  
VSS  
VSS  
VSS  
VDDQ  
NC  
BWE  
A1  
VSS  
VSS  
DQA  
NC  
DQPB  
A0  
DQA  
NC  
A
A
MODE  
A
VDD  
NC/36M  
TCK  
NC  
A
A
A
NC  
ZZ  
R
T
NC/72M  
VDDQ  
U
TMS  
TDI  
TDO  
NC  
VDDQ  
Document #: 38-05543 Rev. *E  
Page 4 of 30  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
Pin Configurations (continued)  
165-Ball FBGA Pinout(3 Chip Enable)  
CY7C1380D (512K x 36)  
1
2
3
4
5
6
7
8
9
10  
A
11  
NC  
NC/288M  
NC/144M  
DQPC  
A
B
C
D
CE1  
BWC  
BWD  
VSS  
VDD  
BWB  
BWA  
VSS  
VSS  
CE3  
CLK  
VSS  
VSS  
ADSC  
A
BWE  
GW  
VSS  
VSS  
ADV  
ADSP  
VDDQ  
VDDQ  
A
CE2  
VDDQ  
VDDQ  
A
NC/576M  
DQPB  
DQB  
OE  
VSS  
VDD  
NC  
NC/1G  
DQB  
DQC  
DQC  
DQC  
DQC  
DQC  
NC  
DQC  
DQC  
DQC  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQB  
DQB  
DQB  
NC  
DQB  
DQB  
DQB  
ZZ  
E
F
G
H
J
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
K
L
DQD  
DQPD  
NC  
DQD  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
A
M
N
P
NC/72M  
TDI  
A1  
TDO  
A0  
MODE NC/36M  
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1382D (1M x 18)  
1
2
A
3
4
5
NC  
6
7
8
9
10  
A
11  
A
NC/288M  
NC/144M  
NC  
A
B
C
D
BWB  
NC  
CE3  
CLK  
VSS  
VSS  
CE1  
CE2  
BWE  
GW  
VSS  
VSS  
ADSC  
OE  
ADV  
ADSP  
VDDQ  
VDDQ  
NC/576M  
A
BWA  
VSS  
VSS  
A
NC  
VDDQ  
VDDQ  
VSS  
VDD  
VSS  
NC/1G  
NC  
DQPA  
DQA  
NC  
DQB  
VDD  
NC  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
DQA  
DQA  
ZZ  
E
F
NC  
NC  
G
H
J
NC  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
NC  
NC  
NC  
K
L
NC  
NC  
DQB  
DQPB  
NC  
NC  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
A
M
N
P
NC/72M  
TDI  
A1  
TDO  
MODE NC/36M  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 38-05543 Rev. *E  
Page 5 of 30  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
Pin Definitions  
Name  
IO  
Description  
A0, A1, A  
Input-  
Synchronous  
Address inputs used to select one of the address locations. Sampled at the rising edge of  
the CLK if ADSP or ADSC is active LOW, and CE1, CE2, and CE3 [2]are sampled active. A1: A0  
are fed to the two-bit counter.  
.
BWA, BWB  
BWC, BWD  
Input-  
Synchronous  
Byte write select inputs, active LOW. Qualified with BWE to conduct byte writes to the SRAM.  
Sampled on the rising edge of CLK.  
GW  
Input-  
Synchronous  
Global write enable input, active LOW. When asserted LOW on the rising edge of CLK, a  
global write is conducted (all bytes are written, regardless of the values on BWX and BWE).  
BWE  
CLK  
CE1  
Input-  
Synchronous  
Byte write enable input, active LOW. Sampled on the rising edge of CLK. This signal must be  
asserted LOW to conduct a byte write.  
Input-  
Clock  
Clock input. Used to capture all synchronous inputs to the device. Also used to increment the  
burst counter when ADV is asserted LOW, during a burst operation.  
Input-  
Synchronous  
Chip enable 1 input, active LOW. Sampled on the rising edge of CLK. Used in  
conjunction with  
CE and CE to select or deselect the device. ADSP is ignored  
CE is sampled  
if CE1 is HIGH.  
2
3
1
only when a new external address is loaded.  
[2]  
CE2  
Input-  
Synchronous  
Chip enable 2 input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction  
with CE1 and CE3 to select or deselect the device. CE2 is sampled only when a new external  
address is loaded.  
[2]  
CE3  
Input-  
Synchronous  
Chip enable 3 input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
CE1 and CE2 to select or deselect the device. CE3 is sampled only when a new external address  
is loaded.  
Input-  
Asynchronous  
Output enable, asynchronous input, active LOW. Controls the direction of the IO pins. When  
LOW, the IO pins behave as outputs. When deasserted HIGH, IO pins are tri-stated, and act as  
input data pins. OE is masked during the first clock of a read cycle when emerging from a  
deselected state.  
OE  
ADV  
Input-  
Synchronous  
Advance input signal, sampled on the rising edge of CLK, active LOW. When asserted, it  
automatically increments the address in a burst cycle.  
ADSP  
Input-  
Synchronous  
Address strobe from processor, sampled on the rising edge of CLK, active LOW. When  
asserted LOW, addresses presented to the device are captured in the address registers. A1: A0  
are also loaded into the burst counter. When ADSP and ADSC are both asserted, only ADSP is  
recognized. ASDP is ignored when CE1 is deasserted HIGH.  
ADSC  
Input-  
Synchronous  
Address strobe from controller, sampled on the rising edge of CLK, active LOW. When  
asserted LOW, addresses presented to the device are captured in the address registers. A1: A0  
are also loaded into the burst counter. When ADSP and ADSC are both asserted, only ADSP is  
recognized.  
ZZ  
Input-  
Asynchronous  
ZZ sleep input. This active HIGH input places the device in a non-time critical sleep condition  
with data integrity preserved. For normal operation, this pin has to be LOW or left floating. ZZ  
pin has an internal pull down.  
IO-  
Bidirectional data IO lines. As inputs, they feed into an on-chip data register that is triggered  
by the rising edge of CLK. As outputs, they deliver the data contained in the memory location  
DQs, DQPX  
Synchronous  
specified by the addresses presented during the previous clock rise of the read cycle.  
The  
direction of the pins is controlled by OE. When OE is asserted LOW, the pins behave as outputs.  
When HIGH, DQs and DQPX are placed in a tri-state condition.  
VDD  
Power Supply Power supply inputs to the core of the device.  
Document #: 38-05543 Rev. *E  
Page 6 of 30  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
Pin Definitions (continued)  
Name  
IO  
Description  
VSS  
Ground  
Ground for the core of the device.  
VSSQ  
VDDQ  
IO Ground Ground for the IO circuitry.  
IO Power  
Supply  
Power supply for the IO circuitry.  
MODE  
TDO  
TDI  
Input-Static Selects burst order. When tied to GND selects linear burst sequence. When tied to VDD or left  
floating selects interleaved burst sequence. This is a strap pin and must remain static during  
device operation. Mode pin has an internal pull up.  
JTAG serial Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If the JTAG  
output  
Synchronous  
feature is not being utilized, this pin must be disconnected. This pin is not available on TQFP  
packages.  
JTAG serial Serial data-in to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature is  
input  
Synchronous  
not being utilized, this pin can be disconnected or connected to VDD. This pin is not available on  
TQFP packages.  
TMS  
JTAG serial Serial data-in to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature is  
input  
not being utilized, this pin can be disconnected or connected to VDD. This pin is not available on  
TQFP packages.  
Synchronous  
TCK  
NC  
JTAG-  
Clock  
Clock input to the JTAG circuitry. If the JTAG feature is not being utilized, this pin must be  
connected to VSS. This pin is not available on TQFP packages.  
No Connects. 36M, 72M, 144M, 288M, 576M and 1G are address expansion pins and are not  
internally connected to the die.  
selection and output tri-state control. ADSP is ignored if CE1  
is HIGH.  
Functional Overview  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock.  
Maximum access delay from the clock rise (tCO) is 2.6 ns (250  
MHz device).  
Single Read Accesses  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW,  
(2)  
CE1, CE2, CE3 are all asserted active, and (3) the write  
The  
CY7C1380D/CY7C1382D/CY7C1380F/CY7C1382F  
signals (GW, BWE) are all deserted HIGH. ADSP is ignored if  
supports secondary cache in systems utilizing a linear or  
interleaved burst sequence. The interleaved burst order  
supports Pentium® and i486processors. The linear burst  
sequence is suited for processors that utilize a linear burst  
sequence. The burst order is user selectable, and is  
determined by sampling the MODE input. Accesses can be  
initiated with either the processor address strobe (ADSP) or  
the controller address strobe (ADSC). Address advancement  
through the burst sequence is controlled by the ADV input. A  
two-bit on-chip wraparound burst counter captures the first  
address in a burst sequence and automatically increments the  
address for the rest of the burst access.  
CE1 is HIGH. The address presented to the address inputs (A)  
is stored into the address advancement logic and the address  
register while being presented to the memory array. The  
corresponding data is allowed to propagate to the input of the  
output registers. At the rising edge of the next clock the data  
is allowed to propagate through the output register and onto  
the data bus within 2.6 ns (250 MHz device) if OE is active  
LOW. The only exception occurs when the SRAM is emerging  
from a deselected state to a selected state, its outputs are  
always tri-stated during the first cycle of the access. After the  
first cycle of the access, the outputs are controlled by the OE  
signal. Consecutive single read cycles are supported. Once  
the SRAM is deselected at clock rise by the chip select and  
either ADSP or ADSC signals, its output will tri-state  
immediately.  
Byte write operations are qualified with the byte write enable  
(BWE) and byte write select (BWX) inputs. A global write  
enable (GW) overrides all byte write inputs and writes data to  
all four bytes. All writes are simplified with on-chip  
synchronous self-timed write circuitry.  
Single Write Accesses Initiated by ADSP  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and  
(2) CE1, CE2, CE3 are all asserted active. The address  
Three synchronous chip selects (CE1, CE2, CE3) and an  
asynchronous output enable (OE) provide for easy bank  
Document #: 38-05543 Rev. *E  
Page 7 of 30  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
presented to A is loaded into the address register and the  
address advancement logic while being delivered to the  
memory array. The write signals (GW, BWE, and BWX) and  
ADV inputs are ignored during this first cycle.  
automatically tri-stated whenever a write cycle is detected,  
regardless of the state of OE.  
Burst Sequences  
The  
CY7C1380D/CY7C1382D/CY7C1380F/CY7C1382F  
ADSP triggered write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQs inputs is written into the  
corresponding address location in the memory array. If GW is  
HIGH, then the write operation is controlled by BWE and BWX  
signals.  
provides a two-bit wraparound counter, fed by A1: A0, that  
implements an interleaved or a linear burst sequence. The  
interleaved burst sequence is designed specifically to support  
Intel Pentium applications. The linear burst sequence is  
designed to support processors that follow a linear burst  
sequence. The burst sequence is user selectable through the  
MODE input.  
The  
CY7C1380D/CY7C1382D/CY7C1380F/CY7C1382F  
provides byte write capability that is described in the write  
cycle descriptions table. Asserting the byte write enable input  
(BWE) with the selected byte write (BWX) input, will selectively  
write to only the desired bytes. Bytes not selected during a  
byte write operation will remain unaltered. A synchronous  
self-timed write mechanism has been provided to simplify the  
write operations.  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both read and write burst operations are supported.  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation sleep mode. Two  
clock cycles are required to enter into or exit from this sleep  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the sleep mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the sleep mode. CE1, CE2, CE3, ADSP, and ADSC must  
remain inactive for the duration of tZZREC after the ZZ input  
returns LOW.  
The CY7C1380D/CY7C1382D/CY7C1380F/CY7C1382F is a  
common IO device, the output enable (OE) must be deserted  
HIGH before presenting data to the DQs inputs. Doing so will  
tri-state the output drivers. As a safety precaution, DQs are  
automatically tri-stated whenever a write cycle is detected,  
regardless of the state of OE.  
Single Write Accesses Initiated by ADSC  
ADSC write accesses are initiated when the following  
conditions are satisfied: (1) ADSC is asserted LOW, (2) ADSP  
is deserted HIGH, (3) CE1, CE2, CE3 are all asserted active,  
and (4) the appropriate combination of the write inputs (GW,  
BWE, and BWX) are asserted active to conduct a write to the  
desired byte(s). ADSC-triggered Write accesses require a  
single clock cycle to complete. The address presented to A is  
loaded into the address register and the address  
advancement logic while being delivered to the memory array.  
The ADV input is ignored during this cycle. If a global write is  
conducted, the data presented to the DQs is written into the  
corresponding address location in the memory core. If a byte  
write is conducted, only the selected bytes are written. Bytes  
not selected during a byte write operation will remain  
unaltered. A synchronous self-timed write mechanism has  
been provided to simplify the write operations.  
Interleaved Burst Address Table  
(MODE = Floating or VDD)  
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Linear Burst Address Table (MODE = GND)  
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
The CY7C1380D/CY7C1382D/CY7C1380F/CY7C1382F is a  
common IO device, the output enable (OE) must be deserted  
HIGH before presenting data to the DQs inputs. Doing so will  
tri-state the output drivers. As a safety precaution, DQs are  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
Test Conditions  
ZZ > VDD – 0.2V  
Min.  
Max.  
Unit  
mA  
ns  
80  
tZZS  
ZZ > VDD – 0.2V  
2tCYC  
tZZREC  
tZZI  
ZZ recovery time  
ZZ < 0.2V  
2tCYC  
0
ns  
ZZ Active to sleep current  
ZZ Inactive to exit sleep current  
This parameter is sampled  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
ns  
Document #: 38-05543 Rev. *E  
Page 8 of 30  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
Truth Table [4, 5, 6, 7, 8]  
Operation  
Add. Used CE1 CE2 CE3 ZZ ADSP ADSC ADV WRITE OE CLK  
DQ  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Sleep Mode, Power Down  
READ Cycle, Begin Burst  
READ Cycle, Begin Burst  
WRITE Cycle, Begin Burst  
READ Cycle, Begin Burst  
READ Cycle, Begin Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
WRITE Cycle, Continue Burst  
WRITE Cycle, Continue Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
WRITE Cycle, Suspend Burst  
WRITE Cycle, Suspend Burst  
None  
None  
H
L
X
L
X
X
H
X
H
X
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
L
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
None  
L
X
L
L
None  
L
H
H
X
L
None  
L
X
X
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
L
None  
X
L
X
X
X
L
X
Tri-State  
Q
External  
External  
External  
External  
External  
Next  
L-H  
L
L
L
H
X
L
L-H Tri-State  
L
L
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
L-H  
L-H  
D
Q
L
L
L
H
H
H
H
H
H
L
L
L
L
H
L
L-H Tri-State  
L-H  
L-H Tri-State  
L-H  
L-H Tri-State  
X
X
H
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
Q
Next  
L
H
L
Next  
L
Q
Next  
L
H
X
X
L
Next  
L
L-H  
L-H  
L-H  
D
D
Q
Next  
L
L
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
H
L
L-H Tri-State  
L-H  
L-H Tri-State  
Q
H
X
X
L-H  
L-H  
D
D
L
Notes:  
4. X = Don't Care, H = Logic HIGH, L = Logic LOW.  
5. WRITE = L when any one or more byte write enable signals, and BWE = L or GW = L. WRITE = H when all byte write enable signals, BWE, GW = H.  
6. The DQ pins are controlled by the current cycle and the signal. is asynchronous and is not sampled with the clock.  
OE  
OE  
must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state.  
7. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks  
X
after the  
or with the assertion of  
. As a result,  
is a  
ADSC  
OE  
OE  
ADSP  
don't care for the remainder of the write cycle.  
8.  
is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tri-state when  
is  
OE  
OE  
.
is active (LOW)  
inactive or when the device is deselected, and all data bits behave as output when  
OE  
Document #: 38-05543 Rev. *E  
Page 9 of 30  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
Truth Table for Read/Write [4, 9]  
Function (CY7C1380D/CY7C1380F)  
Read  
GW  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
BWE  
H
L
BWD  
X
H
H
H
H
H
H
H
H
L
BWC  
X
H
H
H
H
L
BWB  
X
H
H
L
BWA  
X
H
L
Read  
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Bytes B, A  
L
L
H
L
L
L
Write Byte C – (DQC and DQPC)  
Write Bytes C, A  
L
H
H
L
H
L
L
L
Write Bytes C, B  
L
L
H
L
Write Bytes C, B, A  
Write Byte D – (DQD and DQPD)  
Write Bytes D, A  
L
L
L
L
H
H
H
H
L
H
H
L
H
L
L
L
Write Bytes D, B  
L
L
H
L
Write Bytes D, B, A  
Write Bytes D, C  
L
L
L
L
L
H
H
L
H
L
Write Bytes D, C, A  
Write Bytes D, C, B  
Write All Bytes  
L
L
L
L
L
L
H
L
L
L
L
L
Write All Bytes  
X
X
X
X
X
Truth Table for Read/Write [4, 9]  
Function (CY7C1382D/CY7C1382F)  
GW  
H
BWE  
BWB  
X
BWA  
Read  
H
L
L
L
L
L
X
X
H
L
Read  
H
H
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Bytes B, A  
Write All Bytes  
H
H
H
L
H
L
H
L
H
L
L
Write All Bytes  
L
X
X
Note:  
9. Table only lists a partial listing of the byte write combinations. Any combination of BW is valid. Appropriate write will be done based on which byte write is active.  
X
Document #: 38-05543 Rev. *E  
Page 10 of 30  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
Test Data-In (TDI)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. TDI  
is internally pulled up and can be unconnected if the TAP is  
unused in an application. TDI is connected to the most  
significant bit (MSB) of any register. (See TAP Controller Block  
Diagram.)  
The CY7C1380D/CY7C1382D incorporates a serial boundary  
scan test access port (TAP).This part is fully compliant with  
1149.1. The TAP operates using JEDEC-standard 3.3V or  
2.5V IO logic levels.  
The CY7C1380D/CY7C1382D contains a TAP controller,  
instruction register, boundary scan register, bypass register,  
and ID register.  
Disabling the JTAG Feature  
Test Data-Out (TDO)  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are  
internally pulled up and may be unconnected. They may  
alternately be connected to VDD through a pull up resistor.  
TDO must be left unconnected. Upon power up, the device will  
come up in a reset state which will not interfere with the  
operation of the device.  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See TAP Controller State Diagram.)  
TAP Controller Block Diagram  
0
TAP Controller State Diagram  
Bypass Register  
TEST-LOGIC  
1
2
1
0
0
0
RESET  
0
Selection  
Circuitry  
Instruction Register  
31 30 29  
Identification Register  
election  
S
TDI  
TDO  
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
Circuitr  
y
.
.
. 2 1  
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
x
.
.
.
.
. 2 1  
0
0
Boundary Scan Register  
SHIFT-DR  
0
SHIFT-IR  
0
1
1
1
1
EXIT1-DR  
EXIT1-IR  
TCK  
TMS  
TAP CONTROLLER  
0
0
PAUSE-DR  
1
0
PAUSE-IR  
1
0
0
0
Performing a TAP Reset  
EXIT2-DR  
1
EXIT2-IR  
1
A Reset is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This Reset does not affect the operation of the  
SRAM and may be performed while the SRAM is operating.  
UPDATE-DR  
UPDATE-IR  
1
0
1
0
At power up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
TAP Registers  
The 0 or 1 next to each state represents the value of TMS at  
the rising edge of TCK.  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned in and out of the SRAM test circuitry.  
Only one register can be selected at a time through the  
instruction register. Data is serially loaded into the TDI ball on  
the rising edge of TCK. Data is output on the TDO ball on the  
falling edge of TCK.  
Test Access Port (TAP)  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO balls as shown in the TAP Controller Block  
Diagram. Upon power up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
Test MODE SELECT (TMS)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. This pin may be left  
unconnected if the TAP is not used. The ball is pulled up  
internally, resulting in a logic HIGH level.  
Document #: 38-05543 Rev. *E  
Page 11 of 30  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary ‘01’ pattern to  
allow for fault isolation of the board-level serial test data path.  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
The IDCODE instruction is loaded into the instruction register  
upon power up or whenever the TAP controller is given a test  
logic reset state.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. The SAMPLE Z command  
places all SRAM outputs into a High-Z state.  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the input and output pins is  
captured in the boundary scan register.  
The boundary scan register is loaded with the contents of the  
RAM input and output ring when the TAP controller is in the  
Capture-DR state and is then placed between the TDI and  
TDO balls when the controller is moved to the Shift-DR state.  
The EXTEST, SAMPLE/PRELOAD, and SAMPLE  
instructions can be used to capture the contents of the input  
and output ring.  
Z
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. As there is  
a large difference in the clock frequencies, it is possible that  
during the Capture-DR state, an input or output will undergo a  
transition. The TAP may then try to capture a signal while in  
transition (metastable state). This will not harm the device, but  
there is no guarantee as to the value that will be captured.  
Repeatable results may not be possible.  
The boundary scan order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI, and the LSB is connected to TDO.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions on page 15.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller's capture setup plus  
hold times (tCS and tCH). The SRAM clock input might not be  
captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE/PRELOAD instruction. If this  
is an issue, it is still possible to capture all other signals and  
simply ignore the value of the CK and CK# captured in the  
boundary scan register.  
TAP Instruction Set  
Overview  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO pins.  
Eight different instructions are possible with the three bit  
instruction register. All combinations are listed in Identification  
Codes on page 15. Three of these instructions are listed as  
RESERVED and must not be used. The other five instructions  
are described in detail below.  
PRELOAD allows an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells  
prior to the selection of another boundary scan test operation.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
The shifting of data for the SAMPLE and PRELOAD phases  
can occur concurrently when required; that is, while data  
captured is shifted out, the preloaded data is shifted in.  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO balls. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
EXTEST  
The EXTEST instruction enables the preloaded data to be  
driven out through the system output pins. This instruction also  
selects the boundary scan register to be connected for serial  
access between the TDI and TDO in the Shift-DR controller  
state.  
EXTEST Output Bus Tri-State  
IEEE Standard 1149.1 mandates that the TAP controller be  
able to put the output bus into a tri-state mode.  
IDCODE  
The IDCODE instruction causes a vendor-specific 32-bit code  
to be loaded into the instruction register. It also places the  
The boundary scan register has a special bit located at bit #85  
(for 119-BGA package) or bit #89 (for 165-fBGA package).  
Document #: 38-05543 Rev. *E  
Page 12 of 30  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
When this scan cell, called the “extest output bus tri-state,” is  
latched into the preload register during the Update-DR state in  
the TAP controller, it will directly control the state of the output  
(Q-bus) pins, when the EXTEST is entered as the current  
instruction. When HIGH, it will enable the output buffers to  
drive the output bus. When LOW, this bit will place the output  
bus into a High-Z condition.  
loaded into that shift-register cell will latch into the preload  
register. When the EXTEST instruction is entered, this bit will  
directly control the output Q-bus pins. Note that this bit is  
preset HIGH to enable the output when the device is powered  
up, and also when the TAP controller is in the Test-Logic-Reset  
state.  
Reserved  
This bit can be set by entering the SAMPLE/PRELOAD or  
EXTEST command, and then shifting the desired bit into that  
cell, during the Shift-DR state. During Update-DR, the value  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
TAP Timing  
Test Clock  
(TCK)  
t
t
t
TH  
CYC  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics Over the Operating Range [10, 11]  
Parameter  
Clock  
tTCYC  
tTF  
Description  
Min.  
Max.  
Unit  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
50  
ns  
MHz  
ns  
20  
tTH  
20  
20  
tTL  
ns  
Output Times  
tTDOV  
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
10  
ns  
ns  
tTDOX  
0
Setup Times  
tTMSS  
TMS Setup to TCK Clock Rise  
TDI Setup to TCK Clock Rise  
Capture Setup to TCK Rise  
5
5
5
ns  
ns  
ns  
tTDIS  
tCS  
Hold Times  
tTMSH  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tTDIH  
tCH  
Capture Hold after Clock Rise  
Notes:  
10. t and t refer to the setup and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
11. Test conditions are specified using the load in TAP AC test conditions. t /t = 1ns.  
R
F
Document #: 38-05543 Rev. *E  
Page 13 of 30  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
3.3V TAP AC Test Conditions  
2.5V TAP AC Test Conditions  
Input pulse levels.................................................VSS to 3.3V  
Input rise and fall times..................... ..............................1 ns  
Input timing reference levels...........................................1.5V  
Output reference levels...................................................1.5V  
Test load termination supply voltage...............................1.5V  
Input pulse levels.................................................VSS to 2.5V  
Input rise and fall time .....................................................1 ns  
Input timing reference levels .................. ......................1.25V  
Output reference levels .................. ..............................1.25V  
Test load termination supply voltage .................... ........1.25V  
3.3V TAP AC Output Load Equivalent  
2.5V TAP AC Output Load Equivalent  
1.5V  
1.25V  
50  
50  
TDO  
TDO  
ZO= 50 Ω  
20pF  
ZO= 50 Ω  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; VDD = 3.3V ±0.165V unless otherwise noted) [12]  
Parameter  
VOH1  
Description  
Test Conditions  
Min.  
2.4  
2.0  
2.9  
2.1  
Max.  
Unit  
V
Output HIGH Voltage IOH = –4.0 mA, VDDQ = 3.3V  
IOH = –1.0 mA, VDDQ = 2.5V  
V
VOH2  
VOL1  
VOL2  
VIH  
Output HIGH Voltage IOH = –100 µA  
VDDQ = 3.3V  
DDQ = 2.5V  
VDDQ = 3.3V  
DDQ = 2.5V  
VDDQ = 3.3V  
DDQ = 2.5V  
V
V
V
Output LOW Voltage IOL = 8.0 mA  
Output LOW Voltage IOL = 100 µA  
Input HIGH Voltage  
0.4  
0.4  
0.2  
0.2  
V
V
V
V
V
V
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
2.0  
1.7  
VDD + 0.3  
V
VDD + 0.3  
V
VIL  
Input LOW Voltage  
–0.3  
–0.3  
–5  
0.8  
0.7  
5
V
VDDQ = 2.5V  
V
IX  
Input Load Current  
GND < VIN < VDDQ  
µA  
Note:  
12. All voltages referenced to VSS (GND).  
Document #: 38-05543 Rev. *E  
Page 14 of 30  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
Identification Register Definitions  
CY7C1380D/CY7C1380F CY7C1382D/CY7C1382F  
Instruction Field  
Revision Number (31:29)  
Device Depth (28:24) [13]  
Device Width (23:18) 119-BGA  
(512K x 36)  
(1 Mbit x 18)  
Description  
000  
000  
Describes the version number.  
Reserved for internal use.  
01011  
01011  
101000  
101000  
Defines the memory type and  
architecture.  
Device Width (23:18) 165-FBGA  
000000  
000000  
Defines the memory type and  
architecture.  
Cypress Device ID (17:12)  
100101  
010101  
Defines the width and density.  
Cypress JEDEC ID Code (11:1)  
00000110100  
00000110100  
Allows unique identification of  
SRAM vendor.  
ID Register Presence Indicator (0)  
1
1
Indicates the presence of an ID  
register.  
Scan Register Sizes  
Register Name  
Bit Size (x36)  
Bit Size (x18)  
Instruction  
Bypass  
ID  
3
3
1
1
32  
85  
89  
32  
85  
89  
Boundary Scan Order (119-ball BGA package)  
Boundary Scan Order (165-ball FBGA package)  
Identification Codes  
Instruction  
EXTEST  
Code  
Description  
000 Captures IO ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state.  
IDCODE  
001 Loads the ID register with the vendor ID code and places the register between TDI and TDO.  
This operation does not affect SRAM operations.  
SAMPLE Z  
010 Captures IO ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011 Do Not Use. This instruction is reserved for future use.  
SAMPLE/PRELOAD  
100 Captures IO ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101 Do Not Use. This instruction is reserved for future use.  
110 Do Not Use. This instruction is reserved for future use.  
111 Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
Note:  
13. Bit #24 is 1 in the register definitions for both 2.5v and 3.3v versions of this device.  
Document #: 38-05543 Rev. *E  
Page 15 of 30  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
119-Ball BGA Boundary Scan Order [14, 15]  
Bit #  
1
Ball ID  
Bit #  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
Ball ID  
F6  
Bit #  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
Ball ID  
G4  
A4  
G3  
C3  
B2  
B3  
A3  
C2  
A2  
B1  
C1  
D2  
E1  
F2  
Bit #  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
Ball ID  
L1  
H4  
T4  
T5  
T6  
R5  
L5  
2
E7  
D7  
H7  
G6  
E6  
D6  
C7  
B7  
C6  
A6  
C5  
B5  
G5  
B6  
D4  
B4  
F4  
M2  
N1  
3
4
P1  
5
K1  
6
L2  
7
R6  
U6  
R7  
T7  
P6  
N7  
M6  
L7  
N2  
P2  
8
9
R3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
T1  
R1  
T2  
L3  
R2  
K6  
P7  
N6  
L6  
G1  
H2  
D1  
E2  
G2  
H1  
J3  
T3  
L4  
N4  
P4  
K7  
J5  
M4  
A5  
K4  
E4  
Internal  
H6  
G7  
2K  
Notes:  
14. Balls which are NC (No Connect) are pre-set LOW.  
15. Bit# 85 is pre-set HIGH.  
Document #: 38-05543 Rev. *E  
Page 16 of 30  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
165-Ball BGA Boundary Scan Order [14, 16]  
Bit #  
1
Ball ID  
N6  
Bit #  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Ball ID  
D10  
C11  
A11  
B11  
A10  
B10  
A9  
Bit #  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
Ball ID  
G1  
D2  
E2  
2
N7  
3
N10  
P11  
P8  
4
F2  
5
G2  
H1  
H3  
J1  
6
R8  
7
R9  
8
P9  
B9  
9
P10  
R10  
R11  
H11  
N11  
M11  
L11  
K11  
J11  
M10  
L10  
K10  
J10  
H9  
C10  
A8  
K1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
L1  
B8  
M1  
J2  
A7  
B7  
K2  
B6  
L2  
A6  
M2  
N1  
N2  
P1  
B5  
A5  
A4  
B4  
R1  
R2  
P3  
B3  
A3  
A2  
R3  
P2  
H10  
G11  
F11  
E11  
D11  
G10  
F10  
E10  
B2  
C2  
R4  
P4  
B1  
A1  
N5  
P6  
C1  
D1  
R6  
Internal  
E1  
F1  
Note:  
16. Bit# 89 is pre-set HIGH.  
Document #: 38-05543 Rev. *E  
Page 17 of 30  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
DC Input Voltage ................................... –0.5V to VDD + 0.5V  
Current into Outputs (LOW) ........................................ 20 mA  
Maximum Ratings  
Exceeding the maximum ratings may impair the useful life of  
the device. For user guidelines, not tested.  
Static Discharge Voltage........................................... >2001V  
(per MIL-STD-883, Method 3015)  
Storage Temperature .................................65°C to +150°C  
Latch-up Current .................................................... >200 mA  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Operating Range  
Supply Voltage on VDD Relative to GND ....... –0.3V to +4.6V  
Supply Voltage on VDDQ Relative to GND ...... –0.3V to +VDD  
Ambient  
Temperature  
Range  
VDD  
VDDQ  
Commercial 0°C to +70°C 3.3V –5%/+10% 2.5V – 5%  
to VDD  
DC Voltage Applied to Outputs  
in Tri-State........................................... –0.5V to VDDQ + 0.5V  
Industrial  
–40°C to +85°C  
[17, 18]  
Electrical Characteristics Over the Operating Range  
Parameter  
VDD  
Description  
Power Supply Voltage  
IO Supply Voltage  
Test Conditions  
Min.  
3.135  
3.135  
2.375  
2.4  
Max.  
3.6  
Unit  
V
VDDQ  
for 3.3V IO  
for 2.5V IO  
VDD  
V
2.625  
V
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH Voltage  
Output LOW Voltage  
for 3.3V IO, IOH = –4.0 mA  
for 2.5V IO, IOH = –1.0 mA  
for 3.3V IO, IOL = 8.0 mA  
for 2.5V IO, IOL = 1.0 mA  
V
2.0  
V
0.4  
0.4  
V
V
Input HIGH Voltage [17] for 3.3V IO  
2.0  
1.7  
VDD + 0.3V  
VDD + 0.3V  
0.8  
V
for 2.5V IO  
V
Input LOW Voltage [17]  
for 3.3V IO  
–0.3  
–0.3  
–5  
V
for 2.5V IO  
0.7  
V
Input Leakage Current  
except ZZ and MODE  
GND VI VDDQ  
5
µA  
Input Current of MODE Input = VSS  
Input = VDD  
–30  
–5  
µA  
µA  
5
Input Current of ZZ  
Input = VSS  
Input = VDD  
µA  
30  
5
µA  
IOZ  
IDD  
Output Leakage Current GND VI VDDQ, Output Disabled  
–5  
µA  
VDD Operating Supply  
Current  
VDD = Max., IOUT = 0 mA,  
f = fMAX = 1/tCYC  
4.0-ns cycle, 250 MHz  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
4.0-ns cycle, 250 MHz  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
All speeds  
350  
300  
275  
160  
150  
140  
70  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
ISB1  
Automatic CE  
Power Down  
Current—TTL Inputs  
VDD = Max, Device Deselected,  
VIN VIH or VIN VIL  
f = fMAX = 1/tCYC  
ISB2  
Automatic CE Power  
Down Current-CMOS  
Inputs  
V
DD = Max, Device Deselected,  
VIN 0.3V or VIN > VDDQ – 0.3V, f = 0  
ISB3  
Automatic CE  
Power Down  
Current—CMOS Inputs f = fMAX = 1/tCYC  
VDD = Max, Device Deselected, or 4.0-ns cycle, 250 MHz  
135  
130  
125  
80  
mA  
mA  
mA  
mA  
VIN 0.3V or VIN > VDDQ – 0.3V  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
All speeds  
ISB4  
Automatic CE  
Power Down  
Current—TTL Inputs  
VDD = Max, Device Deselected,  
VIN VIH or VIN VIL, f = 0  
Notes:  
17. Overshoot: V (AC) < V +1.5V (pulse width less than t  
/2), undershoot: V (AC) > –2V (pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
18. TPower up: Assumes a linear ramp from 0v to V (min.) within 200 ms. During this time V < V and V  
< V  
.
DD  
IH  
DD  
DDQ  
DD  
Document #: 38-05543 Rev. *E  
Page 18 of 30  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
Capacitance [19]  
100 TQFP  
Package  
119 BGA  
Package  
165 FBGA  
Package  
Parameter  
Description  
Test Conditions  
Unit  
pF  
CIN  
Input Capacitance  
TA = 25°C, f = 1 MHz,  
VDD = 3.3V.  
DDQ = 2.5V  
5
5
5
8
8
8
9
9
9
CCLK  
CIO  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
V
pF  
Thermal Resistance [19]  
100 TQFP  
Package  
119 BGA  
Package  
165 FBGA  
Package  
Parameter  
Description  
Test Conditions  
Unit  
ΘJA  
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow standard  
test methods and procedures  
for measuring thermal  
impedance, in accordance with  
EIA/JESD51.  
28.66  
23.8  
20.7  
°C/W  
ΘJC  
Thermal Resistance  
(Junction to Case)  
4.08  
6.2  
4.0  
°C/W  
AC Test Loads and Waveforms  
3.3V IO Test Load  
OUTPUT  
R = 317Ω  
3.3V  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
OUTPUT  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
L
5 pF  
R = 351Ω  
1 ns  
1 ns  
V = 1.5V  
T
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
2.5V IO Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50Ω  
0
10%  
L
5 pF  
R = 1538Ω  
1 ns  
1 ns  
V = 1.25V  
T
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Note:  
19. Tested initially and after any design or process change that may affect these parameters.  
Document #: 38-05543 Rev. *E  
Page 19 of 30  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
Switching Characteristics Over the Operating Range [20, 21]  
250 MHz  
Min. Max.  
200 MHz  
Min. Max.  
1
167 MHz  
Min. Max.  
Parameter  
tPOWER  
Clock  
tCYC  
Description  
VDD(Typical) to the first Access [22]  
Unit  
1
1
ms  
Clock Cycle Time  
Clock HIGH  
4.0  
1.7  
1.7  
5
6
ns  
ns  
ns  
tCH  
2.0  
2.0  
2.2  
2.2  
tCL  
Clock LOW  
Output Times  
tCO  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z [23, 24, 25]  
2.6  
3.0  
3.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
1.0  
1.0  
1.3  
1.3  
3.0  
3.0  
0
1.3  
1.3  
tCLZ  
tCHZ  
Clock to High-Z [23, 24, 25]  
2.6  
2.6  
3.4  
3.4  
tOEV  
OE LOW to Output Valid  
tOELZ  
tOEHZ  
Setup Times  
tAS  
OE LOW to Output Low-Z [23, 24, 25]  
OE HIGH to Output High-Z [23, 24, 25]  
0
0
2.6  
3.0  
3.4  
Address Setup Before CLK Rise  
ADSC, ADSP Setup Before CLK Rise  
ADV Setup Before CLK Rise  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADS  
tADVS  
tWES  
GW, BWE, BWX Setup Before CLK Rise  
Data Input Setup Before CLK Rise  
Chip Enable SetUp Before CLK Rise  
tDS  
tCES  
Hold Times  
tAH  
Address Hold After CLK Rise  
ADSP, ADSC Hold After CLK Rise  
ADV Hold After CLK Rise  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADH  
tADVH  
tWEH  
GW, BWE, BWX Hold After CLK Rise  
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
tDH  
tCEH  
Notes:  
20. Timing reference level is 1.5V when V  
= 3.3V and is 1.25V when V  
= 2.5V.  
DDQ  
DDQ  
21. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
22. This part has a voltage regulator internally; t  
is the time that the power needs to be supplied above V (minimum) initially before a read or write operation  
POWER  
DD  
can be initiated.  
23. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads and Waveforms on page 19. Transition is measured ± 200  
CHZ CLZ OELZ  
OEHZ  
mV from steady-state voltage.  
24. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
CLZ  
OEHZ  
OELZ  
CHZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions.  
25. This parameter is sampled and not 100% tested.  
Document #: 38-05543 Rev. *E  
Page 20 of 30  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
Switching Waveforms  
Read Cycle Timing [26]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Burst continued with  
new base address  
t
t
WEH  
WES  
GW, BWE,  
BWx  
Deselect  
cycle  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV  
suspends  
burst.  
t
t
OEV  
CO  
t
t
OEHZ  
t
OELZ  
t
CHZ  
DOH  
t
CLZ  
t
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2 + 3)  
Q(A2)  
Q(A2 + 1)  
Q(A1)  
Data Out (Q)  
High-Z  
CO  
Burst wraps around  
to its initial state  
Single READ  
BURST READ  
DON’T CARE  
UNDEFINED  
Note:  
26. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
Document #: 38-05543 Rev. *E  
Page 21 of 30  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
Switching Waveforms (continued)  
Write Cycle Timing [26, 27]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Byte write signals are  
ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BWE,  
BW X  
t
t
WEH  
WES  
GW  
CE  
t
t
CEH  
CES  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
DH  
DS  
Data In (D)  
ata Out (Q)  
D(A2)  
D(A2 + 1)  
D(A2 + 1)  
D(A2 + 2)  
D(A2 + 3)  
D(A3)  
D(A3 + 1)  
D(A3 + 2)  
D(A1)  
High-Z  
t
OEHZ  
BURST READ  
Single WRITE  
BURST WRITE  
Extended BURST WRITE  
DON’T CARE  
UNDEFINED  
Note:  
27.  
.
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW LOW  
X
Document #: 38-05543 Rev. *E  
Page 22 of 30  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
Switching Waveforms (continued)  
Read/Write Cycle Timing [26, 28, 29]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
BWE,  
t
t
WEH  
WES  
BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
t
CO  
DS  
t
OELZ  
Data In (D)  
High-Z  
D(A3)  
D(A5)  
D(A6)  
t
t
OEHZ  
CLZ  
Data Out (Q)  
Q(A1)  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
High-Z  
Back-to-Back READs  
Single WRITE  
BURST READ  
Back-to-Back  
WRITEs  
DON’T CARE  
UNDEFINED  
Notes:  
28. The data bus (Q) remains in high-Z following a WRITE cycle, unless a new read access is initiated by ADSP or ADSC.  
29. GW is HIGH.  
Document #: 38-05543 Rev. *E  
Page 23 of 30  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
Switching Waveforms (continued)  
ZZ Mode Timing [30, 31]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes:  
[4, 5, 6, 7, 8]  
30. Device must be deselected when entering ZZ mode. See Truth Table  
31. DQs are in high-Z when exiting ZZ sleep mode.  
on page 9 for all possible signal conditions to deselect the device.  
Document #: 38-05543 Rev. *E  
Page 24 of 30  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
Ordering Information  
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or visit  
www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
CY7C1380D-167AXC  
CY7C1382D-167AXC  
CY7C1380F-167BGC  
CY7C1382F-167BGC  
Part and Package Type  
167  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
Commercial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
CY7C1380F-167BGXC 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free  
CY7C1382F-167BGXC  
CY7C1380D-167BZC  
CY7C1382D-167BZC  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
CY7C1380D-167BZXC 51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
CY7C1382D-167BZXC  
CY7C1380D-167AXI  
CY7C1382D-167AXI  
CY7C1380F-167BGI  
CY7C1382F-167BGI  
CY7C1380F-167BGXI  
CY7C1382F-167BGXI  
CY7C1380D-167BZI  
CY7C1382D-167BZI  
CY7C1380D-167BZXI  
CY7C1382D-167BZXI  
CY7C1380D-200AXC  
CY7C1382D-200AXC  
CY7C1380F-200BGC  
CY7C1382F-200BGC  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
Industrial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
200  
Commercial  
CY7C1380F-200BGXC 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free  
CY7C1382F-200BGXC  
CY7C1380D-200BZC  
CY7C1382D-200BZC  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
CY7C1380D-200BZXC 51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
CY7C1382D-200BZXC  
CY7C1380D-200AXI  
CY7C1382D-200AXI  
CY7C1380F-200BGI  
CY7C1382F-200BGI  
CY7C1380F-200BGXI  
CY7C1382F-200BGXI  
CY7C1380D-200BZI  
CY7C1382D-200BZI  
CY7C1380D-200BZXI  
CY7C1382D-200BZXI  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
Industrial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
Document #: 38-05543 Rev. *E  
Page 25 of 30  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
Ordering Information (continued)  
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or visit  
www.cypress.com for actual products offered.  
250  
CY7C1380D-250AXC  
CY7C1382D-250AXC  
CY7C1380F-250BGC  
CY7C1382F-250BGC  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
Commercial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
CY7C1380F-250BGXC 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free  
CY7C1382F-250BGXC  
CY7C1380D-250BZC  
CY7C1382D-250BZC  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
CY7C1380D-250BZXC 51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
CY7C1382D-250BZXC  
CY7C1380D-250AXI  
CY7C1382D-250AXI  
CY7C1380F-250BGI  
CY7C1382F-250BGI  
CY7C1380F-250BGXI  
CY7C1382F-250BGXI  
CY7C1380D-250BZI  
CY7C1382D-250BZI  
CY7C1380D-250BZXI  
CY7C1382D-250BZXI  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
Industrial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
Document #: 38-05543 Rev. *E  
Page 26 of 30  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
Package Diagrams  
Figure 1. 100-Pin Thin Plastic Quad Flat pack (14 x 20 x 1.4 mm) (51-85050)  
16.00 0.20  
14.00 0.10  
1.40 0.05  
100  
81  
80  
1
0.30 0.08  
0.65  
TYP.  
12° 1°  
(8X)  
SEE DETAIL  
A
30  
51  
31  
50  
0.20 MAX.  
1.60 MAX.  
R 0.08 MIN.  
0.20 MAX.  
0° MIN.  
SEATING PLANE  
STAND-OFF  
0.05 MIN.  
0.15 MAX.  
NOTE:  
1. JEDEC STD REF MS-026  
0.25  
GAUGE PLANE  
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH  
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE  
R 0.08 MIN.  
0.20 MAX.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH  
3. DIMENSIONS IN MILLIMETERS  
0°-7°  
0.60 0.15  
0.20 MIN.  
51-85050-*B  
1.00 REF.  
DETAIL  
A
Document #: 38-05543 Rev. *E  
Page 27 of 30  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
Package Diagrams (continued)  
Figure 2. 119-ball BGA (14 x 22 x 2.4 mm) (51-85115)  
51-85115-*B  
Document #: 38-05543 Rev. *E  
Page 28 of 30  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
Package Diagrams (continued)  
Figure 3. 165-ball FBGA (13 x 15 x 1.4 mm) (51-85180)  
BOTTOM VIEW  
PIN 1 CORNER  
TOP VIEW  
Ø0.05 M C  
PIN 1 CORNER  
Ø0.25 M C A B  
-0.06  
Ø0.50
(165X)  
+0.14  
1
2
3
4
5
6
7
8
9
10  
11  
11 10  
9
8
7
6
5
4
3
2
1
A
A
B
B
C
D
C
D
E
E
F
F
G
G
H
J
H
J
K
K
L
L
M
M
N
P
R
N
P
R
A
A
1.00  
5.00  
10.00  
13.00 0.10  
B
B
13.00 0.10  
0.15(4X)  
NOTES :  
SOLDER PAD TYPE : NON-SOLDER MASK DEFINED (NSMD)  
PACKAGE WEIGHT : 0.475g  
JEDECREFERENCE: MO-216 / DESIGN 4.6C  
PACKAGE CODE : BB0AC  
SEATING PLANE  
C
51-85180-*A  
Intel and Pentium are registered trademarks, and i486 is a trademark of Intel Corporation. All product and company names  
mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05543 Rev. *E  
Page 29 of 30  
© Cypress Semiconductor Corporation, 2006-2007. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for  
the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended  
to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
CY7C1380D, CY7C1380F  
CY7C1382D, CY7C1382F  
Document History Page  
Document Title: CY7C1380D/CY7C1382D/CY7C1380F/CY7C1382F, 18-Mbit (512K x 36/1M x 18) Pipelined SRAM  
Document Number: 38-05543  
Orig. of  
REV. ECN NO. Issue Date Change  
Description of Change  
**  
254515 See ECN  
288531 See ECN  
RKF  
SYT  
New data sheet  
*A  
Edited description under “IEEE 1149.1 Serial Boundary Scan (JTAG)” for  
non-compliance with 1149.1  
Removed 225MHz and 133 MHz Speed Bins  
Added Pb-free information for 100-Pin TQFP, 119 BGA and 165 FBGA Packages  
Added comment of ‘Pb-free BG packages availability’ below the Ordering Infor-  
mation  
*B  
326078 See ECN  
PCI  
Address expansion pins/balls in the pinouts for all packages are modified as per  
JEDEC standard  
Added description on EXTEST Output Bus Tri-State  
Changed description on the Tap Instruction Set Overview and Extest  
Changed Device Width (23:18) for 119-BGA from 000000 to 101000  
Added separate row for 165 -FBGA Device Width (23:18)  
Changed ΘJA and ΘJC for TQFP Package from 31 and 6 °C/W to 28.66 and 4.08  
°C/W respectively  
Changed ΘJA and ΘJC for BGA Package from 45 and 7 °C/W to 23.8 and 6.2 °C/W  
respectively  
Changed ΘJA and ΘJC for FBGA Packagefrom 46 and 3 °C/W to 20.7 and 4.0 °C/W  
respectively  
Modified VOL, VOH test conditions  
Removed comment of ‘Pb-free BG packages availability’ below the Ordering Infor-  
mation  
Updated Ordering Information Table  
*C  
416321 See ECN  
NXR  
Converted from Preliminary to Final  
Changed address of Cypress Semiconductor Corporation on Page# 1 from “3901  
North First Street” to “198 Champion Court”  
Changed the description of IX from Input Load Current to Input Leakage Current  
on page# 18  
Changed the IX current values of MODE on page # 18 from –5 µA and 30 µA  
to –30 µA and 5 µA  
Changed the IX current values of ZZ on page # 18 from –30 µA and 5 µA  
to –5 µA and 30 µA  
Changed VIH < VDD to VIH < VDDon page # 18  
Replaced Package Name column with Package Diagram in the Ordering  
Information table  
Updated Ordering Information Table  
*D  
*E  
475009 See ECN  
776456 See ECN  
VKN  
VKN  
Added the Maximum Rating for Supply Voltage on VDDQ Relative to GND  
Changed tTH, tTL from 25 ns to 20 ns and tTDOV from 5 ns to 10 ns in TAP AC  
Switching Characteristics table.  
Updated the Ordering Information table.  
Added Part numbers CY7C1380F and CY7C1382F and its related information  
Added footnote# 3 regarding Chip Enable  
Updated Ordering Information table  
Document #: 38-05543 Rev. *E  
Page 30 of 30  

相关型号:

CY7C1380D-200AXIT

Cache SRAM, 512KX36, 3ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, LEAD FREE, PLASTIC, MS-026, TQFP-100
CYPRESS

CY7C1380D-200BGC

18-Mbit (512K x 36/1M x 18) Pipelined SRAM
CYPRESS

CY7C1380D-200BGXC

18-Mbit (512K x 36/1M x 18) Pipelined SRAM
CYPRESS

CY7C1380D-200BZC

18-Mbit (512K x 36/1M x 18) Pipelined SRAM
CYPRESS

CY7C1380D-200BZI

18-Mbit (512K x 36/1M x 18) Pipelined SRAM
CYPRESS

CY7C1380D-200BZIT

暂无描述
CYPRESS

CY7C1380D-200BZXC

18-Mbit (512K x 36/1M x 18) Pipelined SRAM
CYPRESS

CY7C1380D-200BZXI

18-Mbit (512K x 36/1M x 18) Pipelined SRAM
CYPRESS

CY7C1380D-250AXC

18-Mbit (512K x 36/1M x 18) Pipelined SRAM
CYPRESS

CY7C1380D-250AXCT

512KX36 CACHE SRAM, 2.6ns, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, LEAD FREE, PLASTIC, MS-026, TQFP-100
ROCHESTER

CY7C1380D-250AXI

18-Mbit (512K x 36/1M x 18) Pipelined SRAM
CYPRESS

CY7C1380D-250BGC

18-Mbit (512K x 36/1M x 18) Pipelined SRAM
CYPRESS