CY7C138V-20JI

更新时间:2024-09-18 14:16:11
品牌:CYPRESS
描述:Dual-Port SRAM, 4KX8, 20ns, CMOS, PQCC68, PLASTIC, LCC-68

CY7C138V-20JI 概述

Dual-Port SRAM, 4KX8, 20ns, CMOS, PQCC68, PLASTIC, LCC-68 SRAM

CY7C138V-20JI 规格参数

是否Rohs认证:不符合生命周期:Obsolete
零件包装代码:LCC包装说明:PLASTIC, LCC-68
针数:68Reach Compliance Code:compliant
ECCN代码:EAR99HTS代码:8542.32.00.41
风险等级:5.86Is Samacsys:N
最长访问时间:20 nsI/O 类型:COMMON
JESD-30 代码:S-PQCC-J68JESD-609代码:e0
长度:24.2316 mm内存密度:32768 bit
内存集成电路类型:DUAL-PORT SRAM内存宽度:8
功能数量:1端口数量:2
端子数量:68字数:4096 words
字数代码:4000工作模式:ASYNCHRONOUS
最高工作温度:85 °C最低工作温度:-40 °C
组织:4KX8输出特性:3-STATE
封装主体材料:PLASTIC/EPOXY封装代码:QCCJ
封装等效代码:LDCC68,1.0SQ封装形状:SQUARE
封装形式:CHIP CARRIER并行/串行:PARALLEL
峰值回流温度(摄氏度):NOT SPECIFIED电源:3.3 V
认证状态:Not Qualified座面最大高度:5.08 mm
最大待机电流:0.00005 A最小待机电流:2 V
子类别:SRAMs最大压摆率:0.195 mA
最大供电电压 (Vsup):3.6 V最小供电电压 (Vsup):3 V
标称供电电压 (Vsup):3.3 V表面贴装:YES
技术:CMOS温度等级:INDUSTRIAL
端子面层:Tin/Lead (Sn/Pb)端子形式:J BEND
端子节距:1.27 mm端子位置:QUAD
处于峰值回流温度下的最长时间:NOT SPECIFIED宽度:24.2316 mm
Base Number Matches:1

CY7C138V-20JI 数据手册

通过下载CY7C138V-20JI数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
1
CY7C138V/144V/006V/007V  
CY7C139V/145V/016V/017V  
PRELIMINARY  
3.3V 4K/8K/16K/32K x 8/9  
Dual-Port Static RAM  
• Fully asynchronous operation  
• Automatic power-down  
Features  
• True Dual-Ported memory cells which allow simulta-  
neous access of the same memory location  
• 4K/8K/16K/32K x 8 organizations (CY7C0138V/144V/  
006V/007V)  
• 4K/8K/16K/32K x 9 organizations (CY7C0139V/145V/  
016V/017V)  
• 0.35-micron CMOS for optimum speed/power  
• Expandable databusto16/18bitsormoreusingMaster/  
Slave chip select when using more than one device  
• On-chip arbitration logic  
• Semaphores included to permit software handshaking  
between ports  
• INT flag for port-to-port communication  
• Pin select for Master or Slave  
• Commercial and Industrial Temperature Ranges  
• Available in 68-pin PLCC (all), 64-pin TQFP (7C006V &  
7C144V)  
[1]  
• High-speed access: 15 /20/25 ns  
• Low operating power  
— Active: I = 115 mA (typical)  
CC  
— Standby: I  
= 10 A (typical)  
µ
• Pin-compatible and functionally equivalent to  
IDT70V05, 70V06, and 70V07.  
SB3  
Logic Block Diagram  
R/W  
R/W  
CE  
L
R
R
R
CE  
L
OE  
OE  
L
[2]  
[2]  
8/9  
8/9  
I/O –I/O  
I/O –I/O  
0L  
7/8L  
0R  
7/8R  
I/O  
I/O  
Control  
Control  
[3]  
12–15  
12–15  
[3]  
Address  
Decode  
Address  
Decode  
True Dual-Ported  
A
A
–A  
A
A
–A  
–A  
0L  
11–14L  
0R  
11–14R  
RAM Array  
12–15  
12–15  
[3]  
[3]  
–A  
0L  
11–14L  
0R  
11–14R  
CE  
CE  
Interrupt  
Semaphore  
Arbitration  
L
R
OE  
OE  
L
R
R/W  
SEM  
R/W  
SEM  
L
R
R
L
[4]  
L
[4]  
BUSY  
INT  
BUSY  
INT  
R
R
L
M/S  
Notes:  
1. Call for availability  
2. I/O0–I/O7 for x8 devices; I/O0–I/O8 for x9 devices.  
3. A0–A11 for 4K devices; A0–A12 for 8K devices; A0–A13 for 16K devices; A0–A14 for 32K devices.  
4. BUSY is an output in master mode and an input in slave mode.  
For the most recent information, visit the Cypress web site at www.cypress.com  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
November 30, 1999  
CY7C138V/144V/006V/007V  
CY7C139V/145V/016V/017V  
PRELIMINARY  
processor designs, communications status buffering, and  
dual-port video/graphics memory.  
Functional Description  
The CY7C138V/144V/006V/007V and CY7C139V/145V/  
016V/017V are low-power CMOS 4K, 8K, 16K, and 32K x8/9  
dual-port static RAMs. Various arbitration schemes are includ-  
ed on the devices to handle situations when multiple proces-  
sors access the same piece of data. Two ports are provided,  
permitting independent, asynchronous access for reads and  
writes to any location in memory. The devices can be utilized  
as standalone 8/9-bit dual-port static RAMs or multiple devices  
can be combined in order to function as a 16/18-bit or wider  
master/slave dual-port static RAM. An M/S pin is provided for  
implementing 16/18-bit or wider memory applications without  
the need for separate master and slave devices or additional  
discrete logic. Application areas include interprocessor/multi-  
Each port has independent control pins: Chip Enable (CE),  
Read or Write Enable (R/W), and Output Enable (OE). Two  
flags are provided on each port (BUSY and INT). BUSY sig-  
nals that the port is trying to access the same location currently  
being accessed by the other port. The Interrupt flag (INT) per-  
mits communication between ports or systems by means of a  
mail box. The semaphores are used to pass a flag, or token,  
from one port to the other to indicate that a shared resource is  
in use. The semaphore logic is comprised of eight shared  
latches. Only one side can control the latch (semaphore) at  
any time. Control of a semaphore indicates that a shared re-  
source is in use. An automatic power-down feature is con-  
trolled independently on each port by a chip select (CE) pin.  
.
Pin Configurations  
PLCC  
68-Pin  
Top View  
9
8
7
6
5 4 3 2 1 68 6766 65 64 63 62 61  
I/O  
I/O  
I/O  
2L  
3L  
4L  
A
A
A
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
5L  
4L  
3L  
I/O  
5L  
A
A
A
2L  
GND  
I/O  
1L  
6L  
0L  
I/O  
7L  
INT  
L
V
CC  
BUSY  
L
CY7C138V (4K x 8)  
CY7C139V (4K x 9)  
GND  
GND  
M/S  
I/O  
I/O  
0R  
1R  
2R  
BUSY  
R
I/O  
INT  
21  
22  
23  
24  
25  
26  
R
V
CC  
A
0R  
I/O  
3R  
4R  
5R  
A
A
47  
46  
45  
44  
1R  
I/O  
I/O  
I/O  
2R  
A
3R  
A
4R  
6R  
2728 29 30 3132 33 34 35 36 37 38 39 40 41 42 43  
Notes:  
5. I/O8R on the CY7C139V.  
6. I/O8L on the CY7C13V9.  
2
CY7C138V/144V/006V/007V  
CY7C139V/145V/016V/017V  
PRELIMINARY  
Pin Configurations (continued)  
PLCC  
68-Pin  
Top View  
9
8
7
6
5 4 3 2 1 68 6766 65 64 63 62 61  
I/O  
2L  
3L  
4L  
A
A
A
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
5L  
4L  
3L  
I/O  
I/O  
I/O  
5L  
A
A
A
2L  
GND  
I/O  
1L  
6L  
0L  
I/O  
7L  
INT  
L
V
CC  
BUSY  
L
CY7C144V (8K x 8)  
CY7C145V (8K x 9)  
GND  
GND  
M/S  
I/O  
I/O  
0R  
1R  
2R  
BUSY  
R
I/O  
INT  
21  
22  
23  
24  
25  
26  
R
V
CC  
A
0R  
I/O  
3R  
4R  
5R  
A
A
47  
46  
45  
44  
1R  
I/O  
I/O  
I/O  
2R  
A
3R  
A
4R  
6R  
2728 29 30 3132 33 34 35 36 37 38 39 40 41 42 43  
64-Pin TQFP  
Top View  
I/O  
I/O  
A
48  
47  
2L  
1
2
4L  
A
A
3L  
3L  
4L  
I/O  
I/O  
2L  
46  
45  
3
4
A
1L  
A
0L  
5L  
GND  
44  
43  
42  
41  
5
6
7
8
9
I/O  
6L  
INT  
L
I/O  
7L  
BUSY  
L
GND  
M/S  
V
CC  
CY7C144V (8K x 8)  
GND  
40  
39  
BUSY  
I/O  
0R  
10  
R
I/O  
1R  
38  
37  
36  
INT  
R
11  
12  
13  
I/O  
2R  
A
0R  
A
1R  
A
2R  
A
3R  
V
CC  
I/O  
3R  
35  
34  
14  
15  
I/O  
4R  
I/O  
5R  
33  
A
4R  
16  
Notes:  
7. I/O8R on the CY7C145V.  
8. I/O8L on the CY7C145V.  
3
CY7C138V/144V/006V/007V  
CY7C139V/145V/016V/017V  
PRELIMINARY  
Pin Configurations (continued)  
80-Pin TQFP  
Top View  
NC  
1
2
NC  
60  
59  
I/O  
I/O  
I/O  
I/O  
2L  
A
5L  
A
4L  
3
4
3L  
4L  
5L  
58  
57  
A
A
3L  
2L  
5
6
7
8
56  
55  
54  
53  
A
1L  
A
0L  
GND  
I/O  
6L  
I/O  
7L  
INT  
L
BUSY  
V
L
9
10  
CC  
52  
51  
GND  
M/S  
NC  
CY7C145V (8K x 9)  
GND  
I/O  
11  
12  
13  
14  
50  
49  
48  
47  
0R  
BUSY  
R
I/O  
1R  
INT  
R
I/O  
2R  
CC  
3R  
4R  
5R  
6R  
A
0R  
A
1R  
A
2R  
A
3R  
V
15  
16  
46  
45  
I/O  
I/O  
I/O  
I/O  
17  
44  
A
4R  
18  
19  
20  
43  
42  
41  
NC  
NC  
NC  
80-Pin TQFP  
Top View  
NC  
1
2
NC  
60  
I/O  
2L  
A
A
5L  
59  
I/O  
I/O  
I/O  
4L  
3
4
3L  
4L  
5L  
58  
57  
A
A
3L  
2L  
5
6
7
8
9
10  
11  
12  
13  
14  
56  
55  
54  
53  
A
1L  
A
0L  
GND  
I/O  
6L  
[1]  
I/O  
7L  
INT  
L
CY7C007V (32K x 8)  
BUSY  
V
L
CC  
52  
51  
GND  
M/S  
CY7C016V (8K x 9)  
CY7C017V (32K x 9)  
NC  
GND  
50  
49  
48  
47  
I/O  
0R  
BUSY  
R
I/O  
1R  
INT  
R
I/O  
2R  
CC  
3R  
4R  
5R  
6R  
A
0R  
A
1R  
A
2R  
A
3R  
V
15  
16  
46  
45  
I/O  
I/O  
I/O  
I/O  
17  
44  
A
4R  
18  
19  
20  
43  
42  
41  
NC  
NC  
NC  
Notes:  
9. I/O for CY7C016V and CY7C017V only.  
10. Address line for CY7C007V and CY7C01V7 only.  
4
CY7C138V/144V/006V/007V  
CY7C139V/145V/016V/017V  
PRELIMINARY  
Pin Configurations (continued)  
68-Pin PLCC  
Top View  
60  
59  
A
A
10  
11  
12  
13  
I/O  
I/O  
I/O  
5L  
2L  
3L  
4L  
4L  
58  
57  
A
A
A
3L  
I/O  
5L  
2L  
56  
55  
GND  
1L  
14  
15  
A
0L  
I/O  
6L  
54  
53  
52  
INT  
I/O  
7L  
L
16  
17  
CY7C006V (16K x 8)  
CY7C007V (32K x 8)  
CY7C016V (16K x 9)  
CY7C017V (32K x 9)  
BUSY  
V
CC  
L
GND  
M/S  
GND  
18  
19  
20  
21  
I/O  
0R  
51  
50  
I/O  
1R  
BUSY  
R
I/O  
2R  
INT  
R
49  
48  
V
CC  
A
0R  
22  
23  
A
1R  
I/O  
3R  
47  
I/O  
4R  
24  
25  
26  
A
A
46  
45  
2R  
I/O  
5R  
3R  
4R  
I/O6  
R
A
44  
64-Pin TQFP  
Top View  
I/O  
A
48  
47  
2L  
1
2
4L  
A
A
I/O  
I/O  
3L  
3L  
4L  
2L  
46  
45  
3
4
A
1L  
A
0L  
I/O  
5L  
GND  
44  
43  
42  
41  
5
6
I/O  
6L  
INT  
L
I/O  
7L  
BUSY  
7
L
GND  
M/S  
V
CC  
8
CY7C006V (16K x 8)  
GND  
40  
39  
9
BUSY  
I/O  
0R  
10  
11  
12  
R
I/O  
1R  
38  
37  
36  
INT  
R
I/O  
2R  
A
0R  
A
1R  
A
2R  
A
3R  
V
CC  
13  
I/O  
3R  
35  
34  
14  
15  
I/O  
4R  
I/O  
5R  
33  
A
4R  
16  
5
CY7C138V/144V/006V/007V  
CY7C139V/145V/016V/017V  
PRELIMINARY  
Selection Guide  
CY7C138V/144V/006V/007V CY7C138V/144V/006V/007V CY7C138V/144V/006V/007V  
CY7C139V/145V/016V/017V CY7C139V/145V/016V/017V CY7C139V/145V/016V/017V  
[1]  
-15  
-20  
-25  
Maximum Access Time (ns)  
15  
20  
25  
Typical Operating Current (mA)  
125  
35  
120  
35  
115  
30  
TypicalStandby CurrentforI  
(mA) (Both Ports TTL level)  
SB1  
TypicalStandby CurrentforI  
10 µA  
10 µA  
10 µA  
SB3  
(µA) (Both Ports CMOS level)  
Shaded areas contain advance information.  
Pin Definitions  
Left Port  
Right Port  
Description  
CE  
CE  
Chip Enable  
L
R
R/W  
R/W  
Read/Write Enable  
Output Enable  
L
R
OE  
OE  
R
L
A
A  
A
A  
Address (A A for 4K devices; A A for 8K devices; A A for 16K devices; A A for 32K)  
0 11 0 12 0 13 0 14  
0L  
14L  
0R  
14R  
I/O I/O  
I/O I/O  
Data Bus Input/Output (I/O I/O for x8 devices and I/O I/O for x9)  
0 7 0 8  
0L  
8L  
0R  
8R  
SEM  
SEM  
Semaphore Enable  
Interrupt Flag  
Busy Flag  
L
R
INT  
INT  
R
L
BUSY  
M/S  
BUSY  
R
L
Master or Slave Select  
Power  
V
CC  
GND  
NC  
Ground  
No Connect  
Output Current into Outputs (LOW)............................. 20 mA  
Static Discharge Voltage .......................................... >2001V  
Latch-Up Current.................................................... >200 mA  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Storage Temperature .................................65°C to +150°C  
Operating Range  
Ambient Temperature with  
Ambient  
Power Applied.............................................55°C to +125°C  
Range  
Commercial  
Industrial  
Temperature  
0°C to +70°C  
40°C to +85°C  
V
CC  
Supply Voltage to Ground Potential ............... 0.5V to +4.6V  
3.3V ± 300 mV  
3.3V ± 300 mV  
DC Voltage Applied to  
Outputs in High Z State ...........................0.5V to V +0.5V  
CC  
[11]  
Shaded areas contain advance information.  
DC Input Voltage .................................0.5V to V +0.5V  
CC  
Note:  
11. Pulse width < 20 ns.  
6
CY7C138V/144V/006V/007V  
CY7C139V/145V/016V/017V  
PRELIMINARY  
Electrical Characteristics Over the Operating Range  
CY7C138V/144V/006V/007V  
CY7C139V/145V/016V/017V  
[1]  
-15  
-20  
-25  
Parameter  
Description  
Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit  
V
V
V
V
Output HIGH Voltage (V = 3.3V)  
2.4  
2.0  
2.4  
2.0  
10  
2.4  
2.0  
V
OH  
OL  
IH  
CC  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
0.4  
0.4  
0.4  
V
V
0.8  
10  
0.8  
10  
0.8  
10  
V
IL  
I
I
Output Leakage Current  
10  
10  
µA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
µA  
OZ  
Operating Current (V = Max.,  
Coml.  
Indust.  
Coml.  
Indust.  
Coml.  
Indust.  
125 185  
120 175  
140 195  
115 165  
135 185  
CC  
CC  
I
= 0 mA) Outputs Disabled  
OUT  
I
I
I
Standby Current (Both Ports TTL  
Level) CE & CE V , f = f  
35  
80  
10  
50  
35  
45  
75  
85  
10  
10  
45  
55  
30  
40  
65  
75  
10  
10  
40  
50  
SB1  
SB2  
SB3  
L
R
IH  
MAX  
Standby Current (One Port TTL  
Level) CE | CE V , f = f  
MAX  
120  
500  
110  
130  
500  
500  
95  
L
R
IH  
105  
500  
500  
StandbyCurrent(Both Ports CMOS Coml.  
Level) CE & CE V 0.2V,  
L
R
CC  
Indust.  
f = 0  
I
Standby Current (One Port CMOS Coml.  
75  
105  
70  
80  
95  
60  
70  
80  
90  
mA  
mA  
SB4  
[12]  
Level) CE | CE V , f = f  
L
R
IH  
MAX  
Indust.  
105  
Shaded areas contain advance information.  
Capacitance[13]  
Parameter  
Description  
Test Conditions  
T = 25°C, f = 1 MHz,  
Max.  
Unit  
C
C
Input Capacitance  
Output Capacitance  
10  
10  
pF  
pF  
IN  
A
V
= 3.3V  
CC  
OUT  
AC Test Loads and Waveforms  
3.3V  
3.3V  
R
TH  
= 250  
R1 = 590  
OUTPUT  
C = 30pF  
OUTPUT  
C = 30 pF  
R1 = 590  
OUTPUT  
R2 = 435  
C = 5 pF  
R2 = 435  
V
TH  
= 1.4V  
(a) Normal Load (Load 1)  
(c)Three-State Delay(Load 2)  
(b) ThéveninEquivalent (Load 1)  
(Used for t , t , t  
& t  
LZ HZ HZWE  
LZWE  
including scope and jig)  
ALL INPUTPULSES  
3.0V  
GND  
90%  
90%  
10%  
10%  
3 ns  
3 ns  
Notes:  
12. MAX = 1/tRC = All inputs cycling at f = 1/tRC (except output enable). f = 0 means no address or control lines change. This applies only to inputs at CMOS level standby ISB3  
f
.
13. Tested initially and after any design or process changes that may affect these parameters.  
7
CY7C138V/144V/006V/007V  
CY7C139V/145V/016V/017V  
PRELIMINARY  
[14]  
Switching Characteristics Over the Operating Range  
CY7C138V/144V/006V/007V  
CY7C139V/145V/016V/017V  
[1]  
15  
Min.  
-20  
-25  
Parameter  
READ CYCLE  
tRC  
Description  
Max.  
Min.  
20  
3
Max.  
Min.  
25  
Max.  
Unit  
Read Cycle Time  
15  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
t
Address to Data Valid  
Output Hold From Address Change  
CE LOW to Data Valid  
OE LOW to Data Valid  
OE Low to Low Z  
15  
20  
25  
AA  
3
OHA  
[15]  
15  
10  
20  
12  
25  
13  
ACE  
DOE  
LZOE  
[16, 17, 18]  
[16, 17, 18]  
3
3
0
3
3
0
3
3
0
OE HIGH to High Z  
10  
10  
12  
12  
15  
15  
HZOE  
[16, 17, 18]  
CE LOW to Low Z  
LZCE  
[16, 17, 18]  
CE HIGH to High Z  
HZCE  
[18]  
[18]  
CE LOW to Power-Up  
CE HIGH to Power-Down  
Byte Enable Access Time  
PU  
15  
15  
20  
20  
25  
25  
PD  
[15]  
ABE  
WRITE CYCLE  
t
t
t
t
t
t
t
t
t
t
t
t
Write Cycle Time  
15  
12  
12  
0
20  
16  
16  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WC  
SCE  
AW  
HA  
[15]  
CE LOW to Write End  
Address Valid to Write End  
Address Hold From Write End  
Address Set-Up to Write Start  
Write Pulse Width  
[15]  
0
0
0
SA  
12  
10  
0
16  
12  
0
20  
15  
0
PWE  
SD  
Data Set-Up to Write End  
Data Hold From Write End  
R/W LOW to High Z  
HD  
[17, 18]  
10  
12  
15  
HZWE  
[17, 18]  
R/W HIGH to Low Z  
3
3
3
LZWE  
[19]  
WDD  
Write Pulse to Data Delay  
Write Data Valid to Read Data Valid  
30  
25  
40  
30  
50  
35  
[19]  
DDD  
[20]  
BUSY TIMING  
t
t
t
t
t
t
t
BUSY LOW from Address Match  
BUSY HIGH from Address Mismatch  
BUSY LOW from CE LOW  
15  
15  
15  
15  
20  
20  
20  
16  
20  
20  
20  
17  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BLA  
BHA  
BLC  
BHC  
PS  
BUSY HIGH from CE HIGH  
Port Set-Up for Priority  
5
0
5
0
5
0
R/W HIGH after BUSY (Slave)  
R/W HIGH after BUSY HIGH (Slave)  
WB  
13  
15  
17  
WH  
Note:  
14. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified  
OI/IOH and 30-pF load capacitance.  
I
15. To access RAM, CE=L, SEM=H. To access semaphore, CE=H and SEM=L. Either condition must be valid for the entire tSCE time.  
16. At any given temperature and voltage condition for any given device, tHZCE is less than tLZCE and tHZOE is less than tLZOE  
.
17. Test conditions used are Load 3.  
18. This parameter is guaranteed but not tested.For information on port-to-port delay through RAM cells from writing port to reading port, refer to Read Timing  
with Busy waveform.  
19. For information on port-to-port delay through RAM cells from writing port to reading port, refer to Read Timing with Busy waveform.  
20. Test conditions used are Load 2.  
8
CY7C138V/144V/006V/007V  
CY7C139V/145V/016V/017V  
PRELIMINARY  
[14]  
Switching Characteristics Over the Operating Range (continued)  
CY7C138V/144V/006V/007V  
CY7C139V/145V/016V/017V  
[1]  
15  
Min.  
-20  
-25  
Parameter  
Description  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
[21]  
t
BUSY HIGH to Data Valid  
15  
20  
25  
ns  
BDD  
[20]  
INTERRUPT TIMING  
t
t
INT Set Time  
15  
15  
20  
20  
20  
20  
ns  
ns  
INS  
INR  
INT Reset Time  
SEMAPHORE TIMING  
t
t
t
t
SEM Flag Update Pulse (OE or SEM)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
SEM Address Access Time  
10  
5
10  
5
12  
5
ns  
ns  
ns  
ns  
SOP  
SWRD  
SPS  
5
5
5
15  
20  
25  
SAA  
Data Retention Mode  
Timing  
The CY7C0138V/144V/006V/007V and CY7C139V/145V/  
016V/017V are designed with battery backup in mind. Data  
retention voltage and supply current are guaranteed over tem-  
perature. The following rules ensure data retention:  
Data Retention Mode  
3.0V  
V
CC  
3.0V  
V
CC  
2.0V  
>
t
RC  
1. Chip enable (CE) must be held HIGH during data retention, with-  
in V to V 0.2V.  
CC  
CC  
V
CC  
to V 0.2V  
CC  
V
IH  
CE  
2. CE must be kept between V 0.2V and 70% of V  
CC  
CC  
during the power-up and power-down transitions.  
3. The RAM can begin operation >t after V reaches the  
minimum operating voltage (3.0 volts).  
RC  
CC  
[22]  
Parameter  
ICC  
Test Conditions  
@ VCC = 2V  
Max.  
Unit  
µA  
50  
DR1  
DR  
Notes:  
21.  
t
BDD is a calculated parameter and is the greater of tWDDtPWE (actual) or tDDDtSD (actual).  
22. CE = VCC, Vin = GND to VCC, TA = 25°C. This parameter is guaranteed but not tested.  
9
CY7C138V/144V/006V/007V  
CY7C139V/145V/016V/017V  
PRELIMINARY  
Switching Waveforms  
[23, 24, 25]  
Read Cycle No. 1 (Either Port Address Access)  
t
RC  
ADDRESS  
t
AA  
t
t
OHA  
OHA  
DATA OUT  
PREVIOUS DATA VALID  
DATA VALID  
[23, 26, 27]  
Read Cycle No .2 (Either Port CE/OE Access)  
t
ACE  
CE  
OE  
t
HZCE  
t
DOE  
t
HZOE  
t
LZOE  
DATA VALID  
DATA OUT  
t
LZCE  
t
PU  
t
PD  
I
CC  
CURRENT  
I
SB  
[23, 25, 26, 27]  
Read Cycle No. 3 (Either Port)  
t
RC  
ADDRESS  
t
AA  
t
OHA  
t
LZCE  
t
ABE  
CE  
t
HZCE  
t
ACE  
t
LZCE  
DATA OUT  
Notes:  
23. R/W is HIGH for read cycles.  
24. Device is continuously selected CE = VIL. This waveform cannot be used for semaphore reads.  
25. OE = VIL  
.
26. Address valid prior to or coincident with CE transition LOW.  
27. To access RAM, CE= VIL, SEM = VIH. To access semaphore, CE = VIH, SEM = V .  
IL  
10  
CY7C138V/144V/006V/007V  
CY7C139V/145V/016V/017V  
PRELIMINARY  
Switching Waveforms (continued)  
[28, 29, 30, 31]  
Write Cycle No. 1: R/W Controlled Timing  
t
WC  
ADDRESS  
OE  
[33]  
t
HZOE  
t
AW  
[32]  
CE  
[31]  
PWE  
t
SA  
t
t
HA  
R/W  
DATA OUT  
DATA IN  
[33]  
t
HZWE  
t
LZWE  
NOTE 34  
NOTE 34  
t
t
HD  
SD  
[28, 29, 30, 35]  
Write Cycle No. 2: CE Controlled Timing  
t
WC  
ADDRESS  
t
AW  
[32]  
CE  
t
SA  
t
t
HA  
SCE  
R/W  
t
t
HD  
SD  
DATA IN  
Notes:  
28. R/W must be HIGH during all address transitions.  
29. A write occurs during the overlap (tSCE or tPWE) of a LOW CE or SEM.  
30. tHA is measured from the earlier of CE or R/W or (SEM or R/W) going HIGH at the end of write cycle.  
31. If OEis LOW during a R/W controlled write cycle, the write pulse width must be the larger of tPWE or (tHZWE + tSD) to allow the I/O drivers to turn off and data to be placed on  
the bus for the required tSD. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified tPWE  
32. To access RAM, CE= VIL, SEM = VIH  
.
.
33. Transition is measured ±500 mV from steady state with a 5-pF load (including scope and jig). This parameter is sampled and not 100% tested.  
34. During this period, the I/O pins are in the output state, and input signals must not be applied.  
35. If the CEor SEM LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the high-impedance state.  
11  
CY7C138V/144V/006V/007V  
CY7C139V/145V/016V/017V  
PRELIMINARY  
Switching Waveforms (continued)  
[36]  
Semaphore Read After Write Timing, Either Side  
t
t
OHA  
SAA  
A
A  
2
VALID ADRESS  
VALID ADRESS  
0
t
AW  
t
ACE  
t
HA  
SEM  
t
t
SOP  
SCE  
t
SD  
I/O  
0
DATA VALID  
DATA  
VALID  
IN  
OUT  
t
HD  
t
SA  
t
PWE  
R/W  
OE  
t
t
DOE  
SWRD  
t
SOP  
WRITE CYCLE  
[37, 38, 39]  
READ CYCLE  
Timing Diagram of Semaphore Contention  
A
0L  
A  
2L  
MATCH  
R/W  
L
SEM  
L
t
SPS  
A
A  
MATCH  
0R  
2R  
R/W  
R
SEM  
R
Notes:  
36. CE = HIGH for the duration of the above timing (both write and read cycle).  
37. I/O0R = I/O0L = LOW (request semaphore); CER = CEL = HIGH.  
38. Semaphores are reset (available to both ports) at cycle start.  
39. If tSPS is violated, the semaphore will definitely be obtained by one side or the other, but which side will get the semaphore is unpredictable.  
12  
CY7C138V/144V/006V/007V  
CY7C139V/145V/016V/017V  
PRELIMINARY  
Switching Waveforms (continued)  
[40]  
Timing Diagram of Read with BUSY (M/S=HIGH)  
t
WC  
ADDRESS  
R
MATCH  
t
PWE  
R/W  
R
t
t
HD  
SD  
DATA IN  
VALID  
R
t
PS  
ADDRESS  
L
MATCH  
t
BLA  
t
BHA  
BUSY  
L
t
BDD  
t
DDD  
DATA  
VALID  
OUTL  
t
WDD  
Write Timing with Busy Input (M/S=LOW)  
t
PWE  
R/W  
t
t
WH  
WB  
BUSY  
Note:  
40. CEL = CER = LOW.  
13  
CY7C138V/144V/006V/007V  
CY7C139V/145V/016V/017V  
PRELIMINARY  
Switching Waveforms (continued)  
[41]  
Busy Timing Diagram No.1 (CE Arbitration)  
CE Valid First:  
L
ADDRESS  
L,R  
ADDRESS MATCH  
CE  
L
t
PS  
CE  
R
t
t
BHC  
BLC  
BUSY  
R
CE Valid First:  
R
ADDRESS  
L,R  
ADDRESS MATCH  
CE  
R
t
PS  
CE  
L
L
t
t
BHC  
BLC  
BUSY  
[41]  
Busy Timing Diagram No.2 (Address Arbitration)  
Left Address Valid First  
t
or t  
WC  
RC  
ADDRESS  
L
ADDRESS MATCH  
ADDRESS MISMATCH  
t
PS  
ADDRESS  
R
t
t
BHA  
BLA  
BUSY  
R
Right Address Valid First:  
t
or t  
WC  
RC  
ADDRESS  
R
ADDRESS MATCH  
ADDRESS MISMATCH  
t
PS  
ADDRESS  
L
t
t
BHA  
BLA  
BUSY  
L
Note:  
41. If tPS is violated, the busy signal will be asserted on one side or the other, but there is no guarantee to which side BUSY will be asserted.  
14  
CY7C138V/144V/006V/007V  
CY7C139V/145V/016V/017V  
PRELIMINARY  
Switching Waveforms (continued)  
Interrupt Timing Diagrams  
Left Side Sets INT :  
R
t
WC  
ADDRESS  
WRITE FFF (See Functional Description)  
[42]  
L
t
HA  
CE  
L
R/W  
INT  
L
R
[43]  
t
INS  
Right Side Clears INT :  
t
R
RC  
READ FFF  
(See Functional Description)  
ADDRESS  
R
CE  
R
[43]  
t
INR  
R/W  
R
OE  
R
INT  
R
:
Right SideSets INT  
L
t
WC  
ADDRESS  
R
WRITE FFE (See Functional Description)  
[42]  
t
HA  
CE  
R
R
R/W  
INT  
L
[43]  
INS  
t
Left Side Clears INT :  
L
t
RC  
READ FFE  
(See Functional Description)  
ADDRESS  
R
L
CE  
[43]  
INR  
t
R/W  
L
OE  
INT  
L
L
Notes:  
42.  
tHA depends on which enable pin (CEL or R/WL) is deasserted first.  
43. tINS or tINR depends on which enable pin (CEL or R/WL) is asserted last.  
15  
CY7C138V/144V/006V/007V  
CY7C139V/145V/016V/017V  
PRELIMINARY  
access (contention). If both portsCEs are asserted and an address  
Architecture  
match occurs within t of each other, the busy logic will determine  
PS  
The CY7C138V/144V/006V/007V and CY7C139V/145V/  
016V/017V consist of an array of 4K, 8K, 16K, and 32K words of 8  
and 9 bits each of dual-port RAM cells, I/O and address lines, and  
control signals (CE, OE, R/W). These control pins permit indepen-  
dent access for reads or writes to any location in memory. To handle  
simultaneous writes/reads to the same location, a BUSY pin is pro-  
vided on each port. Two Interrupt (INT) pins can be utilized for port-  
to-port communication. Two Semaphore (SEM) control pins are used  
for allocating shared resources. With the M/S pin, the devices can  
function as a master (BUSY pins are outputs) or as a slave (BUSY  
pins are inputs). The devices also have an automatic power-down  
feature controlled by CE. Each port is provided with its own output  
enable control (OE), which allows data to be read from the device.  
which port has access. If t is violated, one port will definitely gain  
permission to the location, but it is not predictable which port will get  
PS  
that permission. BUSY will be asserted t  
after an address match  
BLA  
or t  
after CE is taken LOW.  
BLC  
Master/Slave  
An M/S pin is provided in order to expand the word width by config-  
uring the device as either a master or a slave. The BUSY output of  
the master is connected to the BUSY input of the slave. This will allow  
the device to interface to a master device with no external compo-  
nents. Writing to slave devices must be delayed until after the BUSY  
input has settled (t  
or t ), otherwise, the slave chip may begin  
BLC  
BLA  
a write cycle during a contention situation. When tied HIGH, the M/S  
pinallowsthedevicetobe usedasamaster and, therefore, theBUSY  
line is an output. BUSY can then be used to send the arbitration out-  
come to a slave.  
Functional Description  
Write Operation  
Semaphore Operation  
Data must be set up for a duration of t before the rising edge  
SD  
of R/W in order to guarantee a valid write. A write operation is con-  
trolled by either the R/W pin (see Write Cycle No. 1 waveform) or the  
CE pin (see Write Cycle No. 2 waveform). Required inputs for non-  
contention operations are summarized in Table 1.  
The CY7C138V/144V/006V/007V and CY7C139V/145V/  
016V/017V provide eight semaphore latches, which are sepa-  
rate from the dual-port memory locations. Semaphores are  
used to reserve resources that are shared between the two  
ports. The state of the semaphore indicates that a resource is  
in use. For example, if the left port wants to request a given  
resource, it sets a latch by writing a zero to a semaphore loca-  
tion. The left port then verifies its success in setting the latch  
by reading it. After writing to the semaphore, SEM or OE must  
If a location is being written to by one port and the opposite  
port attempts to read that location, a port-to-port flowthrough  
delay must occur before the data is read on the output; other-  
wise the data read is not deterministic. Data will be valid on the  
port t  
after the data is presented on the other port.  
DDD  
be deasserted for t  
before attempting to read the semaphore.  
SOP  
Read Operation  
The semaphore value will be available t  
+ t  
after the rising  
SWRD  
DOE  
edge of the semaphore write. If the left port was successful (reads a  
zero), it assumes control of the shared resource, otherwise (reads a  
one) it assumes the right port has control and continues to poll the  
semaphore. When the right side has relinquished control of the  
semaphore (by writing a one), the left side will succeed in gaining  
control of the semaphore. If the left side no longer requires the sema-  
phore, a one is written to cancel its request.  
When reading the device, the user must assert both the OE  
and CE pins. Data will be available t  
asserted. If the user wishes to access a semaphore flag, then the  
SEM pin must be asserted instead of the CE pin, and OE must also  
be asserted.  
after CE or t  
after OE is  
ACE  
DOE  
Interrupts  
Semaphores are accessed by asserting SEM LOW. The SEM  
pin functions as a chip select for the semaphore latches (CE must  
The upper two memory locations may be used for message  
passing. The highest memory location (FFF for the  
CY7C138V/9V, 1FFF for the CY7C144V/5V, 3FFF for the  
CY7C006V/16V, 7FFF for the CY7C007V/17V) is the mailbox  
for the right port and the second-highest memory location  
(FFE for the CY7C138V/9V, 1FFE for the CY7C144V/5V, 3FFE  
for the CY7C006V/16V, 7FFE for the CY7C007V/17V) is the  
mailbox for the left port. When one port writes to the other  
ports mailbox, an interrupt is generated to the owner. The in-  
terrupt is reset when the owner reads the contents of the mail-  
box. The message is user-defined.  
remain HIGH during SEM LOW). A  
represents the semaphore  
02  
address. OE and R/W are used in the same manner as a normal  
memory access. When writing or reading a semaphore, the other  
address pins have no effect.  
When writing to the semaphore, only I/O is used. If a zero is  
0
written to the left port of an available semaphore, a one will appear at  
the same semaphore address on the right port. That semaphore can  
now only be modified by the side showing zero (the left port in this  
case). If the left port now relinquishes control by writing a one to the  
semaphore, thesemaphore will be set to onefor both sides. However,  
if the right port had requested the semaphore (written a zero) while  
the left port had control, the right port would immediately own the  
semaphore as soon as the left port released it. Table 3 shows sample  
semaphore operations.  
Each port can read the other ports mailbox without resetting  
the interrupt. The active state of the busy signal (to a port)  
prevents the port from setting the interrupt to the winning port.  
Also, an active busy to a port prevents that port from reading  
its own mailbox and, thus, resetting the interrupt to it. If an  
application does not require message passing, do not connect  
the interrupt pin to the processors interrupt request input pin.  
The operation of the interrupts and their interaction with Busy  
are summarized in Table 2.  
When reading a semaphore, all data lines output the sema-  
phore value. The read value is latched in an output register to  
prevent the semaphore from changing state during a write  
from the other port. If both ports attempt to access the sema-  
phore within t  
of each other, the semaphore will definitely be  
SPS  
Busy  
obtained byone side or theother, but thereisnoguarantee whichside  
will control the semaphore.  
The CY7C138V/144V/006V/007V and CY7139V/145V/016V/017V  
provide on-chip arbitration to resolve simultaneous memory location  
16  
CY7C138V/144V/006V/007V  
CY7C139V/145V/016V/017V  
PRELIMINARY  
Table 1. Non-Contending Read/Write  
Inputs  
Outputs  
CE  
H
R/W  
X
OE  
X
SEM  
I/O I/O  
Operation  
0
8
H
L
High Z  
Deselected: Power-Down  
H
H
L
Data Out  
High Z  
Read Data in Semaphore Flag  
I/O Lines Disabled  
X
X
H
X
L
H
X
Data In  
Write into Semaphore Flag  
L
L
L
H
L
L
X
X
H
H
L
Data Out  
Data In  
Read  
Write  
X
Not Allowed  
Table 2. Interrupt Operation Example (assumes BUSY =BUSY =HIGH)  
L
R
Left Port  
Right Port  
OE  
Function  
Set Right INT Flag  
R/W  
CE  
L
OE  
X
A
INT  
X
R/W  
X
CE  
X
A
INT  
L
L
L
0L14L  
L
R
R
R
0R14R  
R
[46]  
[45]  
L
X
X
X
FFF  
X
L
X
L
R
[46]  
[44]  
Reset Right INT Flag  
X
X
X
X
X
X
L
FFF  
H
R
[44]  
[46]  
Set Left INT Flag  
X
X
L
L
L
X
X
1FFE  
X
X
X
L
[46]  
[45]  
Reset Left INT Flag  
L
L
1FFE  
H
X
X
L
Table 3. Semaphore Operation Example  
Function I/O I/O Left I/O I/O Right  
Status  
0
8
0
8
No action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port has semaphore token  
Left port writes 0 to semaphore  
Right port writes 0 to semaphore  
Left port writes 1 to semaphore  
Left port writes 0 to semaphore  
Right port writes 1 to semaphore  
Left port writes 1 to semaphore  
Right port writes 0 to semaphore  
Right port writes 1 to semaphore  
Left port writes 0 to semaphore  
Left port writes 1 to semaphore  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
Note:  
44. If BUSYR = L, then no change.  
45. If BUSYL = L, then no change.  
46. See Functional Description for specific addresses by device part number.  
17  
CY7C138V/144V/006V/007V  
CY7C139V/145V/016V/017V  
PRELIMINARY  
Ordering Information  
Package Availability Guide  
Device  
Organization  
4K x 8  
68-Pin PLCC  
64-Pin TQFP  
CY7C138V  
CY7C139V  
CY7C144V  
CY7C145V  
CY7C006V  
CY7C016V  
CY7C007V  
CY7C017V  
X
X
X
X
X
X
X
X
4K x 9  
8K x 8  
X
X
8K x 9  
16K x 8  
16K x 9  
32K x 8  
32K x 9  
4K x8 3.3V Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
(ns)  
Ordering Code  
Package Type  
Range  
Commercial  
Commercial  
Industrial  
[1]  
15  
CY7C138V-15JC  
J81  
J81  
J81  
J81  
J81  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
20  
CY7C138V20JC  
CY7C138V20JI  
CY7C138V25JC  
CY7C138V25JI  
25  
Commercial  
Industrial  
Shaded areas contain advance information.  
4K x9 3.3V Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
Package Type  
[1]  
15  
CY7C139V-15JC  
J81  
J81  
J81  
J81  
J81  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
Commercial  
Commercial  
Industrial  
20  
25  
CY7C139V20JC  
CY7C139V20JI  
CY7C139V25JC  
CY7C139V25JI  
Commercial  
Industrial  
Shaded areas contain advance information.  
8K x8 3.3V Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
Package Type  
64-Pin Thin Quad Flat Pack  
[1]  
15  
CY7C144V-15AC  
A65  
J81  
A65  
J81  
A65  
J81  
A65  
J81  
A65  
J81  
Commercial  
Commercial  
Industrial  
CY7C144V-15JC  
CY7C144V20AC  
CY7C144V20JC  
CY7C144V20AI  
CY7C144V20JI  
CY7C144V25AC  
CY7C144V25JC  
CY7C144V25AI  
CY7C144V25JI  
68-Pin Plastic Leaded Chip Carrier  
64-Pin Thin Quad Flat Pack  
20  
25  
68-Pin Plastic Leaded Chip Carrier  
64-Pin Thin Quad Flat Pack  
68-Pin Plastic Leaded Chip Carrier  
64-Pin Thin Quad Flat Pack  
Commercial  
Industrial  
68-Pin Plastic Leaded Chip Carrier  
64-Pin Thin Quad Flat Pack  
68-Pin Plastic Leaded Chip Carrier  
Shaded areas contain advance information.  
18  
CY7C138V/144V/006V/007V  
CY7C139V/145V/016V/017V  
PRELIMINARY  
Ordering Information (continued)  
8K x9 3.3V Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
(ns)  
Ordering Code  
CY7C145V-15JC  
Package Type  
Range  
Commercial  
Commercial  
Industrial  
[1]  
15  
J81  
J81  
J81  
J81  
J81  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
20  
CY7C145V20JC  
CY7C145V20JI  
CY7C145V25JC  
CY7C145V25JI  
25  
Commercial  
Industrial  
Shaded areas contain advance information.  
16K x8 3.3V Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
Package Type  
64-Pin Thin Quad Flat Pack  
[1]  
15  
CY7C006V-15AC  
A65  
J81  
A65  
J81  
A65  
J81  
A65  
J81  
A65  
J81  
Commercial  
Commercial  
Commercial  
CY7C006V-15JC  
CY7C006V20AC  
CY7C006V20JC  
CY7C006V20AI  
CY7C006V20JI  
CY7C006V25AC  
CY7C006V25JC  
CY7C006V25AI  
CY7C006V25JI  
68-Pin Plastic Leaded Chip Carrier  
64-Pin Thin Quad Flat Pack  
20  
25  
68-Pin Plastic Leaded Chip Carrier  
64-Pin Thin Quad Flat Pack  
Industrial  
68-Pin Plastic Leaded Chip Carrier  
64-Pin Thin Quad Flat Pack  
Commercial  
Industrial  
68-Pin Plastic Leaded Chip Carrier  
64-Pin Thin Quad Flat Pack  
68-Pin Plastic Leaded Chip Carrier  
Shaded areas contain advance information.  
16K x9 3.3V Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
Package Type  
[1]  
15  
CY7C016V-15JC  
J81  
J81  
J81  
J81  
J81  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
Commercial  
Commercial  
Industrial  
20  
CY7C016V20JC  
CY7C016V20JI  
CY7C016V25JC  
CY7C016V25JI  
25  
Commercial  
Industrial  
Shaded areas contain advance information.  
32K x8 3.3V Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
Package Type  
[1]  
15  
CY7C007V-15JC  
J81  
J81  
J81  
J81  
J81  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
Commercial  
Commercial  
Industrial  
20  
CY7C007V20JC  
CY7C007V20JI  
CY7C007V25JC  
CY7C007V25JI  
25  
Commercial  
Industrial  
Shaded areas contain advance information.  
19  
CY7C138V/144V/006V/007V  
CY7C139V/145V/016V/017V  
PRELIMINARY  
Ordering Information (continued)  
32K x9 3.3V Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
(ns)  
Ordering Code  
CY7C017V-15JC  
Package Type  
Range  
Commercial  
Commercial  
Industrial  
[1]  
15  
J81  
J81  
J81  
J81  
J81  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
20  
CY7C017V20JC  
CY7C017V20JI  
CY7C017V25JC  
CY7C017V25JI  
25  
Commercial  
Industrial  
Shaded areas contain advance information.  
Document #: 3800677B  
Package Diagrams  
64-Lead Thin Plastic Quad Flat Pack (14 x 14 x 1.4 mm) A65  
51-85046-B  
20  
CY7C138V/144V/006V/007V  
CY7C139V/145V/016V/017V  
PRELIMINARY  
Package Diagrams (continued)  
68-Lead Plastic Leaded Chip Carrier J81  
51-85005-A  
© Cypress Semiconductor Corporation, 1999. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C138V/144V/006V/007V  
CY7C139V/145V/016V/017V  
PRELIMINARY  
ramp rate (greater than 100 ns) in order to confirm that the  
problem might be due to the POR circuit. If the dual-port func-  
tions properly once the ramp rate is slowed to 100 ns or great-  
er, then the POR circuit is at fault.  
CY7C036 Dual Port Design Consideration –  
Data Sheet Addendum  
This design consideration applies to the Internal Power-On-  
Reset (POR) circuit used on the CY7C036 and its derivatives  
listed below.  
Applicable devicesAll speed/package/temperature combi-  
nations of the following:  
Power supply rampThe devices will function properly and  
meet all data sheet specifications if the power supply ramp rate  
is greater than 100 ns. If ramp is less than 100 ns, you may  
see a non-destructive failure in which the device will not re-  
spond to changes in address or clock, but the I/Os will respond  
to the output enable.  
CY7C138V  
CY7C139V  
CY7C144V  
CY7C145V  
CY7C006V  
CY7C016V  
CY7C007V  
CY7C017V  
Applications considerationIf the power supply ramps in less  
than 100 ns, a small resistor (2050), a large capacitor, or an  
RC network can be connected at the output of the power sup-  
ply to ground. The addition of a resistor will help clean up the  
power lines, while the capacitor will slow down the ramp rate  
without the loss of any power. Contact your local Cypress FAE  
for assistance as needed.  
Cypress design changeCypress design team has identified  
the root cause. A permanent circuit change and die revision  
will be available beginning in October and will be identified by  
the letter Ain the part number.  
TroubleshootingIf a problem occurs with the part, power  
down the device to ground and then power up again at slower  
22  

CY7C138V-20JI 相关器件

型号 制造商 描述 价格 文档
CY7C138V-25JCT CYPRESS Dual-Port SRAM, 4KX8, 25ns, CMOS, PQCC68, PLASTIC, LCC-68 获取价格
CY7C138_05 CYPRESS 4K x 8/9 Dual-Port Static RAM with Sem, Int, Busy 获取价格
CY7C138_09 CYPRESS 4K x 8/9 Dual-Port Static RAM with Sem, Int, Busy 获取价格
CY7C139 CYPRESS 4K x 8/9 Dual-Port Static RAM with Sem, Int, Busy 获取价格
CY7C139*BV18 CYPRESS RAM9 QDR-I/DDR-I/QDR-II/DDR- II Errata 获取价格
CY7C139-15 CYPRESS 4K x 8/9 Dual-Port Static RAM 获取价格
CY7C139-15JC CYPRESS 4K x 8/9 Dual-Port Static RAM 获取价格
CY7C139-15JCR CYPRESS Dual-Port SRAM, 4KX9, 15ns, CMOS, PQCC68, PLASTIC, LCC-68 获取价格
CY7C139-15JCT CYPRESS 暂无描述 获取价格
CY7C139-25 CYPRESS 4K x 8/9 Dual-Port Static RAM 获取价格

CY7C138V-20JI 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6