CY7C1381B-83BZC [CYPRESS]

512 】 36/1M 】 18 Flow-Thru SRAM; 512 × 36 / 1M × 18流流通SRAM
CY7C1381B-83BZC
型号: CY7C1381B-83BZC
厂家: CYPRESS    CYPRESS
描述:

512 】 36/1M 】 18 Flow-Thru SRAM
512 × 36 / 1M × 18流流通SRAM

静态存储器
文件: 总31页 (文件大小:599K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
381B  
CY7C1381B  
CY7C1383B  
512 × 36/1M × 18 Flow-Thru SRAM  
internal burst operation. All synchronous inputs are gated by  
registers controlled by a positive-edge-triggered clock input  
(CLK). The synchronous inputs include all addresses, all data  
inputs, address-pipelining Chip Enable (CE), Burst Control  
Inputs (ADSC, ADSP, and ADV), Write Enables (BWa, BWb,  
BWc, BWd, and BWe), and Global Write (GW).  
Features  
Fast access times: 7.5, 8.5, 10.0 ns  
Fast clock speed: 117, 100, 83 MHz  
Provide high-performance 3-1-1-1 access rate  
Optimal for depth expansion  
Asynchronous inputs include the Output Enable (OE) and  
Burst Mode Control (MODE). The data outputs (Q), enabled  
by OE, are also asynchronous.  
3.3V (5% / +10%) power supply  
Common data inputs and data outputs  
Byte Write Enable and Global Write control  
Chip enable for address pipeline  
Address, data and control registers  
Internally self-timed Write Cycle  
Addresses and chip enables are registered with either  
Address Status Processor (ADSP) or address status controller  
(ADSC) input pins. Subsequent burst addresses can be inter-  
nally generated as controlled by the Burst Advance Pin (ADV).  
Burst control pins (interleaved or linear burst  
Address, data inputs, and Write controls are registered on-chip  
to initiate self-timed Write cycle. Write cycles can be one to  
sequence)  
Automatic power down available using ZZ mode or CE  
deselect  
High-density, high-speed packages  
JTAG boundary scan for BGA packaging version  
four bytes wide as controlled by the Write control inputs.  
Individual byte Write allows individual byte to be written. BWa  
controls DQ1-DQ8 and DP1. BWb controls DQ9-DQ16 and  
DP2. BWc controls DQ17-DQ24and DP3. BWd controls  
DQ25-DQ32 and DP4. BWa, BWb BWc, and BWd can be  
active only with BWe being LOW. GW being LOW causes all  
bytes to be written. Write pass-through capability allows  
written data available at the output for the immediately next  
Read cycle. This device also incorporates pipelined enable  
circuit for easy depth expansion without penalizing system  
performance.  
Functional Description  
The Cypress Synchronous Burst SRAM family employs  
high-speed, low power CMOS designs using advanced  
single-layer polysilicon, triple-layer metal technology. Each  
memory cell consists of six transistors.  
The CY7C1381B and CY7C1383B SRAMs integrate  
524,288 × 36 and 1,048,576 × 18 SRAM cells with advanced  
synchronous peripheral circuitry and a 2-bit counter for  
All inputs and outputs of the CY7C1381B and the CY7C1383B  
are JEDEC-standard JESD8-5-compatible.  
Selection Guide  
117 MHz  
100 MHz  
8.5  
83 MHz  
10.0  
185  
Unit  
ns  
Maximum Access Time  
7.5  
250  
20  
Maximum Operating Current  
Maximum CMOS Standby Current  
225  
mA  
mA  
20  
20  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
Document #: 38-05196 Rev. **  
Revised December 3, 2001  
CY7C1381B  
CY7C1383B  
Functional Block Diagram  
Logic Block Diagram ×18  
MODE  
2
(A ,A )  
0
1
Q
CLK  
ADV  
ADSC  
0
BURST  
COUNTER  
CE  
Q1  
Q
CLR  
ADSP  
18  
20  
ADDRESS  
REGISTER  
CE  
D
1M × 18  
A
[19:0]  
20  
18  
MEMORY  
ARRAY  
GW  
DQb[15:8],DP1  
D
Q
Q
BYTEWRITE  
BWE  
REGISTERS  
BWS  
b
D DQa[7:0],DP0  
BYTEWRITE  
REGISTERS  
BWS  
a
18  
18  
CE  
CE  
CE  
1
2
3
D
CE  
ENABLE  
Q
REGISTER  
CLK  
INPUT  
REGISTERS  
CLK  
OE  
ZZ  
SLEEP  
CONTROL  
DQ  
DP  
[15:0]  
[1:0]  
Logic Block Diagram ×36  
MODE  
2
(A ,A )  
0
1
Q
CLK  
ADV  
ADSC  
0
Q1  
Q
BURST  
COUNTER  
CE  
CLR  
ADSP  
17  
19  
ADDRESS  
REGISTER  
CE  
D
512K × 36  
A
[18:0]  
19  
17  
MEMORY  
ARRAY  
GW  
DQd[31:24],DP3  
D
D
Q
BYTEWRITE  
REGISTERS  
BWE  
BWS  
d
DQc[23:16],DP2  
Q
BYTEWRITE  
REGISTERS  
BWS  
BWS  
c
D
D
DQb[15:8],DP1  
Q
BYTEWRITE  
REGISTERS  
b
DQa[7:0],DP0Q  
BWS  
BYTEWRITE  
a
REGISTERS  
36  
36  
CE  
CE  
CE  
1
2
3
D
ENABLE  
Q
CE REGISTER  
CLK  
INPUT  
REGISTERS  
CLK  
OE  
ZZ  
SLEEP  
CONTROL  
DQ  
DP  
[31:0]  
[3:0]  
Document #: 38-05196 Rev. **  
Page 2 of 31  
CY7C1381B  
CY7C1383B  
Pin Configurations  
100-pin TQFP  
NC  
NC  
NC  
VDDQ  
VSSQ  
NC  
DPc  
DQc  
DQc  
VDDQ  
VSSQ  
DQc  
DQc  
DQc  
DQc  
VSSQ  
VDDQ  
DQc  
DQc  
NC  
VDD  
NC  
VSS  
DQd  
DQd  
VDDQ  
VSSQ  
DQd  
DQd  
DQd  
DQd  
VSSQ  
VDDQ  
DQd  
DQd  
DPd  
A
NC  
NC  
VDDQ  
VSSQ  
NC  
DPa  
DQa  
DQa  
VSSQ  
VDDQ  
DQa  
DQa  
VSS  
NC  
VDD  
ZZ  
DQa  
DQa  
VDDQ  
VSSQ  
DQa  
DQa  
NC  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
1
80  
DPb  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
2
79  
DQb  
DQb  
VDDQ  
VSSQ  
DQb  
DQb  
DQb  
DQb  
VSSQ  
VDDQ  
DQb  
DQb  
VSS  
2
3
78  
3
4
77  
4
5
76  
5
6
75  
6
NC  
7
74  
7
DQb  
DQb  
VSSQ  
VDDQ  
DQb  
DQb  
NC  
8
73  
8
9
72  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
71  
10  
70  
11  
69  
12  
68  
13  
67  
14  
CY7C1383B  
(1M × 18)  
CY7C1381B  
(512K × 36)  
VDD  
NC  
66  
NC  
VDD  
ZZ  
15  
65  
16  
VSS  
DQb  
DQb  
VDDQ  
VSSQ  
DQb  
DQb  
DPb  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
64  
17  
63  
DQa  
DQa  
VDDQ  
VSSQ  
DQa  
DQa  
DQa  
DQa  
VSSQ  
VDDQ  
DQa  
DQa  
DPa  
18  
62  
19  
61  
20  
60  
21  
59  
22  
58  
23  
57  
24  
56  
25  
55  
26  
54  
27  
53  
28  
52  
29  
51  
30  
Document #: 38-05196 Rev. **  
Page 3 of 31  
CY7C1381B  
CY7C1383B  
Pin Configurations (continued)  
119-ball BGA  
CY7C1381B (512K × 36)  
2
A
1
3
A
4
5
A
6
A
7
A
B
C
D
E
F
VDDQ  
VDDQ  
NC  
ADSP  
NC  
NC  
A
A
A
A
ADSC  
VDD  
A
A
A
A
NC  
DQc  
DQc  
VDDQ  
DQPc  
DQc  
DQc  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
DQPb  
DQb  
DQb  
DQb  
DQb  
VDDQ  
CE1  
OE  
G
H
J
DQc  
DQc  
VDDQ  
DQc  
DQc  
VDD  
DQb  
DQb  
VDD  
DQb  
DQb  
VDDQ  
BWc  
VSS  
NC  
ADV  
BWb  
VSS  
NC  
GW  
VDD  
K
L
DQd  
DQd  
DQd  
DQd  
DQd  
VSS  
CLK  
NC  
VSS  
DQa  
DQa  
DQa  
DQa  
DQa  
BWd  
VSS  
BWa  
VSS  
M
VDDQ  
VDDQ  
BWE  
A1  
N
P
R
T
DQd  
DQd  
NC  
DQd  
VSS  
VSS  
MODE  
A
VSS  
VSS  
NC  
A
DQa  
DQPa  
A
DQa  
DQa  
NC  
DQPd  
A0  
VDD  
A
A
NC  
64M  
32M  
NC  
ZZ  
VDDQ  
TMS  
TDI  
TCK  
TDO  
VDDQ  
U
CY7C1383B (1M × 18)  
2
A
1
3
A
4
5
A
6
A
7
VDDQ  
NC  
VDDQ  
NC  
A
B
C
D
E
F
ADSP  
ADSC  
VDD  
A
A
A
A
NC  
A
A
A
A
NC  
DQb  
NC  
NC  
DQb  
NC  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
DQPa  
NC  
DQa  
NC  
DQa  
VDDQ  
CE1  
OE  
VDDQ  
G
H
J
NC  
DQb  
VDDQ  
NC  
DQb  
NC  
VSS  
VSS  
NC  
NC  
DQb  
VDD  
NC  
DQa  
NC  
BWb  
VSS  
NC  
ADV  
GW  
VDD  
VDD  
DQb  
NC  
VDDQ  
DQa  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
CLK  
NC  
VSS  
K
L
DQb  
DQa  
BWa  
VSS  
M
VDDQ  
DQb  
NC  
DQb  
NC  
NC  
DQa  
NC  
VDDQ  
NC  
BWE  
A1  
N
P
VSS  
VSS  
DQPb  
A0  
DQa  
R
T
NC  
64M  
VDDQ  
A
A
MODE  
A
VDD  
32M  
TCK  
NC  
A
A
A
NC  
ZZ  
TMS  
TDI  
TDO  
NC  
VDDQ  
U
Document #: 38-05196 Rev. **  
Page 4 of 31  
CY7C1381B  
CY7C1383B  
Pin Configurations (continued)  
165-ball Bump FBGA  
CY7C1381B (512K × 36) 11 × 15 FBGA  
1
2
3
4
5
6
7
8
9
10  
11  
NC  
A
CE  
BWc  
BWb  
CE  
BWE  
A
ADSC  
ADV  
A
NC  
1
2
3
NC  
DPc  
DQc  
A
CE  
BWd  
BWa  
CLK  
GW  
B
C
D
E
F
OE  
ADSP  
A
128M  
DPb  
NC  
V
V
V
V
V
V
V
V
V
V
V
NC  
DDQ  
DDQ  
SS  
SS  
SS  
SS  
SS  
DDQ  
DQc  
V
V
V
V
V
V
DQb  
DQb  
DD  
SS  
SS  
SS  
DD  
DDQ  
DQc  
DQc  
DQc  
NC  
DQc  
DQc  
DQc  
V
V
V
V
V
V
DQb  
DQb  
DQb  
NC  
DQb  
DQb  
DQb  
ZZ  
DDQ  
DDQ  
DDQ  
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
G
H
J
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
V
NC  
V
V
V
V
V
NC  
SS  
DD  
SS  
SS  
SS  
DD  
DQd  
DQd  
DQd  
DQd  
DPd  
NC  
DQd  
DQd  
DQd  
DQd  
NC  
V
V
V
V
V
V
V
DQa  
DQa  
DQa  
DQa  
NC  
DQa  
DQa  
DQa  
DQa  
DPa  
A
DDQ  
DDQ  
DDQ  
DDQ  
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
V
V
V
V
K
L
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
M
N
P
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
V
NC  
TDI  
A
NC  
V
V
DDQ  
SS  
SS  
DDQ  
64M  
A
A
A
A1  
A0  
TDO  
TCK  
A
A
A
A
A
MODE  
32M  
A
TMS  
R
A
A
CY7C1383B (1M × 18) 11 × 15 FBGA  
1
2
3
4
5
6
7
8
9
10  
11  
NC  
A
CE  
BWb  
NC  
CE  
BWE  
A
ADSC  
ADV  
A
A
1
2
3
NC  
NC  
NC  
A
CE  
NC  
BWa  
CLK  
GW  
B
C
D
E
F
OE  
ADSP  
A
128M  
DPa  
NC  
V
V
V
V
V
V
V
V
V
V
V
NC  
NC  
DDQ  
DDQ  
SS  
SS  
SS  
SS  
SS  
DDQ  
DQb  
DQb  
DQb  
DQb  
V
V
V
V
V
V
DQa  
DD  
SS  
SS  
SS  
DD  
DDQ  
NC  
NC  
V
V
V
V
V
V
NC  
NC  
DQa  
DQa  
DQa  
ZZ  
DDQ  
DDQ  
DDQ  
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
NC  
V
V
V
V
G
H
J
V
V
NC  
DD  
SS  
SS  
SS  
DD  
DDQ  
NC  
V
NC  
V
V
V
V
V
NC  
NC  
SS  
DD  
SS  
SS  
SS  
DD  
DQb  
DQb  
DQb  
DQb  
DPb  
NC  
NC  
NC  
NC  
NC  
NC  
64M  
V
V
V
V
V
V
V
DQa  
DQa  
DQa  
DQa  
NC  
NC  
NC  
NC  
NC  
NC  
A
DDQ  
DDQ  
DDQ  
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
V
V
V
V
K
L
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
M
N
P
V
V
DDQ  
DD  
SS  
SS  
SS  
DD  
DDQ  
V
NC  
TDI  
A
NC  
V
V
DDQ  
SS  
SS  
DDQ  
A
A
A
A1  
A0  
TDO  
TCK  
A
A
A
A
A
MODE  
32M  
A
TMS  
R
A
A
Document #: 38-05196 Rev. **  
Page 5 of 31  
CY7C1381B  
CY7C1383B  
Pin Definitions  
Name  
I/O  
Description  
A0  
A1  
A
Input-  
Synchronous  
Address inputs used to select one of the address locations. Sampled at  
the rising edge of the CLK if ADSP or ADSC is active LOW, and CE1, CE2,  
and CE3 are sampled active. A[1:0] feed the two-bit counter.  
BWa  
BWb  
BWc  
BWd  
Input-  
Synchronous  
Byte Write Select inputs, active LOW. Qualified with BWE to conduct byte  
writes to the SRAM. Sampled on the rising edge of CLK.  
GW  
Input-  
Synchronous  
Global Write Enable input, active LOW. When asserted LOW on the rising  
edge of CLK, a global Write is conducted (ALL bytes are written, regardless  
of the values on BWa,b,c,d and BWE).  
BWE  
CLK  
Input-  
Synchronous  
Byte Write Enable input, active LOW. Sampled on the rising edge of CLK.  
This signal must be asserted LOW to conduct a byte Write.  
Input-Clock  
Clock input. Used to capture all synchronous inputs to the device. Also used  
to increment the burst counter when ADV is asserted LOW, during a burst  
operation.  
CE1  
Input-  
Synchronous  
Chip Enable 1 input, active LOW. Sampled on the rising edge of CLK. Used  
in conjunction with CE2 and CE3 to select/deselect the device. ADSP is  
ignored if CE1 is HIGH.  
CE2  
CE3  
OE  
Input-  
Synchronous  
Chip Enable 2 input, active HIGH. Sampled on the rising edge of CLK. Used  
in conjunction with CE1 and CE3 to select/deselect the device (TQFP only).  
Input-  
Synchronous  
Chip Enable 3 input, active LOW. Sampled on the rising edge of CLK. Used  
in conjunction with CE1 and CE2 to select/deselect the device (TQFP only) .  
Input-  
Asynchronous  
Output Enable, asynchronous input, active LOW. Controls the direction of  
the I/O pins. When LOW, the I/O pins behave as outputs. When deasserted  
HIGH, I/O pins are three-stated, and act as input data pins. OE is masked  
during the first clock of a Read cycle when emerging from a deselected state.  
ADV  
Input-  
Advance input signal, sampled on the rising edge of CLK. When asserted,  
Synchronous  
it automatically increments the address in a burst cycle.  
ADSP  
Input-  
Synchronous  
Address Strobe from Processor, sampled on the rising edge of CLK.  
When asserted LOW, A is captured in the address registers. A[1:0] are also  
loaded into the burst counter. When ADSP and ADSC are both asserted, only  
ADSP is recognized. ASDP is ignored when CE1 is deasserted HIGH.  
ADSC  
Input-  
Synchronous  
Address Strobe from Controller, sampled on the rising edge of CLK.  
When asserted LOW, A[x:0] is captured in the address registers. A[1:0] are also  
loaded into the burst counter. When ADSP and ADSC are both asserted, only  
ADSP is recognized.  
MODE  
ZZ  
Input-  
Static  
Selects burst order. When tied to GND selects linear burst sequence. When  
tied to VDDQ or left floating selects interleaved burst sequence. This is a strap  
pin and should remain static during device operation.  
Input-  
Asynchronous  
ZZ sleepinput. This active HIGH input places the device in a  
non-time-critical sleepcondition with data integrity preserved.  
DQa, DPa  
DQb, DPb  
DQc, DPc  
DQd, DPd  
I/O-  
Synchronous  
Bidirectional data I/O lines. As inputs, they feed into an on-chip data register  
that is triggered by the rising edge of CLK. As outputs, they deliver the data  
contained in the memory location specified by A[X]during the previous clock  
rise of the Read cycle. The direction of the pins is controlled by OE. When OE  
is asserted LOW, the pins behave as outputs. When HIGH, DQaDQd and  
DPaDPd are placed in a three-state condition. DQ a,b,c and d are eight-bits  
wide. DP a,b,c and d are one-bit wide.  
TDO  
TDI  
JTAG serial output  
Synchronous  
Serial data-out to the JTAG circuit. Delivers data on the negative edge of  
TCK (BGA only).  
JTAG serial input  
Synchronous  
Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK (BGA  
only).  
Document #: 38-05196 Rev. **  
Page 6 of 31  
CY7C1381B  
CY7C1383B  
Pin Definitions (continued)  
Name  
I/O  
Description  
TMS  
Test Mode Select  
Synchronous  
This pin controls the Test Access Port (TAP) state machine. Sampled on the  
rising edge of TCK (BGA only).  
TCK  
VDD  
JTAG Serial Clock  
Power Supply  
Serial clock to the JTAG circuit (BGA only).  
Power supply inputs to thecore of the device. Should be connected to3.3V  
5% +10% power supply.  
VSS  
Ground  
Ground for the core of the device. Should be connected to ground of the  
system.  
VDDQ  
VSSQ  
NC  
I/O Power Supply  
Power supply for the I/O circuitry.  
I/O Ground  
Ground for the I/O circuitry. Should be connected to ground of the system.  
No connects. Pins are not internally connected.  
32M  
64M  
128M  
No connects. Reserved for address expansion. Pins are not internally  
connected.  
Document #: 38-05196 Rev. **  
Page 7 of 31  
CY7C1381B  
CY7C1383B  
bytes are written. Bytes not selected during a byte Write  
operation will remain unaltered. All I/Os are three-stated  
during a byte Write because the CY7C1381B/CY7C1383B is  
a common I/O device, the OE must be deasserted HIGH  
before presenting data to the DQx inputs. Doing so will  
three-state the output drivers. As a safety precaution, DQx are  
automatically three-stated whenever a Write cycle is detected,  
regardless of the state of OE.  
Functional Description  
Single Read Accesses  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW,  
and (2) Chip Enable (CE1, CE2, CE3 on TQFP, CE1 on BGA)  
is asserted active, and (3) the Write signals (GW, BWE) are all  
deasserted HIGH. ADSP is ignored if CE1 is HIGH. The  
address presented to the address inputs is stored into the  
address advancement logic and the Address Register while  
being presented to the memory core. If the OE input is  
asserted LOW, the requested data will be available at the data  
outputs a maximum to tCDV after clock rise. ADSP is ignored if  
CE1 is HIGH.  
Burst Sequences  
The CY7C1381B/CY7C1383B provides a two-bit wraparound  
counter fed by A[1:0] that implements either an interleaved or  
linear burst sequence to support processors that follow a linear  
burst sequence. The burst sequence is user-selectable  
through MODE input.  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both Read and Write burst operations are supported.  
Single Write Accesses Initiated by ADSP  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and  
(2) Chip Enable is asserted active. The address presented is  
loaded into the address register and the address  
advancement logic while being delivered to the RAM core. The  
Write signals (GW, BWE, and BWx) and ADV inputs are  
ignored during this first clock cycle. If the Write inputs are  
asserted active (see Write Cycle Descriptions table on page  
10 for appropriate states that indicate a Write) on the next  
clock rise, the appropriate data will be latched and written into  
the device. The CY7C1381B/CY7C1383B provides byte Write  
capability that is described in the Write Cycle Description  
table. Asserting the Byte Write Enable (BWE) input with the  
selected Byte Write (BWa,b,c,d for CY7C1381B and BWa,b for  
CY7C1383B) input will selectively Write to only the desired  
bytes. Bytes not selected during a byte Write operation will  
remain unaltered. All I/Os are three-stated during a byte Write.  
Interleaved Burst Sequence  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
A[1:0]  
00  
A[1:0]  
01  
A[1:0]  
10  
A[1:0]  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Linear Burst Sequence  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
Because the CY7C1381B/CY7C1383B is a common I/O  
device, the OE must be deasserted HIGH before presenting  
data to the DQx inputs. Doing so will three-state the output  
drivers. As a safety precaution, DQx are automatically  
three-stated whenever a Write cycle is detected, regardless of  
the state of OE.  
A[1:0]  
00  
A[1:0]  
01  
A[1:0]  
10  
A[1:0]  
11  
01  
10  
11  
00  
10  
11  
00  
01  
Single Write Accesses Initiated by ADSC  
11  
00  
01  
10  
ADSC Write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deasserted HIGH, (3) Chip Enable (CE1, CE2, CE3 on TQFP,  
CE1 on BGA) is asserted active, and (4) the appropriate  
combination of the Write inputs (GW, BWE, and BWx) is  
asserted active to conduct a Write to the desired byte(s).  
ADSC is ignored if ADSP is active LOW.  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ HIGH  
places the SRAM in a power conservation sleepmode. Two  
clock cycles are required to enter into or exit from this sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the sleepmode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the sleepmode. Chip Enable (CE1, CE2, CE3, on TQFP, CE1  
on BGA), ADSP and ADSC must remain inactive for the  
duration of tZZREC after the ZZ input returns LOW. Leaving ZZ  
unconnected defaults the device into an active state.  
The address presented to A[17:0] is loaded into the address  
register and the address advancement logic while being  
delivered to the RAM core. The ADV input is ignored during  
this cycle. If a global Write is conducted, the data presented to  
the DQx is written into the corresponding address location in  
the RAM core. If a byte Write is conducted, only the selected  
Document #: 38-05196 Rev. **  
Page 8 of 31  
CY7C1381B  
CY7C1383B  
ZZ Mode Electrical Characteristics  
Parameter  
ICCZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
ZZ < VDD 0.2V  
ZZ < VDD 0.2V  
ZZ 0.2V  
Min.  
Max.  
20  
Unit  
mA  
ns  
tZZS  
2tCYC  
tZZREC  
2tCYC  
ns  
Cycle Descriptions[1, 2, 3]  
Next Cycle  
Unselected  
Add. Used  
None  
ZZ  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
CE3  
X
1
CE2  
CE1  
1
ADSP  
ADSC  
ADV  
X
X
X
X
X
X
X
0
OE  
X
X
X
X
X
X
X
1
DQ  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
DQ  
Write  
X
X
X
0
X
0
0
1
1
0
1
1
1
X
X
1
1
X
X
1
X
1
1
X
1
X
X
0
X
X
0
0
X
0
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
X
Unselected  
None  
0
X
Unselected  
None  
X
1
0
X
Unselected  
None  
X
0
0
X
Unselected  
None  
X
0
0
X
Begin Read  
External  
External  
Next  
1
0
X
Begin Read  
0
1
0
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
X
Continue Read  
Continue Read  
Continue Read  
Continue Read  
Suspend Read  
Suspend Read  
Suspend Read  
Suspend Read  
Begin Write  
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X
1
X
X
1
Next  
0
0
Next  
0
1
Hi-Z  
DQ  
Next  
1
0
0
Current  
Current  
Current  
Current  
Current  
Current  
External  
Next  
X
X
1
1
1
Hi-Z  
DQ  
1
0
1
1
Hi-Z  
DQ  
1
1
0
X
1
1
X
X
X
X
X
X
X
X
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Begin Write  
1
Begin Write  
0
X
0
Continue Write  
Continue Write  
Suspend Write  
Suspend Write  
X
X
X
X
X
X
X
X
X
X
X
1
Next  
0
Current  
Current  
None  
X
1
1
1
ZZ sleep”  
X
X
Note:  
1. X = Don't Care, 1 = HIGH, 0 = LOW.  
2. The SRAM always initiates a Read cycle when ADSP asserted, regardless of the state of GW, BWE, or BWx. Writes may occur only on subsequent clocks  
after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the Write cycle to allow the outputs to three-state.  
OE is a Don't Carefor the remainder of the Write cycle.  
3. OE is asynchronous and is not sampled with the clock rise. It is masked internally during Write cycles. During a Read cycle, DQ = High-Z when OE is inactive  
or when the device is deselected, and DQ = data when OE is active.  
Document #: 38-05196 Rev. **  
Page 9 of 31  
CY7C1381B  
CY7C1383B  
Write Cycle Description[1, 2, 3]  
Function (CY7C1381B)  
Read  
GW  
1
BWE  
1
BWd  
X
1
BWc  
X
1
BWb  
BWa  
X
1
X
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
X
Read  
1
0
Write Byte 0 DQa  
Write Byte 1 DQb  
Write Bytes 1, 0  
Write Byte 2 DQc  
Write Bytes 2, 0  
Write Bytes 2, 1  
Write Bytes 2, 1, 0  
Write Byte 3 DQd  
Write Bytes 3, 0  
Write Bytes 3, 1  
Write Bytes 3, 1, 0  
Write Bytes 3, 2  
Write Bytes 3, 2, 0  
Write Bytes 3, 2, 1  
Write All Bytes  
1
0
1
1
0
1
0
1
1
1
1
0
1
1
0
1
0
1
0
1
1
0
1
0
0
1
0
1
0
1
1
0
1
0
0
1
0
0
1
1
1
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
0
0
0
1
1
0
0
0
0
1
0
0
0
1
1
0
0
0
0
Write All Bytes  
0
X
X
X
X
Function (CY7C1383B)  
Read  
GW  
BWE  
BWb  
BWa  
1
1
1
1
1
0
1
0
0
0
0
X
X
1
1
0
0
X
X
1
0
1
0
X
Read  
Write Byte 0 DQa and DPa  
Write Byte 1 DQb and DPb  
Write All Bytes  
Write All Bytes  
Document #: 38-05196 Rev. **  
Page 10 of 31  
CY7C1381B  
CY7C1383B  
circuitry. Only one register can be selected at a time through  
the instruction registers. Data is serially loaded into the TDI pin  
on the rising edge of TCK. Data is output on the TDO pin on  
the falling edge of TCK.  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The CY7C1381B/CY7C1383B incorporates a serial boundary  
scan TAP in the FBGA package only. The TQFP package does  
not offer this functionality. This port operates in accordance  
with IEEE Standard 1149.11900, but does not have the set  
of functions required for full 1149.1 compliance. These  
functions from the IEEE specification are excluded because  
their inclusion places an added delay in the critical speed path  
of the SRAM. Note that the TAP controller functions in a  
manner that does not conflict with the operation of other  
devices using 1149.1 fully compliant TAPs. The TAP operates  
using JEDEC standard 3.3V I/O logic levels.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO pins as shown in the TAP Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
When the TAP controller is in the CaptureIR state, the two  
least significant bits are loaded with a binary 01" pattern to  
allow for fault isolation of the board level serial test path.  
Disabling the JTAG Feature  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller , TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull-up resistor. TDO should  
be left unconnected. Upon power-up, the device will come up  
in a reset state which will not interfere with the operation of the  
device.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain states. The bypass  
register is a single-bit register that can be placed between TDI  
and TDO pins. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
Test Access Port Test Clock  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
output pins on the SRAM. Several no connect (NC) pins are  
also included in the scan register to reserve pins for higher  
density devices. The ×36 configuration has a 70-bit-long  
register, and the ×18 configuration has a 51-bit-long register.  
Test Mode Select  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this pin unconnected if the TAP is not used. The pin is  
pulled up internally, resulting in a logic HIGH level.  
The boundary scan register is loaded with the contents of the  
RAM input and Output ring when the TAP controller is in the  
Capture-DR state and is then placed between the TDI and  
TDO pins when the controller is moved to the Shift-DR state.  
The EXTEST, SAMPLE/PRELOAD and SAMPLE Z instruc-  
tions can be used to capture the contents of the I/O ring.  
Test Data-In (TDI)  
The TDI pin is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see the TAP  
Controller State Diagram. TDI is internally pulled up and can  
be unconnected if the TAP is unused in an application. TDI is  
connected to the most significant bit (MSB) on any register.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI, and the LSB is connected to TDO.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
Test Data-Out (TDO)  
The TDO output pin is used to serially clock data-out from the  
registers. The e output is active depending upon the current  
state of the TAP state machine (see TAP Controller State  
Diagram). The output changes on the falling edge of TCK.  
TDO is connected to the least significant bit (LSB) of any  
register.  
TAP Instruction Set  
Performing a TAP Reset  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in the  
Instruction Code table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
A Reset is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This RESET does not affect the operation of  
the SRAM and may be performed while the SRAM is  
operating. At power-up, the TAP is reset internally to ensure  
that TDO comes up in a high-Z state.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented. The TAP controller  
cannot be used to load address, data or control signals into the  
SRAM and cannot preload the I/O buffers. The SRAM does  
TAP Registers  
Registers are connected between the TDI and TDO pins and  
allow data to be scanned into and out of the SRAM test  
Document #: 38-05196 Rev. **  
Page 11 of 31  
CY7C1381B  
CY7C1383B  
not implement the 1149.1 commands EXTEST or INTEST or  
the PRELOAD portion of SAMPLE/PRELOAD; rather it  
performs a capture of the I/O ring when these instructions are  
executed.  
When the SAMPLE/PRELOAD instructions loaded into the  
instruction register and the TAP controller in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO pins.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 10 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is  
possible that during the Capture-DR state, an input or output  
will undergo a transition. The TAP may then try to capture a  
signal while in transition (metastable state). This will not harm  
the device, but there is no guarantee as to the value that will  
be captured. Repeatable results may not be possible.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all  
0s. EXTEST is not implemented in the TAP controller, and  
therefore this device is not compliant to the 1149.1 standard.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controllers capture set-up plus  
hold times (TCS and TCH). The SRAM clock input might not  
be captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE/PRELOAD instruction. If this  
is an issue, it is still possible to capture all other signals and  
simply ignore the value of the CK and CK captured in the  
boundary scan register.  
The TAP controller does recognize an all-0 instruction. When  
an EXTEST instruction is loaded into the instruction register,  
the SRAM responds as if a SAMPLE/PRELOAD instruction  
has been loaded. There is one difference between the two  
instructions. Unlike the SAMPLE/PRELOAD instruction,  
EXTEST places the SRAM outputs in a High-Z state.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO pins.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO pins and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state. The IDCODE instruction  
is loaded into the instruction register upon power-up or  
whenever the TAP controller is given a test logic reset state.  
Note that since the PRELOAD part of the command is not  
implemented, putting the TAP into the Update to the  
Update-DR state while performing a SAMPLE/PRELOAD  
instruction will have the same effect as the Pause-DR  
command.  
Bypass  
SAMPLE Z  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO pins. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO pins when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so  
the TAP controller is not fully 1149.1 compliant.  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
Document #: 38-05196 Rev. **  
Page 12 of 31  
CY7C1381B  
CY7C1383B  
TAP Controller State Diagram  
TEST-LOGIC  
1
RESET  
1
1
1
TEST-LOGIC/  
IDLE  
SELECT  
SELECT  
IR-SCAN  
0
DR-SCAN  
0
0
1
1
CAPTURE-DR  
CAPTURE-DR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
EXIT1-DR  
0
1
EXIT1-IR  
0
1
0
0
PAUSE-DR  
1
PAUSE-IR  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
1
UPDATE-IR  
1
0
0
Note:  
4. Note: The 0/1 next to each state represents the value at TMS at the rising edge of TCK.  
Document #: 38-05196 Rev. **  
Page 13 of 31  
CY7C1381B  
CY7C1383B  
TAP Controller Block Diagram  
0
Bypass Register  
Selection  
Circuitry  
Selection  
Circuitry  
2
1
0
TDO  
TDI  
Instruction Register  
29  
Identification Register  
31 30  
.
.
2
2
1
1
0
0
.
x
.
.
.
Boundary Scan Register  
TCK  
TMS  
TAP Controller  
TAP Electrical Characteristics Over the Operating Range[5, 6]  
Parameter  
VOH1  
VOH2  
VOL1  
VOL2  
VIH  
Description  
Test Conditions  
Min.  
2.4  
Max.  
Unit  
V
Output HIGH Voltage  
Output HIGH Voltage  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
IOH = 4.0 mA  
IOH = 100 µA  
IOL = 8.0 mA  
IOL = 100 µA  
VDD 0.2  
V
0.4  
0.2  
V
V
1.7  
0.5  
5  
V
DD + 0.3  
V
VIL  
0.7  
V
IX  
GND VI VDDQ  
5
µA  
5. All voltage referenced to Ground.  
6. Overshoot: VIH(AC) < VDD + 1.5V for t < tTCYC / 2; undershoot: VIL (AC) < 0.5V for t < tTCYC/2; power-up: VIH < 2.6V and VDD < 2.4V and VDDQ < 1.4V for t <  
200 ms.  
Document #: 38-05196 Rev. **  
Page 14 of 31  
CY7C1381B  
CY7C1383B  
TAP AC Switching Characteristics Over the Operating Range[7, 8]  
Parameters  
tTCYC  
Description  
Min.  
Max  
Unit  
ns  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH  
100  
tTF  
10  
MHz  
ns  
tTH  
40  
40  
tTL  
TCK Clock LOW  
ns  
Set-up Times  
tTMSS  
TMS Set-up to TCK Clock Rise  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
10  
10  
10  
ns  
ns  
ns  
tTDIS  
tCS  
Hold Times  
tTMSH  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
10  
10  
10  
ns  
ns  
ns  
tTDIH  
tCH  
Capture Hold after Clock Rise  
Output Times  
tTDOV  
TCK Clock LOW to TDO Valid  
TCK Clock HIGH to TDO Invalid  
20  
ns  
ns  
tTDOX  
0
Notes:  
7. tCS and tCH refer to the set-up and hold time requirements of latching data from the boundary scan register.  
8. Test conditions are specified using the load in TAP AC test conditions. Tr / Tf = 1 ns.  
Document #: 38-05196 Rev. **  
Page 15 of 31  
CY7C1381B  
CY7C1383B  
TAP Timing and Test Conditions  
1.25V  
50Ω  
ALL INPUT PULSES  
1.50V  
TDO  
3.3V  
Z = 50Ω  
0
C = 20 pF  
L
0V  
GND  
(a)  
t
TL  
t
TH  
Test Clock  
TCK  
t
TCYC  
t
TMSS  
t
TMSH  
Test Mode Select  
TMS  
t
TDIS  
t
TDIH  
Test Data-In  
TDI  
Test Data-Out  
TDO  
t
t
TDOV  
TDOX  
Document #: 38-05196 Rev. **  
Page 16 of 31  
CY7C1381B  
CY7C1383B  
Identification Register Definitions  
Instruction Field  
Revision Number (31:28)  
Device Depth (27:23)  
512K × 36  
1M × 18  
xxxx  
Description  
xxxx  
00111  
Reserved for version number.  
01000  
00011  
Defines depth of SRAM. 512K or 1M  
Defines with of the SRAM. ×36 or ×18  
Reserved for future use.  
Device Width (22:18)  
00100  
Cypress Device ID (17:12)  
Cypress JEDEC ID (11:1)  
ID Register Presence (0)  
xxxxx  
xxxxx  
00011100100  
1
00011100100  
1
Allows unique identification of SRAM vendor.  
Indicate the presence of an ID register.  
Scan Register Sizes  
Register Name  
Instruction  
Bit Size (×18)  
Bit Size (×36)  
3
1
3
1
Bypass  
ID  
32  
51  
32  
70  
Boundary Scan  
Identification Codes  
Instruction  
Code  
Description  
EXTEST  
000  
Captures the I/O ring contents. Places the boundary scan register  
between the TDI and TDO. Forces all SRAM outputs to High-Z state. This  
instruction is not 1149.1-compliant.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register  
between TDI and TDO. This operation does not affect SRAM operation.  
SAMPLE Z  
Captures the I/O contents. Placesthe boundary scan register between TDI  
and TDO. Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
100  
Do Not Use. This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures the I/O ring contents. Places the boundary scan register be-  
tween TDI and TDO. Does not affect the SRAM operation. This instruction  
does not implement 1149.1 preload function and is therefore not  
1149.1-compliant.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use. This instruction is reserved for future use.  
Do Not Use. This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does  
not affect SRAM operation.  
Document #: 38-05196 Rev. **  
Page 17 of 31  
CY7C1381B  
CY7C1383B  
Boundary Scan Order (512K × 18)  
Boundary Scan Order (1M × 18)  
Signal  
Name  
Bump  
ID  
Signal  
Name  
Bump  
ID  
Signal  
Name  
Bump  
ID  
Signal  
Name  
Bump  
ID  
Bit #  
Bit #  
36  
Bit #  
Bit #  
36  
1
A
2R  
A
6B  
1
A
2R  
DQb  
2E  
2
A
3T  
4T  
5T  
6R  
3B  
5B  
6P  
7N  
6M  
7L  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
BWa#  
BWb#  
BWc#  
BWd#  
A
5L  
2
A
2T  
3T  
5T  
6R  
3B  
5B  
7P  
6N  
6L  
7K  
7T  
6H  
7G  
6F  
7E  
6D  
6T  
6A  
5A  
4G  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
DQb  
DQb  
NC  
2G  
1H  
5R  
2K  
1L  
3
A
5G  
3G  
3L  
3
A
4
A
4
A
5
A
5
A
DQb  
DQb  
DQb  
DQb  
DQb  
MODE  
A
6
A
2B  
4E  
3A  
2A  
2D  
1E  
2F  
1G  
1D  
1D  
2E  
2G  
1H  
5R  
2K  
1L  
6
A
7
A
CE#  
A
7
A
2M  
1N  
2P  
3R  
2C  
3C  
5C  
6C  
4N  
4P  
8
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
ZZ  
8
DQa  
DQa  
DQa  
DQa  
ZZ  
9
A
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
6K  
7P  
6N  
6L  
A
DQa  
DQa  
DQa  
DQa  
DQa  
A
A
A
A1  
7K  
7T  
6H  
7G  
6F  
7E  
6D  
7H  
6G  
6E  
7D  
6A  
5A  
4G  
A0  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
A
A
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
MODE  
A
A
ADV#  
2M  
1N  
2P  
1K  
2L  
ADSP# 4A  
ADSC# 4B  
OE#  
BWE#  
GW#  
CLK  
A
4F  
4M  
4H  
4K  
6B  
5L  
2N  
1P  
3R  
2C  
3C  
5C  
6C  
4N  
4P  
A
ADV#  
BWa#  
BWb#  
A
ADSP# 4A  
ADSC# 4B  
3G  
2B  
4E  
3A  
2A  
1D  
A
OE#  
4F  
4M  
4H  
4K  
A
CE#  
A
BWE#  
GW#  
CLK  
A
A1  
A
A0  
DQb  
Document #: 38-05196 Rev. **  
Page 18 of 31  
CY7C1381B  
CY7C1383B  
Static Discharge Voltage .......................................... >1500V  
(per MIL-STD-883, Method 3015)  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-Up Current.................................................... >200 mA  
Operating Range  
Storage Temperature ..................................... −55°C to +150°C  
Ambient Temperature with  
Ambient  
Power Applied.................................................. −55°C to +125°C  
Range  
Commercial  
Industrial  
Temp[10]  
VDD  
VDDQ  
Supply Voltage on VDD Relative to GND.........−0.5V to +4.6V  
0°C to +70°C  
40°C to +85°C  
3.3V  
2.5V 5%  
DC Voltage Applied to Outputs  
in High Z State[9])................................ 0.5V to VDDQ + 0.5V  
5% / +10% 3.3V + 10%  
DC Input Voltage[9]..................................−0.5V to VDDQ + 0.5V  
Current into Outputs (LOW).........................................20 mA  
Electrical Characteristics Over the Operating Range  
Parameter  
VDD  
Description  
Test Conditions  
Min.  
3.135  
2.375  
2.0  
Max.  
3.63  
3.63  
Unit  
V
Power Supply Voltage  
I/O Supply Voltage  
Output HIGH Voltage  
VDDQ  
V
VOH  
VDD = Min., IOH = 1.0 mA  
VDDQ = 2.5V  
V
VDD = Min., IOH = 4.0 mA  
VDD = Min., IOL = 1.0 mA  
VDD = Min., IOL = 8.0 mA  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 3.3 V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
2.4  
V
VOL  
VIH  
VIL  
IX  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
0.4  
0.4  
V
V
2
V
1.7  
V
0.3  
0.3  
0.8  
0.7  
5
V
V
Input Load Current  
Input Current of MODE  
Input Current of ZZ  
GND < VI < VDDQ  
Input = VSS  
µA  
µA  
µA  
µA  
30  
30  
30  
30  
5
IOZ  
IDD  
Output Leakage  
Current  
GND < VI < VDDQ, Output Disabled  
VDD Operating Supply  
VDD = Max., IOUT = 0 mA,  
f = fMAX = 1/tCYC  
8.5-ns cycle, 117 MHz  
250  
225  
185  
100  
90  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
10-ns cycle, 100 MHz  
12-ns cycle, 83 MHz  
8.5-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
12-ns cycle, 83 MHz  
All speed grades  
ISB1  
ISB2  
ISB3  
Automatic CE  
Power-Down  
CurrentTTL Inputs  
Max. VDD, Device  
Deselected,  
VIN > VIH or VIN < VIL  
f = fMAX = 1/tCYC  
75  
Automatic CE  
Power-Down  
Max. VDD, Device  
Deselected, VIN < 0.3V or VIN  
CurrentCMOS Inputs > VDDQ 0.3V,  
20  
f = 0  
Automatic CE  
Power-Down  
Max. VDD, Device  
Deselected, or VIN < 0.3V or  
CurrentCMOS Inputs VIN > VDDQ 0.3V  
8.5-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
12-ns cycle, 83 MHz  
All speeds  
90  
75  
60  
50  
mA  
mA  
mA  
mA  
f = fMAX = 1/tCYC  
ISB4  
Automatic CS  
Power-Down  
Max. VDD, Device  
Deselected,  
CurrentTTL Inputs  
VIN > VIH or VIN < VIL, f = 0  
Notes:  
9. Minimum Voltage equals -2.0V for pulse duration of less than 20ns.  
10. TA is the case temperature.  
Document #: 38-05196 Rev. **  
Page 19 of 31  
CY7C1381B  
CY7C1383B  
Capacitance[11]  
Parameter  
Description  
Input Capacitance  
Test Conditions  
Max.  
Unit  
pF  
CIN  
TA = 25°C, f = 1 MHz,  
DD = 3.3V,  
DDQ = 3.3V  
3
3
3
V
V
CCLK  
CI/O  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
pF  
AC Test Loads and Waveforms  
R = 1667Ω  
V
[12]  
DDQ  
OUTPUT  
ALL INPUT PULSES  
90%  
OUTPUT  
V
DD  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
L
10%  
5 pF  
GND  
R = 1538Ω  
< 1 V/ns  
< 1V/ns  
= 1.25V  
VTH  
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Thermal Resistance[11]  
QJA  
QJC  
Description  
Test Conditions  
Units  
°C/W  
°C/W  
°C/W  
(Junction to Ambient)  
(Junction to Case)  
119 BGA  
Still Air, soldered on a 114.3 × 101.6 × 1.57 mm3,  
41.54  
44.51  
25  
6.33  
2.38  
9
2-layer board  
165 FBGA  
100-pin TQFP  
Still Air, soldered on a 4.25 × 1.125 inch, 4-layer  
printed circuit board  
Notes:  
11. Tested initially and after any design or process changes that may affect these parameters.  
12. Input waveform should have a slew rate of 1 V/ns.  
Document #: 38-05196 Rev. **  
Page 20 of 31  
CY7C1381B  
CY7C1383B  
Switching Characteristics Over the Operating Range[13, 14, 15]  
117  
100  
83  
Max.  
Parameter  
tCYC  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
12.0  
3.0  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock Cycle Time  
Clock HIGH  
8.5  
2.3  
2.3  
1.5  
0.5  
10.0  
2.5  
2.5  
1.5  
0.5  
tCH  
tCL  
Clock LOW  
3.0  
tAS  
Address Set-Up Before CLK Rise  
Address Hold After CLK Rise  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
ADSP, ADSC Set-Up Before CLK Rise  
ADSP, ADSC Hold After CLK Rise  
BWE, GW, BWx Set-Up Before CLK Rise  
BWE, GW, BWx Hold After CLK Rise  
ADV Set-Up Before CLK Rise  
ADV Hold After CLK Rise  
1.5  
tAH  
0.5  
tCO  
7.5  
8.5  
10.0  
tDOH  
tADS  
tADH  
tWES  
tWEH  
tADVS  
tADVH  
tDS  
1.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
Data Input Set-Up Before CLK Rise  
Data Input Hold After CLK Rise  
Chip enable Set-Up  
tDH  
tCES  
tCEH  
tCHZ  
tCLZ  
tEOHZ  
tEOLZ  
Chip enable Hold After CLK Rise  
Clock to High-Z[13]  
Clock to Low-Z[13]  
OE HIGH to Output High-Z[13, 14]  
OE LOW to Output Low-Z[13, 14]  
OE LOW to Output Valid[13]  
3.0  
4.0  
3.4  
3.0  
4.0  
3.8  
3.0  
4.0  
4.2  
1.3  
0
1.3  
0
1.3  
0
tEOV  
Notes:  
13. Unless otherwise noted, test conditions assume signal transition time of 2.5 ns or less, timing reference levels of 1.25V, input pulse levels of 0 to 2.5V, and  
output loading of the specified IOL/IOH and load capacitance. Shown in (a), (b) and (c) of AC Test Loads.  
14.  
tCHZ, tCLZ, tOEV, tEOLZ, and tEOHZ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state  
voltage.  
15. At any given voltage and temperature, tEOHZ is less than tEOLZ and tCHZ is less than tCLZ  
.
Document #: 38-05196 Rev. **  
Page 21 of 31  
CY7C1381B  
CY7C1383B  
1
Switching Waveforms  
Write Cycle Timing[16, 17]  
Single Write  
Burst Write  
Pipelined Write  
Unselected  
t
CH  
t
CYC  
CLK  
t
ADH  
t
ADS  
t
ADSP ignored with CE inactive  
CL  
1
ADSP  
ADSC  
ADV  
t
ADH  
t
ADSC initiated Write  
ADS  
t
t
ADVH  
ADVS  
t
ADV must be inactive for ADSP Write  
WD2  
AS  
WD3  
ADD  
GW  
WD1  
t
AH  
t
WH  
t
WH  
t
WS  
t
WS  
BWE  
t
t
CES  
CEH  
CE masks ADSP  
1
CE  
1
t
t
CEH  
CES  
Unselected with CE  
2
CE  
2
3
CE  
t
CES  
t
CEH  
OE  
t
DH  
t
DS  
High-Z  
3a  
High-Z  
Data-In  
2a  
= Undefined  
2d  
1a  
2b  
2c  
Dont Care  
Notes:  
16. WE is the combination of BWE, BWx, and GW to define a Write cycle (see Write Cycle Descriptions table).  
17. WDx stands for Write Data to Address X.  
Document #: 38-05196 Rev. **  
Page 22 of 31  
CY7C1381B  
CY7C1383B  
Switching Waveforms (continued)  
Read Cycle Timing[16, 18]  
Burst Read  
Single Read  
Unselected  
t
CH  
t
CYC  
Pipelined Read  
CLK  
t
t
ADH  
ADS  
t
ADSP ignored with CE inactive  
CL  
1
ADSP  
t
ADS  
ADSC initiated Read  
ADSC  
ADV  
t
ADVS  
t
ADH  
Suspend Burst  
t
t
ADVH  
AS  
ADD  
GW  
RD1  
RD3  
RD2  
t
AH  
t
WS  
t
WS  
t
WH  
BWE  
t
t
CEH  
CES  
t
CE masks ADSP  
WH  
1
CE  
1
2
Unselected with CE  
2
CE  
t
CES  
t
CEH  
CE  
3
t
t
CEH  
CES  
OE  
t
EOV  
t
OEHZ  
t
DOH  
t
CDV  
3a  
Data Out  
2d  
2a  
2b  
2c  
1a  
t
CLZ  
t
CHZ  
= Dont Care  
= Undefined  
Note:  
18. RDx stands for Read Data from Address X.  
Document #: 38-05196 Rev. **  
Page 23 of 31  
CY7C1381B  
CY7C1383B  
Switching Waveforms (continued)  
Read/Write Cycle Timing[16, 17, 18]  
Read/Write Timing  
t
t
t
CYC  
CL  
CH  
CLK  
t
AH  
t
t
AS  
A
D
B
C
ADD  
t
ADH  
ADS  
ADSP  
ADSC  
ADV  
t
t
ADH  
ADS  
t
t
ADVH  
ADVS  
t
CEH  
t
CES  
CE  
1
t
t
CEH  
CES  
CE  
t
t
WEH  
WES  
BWE  
ADSP ignored  
with CE HIGH  
1
OE  
t
EOHZ  
tCLZ  
Data  
Q
(B+3)  
D
D
D
Q
(B+2)  
Q
(B+1)  
Q(B)  
Q(B)  
D(C)  
Q(D)  
Q(A)  
(C+1) (C+2) (C+3)  
In/Out  
t
CDV  
tDOH  
tCHZ  
Device originally  
deselected  
WE is the combination of BWE, BWx, and GW to define a Write cycle (see Write cycle description table).  
CE is the combination of CE and CE . All chip selects need to be active in order to select  
2
3
the device. RAx stands for Read Address X, WAx stands for Write Address X, Dx stands for Data-in X,  
Qx stands for Data-out X.  
= Undefined  
= Dont Care  
Document #: 38-05196 Rev. **  
Page 24 of 31  
CY7C1381B  
CY7C1383B  
Switching Waveforms (continued)  
Back to Back Read/Write Timing[19, 20]  
t
t
t
CYC  
CL  
CH  
CLK  
t
AS  
WD1 WD2 WD3 WD4  
RD1  
RD2 RD3 RD4  
ADD  
t
t
ADS  
ADH  
ADSC initiated Reads  
ADSC  
ADSP  
ADV  
ADSP initiated Reads  
t
t
CEH  
CES  
CE1  
CE  
t
t
WEH  
WES  
BWE  
OE  
ADSP ignored  
with CE HIGH  
1
t
CLZ  
Data In/Out  
1a  
In  
1a  
Out  
2a  
Out  
3a  
Out  
4a  
Out  
2a  
In  
3a  
In  
4a  
In  
t
CDV  
t
DOH  
Back-to-Back Reads  
t
CHZ  
Back-to-Back Writes  
= Undefined  
= Dont Care  
Notes:  
19. Device originally deselected.  
20. CE is the combination of CE2 and CE3. All chip selects need to be active in order to select the device.  
Document #: 38-05196 Rev. **  
Page 25 of 31  
CY7C1381B  
CY7C1383B  
Switching Waveforms (continued)  
OE Switching Waveforms  
OE  
t
EOV  
t
EOHZ  
Three-State  
I/Os  
t
EOLZ  
[19, 21]  
ZZ Mode Timing  
CLK  
ADSP  
ADSC  
HIGH  
CE  
1
LOW  
CE  
CE  
2
HIGH  
3
ZZ  
t
ZZS  
I
CC  
I
(active)  
CC  
t
ZZREC  
I
CCZZ  
I/Os  
Three-state  
Note:  
21. I/Os are in three-state when exiting ZZ sleep mode.  
Document #: 38-05196 Rev. **  
Page 26 of 31  
CY7C1381B  
CY7C1383B  
Ordering Information  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
Package Type  
117  
CY7C1381B-117AC  
CY7C1383B-117AC  
A101  
BG119  
BA165A  
A101  
100-Lead Thin Quad Flat Pack  
Commercial  
CY7C1381B-117BGC  
CY7C1383B-117BGC  
119 BGA  
CY7C1381B-117BZC  
CY7C1383B-117BZC  
165 FBGA  
100  
CY7C1381B-100AC  
CY7C1383B-100AC  
100-Lead Thin Quad Flat Pack  
119 BGA  
CY7C1381B-100BGC  
CY7C1383B-100BGC  
BG119  
BA165A  
A101  
CY7C1381B-100BZC  
CY7C1383B-100BZC  
165 FBGA  
83  
CY7C1381B-83AC  
CY7C1383B-83AC  
100-Lead Thin Quad Flat Pack  
119 BGA  
CY7C1381B-83BGC  
CY7C1383B-83BGC  
BG119  
BA165A  
A101  
CY7C1381B-83BZC  
CY7C1383B-83BZC  
165 FBGA  
100  
CY7C1381B-100AI  
CY7C1383B-100AI  
100-Lead Thin Quad Flat Pack  
119 BGA  
Industrial  
CY7C1381B-100BGI  
CY7C1383B-100BGI  
BG119  
BA165A  
A101  
CY7C1381B-100BZI  
CY7C1383B-100BZI  
165 FBGA  
83  
CY7C1381B-83AI  
CY7C1383B-83AI  
100-Lead Thin Quad Flat Pack  
119 BGA  
CY7C1381B-83BGI  
CY7C1383B-83BGI  
BG119  
BA165A  
CY7C1381B-83BZI  
CY7C1383B-83BZI  
165 FBGA  
Shaded areas contain advance information.  
Document #: 38-05196 Rev. **  
Page 27 of 31  
CY7C1381B  
CY7C1383B  
Pin Configurations  
100-pin Thin Plastic Quad Flatpack (14 × 20 × 1.4 mm) A101  
Document #: 38-05196 Rev. **  
Page 28 of 31  
CY7C1381B  
CY7C1383B  
Pin Configurations (continued)  
119-lead FBGA (14 × 22 × 2.4 mm) BG119  
Document #: 38-05196 Rev. **  
Page 29 of 31  
CY7C1381B  
CY7C1383B  
Pin Configurations (continued)  
165-ball FBGA (13 × 15 × 1.2 mm) BB165A  
All product and company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05196 Rev. **  
Page 30 of 31  
© Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C1381B  
CY7C1383B  
Revision History  
Document Title: CY7C1381B/CY7C1383B 512K x36/1M x18 Flow-Thru SRAM  
Document Number: 38-05196  
ISSUE  
DATE  
ORIG. OF  
CHANGE  
REV.  
ECN NO.  
DESCRIPTION OF CHANGE  
**  
112032  
12/09/01  
DSG  
Change from Spec number: 38-01077 to 38-05196  
Document #: 38-05196 Rev. **  
Page 31 of 31  

相关型号:

CY7C1381B-83BZI

512 】 36/1M 】 18 Flow-Thru SRAM
CYPRESS
ETC

CY7C1381BV25-100AC

Standard SRAM, 512KX36, 8.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1381BV25-100AI

Standard SRAM, 512KX36, 8.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1381BV25-100BGC

Standard SRAM, 512KX36, 8.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, FBGA-119
CYPRESS

CY7C1381BV25-100BGI

Standard SRAM, 512KX36, 8.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119
CYPRESS

CY7C1381BV25-100BZC

Standard SRAM, 512KX36, 8.5ns, CMOS, PBGA165, 13 X 15 MM, 1.20 MM HEIGHT, FBGA-165
CYPRESS

CY7C1381BV25-117AC

Standard SRAM, 512KX36, 7.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1381BV25-117BGC

Standard SRAM, 512KX36, 7.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, FBGA-119
CYPRESS

CY7C1381BV25-83AC

Standard SRAM, 512KX36, 10ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1381BV25-83AI

Standard SRAM, 512KX36, 10ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1381BV25-83BGI

Standard SRAM, 512KX36, 10ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119
CYPRESS