CY7C1382A-133BGC [CYPRESS]

Cache SRAM, 1MX18, 4.2ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, FBGA-119;
CY7C1382A-133BGC
型号: CY7C1382A-133BGC
厂家: CYPRESS    CYPRESS
描述:

Cache SRAM, 1MX18, 4.2ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, FBGA-119

静态存储器
文件: 总32页 (文件大小:400K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1380A  
CY7C1382A  
PRELIMINARY  
512K x 36 / 1M x 18 Pipelined SRAM  
inputs, address-pipelining Chip Enable (CE), burst control in-  
puts (ADSC, ADSP, and ADV), write enables (BWa, BWb,  
BWc, BWd and BWE), and Global Write (GW).  
Features  
• Fast clock speed: 167, 150, 133, 100 MHz  
• Provide high-performance 3-1-1-1 access rate  
• Fast OE access times: 3.4, 3.8, 4.2 and 5.0 ns  
• Optimal for depth expansion  
Asynchronous inputs include the Output Enable (OE) and  
burst mode control (MODE). The data (DQ  
) and the data  
a,b,c,d  
parity (DQP  
nous.  
) outputs, enabled by OE, are also asynchro-  
a,b,c,d  
• 3.3V (–5% / +10%) power supply  
DQ  
and DQP  
apply to CY7C1380 and DQ and  
• Common data inputs and data outputs  
• Byte Write Enable and Global Write control  
• Chip enable for address pipeline  
a,b,c,d  
a,b,c,d a,b  
DQP apply to CY7C1382. a, b, c, d each are 8 bits wide in  
the case of DQ and 1 bit wide in the case of DP.  
a,b  
Addresses and chip enables are registered with either Ad-  
dress Status Processor (ADSP) or Address Status Controller  
(ADSC) input pins. Subsequent burst addresses can be inter-  
nally generated as controlled by the Burst Advance Pin (ADV).  
• Address, data, and control registers  
• Internally self-timed Write Cycle  
• Burst control pins (interleaved or linear burst se-  
quence)  
• Automatic power-down for portable applications  
• High-density, high-speed packages  
Address, data inputs, and write controls are registered on-chip  
to initiate self-timed WRITE cycle. WRITE cycles can be one  
to four bytes wide as controlled by the write control inputs.  
Individual byte write allows individual byte to be written. BWa  
Functional Description  
controls DQa and DQPa. BWb controls DQ and DQP . BWc  
b
b
controls DQcand DQPd. BWd controls DQd-DQd and DQPd.  
BWa, BWb, BWc, and BWd can be active only with BWE being  
LOW. GW being LOW causes all bytes to be written. WRITE  
pass-through capability allows written data available at the out-  
put for the immediately next READ cycle. This device also in-  
corporates pipelined enable circuit for easy depth expansion  
without penalizing system performance.  
The Cypress Synchronous Burst SRAM family employs  
high-speed, low-power CMOS designs using advanced tri-  
ple-layer polysilicon, double-layer metal technology. Each  
memory cell consists of four transistors and two high-valued  
resistors.  
The CY7C1380A and CY7C1382A SRAMs integrate  
524,288x36 and 1,048,576x18 SRAM cells with advanced  
synchronous peripheral circuitry and a 2-bit counter for inter-  
nal burst operation. All synchronous inputs are gated by reg-  
isters controlled by a positive-edge-triggered Clock Input  
(CLK). The synchronous inputs include all addresses, all data  
All inputs and outputs of the CY7C1380A and the CY7C1382A  
are JEDEC standard JESD8-5 compatible.  
Selection Guide  
167 MHz  
150 MHz  
3.8  
133 MHz  
4.2  
100 MHz  
5.0  
Maximum Access Time (ns)  
3.4  
350  
30  
Maximum Operating Current (mA)  
Commercial  
310  
280  
250  
Maximum CMOS Standby Current (mA)  
30  
30  
30  
Shaded areas contain advance information.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
May 18, 2000  
CY7C1380A  
CY7C1382A  
PRELIMINARY  
Logic Block Diagram CY7C1380A - 512K x 36  
MODE  
2
(A  
)
[1;0]  
Q
Q
CLK  
ADV  
ADSC  
0
BURST  
COUNTER  
CE  
CLR  
1
ADSP  
Q
17  
19  
ADDRESS  
REGISTER  
CE  
D
512KX36  
MEMORY  
ARRAY  
A
[18:0]  
19  
17  
GW  
DQ , DP  
BYTEWRITE  
REGISTERS  
D
Q
d
d
BWE  
BW  
d
DQ , DP  
BYTEWRITE  
REGISTERS  
D
D
D
Q
Q
Q
c
c
BW  
c
DQ , DP  
b
b
BYTEWRITE  
REGISTERS  
BW  
b
DQ , DP  
a
a
BYTEWRITE  
BW  
a
REGISTERS  
36  
36  
CE  
1
2
D
D
Q
CE  
ENABLE CE  
REGISTER  
CE  
3
Q
OUTPUT  
INPUT  
REGISTERS  
CLK  
ENABLE DELAY  
REGISTER  
REGISTERS  
CLK  
OE  
ZZ  
SLEEP  
CONTROL  
DQ  
a,b,c,d  
a,b  
DP  
CY7C1382A - 1M X 18  
MODE  
2
(A  
)
[1;0]  
Q
CLK  
ADV  
ADSC  
0
BURST  
COUNTER  
CE  
CLR  
Q
1
ADSP  
Q
17  
19  
ADDRESS  
REGISTER  
CE  
D
1M X 18  
A
[19:0]  
19  
17  
MEMORY  
ARRAY  
GW  
DQ , DP  
BYTEWRITE  
REGISTERS  
D
Q
b
b
BWE  
BW  
b
DQ , DP  
BYTEWRITE  
REGISTERS  
D
Q
a
a
BW  
a
18  
18  
CE  
2
1
D
CE  
Q
CE  
ENABLE CE  
REGISTER  
CE  
3
D
Q
OUTPUT  
INPUT  
REGISTERS  
CLK  
ENABLE DELAY  
REGISTER  
REGISTERS  
CLK  
OE  
ZZ  
SLEEP  
CONTROL  
DQ  
a,b  
DP  
a,b  
2
CY7C1380A  
CY7C1382A  
PRELIMINARY  
Pin Configurations  
100-Pin TQFP  
(Top View)  
DQPc  
1
NC  
NC  
NC  
VDDQ  
VSSQ  
NC  
DQPb  
DQb  
DQb  
VDDQ  
VSSQ  
DQb  
DQb  
DQb  
DQb  
VSSQ  
VDDQ  
DQb  
DQb  
VSS  
A
NC  
NC  
VDDQ  
VSSQ  
NC  
DPa  
DQa  
DQa  
VSSQ  
VDDQ  
DQa  
DQa  
VSS  
NC  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQc  
2
DQc  
VDDQ  
VSSQ  
DQc  
3
4
5
6
DQc  
7
NC  
DQc  
8
DQb  
DQb  
VSSQ  
VDDQ  
DQb  
DQb  
NC  
VDD  
NC  
VSS  
DQb  
DQb  
VDDQ  
VSSQ  
DQb  
DQb  
DPb  
NC  
DQc  
9
9
VSSQ  
10  
11  
12  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDDQ  
DQc  
DQc  
13  
NC  
14  
CY7C1382A  
(1M x 18)  
CY7C1380A  
(512K X 36)  
VDD  
15  
NC  
VDD  
ZZ  
NC  
16  
VDD  
ZZ  
VSS  
17  
DQd  
18  
DQa  
DQa  
VDDQ  
VSSQ  
DQa  
DQa  
DQa  
DQa  
VSSQ  
VDDQ  
DQa  
DQa  
DQPa  
DQa  
DQa  
VDDQ  
VSSQ  
DQa  
DQa  
NC  
DQd  
19  
VDDQ  
20  
VSSQ  
21  
DQd  
22  
DQd  
23  
DQd  
24  
DQd  
25  
NC  
VSSQ  
26  
VSSQ  
VDDQ  
NC  
NC  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
VDDQ  
27  
DQd  
28  
DQd  
29  
DQPd  
30  
3
CY7C1380A  
CY7C1382A  
PRELIMINARY  
Pin Configurations (continued)  
CY7C1380A (512K x 36)  
1
3
2
4
5
6
7
A
A
A
V
DDQ  
A
A
A
V
V
A
ADSP  
ADSC  
A
A
DDQ  
A
B
C
D
E
F
NC  
NC  
NC  
V
NC  
A
A
A
DD  
DQPb  
DQb  
DQb  
V
DQPc  
NC  
DQb  
DQb  
DQc  
DQc  
SS  
SS  
DQc  
V
V
CE  
V
SS  
SS  
1
V
DQc  
DQc  
DQc  
OE  
V
SS  
V
SS  
DDQ  
DQc  
DQc  
DDQ  
DQb  
DQb  
DQb  
DQb  
ADV  
GW  
G
H
J
BWc  
BWb  
V
V
SS  
SS  
V
V
V
V
NC  
V
NC  
DD  
DD  
DDQ  
DDQ  
DD  
K
L
DQa  
DQa  
DQd  
DQd  
V
DQd  
DQa  
DQa  
DQa  
DQa  
DQPa  
A
V
SS  
CLK  
NC  
SS  
DQd  
BWd  
BWa  
M
V
V
V
DQd  
DQd  
BWE  
A1  
V
DDQ  
DDQ  
SS  
SS  
DQa  
DQa  
N
P
R
T
DQd  
V
V
SS  
SS  
DQd  
NC  
DQPd  
V
A0  
V
SS  
SS  
MODE  
A
V
A
NC  
ZZ  
V
DD  
DD  
NC  
NC  
A
A
NC  
U
TMS  
V
TDI  
TCK  
TDO  
NC  
V
DDQ  
DDQ  
CY7C1382A (1M x 18)  
1
3
2
4
5
6
7
A
B
C
D
E
F
A
A
V
A
A
A
V
A
A
V
A
A
ADSP  
ADSC  
DDQ  
NC  
DDQ  
NC  
NC  
DQb  
NC  
V
NC  
A
A
A
DD  
V
NC  
DQb  
DQPa  
NC  
NC  
NC  
SS  
SS  
V
V
DQa  
CE  
V
SS  
SS  
1
DQa  
V
NC  
DQb  
NC  
OE  
V
SS  
V
DDQ  
DDQ  
SS  
DQa  
NC  
NC  
ADV  
GW  
G
H
J
BWb  
V
NC  
DQb  
SS  
V
DQa  
V
SS  
SS  
V
V
V
V
NC  
V
NC  
DD  
DDQ  
DD  
DDQ  
DD  
K
L
DQa  
NC  
DQb  
NC  
V
NC  
NC  
DQa  
NC  
DQa  
NC  
A
V
SS  
CLK  
NC  
SS  
DQb  
V
BWa  
SS  
M
V
V
V
BWE  
A1  
DQb  
NC  
V
DDQ  
SS  
DDQ  
SS  
NC  
N
P
DQb  
NC  
V
V
SS  
SS  
DQPb  
DQa  
V
A0  
V
SS  
SS  
R
T
NC  
V
MODE  
A
A
A
NC  
ZZ  
Vdd  
NC  
DD  
A
A
NC  
U
V
TMS  
TDI  
TCK  
TDO  
V
DDQ  
NC  
DDQ  
4
CY7C1380A  
CY7C1382A  
PRELIMINARY  
Pin Definitions (100-Pin TQFP)  
x18 Pin Locations x36 Pin Locations  
Name  
A0  
A1  
A
I/O  
Description  
37, 36, 3225,  
37, 36, 3235,  
Input-  
Synchronous  
Address Inputs used to select one of the address  
locations. Sampled at the rising edge of the CLK if  
ADSP or ADSC is active LOW, and CE CE , and  
4250, 8082, 99, 4250, 81, 82, 99,  
100  
100  
1,  
2
CE are sampled active. A  
feed the 2-bit  
3
[1:0]  
counter.  
93, 94  
93, 94, 95, 96,  
BWa  
BWb  
BWc  
BWd  
Input-  
Synchronous  
Byte Write Select Inputs, active LOW. Qualifiedwith  
BWE to conduct byte writes to the SRAM. Sampled  
on the rising edge of CLK.  
88  
88  
GW  
Input-  
Synchronous  
Global Write Enable Input, active LOW. When as-  
serted LOW on the rising edge of CLK, a global  
write is conducted (ALL bytes are written, regard-  
less of the values on BW  
and BWE).  
a,b,c,d  
87  
89  
87  
89  
BWE  
CLK  
Input-  
Synchronous  
Byte Write Enable Input, active LOW. Sampled on  
the rising edge of CLK. This signal must be assert-  
ed LOW to conduct a byte write.  
Input-Clock  
Clock Input. Used to capture allsynchronous inputs  
to the device. Also used to increment the burst  
counter when ADV is asserted LOW, during a burst  
operation.  
98  
98  
CE  
Input-  
Synchronous  
Chip Enable 1 Input, active LOW. Sampled on the  
1
rising edge of CLK. Used in conjunction with CE  
2
and CE to select/deselect the device. ADSP is ig-  
3
nored if CE is HIGH.  
1
97  
92  
86  
97  
92  
86  
CE  
CE  
Input-  
Synchronous  
Chip Enable 2 Input, active HIGH. Sampled on the  
2
3
rising edge of CLK. Used in conjunction with CE  
1
and CE to select/deselect the device.  
3
Input-  
Synchronous  
Chip Enable 3 Input, active LOW. Sampled on the  
rising edge of CLK. Used in conjunction with CE  
1
and CE to select/deselect the device.  
2
OE  
Input-  
Asynchronous  
Output Enable, asynchronous input, active LOW.  
Controls the direction of the I/O pins. When LOW,  
the I/O pins behave as outputs. When deasserted  
HIGH, I/O pins are three-stated, and act as input  
data pins. OE is masked during the first clock of a  
read cycle when emerging from a deselected state.  
83  
84  
83  
84  
ADV  
Input-  
Synchronous  
Advance Input signal, sampled on the rising edge  
ofCLK. When asserted, it automatically increments  
the address in a burst cycle.  
ADSP  
Input-  
Synchronous  
Address Strobe from Processor, sampled on the  
rising edge of CLK. When asserted LOW, A is cap-  
tured in the address registers. A  
are also loaded  
[1:0]  
into the burst counter. When ADSP and ADSC are  
both asserted, only ADSP is recognized. ASDP is  
ignored when CE is deasserted HIGH.  
1
5
CY7C1380A  
CY7C1382A  
PRELIMINARY  
Pin Definitions (100-Pin TQFP) (continued)  
x18 Pin Locations x36 Pin Locations  
Name  
ADSC  
I/O  
Description  
Address Strobe from Controller, sampled on the ris-  
ing edge of CLK. When asserted LOW, A is cap-  
85  
31  
64  
85  
31  
64  
Input-  
Synchronous  
[x:0]  
tured in the address registers. A  
are also loaded  
[1:0]  
into the burst counter. When ADSP and ADSC are  
both asserted, only ADSP is recognized.  
MODE  
ZZ  
Input-  
Static  
Selects Burst Order. When tied to GND selects lin-  
ear burst sequence. When tied to V  
or left float-  
DDQ  
ing selects interleaved burst sequence. This is a  
strap pin and should remain static during device  
operation.  
Input-  
Asynchronous  
ZZ sleepInput. This active HIGH input places the  
device in a non-time critical sleepcondition with  
data integrity preserved.  
(a) 58, 59, 62, 63,  
68, 69, 72, 73  
(b) 8, 9, 12, 13, 18, (b) 68, 69, 7275,  
(a) 52, 53, 5659,  
62, 63  
DQa  
DQb  
DQc  
DQd  
I/O-  
Synchronous  
Bidirectional Data I/O lines. As inputs, they feed  
into an on-chip data register that is triggered by the  
rising edgeof CLK. As outputs, theydeliver the data  
contained in the memory location specified by A  
during the previous clock rise of the read cycle. The  
direction of the pins is controlled by OE. When OE  
is asserted LOW, the pins behave as outputs.  
When HIGH, DQa and DPa are placed in a  
three-state condition.  
19, 22, 23  
78, 79  
(c) 2, 3, 69, 12, 13  
(d) 18, 19, 2225,  
28, 29  
74, 24  
51, 80, 1, 30  
DQPa  
DQPb  
DQPc  
DQPd  
I/O-  
Synchronous  
Bidirectional Data I/O lines. As inputs, they feed  
into an on-chip data register that is triggered by the  
rising edgeof CLK. As outputs, theydeliver the data  
contained in the memory location specified by A  
during the previous clock rise of the read cycle. The  
direction of the pins is controlled by OE. When OE  
is asserted LOW, the pins behave as outputs.  
When HIGH, DQx and DPx are placed in a  
three-state condition.  
15, 41, 65, 91  
17, 40, 67, 90  
15, 41, 65, 91  
17, 40, 67, 90  
V
Power Supply  
Ground  
Power supply inputs to the core of the device.  
Should be connected to 3.3V 5% +10% power  
supply.  
DD  
V
V
V
Ground for the core of the device. Should be con-  
nected to ground of the system.  
SS  
4, 11, 20, 27, 54,  
61, 70, 77  
4, 11, 20, 27, 54, 61,  
70, 77  
I/O Power  
Supply  
Power supply for the I/O circuitry. Should be con-  
nected to a 2.5 5% 3.3V 10% power supply.  
DDQ  
SSQ  
5, 10, 21, 26, 55,  
60, 71, 76  
5, 10, 21, 26, 55, 60,  
71, 76  
I/O Ground  
Ground for the I/O circuitry. Should be connected  
to ground of the system.  
1, 2, 3, 6, 7, 14, 16, 14, 16, 38, 39, 66  
25, 28, 29, 30, 38,  
39, 51, 52, 53, 56,  
57, 66, 75, 78, 79,  
95, 96  
NC  
-
No Connects.  
6
CY7C1380A  
CY7C1382A  
PRELIMINARY  
Pin Definitions (119-Ball BGA)  
x18 Pin Locations  
x36 Pin Locations  
4P, 4N,  
2A, 2B, 2C, 2R, 3A, A1  
Name  
I/O  
Input-  
Description  
Address Inputs used to select one of the address  
4P, 4N, 2A, 2B, 2C,  
3A, 5A, 6A, 3B, 5B,  
3C, 5C, 6C, 2R, 6R, 3B, 3C, 3T, 4T, 5A,  
A0  
Synchronous locations. Sampled at the rising edge of the CLK  
if ADSP or ADSC is active LOW, and CE is sam-  
A
2T, 3T, 5T, 6B, 6T  
5B, 5C, 5T, 6A, 6B,  
6C, 6R  
pled active. A  
feed the 2-bit counter.  
[1:0]  
5L, 3G  
5L, 5G, 3G, 3L  
BWa  
BWb  
BWc  
BWd  
Input-  
Byte Write Select Inputs, active LOW. Qualified  
Synchronous with BWE to conduct byte writes to the SRAM.  
Sampled on the rising edge of CLK.  
4H  
4H  
GW  
Input-  
Global Write Enable Input, active LOW. When as-  
Synchronous serted LOW on the rising edge of CLK, a global  
write is conducted (ALL bytes are written, regard-  
less of the values on BW  
and BWE).  
a,b,c,d  
4M  
4K  
4M  
4K  
BWE  
CLK  
Input-  
Byte Write Enable Input, active LOW. Sampled on  
Synchronous the rising edge of CLK. This signal must be assert-  
ed LOW to conduct a byte write.  
Input-Clock  
Clock Input. Used to capture all synchronous in-  
puts to the device. Also used to increment the  
burst counter when ADV is asserted LOW, during  
a burst operation.  
4E  
4F  
4E  
4F  
CE  
Input-  
Chip Enable Input, active LOW. Sampled on the  
1
Synchronous rising edge of CLK. ADSP is ignored if CE is  
1
HIGH.  
OE  
Input-  
Output Enable, asynchronous input, active LOW.  
Asynchronous Controls the direction of the I/O pins. When LOW,  
the I/O pins behave as outputs. When deasserted  
HIGH, I/O pins are three-stated, and act as input  
data pins. OE is masked during the first clock of a  
read cycle when emerging from a deselected  
state.  
4G  
4A  
4G  
4A  
ADV  
Input-  
Advance Input signal, sampled on the rising edge  
Synchronous of CLK. When asserted, it automatically incre-  
ments the address in a burst cycle.  
ADSP  
Input-  
Synchronous rising edge of CLK. When asserted LOW, A is cap-  
tured in the address registers. A are also load-  
Address Strobe from Processor, sampled on the  
[1:0]  
ed into the burst counter. When ADSP and ADSC  
are both asserted, only ADSP is recognized.  
ASDP is ignored when CE is deasserted HIGH.  
1
7
CY7C1380A  
CY7C1382A  
PRELIMINARY  
Pin Definitions (119-Ball BGA) (continued)  
x18 Pin Locations  
4B  
x36 Pin Locations  
4B  
Name  
ADSC  
I/O  
Description  
Address Strobe from Controller, sampled on the  
is  
Input-  
Synchronous rising edge of CLK. When asserted LOW, A  
[x:0]  
captured in the address registers. A  
are also  
[1:0]  
loaded into the burst counter. When ADSP and  
ADSC are both asserted, only ADSP is recog-  
nized.  
3R  
7T  
3R  
7T  
MODE  
ZZ  
Input-  
Static  
Selects Burst Order. When tied to GND selects  
linear burst sequence. When tied to V  
or left  
DDQ  
floating selects interleaved burst sequence. This  
is a strap pin and should remain static during de-  
vice operation.  
Input-  
ZZsleepInput. Thisactive HIGH inputplaces the  
Asynchronous device in a non-time critical sleepcondition with  
data integrity preserved.  
(a) 6F, 6H, 6L, 6N,  
7E, 7G, 7K, 7P  
(b) 1D, 1H, 1L, 1N,  
2E, 2G, 2K, 2M  
(a) 6K, 6L, 6M, 6N,  
7K, 7L, 7N, 7P  
(b) 6E, 6F, 6G, 6H,  
7D, 7E, 7G, 7H  
(c) 1D, 1E, 1G, 1H,  
2E, 2F, 2G, 2H  
(d) 1K, 1L, 1N, 1P,  
2K, 2L, 2M, 2N  
DQa  
DQb  
DQc  
DQd  
I/O-  
Bidirectional Data I/O lines. As inputs, they feed  
Synchronous into an on-chip data register that is triggered by  
the rising edge ofCLK. As outputs, they deliver the  
data contained in the memory location specified  
by A during the previous clock rise of the read  
cycle. The direction of the pins is controlled by OE.  
When OE is asserted LOW, the pins behave as  
outputs. When HIGH, DQx and DQPx are placed  
in a three-state condition.  
U5  
U3  
U2  
U5  
U3  
U2  
TDO  
TDI  
JTAG serial  
output  
Synchronous  
Serial data-out to the JTAG circuit. Delivers data  
on the negative edge of TCK.  
JTAG serial  
input  
Synchronous  
Serial data-In to the JTAG circuit. Sampled on the  
rising edge of TCK.  
TMS  
TCK  
Test Mode Se- This pin controls the Test Access Port state ma-  
lect  
Synchronous  
chine. Sampled on the rising edge of TCK.  
U4  
U4  
JTAG-Clock  
Clock input to the JTAG circuitry.  
6D, 2P  
6P, 6D, 2D, 2P  
DQPa  
DQPb  
DQPc  
DQPd  
I/O-  
Bidirectional Data I/O lines. As inputs, they feed  
Synchronous into an on-chip data register that is triggered by  
the rising edge ofCLK. As outputs, they deliver the  
data contained in the memory location specified  
by A during the previous clock rise of the read  
cycle. The direction of the pins is controlled by OE.  
When OE is asserted LOW, the pins behave as  
outputs. When HIGH, DQx and DPx are placed in  
a three-state condition.  
2J, 4C, 4J, 4R, 5R, 6J 2J, 4C, 4J, 4R, 5R,  
6J  
V
V
Power Supply Power supply inputs to the core of the device.  
Should be connected to 3.3V power supply.  
DD  
SS  
3D, 3E, 3F, 3H, 3K,  
3M, 3N, 3P, 5D, 5E,  
5F, 5H, 5K, 5M, 5N,  
5P  
3D, 3E, 3F, 3H, 3K,  
3M, 3N, 3P, 5D, 5E,  
5F, 5H, 5K, 5M, 5N,  
5P  
Ground  
Ground for the device. Should be connected to  
ground of the system.  
1A, 1F, 1J, 1M, 1U,  
7A, 7F, 7J, 7M, 7U  
1A, 1F, 1J, 1M, 1U,  
7A, 7F, 7J, 7M, 7U  
V
I/O Power  
Supply  
Power supply for the I/O circuitry.  
No Connects.  
DDQ  
1B, 1C, 1E, 1G, 1K,  
1P, 1R, 1T, 2D, 2F,  
2H, 2L, 2N, 3J, 4D,  
4L, 4T, 5J, 6E, 6G,  
6K, 6M, 6P, 6U, 7B,  
7C, 7D, 7H, 7L, 7N,  
7R  
1B, 1C, 1R, 1T, 2T,  
3J, 4D, 4L, 5J, 6T,  
6U, 7B, 7C, 7R  
NC  
-
8
CY7C1380A  
CY7C1382A  
PRELIMINARY  
logic while being delivered to the RAM core. The write signals  
(GW, BWE, and BWx) and ADV inputs are ignored during this  
first cycle.  
Introduction  
Functional Overview  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock. Max-  
ADSP triggered write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQx inputs is written into the corre-  
sponding address location in the RAM core. If GW is HIGH,  
then the write operation is controlled by BWE and BWx sig-  
nals. The CY7C1380A/CY7C1382A provides byte write capa-  
bility that is described in the Write Cycle Description table.  
Asserting the Byte Write Enable input (BWE) with the selected  
imum access delay from the clock rise (t ) is 3.8 ns (133-MHz  
CO  
device).  
The CY7C1380A/CY7C1382A supports secondary cache in  
systems utilizing either a linear or interleaved burst sequence.  
The interleaved burst order supports Pentium® and i486 pro-  
cessors. The linear burst sequence is suited for processors  
that utilize a linear burst sequence. The burst order is user  
selectable, and is determined by sampling the MODE input.  
Accesses can be initiated with either the Processor Address  
Strobe (ADSP) or the Controller Address Strobe (ADSC). Ad-  
dress advancement through the burst sequence is controlled  
by the ADV input. A two-bit on-chip wraparound burst counter  
captures the first address in a burst sequence and automati-  
cally increments the address for the rest of the burst access.  
Byte Write (BW  
for CY7C1380A  
&
BW  
for  
a,b,c,d  
a,b  
CY7C1382A) input will selectively write to only the desired  
bytes. Bytes not selected during a byte write operation will  
remain unaltered. A synchronous self-timed write mechanism  
has been provided to simplify the write operations.  
Because the CY7C1380A/CY7C1382A is a common I/O de-  
vice, the Output Enable (OE) must be deasserted HIGH before  
presenting data to the DQ inputs. Doing so will three-state the  
output drivers. As a safety precaution, DQ are automatically  
three-stated whenever a write cycle is detected, regardless of  
the state of OE.  
Byte write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BW  
for 1380 and BW for  
a,b,c,d  
a,b  
1382) inputs. A Global Write Enable (GW) overrides all byte  
write inputs and writes data to all four bytes. All writes are  
simplified with on-chip synchronous self-timed write circuitry.  
Single Write Accesses Initiated by ADSC  
ADSC write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deasserted HIGH, (3) chip select is asserted active, and (4)  
the appropriate combination of the write inputs (GW, BWE,  
and BWx) are asserted active to conduct a write to the desired  
byte(s). ADSC triggered write accesses require a single clock  
Synchronous Chip Selects (CE , CE , CE for TQFP / CE for  
1
2
3
1
BGA) and an asynchronous Output Enable (OE) provide for  
easy bank selection and output three-state control. ADSP is  
ignored if CE is HIGH.  
1
cycle to complete. The address presented to A  
is loaded  
[17:0]  
Single Read Accesses  
into the address register and the address advancement logic  
while being delivered to the RAM core. The ADV input is ig-  
nored during this cycle. If a global write is conducted, the data  
This access is initiated when the following conditions are sat-  
isfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)  
chip selects are all asserted active, and (3) the write signals  
presented to the DQ  
is written into the corresponding ad-  
[x:0]  
(GW, BWE) are all deasserted HIGH. ADSP is ignored if CE  
1
dress location in the RAM core. If a byte write is conducted,  
only the selected bytes are written. Bytes not selected during  
a byte write operation will remain unaltered. A synchronous  
self-timed write mechanism has been provided to simplify the  
write operations.  
is HIGH. The address presented to the address inputs is  
stored into the address advancement logic and the Address  
Register while being presented to the memory core. The cor-  
responding data is allowed to propagate to the input of the  
Output Registers. At the rising edge of the next clock the data  
is allowed to propagate through the output register and onto  
the data bus within 3.0 ns (200-MHz device) if OE is active  
LOW. The only exception occurs when the SRAM is emerging  
from a deselected state to a selected state, its outputs are  
always three-stated during the first cycle of the access. After  
the first cycle of the access, the outputs are controlled by the  
OE signal. Consecutive single read cycles are supported.  
Once the SRAM is deselected at clock rise by the chip select  
and either ADSP or ADSC signals, its output will three-state  
immediately.  
Because the CY7C1380A/CY7C1382A is a common I/O de-  
vice, the Output Enable (OE) must be deasserted HIGH before  
presenting data to the DQ  
inputs. Doing so will three-state  
[x:0]  
the output drivers. As a safety precaution, DQ  
are automat-  
[x:0]  
ically three-stated whenever a write cycle is detected, regard-  
less of the state of OE.  
Burst Sequences  
The CY7C1380A/CY7C1382A provides a two-bit wraparound  
counter, fed by A  
, that implements either an interleaved or  
[1:0]  
linear burst sequence. The interleaved burst sequence is de-  
signed specifically to support Intel® Pentium applications. The  
linear burst sequence is designed to support processors that  
follow a linear burst sequence. The burst sequence is user  
selectable through the MODE input.  
Single Write Accesses Initiated by ADSP  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and (2)  
chip select is asserted active. The address presented is load-  
ed into the address register and the address advancement  
9
CY7C1380A  
CY7C1382A  
PRELIMINARY  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both read and write burst operations are supported.  
Linear Burst Sequence  
First  
Address  
Second  
Address  
Third  
Fourth  
Address  
Address  
Interleaved Burst Sequence  
A
A
A
A
[1:0]  
[1:0]  
[1:0]  
[1:0]  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
A
A
A
A
[1:0]  
[1:0]]  
[1:0]  
[1:0]  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ plac-  
es the SRAM in a power conservation sleepmode. Two clock  
cycles are required to enter into or exit from this sleepmode.  
While in this mode, data integrity is guaranteed. Accesses  
pending when entering the sleepmode are not considered  
valid nor is the completion of the operation guaranteed. The  
device must be deselected prior to entering the sleepmode.  
CEs, ADSP, and ADSC must remain inactive for the duration  
of t  
after the ZZ input returns LOW.  
ZZREC  
ZZ Mode Electrical Characteristics  
Parameter  
Description  
Test Conditions  
Min.  
Max.  
Unit  
I
t
t
Snooze mode  
standby current  
ZZ > V 0.2V  
15  
mA  
DDZZ  
DD  
Deviceoperationto  
ZZ  
ZZ > V 0.2V  
2t  
CYC  
ns  
ns  
ZZS  
DD  
ZZ recovery time  
ZZ < 0.2V  
2t  
CYC  
ZZREC  
10  
CY7C1380A  
CY7C1382A  
PRELIMINARY  
Cycle Descriptions[1, 2, 3, 4]  
Next Cycle  
Unselected  
Add. Used  
None  
ZZ  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
CE  
X
1
CE  
X
X
0
CE  
1
ADSP  
X
0
ADSC  
ADV  
X
X
X
X
X
X
X
0
OE  
X
X
X
X
X
X
X
1
DQ  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
DQ  
Write  
X
3
2
1
0
X
X
0
0
X
0
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
X
Unselected  
None  
0
X
Unselected  
None  
X
1
0
0
X
Unselected  
None  
X
0
0
1
X
Unselected  
None  
X
0
0
1
X
Begin Read  
External  
External  
Next  
1
0
0
X
Begin Read  
0
1
0
1
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
X
Continue Read  
Continue Read  
Continue Read  
Continue Read  
Suspend Read  
Suspend Read  
Suspend Read  
Suspend Read  
Begin Write  
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X
1
X
X
1
1
Next  
1
0
0
Next  
X
X
1
0
1
Hi-Z  
DQ  
Next  
1
0
0
Current  
Current  
Current  
Current  
Current  
Current  
External  
Next  
X
X
1
1
1
Hi-Z  
DQ  
1
1
0
X
X
1
1
1
Hi-Z  
DQ  
1
1
0
X
1
1
X
X
X
X
X
X
X
X
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Begin Write  
X
1
1
Begin Write  
0
X
0
Continue Write  
Continue Write  
Suspend Write  
Suspend Write  
X
X
X
X
X
X
X
X
X
X
X
1
1
Next  
X
1
0
Current  
Current  
None  
X
1
1
X
X
1
ZZ sleep”  
X
X
Note:  
1. X=Don't Care.1= HIGH, 0 = LOW.  
2. Write is defined by BWE, BWx, and GW. See Write Cycle Descriptions table.  
3. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
4. CE1, CE2, and CE3 are available only in the TQFP package. BGA package has a single chip select CE1.  
11  
CY7C1380A  
CY7C1382A  
PRELIMINARY  
Write Cycle Descriptions[5, 6, 7]  
Function (1380)  
Read  
GW  
1
BWE  
BWd  
X
1
BWc  
X
1
BWb  
X
1
BWa  
X
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X
Read  
1
Write Byte 0 - DQa  
Write Byte 1 - DQb  
Write Bytes 1, 0  
Write Byte 2 - DQc  
Write Bytes 2, 0  
Write Bytes 2, 1  
Write Bytes 2, 1, 0  
Write Byte 3 - DQd  
Write Bytes 3, 0  
Write Bytes 3, 1  
Write Bytes 3, 1, 0  
Write Bytes 3, 2  
Write Bytes 3, 2, 0  
Write Bytes 3, 2, 1  
Write All Bytes  
1
1
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
0
1
1
0
0
1
1
1
0
0
0
1
0
1
1
1
1
0
1
1
0
1
0
1
0
1
1
0
1
0
0
1
0
0
1
1
1
0
0
1
0
1
0
0
0
1
1
0
0
0
0
Write All Bytes  
0
X
X
X
X
Function (1382)  
GW  
BWE  
BWb  
BWa  
Read  
Read  
1
1
1
1
1
0
1
0
0
0
0
X
X
1
1
0
0
X
X
1
0
1
0
X
Write Byte 0 - DQ  
Write Byte 1 - DQ  
Write All Bytes  
and DP  
0
[7:0]  
and DP  
[15:8]  
1
Write All Bytes  
12  
CY7C1380A  
CY7C1382A  
PRELIMINARY  
ry. Only one register can be selected at a time through the  
instruction registers. Data is serially loaded into the TDI pin on  
the rising edge of TCK. Data is output on the TDO pin on the  
falling edge of TCK.  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The CY7C1380A/CY7C1382A incorporates a serial boundary  
scan Test Access Port (TAP) in the FBGA package only. The  
TQFP package does not offer this functionality. This port oper-  
ates in accordance with IEEE Standard 1149.1-1900, but does  
not have the set of functions required for full 1149.1 compli-  
ance. These functions from the IEEE specification are exclud-  
ed because their inclusion places an added delay in the critical  
speed path of the SRAM. Note that the TAP controller func-  
tions in a manner that does not conflict with the operation of  
other devices using 1149.1 fully compliant TAPs. The TAP op-  
erates using JEDEC standard 3.3V I/O logic levels.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO pins as shown in the TAP Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as de-  
scribed in the previous section.  
When the TAP controller is in the CaptureIR state, the two least  
significant bits are loaded with a binary "01" pattern to allow  
for fault isolation of the board level serial test path.  
Disabling the JTAG Feature  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(V ) to prevent clocking of the device. TDI and TMS are in-  
ternally pulled up and may be unconnected. They may alter-  
SS  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain states. The bypass  
register is a single-bit register that can be placed between TDI  
and TDO pins. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
nately be connected to V  
through a pull-up resistor. TDO  
DD  
should be left unconnected. Upon power-up, the device will  
come up in a reset state which will not interfere with the oper-  
ation of the device.  
Test Access Port (TAP) - Test Clock  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
output pins on the SRAM. Several no connect (NC) pins are  
also included in the scan register to reserve pins for higher  
density devices. The x36 configuration has a xx-bit-long regis-  
ter, and the x18 configuration has a yy-bit-long register.  
Test Mode Select  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this pin unconnected if the TAP is not used. The pin is  
pulled up internally, resulting in a logic HIGH level.  
The boundary scan register is loaded with the contents of the  
RAM Input and Output ring when the TAP controller is in the  
Capture-DR state and is then placed between the TDI and  
TDO pins when the controller is moved to the Shift-DR state.  
The EXTEST, SAMPLE/PRELOAD and SAMPLE Z instruc-  
tions can be used to capture the contents of the Input and  
Output ring.  
Test Data-In (TDI)  
The TDI pin is used to serially input information into the regis-  
ters and can be connected to the input of any of the registers.  
The register between TDI and TDO is chosen by the instruc-  
tion that is loaded into the TAP instruction register. For infor-  
mation on loading the instruction register, see the TAP Con-  
troller State Diagram. TDI is internally pulled up and can be  
unconnected if the TAP is unused in an application. TDI is  
connected to the Most Significant Bit (MSB) on any register.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI, and the LSB is connected to TDO.  
Identification (ID) Register  
Test Data Out (TDO)  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register Defi-  
nitions table.  
The TDO output pin is used to serially clock data-out from the  
registers. The e output is active depending upon the current  
state of the TAP state machine (see TAP Controller State  
Diagram). The output changes on the falling edge of TCK.  
TDO is connected to the Least Significant Bit (LSB) of any  
register.  
Performing a TAP Reset  
TAP Instruction Set  
A Reset is performed by forcing TMS HIGH (VDD) for five ris-  
ing edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is oper-  
ating. At power-up, the TAP is reset internally to ensure that  
TDO comes up in a high-Z state.  
Eight different instructions are possible with the three-bit in-  
struction register. All combinations are listed in the Instruction  
Code table. Three of these instructions are listed as RE-  
SERVED and should not be used. The other five instructions  
are described in detail below.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented. The TAP controller can-  
not be used to load address, data or control signals into the  
TAP Registers  
Registers are connected between the TDI and TDO pins and  
allow data to be scanned into and out of the SRAM test circuit-  
13  
CY7C1380A  
CY7C1382A  
PRELIMINARY  
SRAM and cannot preload the Input or Output buffers. The  
SRAM does not implement the 1149.1 commands EXTEST or  
INTEST or the PRELOAD portion of SAMPLE / PRELOAD;  
rather it performs a capture of the Inputs and Output ring when  
these instructions are executed.  
When the SAMPLE / PRELOAD instructions loaded into the  
instruction register and the TAP controller in the Capture-DR  
state, a snapshot of data on the inputs and output pins is cap-  
tured in the boundary scan register.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 10 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is possible  
that during the Capture-DR state, an input or output will under-  
go a transition. The TAP may then try to capture a signal while  
in transition (metastable state). This will not harm the device,  
but there is no guarantee as to the value that will be captured.  
Repeatable results may not be possible.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO pins.  
To execute the instruction once it is shifted in, the TAP control-  
ler needs to be moved into the Update-IR state.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be ex-  
ecuted whenever the instruction register is loaded with all 0s.  
EXTEST is not implemented in the TAP controller, and there-  
fore this device is not compliant to the 1149.1 standard.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller's capture set-up plus  
hold times (TCS and TCH). The SRAM clock input might not  
be captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE / PRELOAD instruction. If  
this is an issue, it is still possible to capture all other signals  
and simply ignore the value of the CK and CK captured in the  
boundary scan register.  
The TAP controller does recognize an all-0 instruction. When  
an EXTEST instruction is loaded into the instruction register,  
the SRAM responds as if a SAMPLE / PRELOAD instruction  
has been loaded. There is one difference between the two  
instructions. Unlike the SAMPLE / PRELOAD instruction, EX-  
TEST places the SRAM outputs in a High-Z state.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the bound-  
ary scan register between the TDI and TDO pins.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO pins and allows  
the IDCODE to be shifted out of the device when the TAP con-  
troller enters the Shift-DR state. The IDCODE instruction is  
Note that since the PRELOAD part of the command is not  
implemented, putting the TAP into the Update to the  
Update-DR state while performing a SAMPLE / PRELOAD in-  
struction will have the same effect as the Pause-DR command.  
loaded into the instruction register upon power-up or whenever  
the TAP controller is given a test logic reset state.  
Bypass  
When the BYPASS instruction is loaded in the instruction reg-  
ister and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO pins. The advan-  
tage of the BYPASS instruction is that it shortens the boundary  
scan path when multiple devices are connected together on a  
board.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO pins when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
Reserved  
SAMPLE / PRELOAD  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
SAMPLE / PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so  
the TAP controller is not fully 1149.1 compliant.  
14  
CY7C1380A  
CY7C1382A  
PRELIMINARY  
TAP Controller State Diagram  
TEST-LOGIC  
1
RESET  
1
1
1
TEST-LOGIC/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
CAPTURE-DR  
0
1
1
CAPTURE-DR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
EXIT1-DR  
0
1
EXIT1-IR  
0
1
0
0
PAUSE-DR  
1
PAUSE-IR  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
1
0
0
Note: The 0/1 next to each state represents the value at TMS at the rising edge of TCK.  
15  
CY7C1380A  
CY7C1382A  
PRELIMINARY  
TAP Controller Block Diagram  
0
Bypass Register  
Selection  
Circuitry  
Selection  
Circuitry  
2
1
0
TDO  
TDI  
Instruction Register  
29  
Identification Register  
31 30  
.
.
2
1
1
0
0
.
.
.
.
.
2
Boundary Scan Register  
TCK  
TMS  
TAP Controller  
[5, 6]  
TAP Electrical Characteristics Over the Operating Range  
Parameter  
Description  
Test Conditions  
Min.  
1.7  
Max.  
Unit  
V
Output HIGH Voltage  
Output HIGH Voltage  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
I
I
I
I
= 2.0 mA  
= 100 mA  
= 2.0 mA  
V
V
OH1  
OH  
OH  
OL  
OL  
V
2.1  
OH2  
V
0.7  
0.2  
V
OL1  
V
= 100 mA  
V
OL2  
V
V
1.7  
0.3  
5  
V
+0.3  
DD  
V
IH  
IL  
0.7  
V
I
GND < V < V  
DDQ  
5
mA  
X
I
Notes:  
5. All Voltage referenced to Ground.  
6. Overshoot: VIH(AC)<VDD+1.5V for t<tTCYC/2, Undershoot:VIL(AC)<0.5V for t<tTCYC/2, Power-up: VIH<2.6V and VDD<2.4V and VDDQ<1.4V for t<200 ms.  
16  
CY7C1380A  
CY7C1382A  
PRELIMINARY  
[7, 8]  
TAP AC Switching Characteristics Over the Operating Range  
Parameters  
Description  
Min.  
Max  
Unit  
ns  
t
t
t
t
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH  
100  
TCYC  
TF  
10  
MHz  
ns  
40  
40  
TH  
TCK Clock LOW  
ns  
TL  
Set-up Times  
t
t
t
TMS Set-up to TCK Clock Rise  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
10  
10  
10  
ns  
ns  
ns  
TMSS  
TDIS  
CS  
Hold Times  
t
t
t
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
10  
10  
10  
ns  
ns  
ns  
TMSH  
TDIH  
CH  
Capture Hold after Clock Rise  
Output Times  
t
t
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
20  
ns  
ns  
TDOV  
TDOX  
0
Notes:  
7. CS and tCH refer to the set-up and hold time requirements of latching data from the boundary scan register.  
t
8. Test conditions are specified using the load in TAP AC test conditions. TR/TF = 1 ns.  
17  
CY7C1380A  
CY7C1382A  
PRELIMINARY  
TAP Timing and Test Conditions  
1.25V  
50  
ALL INPUT PULSES  
1.50V  
TDO  
3.3V  
Z =50  
0
=20 pF  
C
L
0V  
GND  
(a)  
t
TL  
t
TH  
Test Clock  
TCK  
t
TCYC  
t
TMSS  
t
TMSH  
Test Mode Select  
TMS  
t
TDIS  
t
TDIH  
Test Data-In  
TDI  
Test Data-Out  
TDO  
t
t
TDOX  
TDOV  
18  
CY7C1380A  
CY7C1382A  
PRELIMINARY  
Identification Register Definitions  
Instruction Field  
512K x 36  
1M x 18  
Description  
Revision Number  
xxxx  
xxxx  
Reserved for version number.  
(31:28)  
Device Depth  
(27:23)  
00111  
00100  
01000  
00011  
Defines depth of SRAM. 512K or 1M  
Defines with of the SRAM. x36 or x18  
Reserved for future use.  
Device Width  
(22:18)  
Cypress Device ID  
(17:12)  
xxxxx  
xxxxx  
Cypress JEDEC ID  
(11:1)  
xxxxxxxxxxx  
1
xxxxxxxxxxx  
1
Allows unique identification of SRAM vendor.  
Indicate the presence of an ID register.  
ID Register Presence  
(0)  
Scan Register Sizes  
Register Name  
Instruction  
Bit Size (x18)  
Bit Size (x36)  
3
1
3
1
Bypass  
ID  
32  
70  
32  
51  
Boundary Scan  
Identification Codes  
Instruction  
Code  
Description  
EXTEST  
000  
Captures the Input/Output ring contents. Places the boundary scan register  
between the TDI and TDO. Forces all SRAM outputs to High-Z state. This  
instruction is not 1149.1 compliant.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register be-  
tween TDI and TDO. This operation does not affect SRAM operation.  
SAMPLE Z  
Captures the Input/Output contents. Places the boundary scan register be-  
tween TDI and TDO. Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures the Input/Output ring contents. Places the boundary scan register  
between TDI and TDO. Does not affect the SRAM operation. This instruction  
does not implement 1149.1 preload function and is therefore not 1149.1  
compliant.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not  
affect SRAM operation.  
19  
CY7C1380A  
CY7C1382A  
PRELIMINARY  
Boundary Scan Order (512K X 18)  
Boundary Scan Order (1M X 18)  
Signal  
Name  
Bump  
ID  
Signal  
Name  
Bump  
ID  
Signal  
Name  
Bump  
ID  
Signal  
Name  
Bump  
ID  
Bit #  
Bit #  
36  
Bit #  
Bit #  
36  
1
A
2R  
A
6B  
1
A
2R  
DQb  
2E  
2
A
3T  
4T  
5T  
6R  
3B  
5B  
6P  
7N  
6M  
7L  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
BWa#  
BWb#  
BWc#  
BWd#  
A
5L  
2
A
2T  
3T  
5T  
6R  
3B  
5B  
7P  
6N  
6L  
7K  
7T  
6H  
7G  
6F  
7E  
6D  
6T  
6A  
5A  
4G  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
DQb  
DQb  
NC  
2G  
1H  
5R  
2K  
1L  
3
A
5G  
3G  
3L  
3
A
4
A
4
A
5
A
5
A
DQb  
DQb  
DQb  
DQb  
DQb  
MODE  
A
6
A
2B  
4E  
3A  
2A  
2D  
1E  
2F  
1G  
1D  
1D  
2E  
2G  
1H  
5R  
2K  
1L  
6
A
7
A
CE#  
A
7
A
2M  
1N  
2P  
3R  
2C  
3C  
5C  
6C  
4N  
4P  
8
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
ZZ  
8
DQa  
DQa  
DQa  
DQa  
ZZ  
9
A
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
6K  
7P  
6N  
6L  
A
DQa  
DQa  
DQa  
DQa  
DQa  
A
A
A
A1  
7K  
7T  
6H  
7G  
6F  
7E  
6D  
7H  
6G  
6E  
7D  
6A  
5A  
4G  
A0  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
A
A
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
MODE  
A
A
ADV#  
2M  
1N  
2P  
1K  
2L  
ADSP# 4A  
ADSC# 4B  
OE#  
BWE#  
GW#  
CLK  
A
4F  
4M  
4H  
4K  
6B  
5L  
2N  
1P  
3R  
2C  
3C  
5C  
6C  
4N  
4P  
A
ADV#  
BWa#  
BWb#  
A
ADSP# 4A  
ADSC# 4B  
3G  
2B  
4E  
3A  
2A  
1D  
A
OE#  
4F  
4M  
4H  
4K  
A
CE#  
A
BWE#  
GW#  
CLK  
A
A1  
A
A0  
DQb  
20  
CY7C1380A  
CY7C1382A  
PRELIMINARY  
Current into Outputs (LOW)......................................... 20 mA  
Static Discharge Voltage .......................................... >2001V  
(per MIL-STD-883, Method 3015)  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Storage Temperature .................................55°C to +150°C  
Latch-Up Current.................................................... >200 mA  
Operating Range  
Ambient Temperature with  
Power Applied............................................. 55°C to +125°C  
Ambient  
Supply Voltage on V Relative to GND........ 0.3V to +4.6V  
[10]  
DD  
Range Temp.  
V
V
DDQ  
DD  
DC Voltage Applied to Outputs  
[9]  
in High Z State ................................. 0.5V to V  
+ 0.5V  
+ 0.5V  
Coml  
070°C  
3.3V +10% /5%  
2.375VV  
DDQ  
DD  
[9]  
DC Input Voltage .............................. 0.5V to V  
DDQ  
Electrical Characteristics Over the Operating Range  
Parameter  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min.  
3.135  
3.135  
2.375  
2.4  
Max.  
3.6  
Unit  
V
3.3V range  
3.3V range  
2.5V range  
V
V
V
V
V
V
DD  
V
3.6  
DDQ  
V
DD  
V
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
V
= Min., I = -1.0 mA  
3.3V  
2.5V  
3.3V  
2.5V  
3.3 V  
2.5V  
3.3V  
2.5V  
OH  
DD  
OH  
1.7  
V
V
= Min., I = 1.0 mA  
0.4  
0.7  
OL  
DD  
OL  
V
2.0  
1.7  
V
V
IH  
IL  
[9]  
V
Input LOW Voltage  
0.3  
0.3  
5  
0.8  
0.7  
5
I
I
Input Load Current  
except ZZ and MODE  
GND £ V £ V  
mA  
X
I
DDQ  
Input Current of MODE  
Input Current of ZZ  
30  
5  
30  
2
mA  
mA  
mA  
ZZ  
Input = V  
SS  
I
I
Output Leakage  
Current  
GND £ V £ V  
Output Disabled  
2  
OZ  
I
DDQ,  
V
Operating Supply  
V
f = f  
= Max., I  
= 0 mA,  
6.0-ns cycle, 167 MHz  
6.7-ns cycle, 150 MHz  
7.5-ns cycle, 133 MHz  
10-ns cycle, 100 MHz  
6.0-ns cycle, 167 MHz  
6.7-ns cycle, 150 MHz  
7.5-ns cycle, 133 MHz  
10-ns cycle, 100 MHz  
All speed grades  
350  
310  
280  
250  
130  
110  
95  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DD  
DD  
DD  
OUT  
CYC  
= 1/t  
MAX  
I
I
Automatic CE  
Power-Down  
CurrentTTL Inputs  
Max. V , Device  
SB1  
DD  
Deselected,  
V
Š V or V <V  
IN  
IH  
IN  
IL  
f = f  
= 1/t  
MAX  
CYC  
80  
Automatic CE  
Max. V , Device  
30  
SB2  
DD  
Power-Down  
Deselected, V < 0.3V or  
IN  
CurrentCMOS Inputs  
V
> V  
- 0.3V, f = 0  
DDQ  
IN  
Shaded areas contain advance information.  
Notes:  
9. Minimum voltage equals 2.0V for pulse durations of less than 20 ns  
10. A is the temperature.  
T
21  
CY7C1380A  
CY7C1382A  
PRELIMINARY  
Electrical Characteristics Over the Operating Range (continued)  
Parameter  
Description  
Test Conditions  
Min.  
Max.  
100  
80  
Unit  
mA  
mA  
mA  
mA  
mA  
I
Automatic CE  
Power-Down  
CurrentCMOS Inputs  
Max. V , Device  
6.0-ns cycle, 167 MHz  
6.7-ns cycle, 150 MHz  
7.5-ns cycle, 133 MHz  
10-ns cycle, 100 MHz  
All Speeds  
SB3  
DD  
Deselected, or V 0.3V or  
IN  
V
> V  
0.3V  
DDQ  
IN  
f = f  
= 1/t  
65  
MAX  
CYC  
50  
I
Automatic CS  
Max. V , Device  
20  
SB4  
DD  
Power-Down  
Deselected,  
CurrentTTL Inputs  
V
V or V V , f = 0  
IN  
IH  
IN  
IL  
Capacitance[11]  
Parameter  
Description  
Input Capacitance  
Test Conditions  
T = 25°C, f = 1 MHz,  
Max.  
Unit  
C
C
C
5
4
8
pF  
pF  
pF  
IN  
A
V
V
= 3.3V,  
DD  
Clock Input Capacitance  
Input/Output Capacitance  
CLK  
I/O  
= 2.5V  
DDQ  
AC Test Loads and Waveforms[12]  
R=317  
3.3V  
OUTPUT  
[10]  
OUTPUT  
ALL INPUT PULSES  
90%  
3.0V  
90%  
10%  
Z =50  
0
R =50  
10%  
1 V/ns  
L
5 pF  
GND  
R=351  
1 V/ns  
= 1.5V  
VTH  
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Note:  
11. Tested initially and after any design or process changes that may affect these parameters.  
12. Input waveform should have a slew rate of 1 V/ns.  
22  
CY7C1380A  
CY7C1382A  
PRELIMINARY  
[13, 14, 15]  
Switching Characteristics Over the Operating Range  
-167  
-150  
-133  
-100  
Min. Max. Min. Max. Min. Max. Min. Max. Unit  
Parameter  
Description  
Clock Cycle Time  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
6.0  
2.1  
2.1  
1.5  
0.5  
6.7  
2.5  
2.5  
1.5  
0.5  
7.5  
3.0  
3.0  
1.5  
0.5  
10.0  
3.0  
3.0  
1.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CYC  
CH  
Clock HIGH  
Clock LOW  
CL  
Address Set-Up Before CLK Rise  
Address Hold After CLK Rise  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
ADSP, ADSC Set-Up Before CLK Rise  
ADSP, ADSC Hold After CLK Rise  
AS  
AH  
3.4  
3.8  
4.2  
5.0  
CO  
1.5  
1.5  
0.5  
1.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
1.5  
0
1.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
1.5  
0
1.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
1.5  
0
DOH  
ADS  
ADH  
WES  
WEH  
ADVS  
ADVH  
DS  
BWE, GW, BW Set-Up Before CLK Rise 1.5  
x
BWE, GW, BW Hold After CLK Rise  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0
x
ADV Set-Up Before CLK Rise  
ADV Hold After CLK Rise  
Data Input Set-Up Before CLK Rise  
Data Input Hold After CLK Rise  
Chip enable Set-Up  
DH  
CES  
CEH  
CHZ  
CLZ  
EOHZ  
EOLZ  
EOV  
Chip enable Hold After CLK Rise  
[14]  
Clock to High-Z  
3.0  
3.0  
3.5  
3.0  
3.5  
3.5  
3.5  
4.0  
4.0  
3.5  
4.0  
4.0  
[14]  
Clock to Low-Z  
[14, 15]  
OE HIGH to Output High-Z  
[14, 15]  
OE LOW to Output Low-Z  
0
0
0
0
[14]  
OE LOW to Output Valid  
Notes:  
13. Unless otherwise noted, test conditions assume signal transition time of 2.5 ns or less, timing reference levels of 1.25V, input pulse levels of 0 to 2.5V, and  
output loading of the specified IOL/IOH and load capacitance. Shown in (a), (b) and (c) of AC Test Loads.  
14.  
tCHZ, tCLZ, tOEV, tEOLZ, and tEOHZ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ± 200 mV from  
steady-state voltage.  
15. At any given voltage and temperature, tEOHZ is less than tEOLZ and tCHZ is less than tCLZ  
.
23  
CY7C1380A  
CY7C1382A  
PRELIMINARY  
1
Switching Waveforms  
[4, 16, 17]  
Write Cycle Timing  
Single Write  
Burst Write  
Pipelined Write  
t
Unselected  
CH  
t
CYC  
CLK  
t
ADH  
t
ADS  
t
ADSP ignored with CE inactive  
CL  
1
ADSP  
ADSC  
ADV  
t
ADH  
t
ADSC initiated write  
ADS  
t
t
ADVH  
ADVS  
t
ADV Must Be Inactive for ADSP Write  
WD2  
AS  
WD1  
WD3  
ADD  
GW  
WE  
t
AH  
t
WH  
t
WH  
t
WS  
t
WS  
t
t
CES  
CE masks ADSP  
CEH  
1
CE  
1
t
t
CEH  
CES  
Unselected with CE  
2
CE  
CE  
2
3
t
CES  
t
CEH  
OE  
t
DH  
t
DS  
High-Z  
High-Z  
Data In  
3a  
2a  
= UNDEFINED  
2d  
1a  
2b  
2c  
= DONT CARE  
Notes:  
16. WE is the combination of BWE, BWx, and GW to define a write cycle (see Write Cycle Descriptions table).  
17. WDx stands for Write Data to Address X.  
24  
CY7C1380A  
CY7C1382A  
PRELIMINARY  
Switching Waveforms (continued)  
[4, 16, 18]  
Read Cycle Timing  
Burst Read  
Single Read  
Unselected  
t
t
CYC  
CH  
Pipelined Read  
CLK  
t
t
ADH  
ADS  
t
ADSP ignored with CE inactive  
CL  
1
ADSP  
t
ADS  
ADSC initiated read  
ADSC  
ADV  
t
ADVS  
t
ADH  
Suspend Burst  
t
t
ADVH  
AS  
ADD  
GW  
WE  
RD3  
RD1  
RD2  
t
AH  
t
WS  
t
WS  
t
WH  
t
t
CES  
CEH  
t
WH  
CE masks ADSP  
1
CE  
CE  
1
2
Unselected with CE  
2
t
t
CES  
t
CEH  
CE  
OE  
3
CES  
t
EOV  
t
CEH  
t
OEHZ  
t
DOH  
t
CO  
Data Out  
2c  
1a  
2d  
3a  
2a  
2b  
t
CLZ  
t
CHZ  
= DONT CARE  
= UNDEFINED  
Note:  
18. RDx stands for Read Data from Address X.  
25  
CY7C1380A  
CY7C1382A  
PRELIMINARY  
Switching Waveforms (continued)  
[4, 16, 17, 18]  
Read/Write Cycle Timing  
Single Read  
Single Write  
Unselected  
Burst Read  
t
CYC  
t
CH  
Pipelined Read  
CLK  
t
t
ADH  
ADS  
t
ADSP ignored with CE inactive  
CL  
1
ADSP  
ADSC  
ADV  
t
ADS  
t
t
ADVS  
ADH  
t
AS  
t
ADVH  
RD1  
ADD  
WD2  
RD3  
t
AH  
GW  
WE  
t
WS  
t
t
WS  
WH  
t
CES  
t
t
CEH  
WH  
CE masks ADSP  
1
CE  
CE  
1
2
t
CES  
t
CEH  
CE  
3
t
t
EOV  
CES  
t
CEH  
OE  
t
EOHZ  
t
t
DS  
t
DH  
DOH  
t
EOLZ  
3b  
Out  
2a  
Out  
3c  
Out  
3a  
Out  
3d  
Data In/Out  
1a  
2a  
In  
Out  
Out  
t
CO  
t
CHZ  
= UNDEFINED  
= DONT CARE  
26  
CY7C1380A  
CY7C1382A  
PRELIMINARY  
Switching Waveforms (continued)  
[4, 19, 20]  
Pipeline Timing  
t
t
t
CYC  
CL  
CH  
CLK  
t
AS  
WD1  
WD2  
WD3  
WD4  
RD1  
RD2  
RD3  
RD4  
ADD  
t
t
ADS  
ADH  
ADSC initiated Reads  
ADSC  
ADSP initiated Reads  
ADSP  
ADV  
t
t
CEH  
CES  
CE  
1
CE  
t
t
WEH  
WES  
WE  
ADSP ignored  
with CE HIGH  
1
OE  
t
t
CLZ  
Data In/Out  
1a  
In  
1a  
2a  
3a  
4a  
2a  
In  
3a  
In  
4a  
Out Out Out Out  
In  
CDV  
t
DOH  
Back to Back Reads  
= DONT CARE  
t
CHZ  
= UNDEFINED  
Notes:  
19. Device originally deselected.  
20. CE is the combination of CE2 and CE3. All chip selects need to be active in order to select the device.  
27  
CY7C1380A  
CY7C1382A  
PRELIMINARY  
Switching Waveforms (continued)  
OE Switching Waveforms  
OE  
t
EOV  
t
EOHZ  
Three-State  
I/Os  
t
EOLZ  
28  
CY7C1380A  
CY7C1382A  
PRELIMINARY  
Switching Waveforms (continued)  
[4, 21, 22]  
ZZ Mode Timing  
CLK  
ADSP  
HIGH  
ADSC  
CE  
1
2
LOW  
CE  
HIGH  
CE  
ZZ  
3
t
ZZS  
I
DD  
I
(active)  
DD  
t
ZZREC  
I
DDZZ  
I/Os  
Three-state  
NotefjdfdhfdjfdfjdjdjdjNo  
Note:  
21. Device must be deselected when entering ZZ mode. See Cycle Descriptions Table for all possible signal conditions to deselect the device.  
22. I/Os are in three-state when exiting ZZ sleep mode.  
29  
CY7C1380A  
CY7C1382A  
PRELIMINARY  
Ordering Information  
Speed  
Package  
Name  
Operating  
Range  
(MHz)  
167  
150  
133  
100  
167  
150  
133  
100  
167  
150  
133  
100  
167  
150  
133  
100  
Ordering Code  
Package Type  
100-Lead Thin Quad Flat Pack  
CY7C1380A-167AC  
CY7C1380A-150AC  
CY7C1380A-133AC  
CY7C1380A-100AC  
CY7C1382A-167AC  
CY7C1382A-150AC  
CY7C1382A-133AC  
CY7C1382A-100AC  
CY7C1380A-167BGC  
CY7C1380A-150BGC  
CY7C1380A-133BGC  
CY7C1380A-100BGC  
CY7C1382A-167BGC  
CY7C1382A-150BGC  
CY7C1382A-133BGC  
CY7C1382A-100BGC  
A101  
Commercial  
BG119  
119 Ball BGA  
Document #:38-00984-**  
Intel and Pentium are registered trademarks of Intel Corporation.  
30  
CY7C1380A  
CY7C1382A  
PRELIMINARY  
Package Diagrams  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
51-85050-A  
31  
CY7C1380A  
CY7C1382A  
PRELIMINARY  
Package Diagrams (continued)  
119-Lead FBGA (14 x 22 x 2.4 mm) BG119  
Revision History  
Document Title: CY7C1380/CY7C1382  
Document Number:38-00984  
ORIG. OF  
REV.  
**  
ECN NO.  
ISSUE DATE  
3/16/2000  
CHANGE  
DESCRIPTION OF CHANGE  
1. New Datasheet  
CXV  
*A  
© Cypress Semiconductor Corporation, 2000. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

CY7C1382A-150AC

Cache SRAM, 1MX18, 3.8ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1382A-150BGC

Cache SRAM, 1MX18, 3.8ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, FBGA-119
CYPRESS

CY7C1382AV25-100AC

Standard SRAM, 1MX18, 5ns, CMOS, PQFP100
CYPRESS

CY7C1382AV25-133BGC

Standard SRAM, 1MX18, 4.2ns, CMOS, PBGA119
CYPRESS

CY7C1382AV25-150AC

Standard SRAM, 1MX18, 3.8ns, CMOS, PQFP100
CYPRESS

CY7C1382AV25-167AC

Standard SRAM, 1MX18, 3.4ns, CMOS, PQFP100
CYPRESS

CY7C1382AV25-167BGC

Standard SRAM, 1MX18, 3.4ns, CMOS, PBGA119
CYPRESS

CY7C1382B

512K x 36/1M x 18 Pipelined SRAM
CYPRESS

CY7C1382B-133AC

512K x 36/1M x 18 Pipelined SRAM
CYPRESS

CY7C1382B-133AI

512K x 36/1M x 18 Pipelined SRAM
CYPRESS

CY7C1382B-133BGC

512K x 36/1M x 18 Pipelined SRAM
CYPRESS

CY7C1382B-133BGI

512K x 36/1M x 18 Pipelined SRAM
CYPRESS