CY7C1383BV25-100AI [CYPRESS]

Standard SRAM, 1MX18, 8.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100;
CY7C1383BV25-100AI
型号: CY7C1383BV25-100AI
厂家: CYPRESS    CYPRESS
描述:

Standard SRAM, 1MX18, 8.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100

时钟 静态存储器 内存集成电路
文件: 总26页 (文件大小:799K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1383BV25  
CY7C1381BV25  
512K x 36 / 1M x 18 Flow-Thru SRAM  
registers controlled by a positive-edge-triggered Clock Input  
(CLK). The synchronous inputs include all addresses, all data  
inputs, address-pipelining Chip Enable (CE), Burst Control  
Inputs (ADSC, ADSP, and ADV), Write Enables (BWa, BWb,  
BWc, BWd,and BWe), and Global Write (GW).  
Features  
• Fast access times: 7.5, 8.5, 10 ns  
• Fast clock speed: 117, 100, 83 MHz  
• Provide high-performance 2-1-1-1 access rate  
• Optimal for depth expansion  
Asynchronous inputs include the output enable (OE) and burst  
mode control (MODE). The data outputs (Q), enabled by OE,  
are also asynchronous.  
• 2.5V ± 5% power supply  
• Common data inputs and data outputs  
• Byte Write Enable and Global Write control  
• Chip enable for address pipeline  
• Address, data, and control registers  
• Internally self-timed Write Cycle  
Addresses and chip enables are registered with either  
Address Status Processor (ADSP) or Address Status  
Controller (ADSC) input pins. Subsequent burst addresses  
can be internally generated as controlled by the Burst Advance  
Pin (ADV).  
• Burst control pins (interleaved or linear burst  
sequence)  
• Automatic power-down available using ZZ mode or CE  
deselect  
• High-density, high-speed packages  
• JTAG boundary scan for BGA packaging version  
Address, data inputs, and write controls are registered on-chip  
to initiate self-timed WRITE cycle. WRITE cycles can be one  
to four bytes wide as controlled by the write control inputs.  
Individual byte write allows individual byte to be written. BWa  
controls DQ1DQ8 and DP1. BWb controls DQ9DQ16 and  
DP2. BWc controls DQ17DQ24and DP3. BWd controls  
DQ25DQ32 and DP4. BWa, BWb BWc, and BWd can be  
active only with BWe being LOW. GW being LOW causes all  
bytes to be written. WRITE pass-through capability allows  
written data available at the output for the immediately next  
Read cycle. This device also incorporates pipelined enable  
circuit for easy depth expansion without penalizing system  
performance.  
Functional Description  
The Cypress Synchronous Burst SRAM family employs  
high-speed, low power CMOS designs using advanced single  
layer polysilicon, three-layer metal technology. Each memory  
cell consists of six transistors.  
The CY7C1381BV25 and CY7C1383BV25 SRAMs integrate  
524,288 × 36 and 1,048,576 × 18 SRAM cells with advanced  
synchronous peripheral circuitry and a two-bit counter for  
internal burst operation. All synchronous inputs are gated by  
All inputs and outputs of the CY7C1381BV25 and the  
CY7C1383BV25 are JEDEC standard JESD8-5-compatible.  
Selection Guide  
117 MHz  
7.5  
100 MHz  
8.5  
83 Mhz  
10  
Unit  
ns  
Maximum Access Time  
Maximum Operating Current  
Commercial  
210  
190  
160  
30  
mA  
mA  
Maximum CMOS Standby Current  
30  
30  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
Document #: 38-05249 Rev. *A  
Revised January 18, 2003  
CY7C1383BV25  
CY7C1381BV25  
Functional Block Diagram  
Logic Block Diagram ×18  
MODE  
(A0,A1)  
2
Q
Q
CLK  
ADV  
ADSC  
0
BURST  
COUNTER  
CE  
CLR  
1
ADSP  
Q
18  
20  
ADDRESS  
REGISTER  
CE  
D
1M × 18  
A[19:0]  
20  
18  
Memory  
Array  
GW  
DQb[15:8],DP1  
D
Q
Q
BYTEWRITE  
REGISTERS  
BWE  
BWS  
b
D DQa[7:0],DP0  
BYTEWRITE  
REGISTERS  
BWS  
a
18  
18  
CE  
CE  
CE  
1
2
3
D
CE  
ENABLE  
Q
REGISTER  
CLK  
INPUT  
REGISTERS  
CLK  
OE  
ZZ  
SLEEP  
CONTROL  
DQ[15:0]  
DP[1:0]  
Logic Block Diagram ×36  
MODE  
(A0,A1)  
2
Q
CLK  
ADV  
ADSC  
0
BURST  
COUNTER  
CE  
CLR  
Q
1
ADSP  
Q
17  
19  
ADDRESS  
REGISTER  
CE  
D
512K × 36  
A[18:0]  
19  
17  
Memory  
Array  
GW  
DQd[31:24],DP3Q  
D
D
BYTEWRITE  
REGISTERS  
BWE  
BWS  
d
DQc[23:16],DP2  
Q
BYTEWRITE  
REGISTERS  
BWS  
BWS  
c
D
D
DQb[15:8],DP1  
Q
BYTEWRITE  
b
REGISTERS  
DQa[7:0],DP0Q  
BWS  
BYTEWRITE  
a
REGISTERS  
36  
36  
CE  
CE  
CE  
1
2
3
D
ENABLE  
Q
CE REGISTER  
CLK  
INPUT  
REGISTERS  
CLK  
OE  
ZZ  
SLEEP  
CONTROL  
DQ[31:0]  
DP[3:0]  
Document #: 38-05249 Rev. *A  
Page 2 of 26  
CY7C1383BV25  
CY7C1381BV25  
Pin Configurations  
100-pin TQFP Packages  
NC  
NC  
NC  
DPc  
1
A
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DPb  
DQb  
DQb  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQc  
2
NC  
NC  
V
DQc  
3
4
5
6
7
8
9
V
V
V
DDQ  
DDQ  
V
DDQ  
DDQ  
V
V
SSQ  
NC  
NC  
DQb  
DQb  
SSQ  
V
SSQ  
SSQ  
DQc  
NC  
DQb  
DQb  
DQb  
DQb  
DQc  
DQc  
DQc  
DPa  
DQa  
DQa  
9
V
V
V
V
SSQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
SSQ  
V
SSQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
SSQ  
V
V
DDQ  
DDQ  
V
DDQ  
DDQ  
DQb  
DQb  
NC  
DQc  
DQc  
NC  
DQa  
DQa  
DQb  
DQb  
V
V
SS  
SS  
V
CY7C1383B  
(1M × 18)  
V
DD  
NC  
CY7C1381B  
(512K × 36)  
DD  
NC  
NC  
NC  
V
V
DD  
DD  
V
V
SS  
ZZ  
DQa  
DQa  
SS  
ZZ  
DQa  
DQa  
DQb  
DQb  
DQd  
DQd  
V
V
V
V
V
DDQ  
V
DDQ  
DDQ  
DDQ  
SSQ  
DQb  
DQb  
DPb  
NC  
V
SSQ  
V
SSQ  
SSQ  
DQd  
DQa  
DQa  
NC  
DQa  
DQa  
DQa  
DQa  
DQd  
DQd  
DQd  
V
V
DQd  
DQd  
DPd  
NC  
V
V
SSQ  
V
SSQ  
V
SSQ  
SSQ  
DDQ  
NC  
NC  
NC  
V
DDQ  
V
DDQ  
DDQ  
NC  
NC  
NC  
DQa  
DQa  
DPa  
Document #: 38-05249 Rev. *A  
Page 3 of 26  
CY7C1383BV25  
CY7C1381BV25  
Pin Configurations (continued)  
119-ball BGA  
CY7C1381BV25 (512K × 36)  
2
A
1
3
A
4
5
A
6
A
7
A
B
C
D
E
F
VDDQ  
NC  
ADSP  
ADSC  
VDD  
NC  
VDDQ  
NC  
A
A
A
A
NC  
A
A
A
A
NC  
DQc  
DQc  
VDDQ  
DQPc  
DQc  
DQc  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQPb  
DQb  
DQb  
DQb  
DQb  
VDDQ  
CE1  
OE  
G
H
J
DQc  
DQc  
VDDQ  
DQc  
DQc  
VDD  
BWc  
VSS  
NC  
ADV  
GW  
VDD  
BWb  
VSS  
NC  
DQb  
DQb  
VDD  
DQb  
DQb  
VDDQ  
K
L
DQd  
DQd  
VDDQ  
DQd  
DQd  
DQd  
VSS  
BWd  
VSS  
CLK  
NC  
VSS  
BWa  
VSS  
DQa  
DQa  
DQa  
DQa  
DQa  
VDDQ  
M
BWE  
N
P
R
T
DQd  
DQd  
NC  
DQd  
VSS  
VSS  
MODE  
A
A1  
A0  
VSS  
VSS  
NC  
A
DQa  
DQPa  
A
DQa  
DQa  
NC  
DQPd  
VDD  
A
A
NC  
64M  
32M  
NC  
ZZ  
U
VDDQ  
TMS  
TDI  
TCK  
TDO  
VDDQ  
CY7C1383BV25 (1M × 18)  
2
A
1
3
A
4
5
A
6
A
7
A
B
C
D
E
F
VDDQ  
NC  
ADSP  
ADSC  
VDD  
NC  
VDDQ  
NC  
A
A
A
A
NC  
A
A
A
A
NC  
DQb  
NC  
NC  
DQb  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQPa  
NC  
DQa  
NC  
CE1  
OE  
DQa  
VDDQ  
VDDQ  
G
H
J
NC  
DQb  
VDDQ  
NC  
DQb  
NC  
BWb  
VSS  
NC  
ADV  
GW  
VSS  
VSS  
NC  
NC  
DQb  
VDD  
NC  
DQa  
NC  
VDD  
DQb  
NC  
VDD  
CLK  
NC  
VDDQ  
DQa  
NC  
K
L
VSS  
VSS  
VSS  
VSS  
BWa  
VSS  
DQb  
VDDQ  
DQa  
NC  
M
DQb  
BWE  
VDDQ  
N
P
DQb  
NC  
NC  
VSS  
VSS  
A1  
A0  
VSS  
VSS  
DQa  
NC  
NC  
DQPb  
DQa  
R
T
NC  
64M  
VDDQ  
A
A
MODE  
A
VDD  
32M  
TCK  
NC  
A
A
A
NC  
ZZ  
U
TMS  
TDI  
TDO  
NC  
VDDQ  
Document #: 38-05249 Rev. *A  
Page 4 of 26  
CY7C1383BV25  
CY7C1381BV25  
Pin Configurations (continued)  
165-ball Bump FBGA  
CY7C1381BV25 (512K × 36)11 × 15 FBGA  
1
2
3
4
5
6
7
8
9
10  
11  
NC  
A
CE  
BWc  
BWb  
CE  
BWE  
A
ADSC  
ADV  
A
NC  
1
2
3
NC  
DPc  
DQc  
A
CE  
BWd  
BWa  
CLK  
GW  
B
C
D
OE  
ADSP  
A
128M  
DPb  
NC  
V
V
V
V
V
V
V
V
V
V
V
NC  
DDQ  
DDQ  
SS  
SS  
SS  
SS  
SS  
DDQ  
DQc  
DQc  
DQc  
DQc  
V
V
V
V
V
V
DQb  
DQb  
DD  
SS  
SS  
SS  
DD  
DDQ  
DQc  
DQc  
DQc  
NC  
V
V
V
V
E
F
V
V
DQb  
DQb  
DQb  
NC  
DQb  
DQb  
DQb  
ZZ  
DDQ  
DDQ  
DDQ  
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
G
H
J
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
V
NC  
V
V
V
V
V
NC  
SS  
DD  
SS  
SS  
SS  
DD  
DQd  
DQd  
DQd  
DQd  
DPd  
NC  
DQd  
DQd  
DQd  
DQd  
NC  
V
V
V
V
V
V
V
DQa  
DQa  
DQa  
DQa  
NC  
DQa  
DQa  
DQa  
DQa  
DPa  
A
DDQ  
DDQ  
DDQ  
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
V
V
V
V
K
L
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
M
N
P
V
V
DDQ  
DD  
SS  
SS  
SS  
DD  
DDQ  
V
NC  
TDI  
A
NC  
V
V
DDQ  
SS  
SS  
DDQ  
64M  
A
A
A
A1  
A0  
TDO  
TCK  
A
A
A
A
A
MODE  
32M  
A
TMS  
R
A
A
CY7C1383BV25 (1M x 18) - 11 x 15 FBGA  
1
2
3
4
5
6
7
8
9
10  
11  
NC  
A
CE  
BWb  
NC  
CE  
BWE  
A
ADSC  
ADV  
A
A
1
2
3
NC  
NC  
NC  
A
CE  
NC  
BWa  
CLK  
GW  
B
C
D
E
F
OE  
ADSP  
A
128M  
DPa  
NC  
V
V
V
V
V
V
V
V
V
V
V
NC  
NC  
DDQ  
DDQ  
SS  
SS  
SS  
SS  
SS  
DDQ  
DQb  
V
V
V
V
V
V
DQa  
DD  
SS  
SS  
SS  
DD  
DDQ  
NC  
NC  
DQb  
DQb  
DQb  
V
V
V
V
V
V
NC  
NC  
DQa  
DQa  
DQa  
ZZ  
DDQ  
DDQ  
DDQ  
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
NC  
V
V
V
V
G
H
J
V
V
NC  
DD  
SS  
SS  
SS  
DD  
DDQ  
NC  
V
NC  
V
V
V
V
V
NC  
NC  
SS  
DD  
SS  
SS  
SS  
DD  
DQb  
DQb  
DQb  
DQb  
DPb  
NC  
NC  
NC  
NC  
NC  
NC  
64M  
V
V
V
V
V
V
V
DQa  
DQa  
DQa  
DQa  
NC  
NC  
NC  
NC  
NC  
NC  
A
DDQ  
DDQ  
DDQ  
DDQ  
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
V
V
V
V
K
L
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
M
N
P
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
V
NC  
TDI  
A
NC  
V
V
DDQ  
SS  
SS  
DDQ  
A
A
A
A1  
A0  
TDO  
TCK  
A
A
A
A
A
MODE  
32M  
A
TMS  
R
A
A
Document #: 38-05249 Rev. *A  
Page 5 of 26  
CY7C1383BV25  
CY7C1381BV25  
Pin Definitions  
Pin Name  
I/O  
Pin Description  
A0  
A1  
A
Input-  
Synchronous  
Address Inputs used to select one of the address locations. Sampled at the rising edge of the  
CLK if ADSP or ADSC is active LOW, and CE1, CE2, and CE3 are sampled active. A[1:0] feed  
the two-bit counter.  
BWa  
BWb  
BWc  
BWd  
Input-  
Synchronous  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes to the SRAM.  
Sampled on the rising edge of CLK.  
GW  
BWE  
CLK  
CE1  
CE2  
CE3  
OE  
Input-  
Synchronous  
Global Write Enable Input, active LOW. When asserted LOW on the rising edge of CLK, a  
global write is conducted (ALL bytes are written, regardless of the values on BWa,b,c,d and BWE).  
Input-  
Synchronous  
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal must be  
asserted LOW to conduct a byte write.  
Input-Clock  
Clock Input. Used to capture all synchronous inputs to the device. Also used to increment the  
burst counter when ADV is asserted LOW, during a burst operation.  
Input-  
Synchronous  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
CE2 and CE3 to select/deselect the device. ADSP is ignored if CE1 is HIGH. (TQFP Only)  
Input-  
Synchronous  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction  
with CE1 and CE3 to select/deselect the device. (TQFP Only)  
Input-  
Synchronous  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
CE1 and CE2 to select/deselect the device.  
Input-  
Output Enable, asynchronous input, active LOW. Controls the direction of the I/O pins. When  
Asynchronous LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are three-stated, and  
act as input data pins. OE is masked during the first clock of a read cycle when emerging from  
a deselected state.  
ADV  
Input-  
Synchronous  
Advance Input signal, sampled on the rising edge of CLK. When asserted, it automatically incre-  
ments the address in a burst cycle.  
ADSP  
Input-  
Synchronous  
Address Strobe from Processor, sampled on the rising edge of CLK. When asserted LOW, A is  
captured in the address registers. A[1:0] are also loaded into the burst counter. When ADSP and  
ADSC are both asserted, only ADSP is recognized. ASDP is ignored when CE1 is deasserted  
HIGH.  
ADSC  
MODE  
ZZ  
Input-  
Synchronous  
Address Strobe from Controller, sampled on the rising edge of CLK. When asserted LOW, A[x:0]  
is captured in the address registers. A[1:0] are also loaded into the burst counter. When ADSP  
and ADSC are both asserted, only ADSP is recognized.  
Input Pin  
Selects burst order. When tied to GND selects linear burst sequence. When tied to VDDQ or  
left floating selects interleaved burst sequence. This is a strap pin and should remain static during  
device operation.  
Input-  
ZZ sleepInput. This active HIGH input placesthe device in a non-time criticalsleepcondition  
Asynchronous with data integrity preserved.  
DQa, DPa  
DQb, DPb  
DQc, DPc  
DQd, DPd  
I/O-  
Synchronous  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is triggered  
by the rising edge of CLK. As outputs, they deliver the data contained in the memory location  
specified by A[x] during the previous clock rise of the read cycle. The direction of the pins is  
controlled by OE. When OE is asserted LOW, the pins behave as outputs. When HIGH,  
DQaDQd and DQPaDQPd are placed in a three-state condition.DQ a,b,c and d are eight bits  
wide. DP a,b,c and d are one bit wide.  
TDO  
TDI  
JTAG serial output Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK (BGA only).  
Synchronous  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK (BGA only).  
Synchronous  
TMS  
Test Mode Select This pin controls the Test Access Port state machine. Sampled on the rising edge of TCK (BGA  
Synchronous  
only).  
TCK  
VDD  
JTAG serial clock Serial clock to the JTAG circuit (BGA only).  
Power Supply Power supply inputs to the core of the device. Should be connected to 2.5V +5% power  
supply.  
VSS  
Ground  
Ground for the core of the device. Should be connected to ground of the system.  
Document #: 38-05249 Rev. *A  
Page 6 of 26  
CY7C1383BV25  
CY7C1381BV25  
Pin Definitions (continued)  
Pin Name  
VDDQ  
I/O  
Pin Description  
I/O Power Supply Power supply for the I/O circuitry. Should be connected to a 2.5V ± 5% power supply.  
VSSQ  
I/O Ground  
Ground for the I/O circuitry. Should be connected to ground of the system.  
No Connects. Pins are not internally connected.  
NC  
32M  
64M  
128M  
No connects. Reserved for address expansion.  
Functional Description  
Single Read Accesses  
the RAM core. If a byte write is conducted, only the selected  
bytes are written. Bytes not selected during a byte write  
operation will remain unaltered. All I/Os are three-stated  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW,  
(2) CE1, CE2, CE3 are all asserted active, and (3) the write  
signals (GW, BWE) are all deasserted HIGH. ADSP is ignored  
if CE1 is HIGH. The address presented to the address inputs  
is stored into the address advancement logic and the Address  
Register while being presented to the memory core. If the OE  
input is asserted LOW, the requested data will be available at  
the data outputs a maximum to tCDV after clock rise. ADSP is  
ignored if CE1 is HIGH.  
during  
a
byte write because the CY7C1381BV25/  
CY7C1383AV25 is a common I/O device, the Output Enable  
(OE) must be deasserted HIGH before presenting data to the  
DQx inputs. Doing so will three-state the output drivers. As a  
safety precaution, DQx are automatically three-stated  
whenever a write cycle is detected, regardless of the state of  
OE.  
Burst Sequences  
Single Write Accesses Initiated by ADSP  
The CY7C1381BV25/CY7C1383AV25 provides a two-bit  
wraparound counter, fed by A[1:0], that implements either an  
interleaved or linear burst sequence. to support processors  
that follow a linear burst sequence. The burst sequence is user  
selectable through the MODE input.  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and  
(2) chip enable asserted active. The address presented is  
loaded into the address register and the address  
advancement logic while being delivered to the RAM core. The  
write signals (GW, BWE, and BWx) and ADV inputs are  
ignored during this first clock cycle. If the write inputs are  
asserted active (see Write Cycle Descriptions table for appro-  
priate states that indicate a write) on the next clock rise, the  
appropriate data will be latched and written into the device.  
The CY7C1381BV25/ CY7C1383AV25 provides byte write  
capability that is described in the Write Cycle Description  
table. Asserting the Byte Write Enable input (BWE) with the  
selected Byte Write (BWa,b,c,d for CY7C1381BV25 and BWa,b  
for CY7C1383AV25) input will selectively write to only the  
desired bytes. Bytes not selected during a byte write operation  
will remain unaltered. All I/Os are three-stated during a byte  
write.  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both read and write burst operations are supported.  
Interleaved Burst Sequence  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
A[1:0]  
A[1:0]  
A[1:0]  
A[1:0]  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Because the CY7C1381BV25/CY7C1383AV25 is a common  
I/O device, the Output Enable (OE) must be deasserted HIGH  
before presenting data to the DQx inputs. Doing so will  
three-state the output drivers. As a safety precaution, DQx are  
automatically three-stated whenever a write cycle is detected,  
regardless of the state of OE.  
Linear Burst Sequence  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
A[1:0]  
A[1:0]  
A[1:0]  
A[1:0]  
Single Write Accesses Initiated by ADSC  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
ADSC write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deasserted HIGH, (3) CE1, CE2, CE3 are all asserted active,  
and (4) the appropriate combination of the write inputs (GW,  
BWE, and BWx) are asserted active to conduct a write to the  
desired byte(s). ADSC is ignored if ADSP is active LOW.  
Sleep Mode  
The address presented to A[17:0] is loaded into the address  
register and the address advancement logic while being  
delivered to the RAM core. The ADV input is ignored during  
this cycle. If a global write is conducted, the data presented to  
the DQx is written into the corresponding address location in  
The ZZ input pin is an asynchronous input. Asserting ZZ HIGH  
places the SRAM in a power conservation sleepmode. Two  
clock cycles are required to enter into or exit from this sleep”  
mode. While in this mode, data integrity is guaranteed.  
Document #: 38-05249 Rev. *A  
Page 7 of 26  
CY7C1383BV25  
CY7C1381BV25  
Accesses pending when entering the sleepmode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the sleepmode. CE1, CE2, CE3, ADSP, and ADSC must  
remain inactive for the duration of tZZREC after the ZZ input  
returns LOW. Leaving ZZ unconnected defaults the device into  
an active state.  
ZZ Mode Electrical Characteristics  
Test  
Parameter Description Conditions Min. Max. Unit  
ICCZZ  
Sleep mode  
standby current  
ZZ > VDD  
20 mA  
0.2V  
tZZS  
Device  
ZZ > VDD  
2tCY ns  
operation to ZZ  
0.2V  
C
tZZREC  
ZZ recovery  
time  
ZZ < 0.2V 2tCYC  
ns  
Cycle Descriptions[1, 2, 3]  
Next Cycle  
Unselected  
Add. Used  
None  
ZZ  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
CE3  
X
1
CE2  
X
X
0
CE1  
ADSP  
X
0
ADSC  
ADV  
OE  
X
X
X
X
X
X
X
1
DQ  
Write  
X
1
0
0
0
0
0
0
X
X
1
1
X
X
1
1
X
1
0
X
1
X
1
X
0
X
X
0
0
X
0
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
X
X
X
X
X
X
X
X
0
0
0
0
1
1
1
1
1
1
X
0
0
1
1
X
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
DQ  
Unselected  
None  
X
Unselected  
None  
X
1
0
X
Unselected  
None  
X
0
1
X
Unselected  
None  
X
0
1
X
Begin Read  
External  
External  
Next  
1
0
X
Begin Read  
0
1
1
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
X
Continue Read  
Continue Read  
Continue Read  
Continue Read  
Suspend Read  
Suspend Read  
Suspend Read  
Suspend Read  
Begin Write  
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X
1
1
Next  
1
0
Next  
X
X
1
1
Hi-Z  
DQ  
Next  
0
Current  
Current  
Current  
Current  
Current  
Current  
External  
Next  
1
Hi-Z  
DQ  
1
0
X
X
1
1
Hi-Z  
DQ  
0
X
X
X
X
X
X
X
X
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Begin Write  
X
1
Begin Write  
Continue Write  
Continue Write  
Suspend Write  
Suspend Write  
X
X
X
X
X
X
X
X
X
X
1
Next  
X
1
Current  
Current  
None  
X
X
ZZ sleep”  
Note:  
1. X = Don't Care,1 = HIGH, 0 = LOW.  
2. The SRAM always initiates a Read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BWx. Writes may occur only on subsequent clocks  
after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to three-state. OE  
is a Don't Carefor the remainder of the write cycle.  
3. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle DQ = High-Z when OE is inactive  
or when the device is deselected, and DQ = data when OE is active.  
Document #: 38-05249 Rev. *A  
Page 8 of 26  
CY7C1383BV25  
CY7C1381BV25  
Write Cycle Description[1, 2, 3]  
Function (CY7C1381BV25)  
Read  
GW  
1
BWE  
1
BWd  
X
1
BWc  
X
1
BWb  
X
1
BWa  
X
1
Read  
1
0
Write Byte 0 DQa  
Write Byte 1 DQb  
Write Bytes 1, 0  
Write Byte 2 DQc  
Write Bytes 2, 0  
Write Bytes 2, 1  
Write Bytes 2, 1, 0  
Write Byte 3 DQd  
Write Bytes 3, 0  
Write Bytes 3, 1  
Write Bytes 3, 1, 0  
Write Bytes 3, 2  
Write Bytes 3, 2, 0  
Write Bytes 3, 2, 1  
Write All Bytes  
1
0
1
1
1
0
1
0
1
1
0
1
1
0
1
1
0
0
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
0
1
1
0
1
0
0
0
1
0
0
1
1
1
1
0
0
1
1
0
1
0
0
1
0
1
1
0
0
1
0
0
1
0
0
0
1
1
1
0
0
0
1
0
1
0
0
0
0
1
1
0
0
0
0
0
Write All Bytes  
0
X
X
X
X
X
Function (CY7C1383BV25)  
Read  
Read  
Write Byte 0 DQa and DPa  
Write Byte 1 DQb and DPb  
Write All Bytes  
GW  
BWE  
BWb  
BWa  
1
1
1
1
1
0
1
0
0
0
0
X
X
1
1
0
0
X
X
1
0
1
0
X
Write All Bytes  
Test Mode Select  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this pin unconnected if the TAP is not used. The pin is  
pulled up internally, resulting in a logic HIGH level.  
The CY7C1381BV25/CY7C1383AV25 incorporates a serial  
boundary scan Test Access Port (TAP) in the BGA package  
only. The TQFP package does not offer this functionality. This  
port operates in accordance with IEEE Standard 1149.1-1900,  
but does not have the set of functions required for full 1149.1  
compliance. These functions from the IEEE specification are  
excluded because their inclusion places an added delay in the  
critical speed path of the SRAM. Note that the TAP controller  
functions in a manner that does not conflict with the operation  
of other devices using 1149.1 fully compliant TAPs. The TAP  
operates using JEDEC standard 2.5V I/O logic levels.  
Test Data-In (TDI)  
The TDI pin is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see the TAP  
Controller State Diagram. TDI is internally pulled up and can  
be unconnected if the TAP is unused in an application. TDI is  
connected to the Most Significant Bit (MSB) on any register.  
Disabling the JTAG Feature  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull-up resistor. TDO should  
be left unconnected. Upon power-up, the device will come up  
in a reset state which will not interfere with the operation of the  
device.  
Test Data Out (TDO)  
The TDO output pin is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine (see TAP Controller State  
Diagram). The output changes on the falling edge of TCK.  
TDO is connected to the Least Significant Bit (LSB) of any  
register.  
Test Access PortTest Clock  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Document #: 38-05249 Rev. *A  
Page 9 of 26  
CY7C1383BV25  
CY7C1381BV25  
Performing a TAP Reset  
TAP Instruction Set  
A Reset is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This RESET does not affect the operation of  
the SRAM and may be performed while the SRAM is  
operating. At power-up, the TAP is reset internally to ensure  
that TDO comes up in a High-Z state.  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in the  
Instruction Code table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented. The TAP controller  
cannot be used to load address, data or control signals into the  
SRAM and cannot preload the Input or Output buffers. The  
SRAM does not implement the 1149.1 commands EXTEST or  
INTEST or the PRELOAD portion of SAMPLE/PRELOAD;  
rather it performs a capture of the Inputs and Output ring when  
these instructions are executed.  
TAP Registers  
Registers are connected between the TDI and TDO pins and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction registers. Data is serially loaded into the TDI pin  
on the rising edge of TCK. Data is output on the TDO pin on  
the falling edge of TCK.  
Instruction Register  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO pins.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO pins as shown in the TAP Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
EXTEST  
When the TAP controller is in the CaptureIR state, the two  
least significant bits are loaded with a binary "01" pattern to  
allow for fault isolation of the board level serial test path.  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all  
0s. EXTEST is not implemented in the TAP controller, and  
therefore this device is not compliant to the 1149.1 standard.  
Bypass Register  
The TAP controller does recognize an all-0 instruction. When  
an EXTEST instruction is loaded into the instruction register,  
the SRAM responds as if a SAMPLE/PRELOAD instruction  
has been loaded. There is one difference between the two  
instructions. Unlike the SAMPLE/PRELOAD instruction,  
EXTEST places the SRAM outputs in a High-Z state.  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain states. The bypass  
register is a single-bit register that can be placed between TDI  
and TDO pins. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
IDCODE  
Boundary Scan Register  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO pins and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state. The IDCODE instruction  
is loaded into the instruction register upon power-up or  
whenever the TAP controller is given a test logic reset state.  
The boundary scan register is connected to all the input and  
output pins on the SRAM. Several no connect (NC) pins are  
also included in the scan register to reserve pins for higher  
density devices. The x36 configuration has a xx-bit-long  
register, and the x18 configuration has a yy-bit-long register.  
The boundary scan register is loaded with the contents of the  
RAM Input and Output ring when the TAP controller is in the  
Capture-DR state and is then placed between the TDI and  
TDO pins when the controller is moved to the Shift-DR state.  
The EXTEST, SAMPLE/PRELOAD and SAMPLE Z instruc-  
tions can be used to capture the contents of the Input and  
Output ring.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO pins when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI, and the LSB is connected to TDO.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1-mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so  
the TAP controller is not fully 1149.1-compliant.  
Identification (ID) Register  
When the SAMPLE/PRELOAD instructions loaded into the  
instruction register and the TAP controller in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 10 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is  
possible that during the Capture-DR state, an input or output  
Document #: 38-05249 Rev. *A  
Page 10 of 26  
CY7C1383BV25  
CY7C1381BV25  
will undergo a transition. The TAP may then try to capture a  
signal while in transition (metastable state). This will not harm  
the device, but there is no guarantee as to the value that will  
be captured. Repeatable results may not be possible.  
Note that since the PRELOAD part of the command is not  
implemented, putting the TAP into the Update to the  
Update-DR state while performing a SAMPLE/PRELOAD  
instruction will have the same effect as the Pause-DR  
command.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controllers capture set-up plus  
hold times (TCS and TCH). The SRAM clock input might not  
be captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE/PRELOAD instruction. If this  
is an issue, it is still possible to capture all other signals and  
simply ignore the value of the CK and CK captured in the  
boundary scan register.  
Bypass  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO pins. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
Reserved  
Once the data is captured, it is possible to shift out the data  
by putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO pins.  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
AP Controller State Diagram  
TEST-LOGIC  
RESET  
1[4]  
1
1
1
TEST-LOGIC/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
1
1
CAPTURE-DR  
CAPTURE-DR  
0
0
SHIFT-DR  
0
1
SHIFT-IR  
0
1
1
EXIT1-DR  
0
1
EXIT1-IR  
0
0
0
PAUSE-DR  
1
PAUSE-IR  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
1
0
0
Note:  
4. The 0/1next to each state represents the value at TMS at the rising edge of TCK.  
Document #: 38-05249 Rev. *A  
Page 11 of 26  
CY7C1383BV25  
CY7C1381BV25  
TAP Controller Block Diagram  
0
Bypass Register  
Selection  
Circuitry  
Selection  
Circuitry  
2
1
0
TDO  
TDI  
Instruction Register  
29  
Identification Register  
31 30  
.
.
2
1
1
0
0
.
x
.
.
.
2
Boundary Scan Register  
TCK  
TMS  
TAP Controller  
TAP Electrical Characteristics Over the Operating Range[5, 6]  
Parameter  
VOH1  
Description  
Output HIGH Voltage  
Output HIGH Voltage  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
Test Conditions  
IOH = 4.0 mA  
Min.  
2.0  
Max.  
Unit  
V
V
VOH2  
VOL1  
VOL2  
VIH  
IOH = 100 µA  
IOL = 8.0 mA  
IOL = 100 µA  
VDD 0.2  
0.4  
0.2  
V
V
1.7  
-0.3  
5  
V
DD + 0.3  
V
VIL  
0.7  
V
IX  
GND VI VDDQ  
5
µA  
Notes:  
5. All Voltage referenced to Ground.  
6. Overshoot: VIH(AC) < VDD + 1.5V for t < tTCYC/2; undershoot:VIL(AC) < 0.5V for t < tTCYC/2; power-up: VIH < 2.6V and VDD < 2.4V and VDDQ < 1.4V for t < 200 ms.  
Document #: 38-05249 Rev. *A  
Page 12 of 26  
CY7C1383BV25  
CY7C1381BV25  
TA P  
TAP AC Switching Characteristics Over the Operating Range[7, 8]  
Parameters  
tTCYC  
Description  
Min.  
Max.  
Unit  
ns  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH  
100  
tTF  
10  
MHz  
ns  
tTH  
40  
40  
tTL  
TCK Clock LOW  
ns  
Set-up Times  
tTMSS  
TMS Set-up to TCK Clock Rise  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
10  
10  
10  
ns  
ns  
ns  
tTDIS  
tCS  
Hold Times  
tTMSH  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
10  
10  
10  
ns  
ns  
ns  
tTDIH  
tCH  
Capture Hold after Clock Rise  
Output Times  
tTDOV  
TCK Clock LOW to TDO Valid  
TCK Clock HIGH to TDO Invalid  
20  
ns  
ns  
tTDOX  
0
TAP Timing and Test Conditions  
ALL INPUT PULSES  
DD  
1.25V  
V
1/2V  
DD  
50Ω  
0V  
TDO  
Z = 50Ω  
0
C = 20 pF  
L
GND  
tTL  
(a)  
tTH  
tTCYC  
tTMSS  
Test Clock  
TCK  
tTMSH  
Test Mode Select  
TMS  
tTDIS  
tTDIH  
Test Data-In  
TDI  
Test Data-Out  
TDO  
tTDOV  
tTDOX  
Notes:  
7. tCS and tCH refer to the set-up and hold time requirements of latching data from the boundary scan register.  
8. Test conditions are specified using the load in TAP AC test conditions. TR/TF = 1 ns.  
Document #: 38-05249 Rev. *A  
Page 13 of 26  
CY7C1383BV25  
CY7C1381BV25  
Identification Register Definitions  
Instruction Field  
Revision Number (31:28)  
Device Depth (27:23)  
512K × 36  
1M × 18  
xxxx  
Description  
xxxx  
00111  
00100  
xxxxx  
Reserved for version number.  
Defines depth of SRAM. 512K or 1M  
Defines with of the SRAM. x36 or x18  
Reserved for future use.  
01000  
00011  
xxxxx  
Device Width (22:18)  
Cypress Device ID (17:12)  
Cypress JEDEC ID (11:1)  
ID Register Presence (0)  
00011100100 00011100100 Allows unique identification of SRAM vendor.  
1
1
Indicate the presence of an ID register.  
Scan Register Sizes  
Register Name  
Instruction  
Bypass  
Bit Size (×18)  
Bit Size (×36)  
3
1
3
1
ID  
32  
51  
32  
70  
Boundary Scan  
Identification Codes  
Instruction  
EXTEST  
Code  
Description  
000  
001  
010  
011  
Captures the Input/Output ring contents. Places the boundary scan register between the TDI  
and TDO. Forces all SRAM outputs to High-Z state. This instruction is not 1149.1-compliant.  
IDCODE  
Loads the ID register with the vendor ID code and places the register between TDI and TDO.  
This operation does not affect SRAM operation.  
SAMPLE Z  
RESERVED  
Captures the Input/Output contents. Places the boundary scan register between TDI and  
TDO. Forces all SRAM output drivers to a High-Z state.  
Do Not Use. This instruction is reserved for future use.  
SAMPLE/PRELOAD 100  
Captures the Input/Output ring contents. Places the boundary scan register between TDI and  
TDO. Does not affect the SRAM operation. This instruction does not implement 1149.1 preload  
function and is therefore not 1149.1-compliant.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use. This instruction is reserved for future use.  
Do Not Use. This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operation.  
Document #: 38-05249 Rev. *A  
Page 14 of 26  
CY7C1383BV25  
CY7C1381BV25  
Boundary Scan Order (512K × 36)  
Boundary Scan Order (1M × 18)  
Signal  
Name  
Bump  
ID  
Signal  
Name  
Bump  
ID  
Signal  
Name  
Bump  
ID  
Signal  
Name  
Bump  
ID  
Bit #  
Bit #  
36  
Bit #  
Bit #  
36  
1
A
2R  
A
6B  
1
A
2R  
DQb  
2E  
2
A
3T  
4T  
5T  
6R  
3B  
5B  
6P  
7N  
6M  
7L  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
BWa#  
BWb#  
BWc#  
BWd#  
A
5L  
2
A
2T  
3T  
5T  
6R  
3B  
5B  
7P  
6N  
6L  
7K  
7T  
6H  
7G  
6F  
7E  
6D  
6T  
6A  
5A  
4G  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
DQb  
DQb  
NC  
2G  
1H  
5R  
2K  
1L  
3
A
5G  
3G  
3L  
3
A
4
A
4
A
5
A
5
A
DQb  
DQb  
DQb  
DQb  
DQb  
MODE  
A
6
A
2B  
4E  
3A  
2A  
2D  
1E  
2F  
1G  
1D  
1D  
2E  
2G  
1H  
5R  
2K  
1L  
6
A
7
A
CE#  
A
7
A
2M  
1N  
2P  
3R  
2C  
3C  
5C  
6C  
4N  
4P  
8
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
ZZ  
8
DQa  
DQa  
DQa  
DQa  
ZZ  
9
A
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
6K  
7P  
6N  
6L  
A
DQa  
DQa  
DQa  
DQa  
DQa  
A
A
A
A1  
7K  
7T  
6H  
7G  
6F  
7E  
6D  
7H  
6G  
6E  
7D  
6A  
5A  
4G  
A0  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
A
A
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
MODE  
A
A
ADV#  
2M  
1N  
2P  
1K  
2L  
ADSP# 4A  
ADSC# 4B  
OE#  
BWE#  
GW#  
CLK  
A
4F  
4M  
4H  
4K  
6B  
5L  
2N  
1P  
3R  
2C  
3C  
5C  
6C  
4N  
4P  
A
ADV#  
BWa#  
BWb#  
A
ADSP# 4A  
ADSC# 4B  
3G  
2B  
4E  
3A  
2A  
1D  
A
OE#  
4F  
4M  
4H  
4K  
A
CE#  
A
BWE#  
GW#  
CLK  
A
A1  
A
A0  
DQb  
Document #: 38-05249 Rev. *A  
Page 15 of 26  
CY7C1383BV25  
CY7C1381BV25  
Current into Outputs (LOW)......................................... 20 mA  
Static Discharge Voltage .......................................... >1500V  
(per MIL-STD-883, Method 3015)  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Storage Temperature ..................................... −65°C to +150°C  
Ambient Temperature with  
Power Applied.................................................. −55°C to +125°C  
Latch-up Current..................................................... >200 mA  
Operating Range  
[11]  
Range  
Commercial  
Industrial  
Ambient Temperature[10] VDD/VDDQ  
Supply Voltage on VDD Relative to GND.........−0.3V to +3.6V  
0°C to +70°C  
2.5V ± 5%  
DC Voltage Applied to Outputs  
40°C to +85°C  
in High-Z State[9] .....................................−0.5V to VDDQ + 0.5V  
DC Input Voltage[9]..................................−0.5V to VDDQ + 0.5V  
Electrical Characteristics Over the Operating Range  
Parameter  
Description  
Test Conditions  
VDD = Min., IOH = 1.0 mA  
Min.  
Max.  
Unit  
V
VDD / VDDQ Power Supply Voltage  
2.375  
2.0  
2.625  
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage[9]  
Input Load Current  
Input Current of MODE  
Input Current of ZZ  
V
VDD = Min., IOL = 1.0 mA  
0.4  
V
1.7  
V
0.3  
0.7  
5
V
GND VI VDDQ  
µA  
µA  
µA  
µA  
30  
30  
30  
30  
5
Input = VSS  
IOZ  
IDD  
Output Leakage  
Current  
GND VI VDDQ, Output Disabled  
VDD Operating Supply  
Current  
VDD = Max., IOUT = 0 mA,  
f = fMAX = 1/tCYC  
8.5-ns cycle, 117 MHz  
210  
190  
160  
85  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
10-ns cycle, 100 MHz  
12-ns cycle, 83MHz  
ISB1  
Automatic CS  
Power-down  
CurrentTTL Inputs  
Max. VDD, Device Deselected, 8.5-ns cycle, 117 MHz  
VIN VIH or VIN VIL  
f = fMAX = 1/tCYC  
10-ns cycle, 100 MHz  
12-ns cycle, 83 MHz  
All Speeds grade  
70  
65  
ISB2  
Automatic CS  
Power-down  
Max. VDD, Device  
30  
Deselected, VIN 0.3V or VIN  
CurrentCMOS Inputs > VDDQ 0.3V, f = 0  
ISB3  
Automatic CS  
Power-down  
CurrentCMOS Inputs VIN > VDDQ 0.3V  
Max. VDD, Device  
Deselected, or VIN 0.3V or  
8.5-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
12-ns cycle, 83 MHz  
60  
55  
50  
mA  
mA  
mA  
f = fMAX = 1/tCYC  
ISB4  
Automatic CS  
Power-down  
Max. VDD, Device  
Deselected,  
All Speeds grade  
40  
mA  
CurrentTTL Inputs  
VIN VIH or VIN VIL, f = 0  
Capacitance[12]  
Parameter  
Description  
Input Capacitance  
Test Conditions  
Max.  
Unit  
pF  
CIN  
3
3
3
TA = 25°C, f = 1 MHz,  
DD = 3.3V,  
DDQ = 2.5V  
V
V
CCLK  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
CI/O  
pF  
Notes:  
9. Minimum voltage equals 2.0V for pulse durations of less than 20 ns.  
10. TA is the temperature.  
11. Power Supply ramp up should be monotonic.  
Document #: 38-05249 Rev. *A  
Page 16 of 26  
CY7C1383BV25  
CY7C1381BV25  
AC Test Loads and Waveforms[13]  
R = 1667Ω  
V
DDQ  
[12]  
OUTPUT  
ALL INPUT PULSES  
90%  
VDD  
OUTPUT  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
L
5 pF  
GND  
R = 1538Ω  
1V/ns  
1V/ns  
= 1.25V  
VTH  
INCLUDING  
JIG AND  
SCOPE  
(a)  
(b)  
(c)  
Thermal Resistance[12]  
ΘJA  
ΘJC  
Description  
Test Conditions  
Unit  
°C/W  
°C/W  
°C/W  
(Junction to Ambient)  
(Junction to Case)  
119-ball BGA  
165-ball FBGA  
100-pin TQFP  
Still Air, soldered on a 114.3 x 101.6 x 1.57 mm3,  
2-layer board  
41.54  
44.51  
25  
6.33  
2.38  
9
Still Air, soldered on a 4.25 x 1.125 inch, 4-layer  
printed circuit board  
Switching Characteristics Over the Operating Range[14, 15, 16]  
-117  
Max.  
-100  
-83  
Parameter  
tCYC  
Description  
Clock Cycle Time  
Min.  
8.5  
2.3  
2.3  
1.5  
0.5  
Min.  
10.0  
2.5  
Max.  
Min.  
12.0  
3.0  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCH  
Clock HIGH  
tCL  
Clock LOW  
2.5  
3.0  
tAS  
Address Set-Up Before CLK Rise  
Address Hold After CLK Rise  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
ADSP, ADSC Set-Up Before CLK Rise  
ADSP, ADSC Hold After CLK Rise  
BWE, GW, BWx Set-Up Before CLK Rise  
BWE, GW, BWx Hold After CLK Rise  
ADV Set-Up Before CLK Rise  
ADV Hold After CLK Rise  
1.5  
1.5  
tAH  
0.5  
0.5  
tCO  
7.5  
8.5  
10.0  
tDOH  
tADS  
tADH  
tWES  
tWEH  
tADVS  
tADVH  
tDS  
1.3  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.3  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.3  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
Data Input Set-Up Before CLK Rise  
Data Input Hold After CLK Rise  
Chip enable Set-Up  
tDH  
tCES  
tCEH  
tCHZ  
tCLZ  
tEOHZ  
tEOLZ  
Chip enable Hold After CLK Rise  
Clock to High-Z[15]  
Clock to Low-Z[15]  
OE HIGH to Output High-Z[15, 16]  
OE LOW to Output Low-Z[15, 16]  
OE LOW to Output Valid[15]  
3.0  
4.0  
3.4  
3.0  
4.0  
3.8  
3.0  
4.0  
4.2  
1.3  
0
1.3  
0
1.3  
0
tEOV  
Notes:  
12. Tested initially and after any design or process changes that may affect these parameters.  
13. Input waveform should have a slew rate of 1 V/ns.  
14. Unless otherwise noted, test conditions assume signal transition time of 2.5 ns or less, timing reference levels of 1.25V, input pulse levels of 0 to 2.5V, and  
output loading of the specified IOL/IOH and load capacitance. Shown in (a), (b) and (c) of AC Test Loads.  
15.  
tCHZ, tCLZ, tOEV, tEOLZ, and tEOHZ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ± 200 mV from  
steady-state voltage.  
16. At any given voltage and temperature, tEOHZ is less than tEOLZ and tCHZ is less than tCLZ  
.
Document #: 38-05249 Rev. *A  
Page 17 of 26  
CY7C1383BV25  
CY7C1381BV25  
1
Switching Waveforms  
Write Cycle Timing[17, 18]  
Single Write  
tCYC  
tADH  
Burst Write  
Pipelined Write  
tCH  
Unselected  
CLK  
tADS  
tCL  
ADSP ignored with CE1 inactive  
ADSP  
ADSC  
ADV  
tADH  
tADS  
ADSC initiated write  
tADVH  
tADVS  
tAS  
ADV Must Be Inactive for ADSP Write  
WD3  
ADD  
GW  
WE  
CE1  
WD1  
WD2  
tAH  
tWH  
tWH  
tWS  
tWS  
tCES  
tCEH  
CE1 masks ADSP  
tCEH  
tCES  
Unselected with CE2  
CE2  
CE3  
OE  
tCES  
tCEH  
tDH  
tDS  
High-Z  
High-Z  
Data In  
3a  
2a  
1a  
2b  
2c  
2d  
= UNDEFINED  
= DONT CARE  
Notes:  
17. WE is the combination of BWE, BWx, and GW to define a Write cycle (see Write Cycle Descriptions table).  
18. WDx stands for Write Data to Address X.  
Document #: 38-05249 Rev. *A  
Page 18 of 26  
CY7C1383BV25  
CY7C1381BV25  
Switching Waveforms (continued)  
Read Cycle Timing[17, 19]  
Burst Read  
Single Read  
Unselected  
tCYC  
tCH  
Pipelined Read  
CLK  
tADH  
tADS  
tCL  
ADSP ignored with CE1 inactive  
ADSP  
tADS  
ADSC initiated read  
ADSC  
ADV  
tADVS  
tADH  
Suspend Burst  
tADVH  
tAS  
ADD  
GW  
RD1  
RD3  
RD2  
tAH  
tWS  
tWS  
tWH  
WE  
tCES  
tCEH  
tWH  
CE1 masks ADSP  
CE1  
Unselected with CE2  
CE2  
tCES  
tCEH  
CE3  
OE  
tCEH  
tEOV  
tCES  
tOEHZ  
tDOH  
tCDV  
3a  
Data Out  
2d  
2a  
2b  
2c  
1a  
tCLZ  
tCHZ  
= DONT CARE  
= UNDEFINED  
Note:  
19. RDx stands for Read Data from Address X.  
Document #: 38-05249 Rev. *A  
Page 19 of 26  
CY7C1383BV25  
CY7C1381BV25  
Switching Waveforms (continued)  
Read/Write Cycle Timing[ 17, 18, 19, 20]  
Read/Write Timing  
tCYC  
tCL  
tCH  
CLK  
tAH  
tAS  
A
D
B
C
ADD  
tADH  
tADS  
ADSP  
tADH  
tADS  
ADSC  
tADVH  
tADVS  
ADV  
tCEH  
tCES  
CE1  
CE  
tCEH  
tCES  
tWES  
tWEH  
WE  
OE  
ADSP ignored  
with CE1 HIGH  
tEOHZ  
tCLZ  
Data  
Q
(B+3)  
D
(C+1)  
D
(C+2)  
D
(C+3)  
Q
(B+2)  
Q
(B+1)  
Q(B)  
Q(B)  
D(C)  
Q(D)  
Q(A)  
In/Out  
tCDV  
tDOH  
tCHZ  
WE is the combination of BWE, BWx, and GW to define a write cycle (see Write Cycle Description table).  
CE is the combination of CE2 and CE3. All chip selects need to be active in order to select  
the device. RAx stands for Read Address X, WAx stands for Write Address X, Dx stands for Data-in X,  
Qx stands for Data-out X.  
= UNDEFINED  
= DONT CARE  
Note:  
20. Device originally deselected.  
Document #: 38-05249 Rev. *A  
Page 20 of 26  
CY7C1383BV25  
CY7C1381BV25  
Switching Waveforms (continued)  
OE Switching Waveforms  
OE  
tEOV  
tEOHZ  
Three-state  
tEOLZ  
I/Os  
ZZ Mode Timing [20, 21]  
CLK  
ADSP  
HIGH  
ADSC  
CE1  
LOW  
CE2  
HIGH  
CE3  
ZZ  
tZZS  
ICC  
ICC(active)  
tZZREC  
ICCZZ  
I/Os  
Three-state  
Note:  
21. I/Os are in three-state when exiting ZZ sleep mode.  
Document #: 38-05249 Rev. *A  
Page 21 of 26  
CY7C1383BV25  
CY7C1381BV25  
Ordering Information  
Speed  
Package  
Name  
Operating  
Range  
(MHz)  
117  
100  
83  
Ordering Code  
Package Type  
CY7C1381BV25-117AC  
CY7C1381BV25-100AC  
CY7C1381BV25-83AC  
CY7C1383BV25-117AC  
CY7C1383BV25-100AC  
CY7C1383BV25-183C  
CY7C1381BV25-117BGC  
CY7C1381BV25-100BGC  
CY7C1381BV25-83BGC  
CY7C1383BV25-117BGC  
CY7C1383BV25-100BGC  
CY7C1383BV25-83BGC  
CY7C1381BV25-117BZC  
CY7C1381BV25-100BZC  
CY7C1381BV25-83BZC  
CY7C1383BV25-117BZC  
CY7C1383BV25-100BZC  
CY7C1383BV25-83BZC  
CY7C1381BV25-100AI  
CY7C1381BV25-83AI  
A101  
BG119  
BA165A  
100-lead Thin Quad Flat Pack  
Commercial  
117  
100  
83  
117  
100  
83  
119-ball BGA  
117  
100  
83  
117  
100  
83  
165-ball FBGA  
117  
100  
83  
100  
83  
A101  
BG119  
BA165A  
100-lead Thin Quad Flat Pack  
119-ball BGA  
Industrial  
100  
83  
CY7C1383BV25-100AI  
CY7C1383BV25-83AI  
100  
83  
CY7C1381BV25-100BGI  
CY7C1381BV25-83BGI  
CY7C1383BV25-100BGI  
CY7C1383BV25-83BGI  
CY7C1381BV25-100BZI  
CY7C1381BV25-83BZI  
CY7C1383BV25-100BZI  
CY7C1383BV25-83BZI  
100  
83  
100  
83  
165-ball FBGA  
100  
83  
Shaded areas contain advance information.  
Document #: 38-05249 Rev. *A  
Page 22 of 26  
CY7C1383BV25  
CY7C1381BV25  
Package Diagrams  
100-pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
51-85050-A  
Document #: 38-05249 Rev. *A  
Page 23 of 26  
CY7C1383BV25  
CY7C1381BV25  
Package Diagrams (continued)  
119-lead PBGA (14 x 22 x 2.4 mm) BG119  
51-85115-*A  
Document #: 38-05249 Rev. *A  
Page 24 of 26  
CY7C1383BV25  
CY7C1381BV25  
Package Diagrams (continued)  
165-ball FBGA (13 x 15 x 1.2 mm) BB165A  
51-85122-*B  
All product and company names mentioned in this document are the trademarks of their repsective holders.  
Document #: 38-05249 Rev. *A  
Page 25 of 26  
© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C1383BV25  
CY7C1381BV25  
Document Title: CY7C1381BV25/CY7C1383BV25 512K x 36 / 1M x 18 Flow-Thru SRAM  
Document Number:38-05249  
Orig. of  
Change  
REV.  
ECN No.  
Issue Date  
Description of Change  
**  
113651  
05/03/02  
CJM  
Changed Spec from: 38-01076 to 38-05249  
Added ZZ pin functionality  
Changed VOH and VOL values to reflect new char. values  
Modified ESD voltage to 1500V  
Changed tDOH to 1.3 ns  
Added Thermal Resistance table  
Changed IDD and ISB values to reflect new char values  
Added 165-ball fBGA packaging  
Added I-temp  
Added 83 MHz  
Changed tEOHZ from 3.5 to 4.0 ns for 117 MHz  
Changed set-up time from 2.0 ns to 1.5 ns  
Changed tEOV to char. values  
*A  
123851  
01/18/03  
RBI  
Add power up requirements to operating range information  
Document #: 38-05249 Rev. *A  
Page 26 of 26  

相关型号:

CY7C1383BV25-100BGI

Standard SRAM, 1MX18, 8.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119
CYPRESS

CY7C1383BV25-100BZI

Standard SRAM, 1MX18, 8.5ns, CMOS, PBGA165, 13 X 15 MM, 1.20 MM HEIGHT, FBGA-165
CYPRESS

CY7C1383BV25-117AC

Standard SRAM, 1MX18, 7.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS
CYPRESS

CY7C1383BV25-133BGC

Standard SRAM, 1MX18, 6.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, FBGA-119
CYPRESS

CY7C1383BV25-83BGC

Standard SRAM, 1MX18, 10ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119
CYPRESS

CY7C1383BV25-83BZC

Standard SRAM, 1MX18, 10ns, CMOS, PBGA165, 13 X 15 MM, 1.20 MM HEIGHT, FBGA-165
CYPRESS

CY7C1383BV25-83BZI

Standard SRAM, 1MX18, 10ns, CMOS, PBGA165, 13 X 15 MM, 1.20 MM HEIGHT, FBGA-165
CYPRESS

CY7C1383C

18-Mb (512K x 36/1M x 18) Flow-Through SRAM
CYPRESS

CY7C1383C-100AC

18-Mb (512K x 36/1M x 18) Flow-Through SRAM
CYPRESS

CY7C1383C-100AI

18-Mb (512K x 36/1M x 18) Flow-Through SRAM
CYPRESS

CY7C1383C-100BGC

18-Mb (512K x 36/1M x 18) Flow-Through SRAM
CYPRESS