CY7C144-15ACT [CYPRESS]

Dual-Port SRAM, 8KX8, 15ns, CMOS, PQFP64, 14 X 14 MM, 1.4 MM HEIGHT, PLASTIC, TQFP-64;
CY7C144-15ACT
型号: CY7C144-15ACT
厂家: CYPRESS    CYPRESS
描述:

Dual-Port SRAM, 8KX8, 15ns, CMOS, PQFP64, 14 X 14 MM, 1.4 MM HEIGHT, PLASTIC, TQFP-64

静态存储器 内存集成电路
文件: 总20页 (文件大小:651K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C144, CY7C145  
8K x 8/9 Dual-Port Static RAM  
with SEM, INT, BUSY  
Features  
Functional Description  
True Dual-Ported Memory Cells that Enable Simultaneous  
Reads of the same Memory Location  
The CY7C144 and CY7C145 are high speed CMOS 8K x 8 and  
8K x 9 dual-port static RAMs. Various arbitration schemes are  
included on the CY7C144/5 to handle situations when multiple  
processors access the same piece of data. Two ports are  
provided permitting independent, asynchronous access for  
reads and writes to any location in memory. The CY7C144/5 can  
be used as a standalone 64/72-Kbit dual-port static RAM or  
multiple devices can be combined in order to function as a  
16/18-bit or wider master/slave dual-port static RAM. An M/S pin  
is provided for implementing 16/18-bit or wider memory applica-  
tions without the need for separate master and slave devices or  
additional discrete logic. Application areas include interpro-  
8K x 8 Organization (CY7C144)  
8K x 9 Organization (CY7C145)  
0.65-Micron CMOS for optimum Speed and Power  
High Speed Access: 15 ns  
Low Operating Power: ICC = 160 mA (max.)  
Fully Asynchronous Operation  
Automatic Power Down  
cessor/multiprocessor  
designs,  
communications  
status  
buffering, and dual-port video/graphics memory.  
TTL Compatible  
Each port has independent control pins: chip enable (CE), read  
or write enable (R/W), and output enable (OE). Two flags, BUSY  
and INT, are provided on each port. BUSY signals that the port  
is trying to access the same location currently being accessed  
by the other port. The interrupt flag (INT) permits communication  
between ports or systems by means of a mail box. The  
semaphores are used to pass a flag, or token, from one port to  
the other to indicate that a shared resource is in use. The  
semaphore logic is comprised of eight shared latches. Only one  
side can control the latch (semaphore) at any time. Control of a  
semaphore indicates that a shared resource is in use. An  
automatic power down feature is controlled independently on  
each port by a chip enable (CE) pin or SEM pin.  
Master/SlaveSelectPinenablesBusWidthExpansionto16/18  
Bits or more  
Busy Arbitration Scheme provided  
Semaphores included to permit Software Handshaking  
between Ports  
INT Flag for Port-to-Port Communication  
Available in 68-pin PLCC, 64-pin and 80-pin TQFP  
Pb-free Packages available  
R/W  
L
R/W  
R
Logic Block Diagram  
CE  
OE  
CE  
OE  
L
L
R
R
(7C145) I/O  
I/O (7C145)  
8R  
8L  
I/O  
7L  
I/O  
7R  
I/O  
CONTROL  
I/O  
CONTROL  
I/O  
0L  
I/O  
0R  
[1, 2]  
[1, 2]  
BUSY  
BUSY  
L
R
A
12L  
0L  
A
A
12R  
0R  
MEMORY  
ARRAY  
ADDRESS  
DECODER  
ADDRESS  
DECODER  
A
INTERRUPT  
SEMAPHORE  
ARBITRATION  
CE  
L
CE  
OE  
R
R
OE  
L
R/W  
R/W  
L
R
SEM  
SEM  
R
L
[2]  
INT  
INT [2]  
R
L
M/S  
Notes  
1. BUSY is an output in master mode and an input in slave mode.  
2. Interrupt: push-pull output and requires no pull-up resistor.  
Cypress Semiconductor Corporation  
Document #: 38-06034 Rev. *E  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised April 26, 2009  
[+] Feedback  
CY7C144, CY7C145  
Pin Configuration  
Figure 1. 68-Pin PLCC (Top View)  
Figure 2. 64-Pin TQFP (Top View)  
9
8
7
6
5 4 3 2 1 68 67 66 65 64 63 62 61  
IO  
IO  
IO  
IO  
2L  
3L  
4L  
5L  
A
A
A
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
5L  
4L  
3L  
IO  
A
48  
2L  
1
4L  
A
A
IO  
IO  
IO  
47  
46  
45  
2
3
4
3L  
3L  
4L  
A
2L  
A
1L  
A
0L  
2L  
GND  
A
A
1L  
5L  
IO  
IO  
6L  
7L  
GND  
44  
43  
42  
41  
5
6
0L  
INT  
L
IO  
6L  
INT  
L
V
CC  
BUSY  
L
CY7C144/5  
IO  
7L  
BUSY  
7
L
GND  
GND  
M/S  
GND  
M/S  
V
CC  
CY7C144  
8
IO  
IO  
IO  
0R  
1R  
2R  
GND  
40  
39  
9
BUSY  
R
BUSY  
IO  
0R  
10  
11  
12  
R
INT  
21  
22  
23  
24  
25  
26  
R
IO  
1R  
38  
37  
36  
INT  
R
V
CC  
A
0R  
IO  
2R  
A
0R  
A
1R  
A
2R  
A
3R  
IO  
IO  
IO  
IO  
3R  
4R  
5R  
6R  
A
A
47  
46  
45  
44  
1R  
V
CC  
13  
2R  
IO  
3R  
35  
34  
14  
15  
A
3R  
A
4R  
IO  
4R  
2728 29 30 3132 33 34 35 36 37 38 39 40 41 42 43  
IO  
5R  
33  
A
4R  
16  
Figure 3. 80-Pin TQFP (Top View)  
NC  
1
2
NC  
60  
59  
I/O  
A
5L  
2L  
I/O  
I/O  
I/O  
A
4L  
3
4
3L  
4L  
5L  
58  
57  
A
A
3L  
2L  
5
6
7
8
56  
55  
54  
53  
A
A
GND  
I/O  
1L  
0L  
6L  
I/O  
7L  
INT  
L
BUSY  
V
L
9
10  
CC  
52  
51  
GND  
M/S  
CY7C145  
NC  
GND  
I/O  
11  
12  
13  
14  
50  
49  
48  
47  
BUSY  
0R  
R
I/O  
1R  
INT  
R
I/O  
2R  
A
0R  
A
1R  
A
2R  
A
3R  
V
CC  
15  
16  
46  
45  
I/O  
3R  
I/O  
4R  
17  
44  
I/O  
5R  
A
18  
19  
20  
4R  
43  
42  
41  
I/O  
6R  
NC  
NC  
NC  
Notes:  
3. I/O on the CY7C145.  
8R  
4. I/O on the CY7C145.  
8L  
Document #: 38-06034 Rev. *E  
Page 2 of 20  
[+] Feedback  
CY7C144, CY7C145  
Table 1. Selection Guide  
Description  
7C144-15  
7C145-15  
7C144-25  
7C145-25  
7C144-35  
7C145-35  
7C144-55  
Unit  
7C145-55  
Maximum Access Time  
15  
220  
60  
25  
180  
40  
35  
160  
30  
55  
160  
30  
ns  
Maximum Operating Current  
Maximum Standby Current for ISB1  
mA  
mA  
Table 2. Pin Definitions  
Left Port Right Port  
Description  
I/O0L7L(8L) I/O0R7R(8R) Data bus Input/Output  
A0L12L  
CEL  
A0R12R  
CER  
Address Lines  
Chip Enable  
OEL  
OER  
Output Enable  
Read/Write Enable  
R/WL  
SEML  
R/WR  
SEMR  
Semaphore Enable. When asserted LOW, allows access to eight semaphores. The three least significant  
bits of the address lines will determine which semaphore to write or read. The I/O0 pin is used when writing  
to a semaphore. Semaphores are requested by writing a 0 into the respective location.  
INTL  
INTR  
Interrupt Flag. INTL is set when right port writes location 1FFE and is cleared when left port reads location  
1FFE. INTR is set when left port writes location 1FFF and is cleared when right port reads location 1FFF.  
BUSYL  
M/S  
BUSYR  
Busy Flag  
Master or Slave Select  
Power  
VCC  
GND  
Ground  
Document #: 38-06034 Rev. *E  
Page 3 of 20  
[+] Feedback  
CY7C144, CY7C145  
Master/Slave  
Architecture  
An M/S pin is provided in order to expand the word width by  
configuring the device as either a master or a slave. The BUSY  
output of the master is connected to the BUSY input of the slave.  
This enables the device to interface to a master device with no  
external components.Writing of slave devices must be delayed  
until after the BUSY input has settled. Otherwise, the slave chip  
may begin a write cycle during a contention situation.When  
presented a HIGH input, the M/S pin allows the device to be used  
as a master and therefore the BUSY line is an output. BUSY can  
then be used to send the arbitration outcome to a slave.  
The CY7C144/5 consists of a an array of 8K words of 8/9 bits  
each of dual-port RAM cells, I/O and address lines, and control  
signals (CE, OE, R/W). These control pins permit independent  
access for reads or writes to any location in memory. To handle  
simultaneous writes or reads to the same location, a BUSY pin  
is provided on each port. Two interrupt (INT) pins can be used  
for port-to-port communication. Two semaphore (SEM) control  
pins are used for allocating shared resources. With the M/S pin,  
the CY7C144/5 can function as a Master (BUSY pins are  
outputs) or as a slave (BUSY pins are inputs). The CY7C144/5  
has an automatic power down feature controlled by CE. Each  
port is provided with its own output enable control (OE), which  
allows data to be read from the device.  
Semaphore Operation  
The CY7C144/5 provides eight semaphore latches which are  
separate from the dual-port memory locations. Semaphores are  
used to reserve resources that are shared between the two  
ports.The state of the semaphore indicates that a resource is in  
use. For example, if the left port wants to request a given  
resource, it sets a latch by writing a 0 to a semaphore location.  
The left port then verifies its success in setting the latch by  
reading it. After writing to the semaphore, SEM or OE must be  
deasserted for tSOP before attempting to read the semaphore.  
The semaphore value is available tSWRD + tDOE after the rising  
edge of the semaphore write. If the left port was successful  
(reads a 0), it assumes control over the shared resource,  
otherwise (reads a 1) it assumes the right port has control and  
continues to poll the semaphore.When the right side has relin-  
quished control of the semaphore (by writing a 1), the left side  
will succeed in gaining control of the semaphore. If the left side  
no longer requires the semaphore, a 1 is written to cancel its  
request.  
Functional Description  
Write Operation  
Data must be set up for a duration of tSD before the rising edge  
of R/W to guarantee a valid write. A write operation is controlled  
by either the OE pin (see Figure 8 on page 11) or the R/W pin  
(see Write Cycle No. 2 waveform). Data can be written to the  
device tHZOE after the OE is deasserted or tHZWE after the falling  
edge of R/W. Required inputs for non-contention operations are  
summarized in Table 3.  
If a location is being written to by one port and the opposite port  
attempts to read that location, a port-to-port flowthrough delay  
must be met before the data is read on the output; otherwise the  
data read is not deterministic. Data will be valid on the port tDDD  
after the data is presented on the other port.  
Semaphores are accessed by asserting SEM LOW. The SEM  
pin functions as a chip enable for the semaphore latches (CE  
must remain HIGH during SEM LOW). A0–2 represents the  
semaphore address. OE and R/W are used in the same manner  
as a normal memory access.When writing or reading a  
semaphore, the other address pins have no effect.  
Read Operation  
When reading the device, the user must assert both the OE and  
CE pins. Data will be available tACE after CE or tDOE after OE are  
asserted. If the user of the CY7C144/5 wishes to access a  
semaphore flag, then the SEM pin must be asserted instead of  
the CE pin.  
When writing to the semaphore, only I/O0 is used. If a 0 is written  
to the left port of an unused semaphore, a 1 appears at the same  
semaphore address on the right port. That semaphore can now  
only be modified by the side showing 0 (the left port in this case).  
If the left port now relinquishes control by writing a 1 to the  
semaphore, the semaphore will be set to 1 for both sides.  
However, if the right port had requested the semaphore (written  
a 0) while the left port had control, the right port would immedi-  
ately own the semaphore as soon as the left port released it.  
Table 5 shows sample semaphore operations.  
Interrupts  
The interrupt flag (INT) permits communications between  
ports.When the left port writes to location 1FFF, the right port’s  
interrupt flag (INTR) is set. This flag is cleared when the right port  
reads that same location. Setting the left port’s interrupt flag  
(INTL) is accomplished when the right port writes to location  
1FFE. This flag is cleared when the left port reads location 1FFE.  
The message at 1FFF or 1FFE is user-defined. See Table 4 for  
input requirements for INT. INTR and INTL are push-pull outputs  
and do not require pull-up resistors to operate.  
When reading a semaphore, all eight/nine data lines output the  
semaphore value. The read value is latched in an output register  
to prevent the semaphore from changing state during a write  
from the other port. If both ports attempt to access the  
semaphore within tSPS of each other, the semaphore is definitely  
obtained by one side or the other, but there is no guarantee which  
side controls the semaphore.  
Busy  
The CY7C144/5 provides on-chip arbitration to alleviate simulta-  
neous memory location access (contention). If both ports’ CEs  
are asserted and an address match occurs within tPS of each  
other the Busy logic determines which port has access. If tPS is  
violated, one port will definitely gain permission to the location,  
but it is not guaranteed which one. BUSY will be asserted tBLA  
after an address match or tBLC after CE is taken LOW. BUSYL  
and BUSYR in master mode are push-pull outputs and do not  
require pull-up resistors to operate.  
Initialization of the semaphore is not automatic and must be reset  
during initialization program at power up. All Semaphores on  
both sides should have a one written into them at initialization  
from both sides to assure that they are free when needed.  
Document #: 38-06034 Rev. *E  
Page 4 of 20  
[+] Feedback  
CY7C144, CY7C145  
Table 3. Non-Contending Read/Write  
Inputs  
Outputs  
I/O07/8  
Operation  
CE  
H
R/W  
X
OE  
X
SEM  
H
L
High Z  
Power Down  
H
H
L
Data Out  
High Z  
Read Data in Semaphore  
I/O Lines Disabled  
X
X
H
X
L
H
X
Data In  
Write to Semaphore  
L
L
L
H
L
L
X
X
H
H
L
Data Out  
Data In  
Read  
Write  
X
Illegal Condition  
Table 4. Interrupt Operation Example (assumes BUSYL = BUSYR = HIGH)  
Function Left Port  
Right Port  
R/W  
X
CE  
X
OE  
X
A012  
INT  
L
R/W  
L
CE  
L
OE  
X
A012  
1FFE  
X
INT  
X
Set Left INT  
X
Reset Left INT  
Set Right INT  
X
L
L
1FFE  
1FFF  
X
H
X
L
L
X
L
L
X
X
X
X
X
X
L
Reset Right INT  
X
X
X
X
X
L
L
1FFF  
H
Table 5. Semaphore Operation Example  
Function  
I/O0-7/8 Left  
I/O0-7/8 Right  
Status  
No action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left port writes semaphore  
Right port writes 0 to semaphore  
Left port writes 1 to semaphore  
Left port writes 0 to semaphore  
Right port writes 1 to semaphore  
Left port writes 1 to semaphore  
Right port writes 0 to semaphore  
Right port writes 1 to semaphore  
Left port writes 0 to semaphore  
Left port writes 1 to semaphore  
Left port obtains semaphore  
Right side is denied access  
Right port is granted access to semaphore  
No change. Left port is denied access  
Left port obtains semaphore  
No port accessing semaphore address  
Right port obtains semaphore  
No port accessing semaphore  
Left port obtains semaphore  
No port accessing semaphore  
Document #: 38-06034 Rev. *E  
Page 5 of 20  
[+] Feedback  
CY7C144, CY7C145  
Maximum Ratings  
Output Current into Outputs (LOW)............................. 20 mA  
Exceeding maximum ratings may impair the useful life of the  
device. These user guidelines are not tested.[5]  
Static Discharge Voltage........................................... >2001V  
(per MIL-STD-883, Method 3015)  
Storage Temperature ..................................... −65°C to +150°C  
Latch Up Current.................................................... >200 mA  
Ambient Temperature with  
Power Applied.................................................. −55°C to +125°C  
Operating Range  
Supply Voltage to Ground Potential .................−0.5V to +7.0V  
Ambient  
DC Voltage Applied to Outputs  
in High Z State .....................................................−0.5V to +7.0V  
DC Input Voltage[6]..............................................−0.5V to +7.0V  
Range  
Commercial  
Industrial  
Temperature  
0°C to +70°C  
40°C to +85°C  
VCC  
5V ± 10%  
5V ± 10%  
Electrical Characteristics  
Over the Operating Range  
7C144-15  
7C145-15  
7C144-25  
7C145-25  
Parameter  
Description  
Test Conditions  
Unit  
Min  
Max  
Min Max  
VOH  
VOL  
VIH  
VIL  
IIX  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Leakage Current  
Output Leakage Current  
Operating Current  
VCC = Min., IOH = 4.0 mA  
2.4  
2.4  
V
V
VCC = Min., IOL = 4.0 mA  
0.4  
0.4  
2.2  
2.2  
V
0.8  
+10  
+10  
220  
0.8  
+10  
+10  
180  
190  
40  
V
GND < VI < VCC  
10  
10  
10  
10  
μA  
μA  
mA  
IOZ  
ICC  
Outputs Disabled, GND < VO < VCC  
VCC = Max., IOUT = 0 mA  
Outputs Disabled  
Commercial  
Industrial  
ISB1  
ISB2  
ISB3  
Standby Current  
(Both Ports TTL Levels)  
CEL and CER > VIH,  
Commercial  
Industrial  
60  
130  
15  
mA  
mA  
mA  
[7]  
f = fMAX  
50  
Standby Current  
(One Port TTL Level)  
CEL or CER > VIH,  
Commercial  
Industrial  
110  
120  
15  
[7]  
f = fMAX  
Standby Current  
(Both Ports CMOS Levels) CE and CER > VCC – 0.2V,  
Both Ports  
Commercial  
Industrial  
30  
VIN > VCC – 0.2V  
or VIN < 0.2V, f = 0[7]  
ISB4  
Standby Current  
(One Port CMOS Level)  
One Port  
CEL or CER > VCC – 0.2V,  
VIN > VCC – 0.2V or  
Commercial  
Industrial  
125  
100  
115  
mA  
V
IN < 0.2V, Active  
[7]  
Port Outputs, f = fMAX  
Notes  
5. The Voltage on any input or I/O pin cannot exceed the power pin during power up.  
6. Pulse width < 20 ns.  
7.  
f
= 1/t = All inputs cycling at f = 1/t (except output enable). f = 0 means no address or control lines change. This applies only to inputs at CMOS level standby I  
M
A
X
R
C
R
C
S
B
3
Document #: 38-06034 Rev. *E  
Page 6 of 20  
[+] Feedback  
CY7C144, CY7C145  
Electrical Characteristics  
Over the Operating Range (continued)  
7C144-35  
7C145-35  
7C144-55  
7C145-55  
Parameter  
Description  
Test Conditions  
Unit  
Min  
Max  
Min  
Max  
VOH  
VOL  
VIH  
VIL  
IIX  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Leakage Current  
Output Leakage Current  
Operating Current  
VCC = Min., IOH = 4.0 mA  
2.4  
2.4  
V
V
VCC = Min., IOL = 4.0 mA  
0.4  
0.4  
2.2  
2.2  
V
0.8  
+10  
+10  
160  
180  
30  
0.8  
+10  
+10  
160  
180  
30  
V
GND < VI < VCC  
10  
10  
10  
10  
μA  
μA  
mA  
IOZ  
ICC  
Outputs Disabled, GND < VO < VCC  
VCC = Max., IOUT = 0 mA  
Outputs Disabled  
Commercial  
Industrial  
ISB1  
ISB2  
ISB3  
Standby Current  
(Both Ports TTL Levels)  
CEL and CER > VIH,  
Commercial  
Industrial  
mA  
mA  
mA  
[7]  
f = fMAX  
40  
40  
Standby Current  
(One Port TTL Level)  
CEL or CER > VIH,  
Commercial  
Industrial  
100  
110  
15  
100  
110  
15  
[7]  
f = fMAX  
Standby Current  
(Both Ports CMOS Levels) CE and CER > VCC – 0.2V,  
Both Ports  
Commercial  
Industrial  
30  
30  
VIN > VCC – 0.2V  
or VIN < 0.2V, f = 0[7]  
ISB4  
Standby Current  
(One Port CMOS Level)  
One Port  
CEL or CER > VCC – 0.2V,  
VIN > VCC – 0.2V or  
Commercial  
Industrial  
90  
90  
mA  
100  
100  
V
IN < 0.2V, Active  
[7]  
Port Outputs, f = fMAX  
Capacitance  
Tested initially and after any design or process changes that may affect these parameters.  
Parameter  
Description  
Input Capacitance  
Output Capacitance  
Figure 4. AC Test Loads and Waveforms  
Test Conditions  
Max.  
Unit  
CIN  
TA = 25°C, f = 1 MHz,  
CC = 5.0V  
10  
15  
pF  
pF  
V
COUT  
5V  
5V  
R1 = 893Ω  
R = 347Ω  
R1 = 893Ω  
R2 = 347Ω  
R
TH  
= 250Ω  
OUTPUT  
C = 30 pF  
OUTPUT  
C = 30pF  
OUTPUT  
C = 5 pF  
V
TH  
= 1.4V  
(a) Normal Load (Load1)  
(b) Thévenin Equivalent (Load 1)  
(c) Three-State Delay (Load 3)  
ALL INPUT PULSES  
OUTPUT  
3.0V  
GND  
90%  
90%  
10%  
10%  
C = 30 pF  
3 ns  
3 ns  
Load (Load 2)  
Document #: 38-06034 Rev. *E  
Page 7 of 20  
[+] Feedback  
CY7C144, CY7C145  
Switching Characteristics  
Over the Operating Range[8]  
7C144-15  
7C145-15  
7C144-25  
7C145-25  
7C144-35  
7C145-35  
7C144-55  
7C145-55  
Parameter  
Description  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
READ CYCLE  
tRC  
Read Cycle Time  
15  
3
25  
3
35  
3
55  
3
ns  
ns  
ns  
tAA  
Address to Data Valid  
15  
25  
35  
55  
tOHA  
Output Hold From Address  
Change  
tACE  
tDOE  
CE LOW to Data Valid  
OE LOW to Data Valid  
OE Low to Low Z  
15  
10  
25  
15  
35  
20  
55  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[9, 10,11]  
tLZOE  
3
3
0
3
3
0
3
3
0
3
3
0
[9, 10,11]  
tHZOE  
OE HIGH to High Z  
CE LOW to Low Z  
10  
10  
15  
15  
15  
25  
20  
20  
35  
25  
25  
55  
[9, 10,11]  
tLZCE  
[9, 10,11]  
tHZCE  
CE HIGH to High Z  
CE LOW to Power-Up  
CE HIGH to Power-Down  
[11]  
tPU  
[11]  
tPD  
WRITE CYCLE  
tWC  
tSCE  
tAW  
tHA  
Write Cycle Time  
15  
12  
12  
2
25  
20  
20  
2
35  
30  
30  
2
55  
45  
45  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CE LOW to Write End  
Address Set-Up to Write End  
Address Hold From Write End  
Address Set-Up to Write Start  
Write Pulse Width  
tSA  
0
0
0
0
tPWE  
tSD  
12  
10  
0
20  
15  
0
25  
15  
0
40  
25  
0
Data Set-Up to Write End  
Data Hold From Write End  
R/W LOW to High Z  
tHD  
[10,11]  
tHZWE  
10  
15  
20  
25  
[10,11]  
tLZWE  
R/W HIGH to Low Z  
3
3
3
3
[12]  
tWDD  
Write Pulse to Data Delay  
30  
25  
50  
30  
60  
35  
70  
40  
[12]  
tDDD  
Write Data Valid to Read Data  
Valid  
Notes  
8. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I /I  
OI OH  
and 30-pF load capacitance.  
9. At any given temperature and voltage condition for any given device, t  
10. Test conditions used are Load 3.  
is less than t  
and t  
is less than t  
.
LZOE  
HZCE  
LZCE  
HZOE  
11. This parameter is guaranteed but not tested.  
12. For information on part-to-part delay through RAM cells from writing port to reading port, refer to Read Timing with Port-to-Port Delay waveform.  
Document #: 38-06034 Rev. *E  
Page 8 of 20  
[+] Feedback  
CY7C144, CY7C145  
Switching Characteristics (continued)  
Over the Operating Range[8]  
7C144-15  
7C145-15  
7C144-25  
7C145-25  
7C144-35  
7C145-35  
7C144-55  
7C145-55  
Parameter  
Description  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
BUSY TIMING[13]  
tBLA  
BUSY LOW from Address  
Match  
15  
15  
20  
20  
20  
20  
30  
30  
ns  
ns  
tBHA  
BUSY HIGH from Address  
Mismatch  
tBLC  
tBHC  
tPS  
BUSY LOW from CE LOW  
BUSY HIGH from CE HIGH  
Port Set-Up for Priority  
15  
15  
20  
20  
20  
20  
30  
30  
ns  
ns  
ns  
ns  
ns  
ns  
5
0
5
0
5
0
5
0
tWB  
tWH  
tBDD  
R/W LOW after BUSY LOW  
R/W HIGH after BUSY HIGH  
BUSY HIGH to Data Valid  
13  
20  
30  
30  
15  
25  
35  
55  
INTERRUPT TIMING[13]  
tINS INT Set Time  
tINR INT Reset Time  
SEMAPHORE TIMING  
15  
15  
25  
25  
25  
25  
35  
35  
ns  
ns  
tSOP  
SEM Flag Update Pulse (OE or  
SEM)  
10  
10  
15  
20  
ns  
tSWRD  
tSPS  
SEM Flag Write to Read Time  
5
5
5
5
5
5
5
5
ns  
ns  
SEM Flag Contention  
Window  
Note  
13. Test conditions used are Load 2.  
Document #: 38-06034 Rev. *E  
Page 9 of 20  
[+] Feedback  
CY7C144, CY7C145  
Switching Waveforms  
Figure 5. Read Cycle No. 1 (Either Port Address Access)[14, 15]  
t
RC  
ADDRESS  
t
AA  
t
OHA  
DATA OUT  
PREVIOUS DATA VALID  
DATA VALID  
Figure 6. Read Cycle No. 2 (Either Port CE/OE Access)[14, 16, 17]  
SEM or CE  
OE  
t
HZCE  
t
ACE  
t
HZOE  
t
DOE  
t
LZOE  
t
LZCE  
DATA VALID  
DATA OUT  
t
PU  
t
PD  
I
CC  
I
SB  
Figure 7. Read Timing with Port-to-Port Delay (M/S=L)[18, 19]  
t
WC  
ADDRESS  
R
MATCH  
t
PWE  
R/W  
R
t
t
SD  
HD  
DATAIN  
VALID  
R
ADDRESS  
L
MATCH  
t
DDD  
DATA  
VALID  
OUTL  
t
WDD  
Notes  
14. R/W is HIGH for read cycle.  
15. Device is continuously selected CE = LOW and OE = LOW. This waveform cannot be used for semaphore reads.  
16. Address valid prior to or coincident with CE transition LOW.  
17. CE = L, SEM = H when accessing RAM. CE = H, SEM = L when accessing semaphores.  
L
18. BUSY = HIGH for the writing port.  
19. CE = CE = LOW.  
L
R
Document #: 38-06034 Rev. *E  
Page 10 of 20  
[+] Feedback  
CY7C144, CY7C145  
Switching Waveforms (continued)  
Figure 8. Write Cycle No. 1: OE Three-State Data I/Os (Either Port)[20, 21, 22]  
t
WC  
ADDRESS  
t
SCE  
SEM OR CE  
t
t
HA  
AW  
t
PWE  
R/W  
t
SA  
t
t
HD  
SD  
DATA IN  
DATA VALID  
OE  
t
t
HZOE  
LZOE  
HIGH IMPEDANCE  
DATA OUT  
Figure 9. Write Cycle No. 2: R/W Three-State Data I/Os (Either Port)[20, 22, 23]  
t
WC  
ADDRESS  
t
t
HA  
SCE  
SEM OR CE  
R/W  
t
AW  
t
SA  
t
PWE  
t
t
HD  
SD  
DATAVALID  
DATA IN  
t
t
LZWE  
HZWE  
HIGH IMPEDANCE  
DATA OUT  
Notes  
20. The internal write time of the memory is defined by the overlap of CE or SEM LOW and R/W LOW. Both signals must be LOW to initiate a write, and either signal can  
terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.  
21. If OE is LOW during a R/W controlled write cycle, the write pulse width must be the larger of t  
or (t  
+ t ) to allow the I/O drivers to turn off and data to be  
PWE  
HZWE SD  
placed on the bus for the required t . If OE is HIGH during a R/W controlled write cycle (as in this example), this requirement does not apply and the write pulse can  
SD  
be as short as the specified t  
.
PWE  
22. R/W must be HIGH during all address transitions.  
23. Data I/O pins enter high impedance when OE is held LOW during write.  
Document #: 38-06034 Rev. *E  
Page 11 of 20  
[+] Feedback  
CY7C144, CY7C145  
Switching Waveforms (continued)  
Figure 10. Semaphore Read After Write Timing, Either Side[24]  
t
AA  
t
OHA  
A A  
0
VALID ADDRESS  
VALID ADDRESS  
2
t
AW  
t
ACE  
t
HA  
SEM  
t
t
SOP  
SCE  
t
SD  
I/O  
0
DATA VALID  
DATA  
VALID  
IN  
OUT  
t
HD  
t
SA  
t
PWE  
R/W  
OE  
t
t
DOE  
SWRD  
t
SOP  
WRITE CYCLE  
READ CYCLE  
Figure 11. Semaphore Contention[25, 26, 27]  
A A  
0L 2L  
MATCH  
R/W  
L
SEM  
L
t
SPS  
A A  
0R 2R  
MATCH  
R/W  
R
SEM  
R
Notes  
24. CE = HIGH for the duration of the above timing (both write and read cycle).  
25. I/O = I/O = LOW (request semaphore); CE = CE = HIGH  
0R  
0L  
R
L
26. Semaphores are reset (available to both ports) at cycle start.  
27. If t is violated, the semaphore will definitely be obtained by one side or the other, but there is no guarantee which side will control the semaphore.  
SPS  
Document #: 38-06034 Rev. *E  
Page 12 of 20  
[+] Feedback  
CY7C144, CY7C145  
Switching Waveforms (continued)  
Figure 12. Read with BUSY (M/S=HIGH)[19]  
t
WC  
ADDRESS  
R
MATCH  
t
PWE  
R/W  
R
t
t
HD  
SD  
DATAIN  
VALID  
R
t
PS  
ADDRESS  
L
MATCH  
t
BLA  
t
BHA  
BUSY  
L
t
BDD  
t
DDD  
DATA  
VALID  
OUTL  
t
WDD  
Figure 13. Write Timing with Busy Input (M/S=LOW)  
t
PWE  
R/W  
t
t
WH  
WB  
BUSY  
Document #: 38-06034 Rev. *E  
Page 13 of 20  
[+] Feedback  
CY7C144, CY7C145  
Switching Waveforms (continued)  
Figure 14. Busy Timing Diagram No. 1 (CE Arbitration)[28]  
CEL Valid First:  
ADDRESSL,R  
ADDRESS MATCH  
CE  
L
t
PS  
CE  
R
t
t
BHC  
BLC  
BUSY  
R
CER Valid First:  
ADDRESSL,R  
ADDRESS MATCH  
CE  
R
t
PS  
CE  
L
t
t
BHC  
BLC  
BUSY  
L
Figure 15. Busy Timing Diagram No. 2 (Address Arbitration)[28]  
Left Address Valid First:  
t
or t  
WC  
RC  
ADDRESS  
L
ADDRESS MATCH  
ADDRESS MISMATCH  
t
PS  
ADDRESS  
BUSY  
R
R
t
t
BHA  
BLA  
Right Address Valid First:  
t
or t  
WC  
RC  
ADDRESS  
R
L
ADDRESS MATCH  
ADDRESS MISMATCH  
t
PS  
ADDRESS  
t
t
BHA  
BLA  
BUSY  
L
Note  
28. If t is violated, the busy signal will be asserted on one side or the other, but there is no guarantee on which side BUSY will be asserted.  
PS  
Document #: 38-06034 Rev. *E  
Page 14 of 20  
[+] Feedback  
CY7C144, CY7C145  
Switching Waveforms (continued)  
Figure 16. Interrupt Timing Diagrams  
Left Side Sets INTR:  
t
WC  
ADDRESS  
CE  
WRITE 1FFF  
L
L
[29]  
t
HA  
R/W  
INT  
L
R
[30]  
t
INS  
Right Side Clears INTR:  
t
RC  
ADDRESS  
READ 1FFF  
R
CE  
R
[30]  
t
INR  
R/W  
OE  
R
R
INT  
R
Right Side Sets INTL:  
t
WC  
ADDRESS  
WRITE 1FFE  
R
[29]  
t
HA  
CE  
R
R
R/W  
INT  
L
[30]  
t
INS  
Left Side Clears INTL:  
t
RC  
ADDRESS  
READ 1FFE  
R
CE  
L
[30]  
t
INR  
R/W  
L
OE  
L
INT  
L
Notes  
29. t depends on which enable pin (CE or R/W ) is deasserted first.  
HA  
L
L
30. t  
or t  
depends on which enable pin (CE or R/W ) is asserted last.  
INS  
INR L L  
Document #: 38-06034 Rev. *E  
Page 15 of 20  
[+] Feedback  
CY7C144, CY7C145  
Figure 17. Typical DC and AC Characteristics  
NORMALIZED SUPPLY CURRENT  
vs. AMBIENT TEMPERATURE  
OUTPUT SOURCE CURRENT  
vs. OUTPUT VOLTAGE  
NORMALIZED SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
200  
160  
120  
80  
1.4  
1.2  
1.0  
0.8  
1.2  
1.0  
ICC  
ICC  
ISB3  
0.8  
0.6  
0.4  
ISB3  
VCC = 5.0V  
TA = 25°C  
VCC = 5.0V  
VIN = 5.0V  
0.6  
0.4  
40  
0
0.2  
0.6  
0.2  
0.0  
5.0  
55  
25  
125  
0
1.0  
2.0  
3.0  
4.0  
4.0  
4.5  
5.0  
5.5  
6.0  
AMBIENT TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
NORMALIZED ACCESS TIME  
vs. AMBIENT TEMPERATURE  
OUTPUT SINK CURRENT  
vs. OUTPUT VOLTAGE  
NORMALIZED ACCESS TIME  
vs. SUPPLY VOLTAGE  
140  
120  
1.6  
1.4  
1.4  
1.3  
1.2  
1.1  
100  
80  
1.2  
1.0  
60  
TA = 25°C  
VCC = 5.0V  
1.0  
40  
0.8  
V
CC = 5.0V  
20  
0
0.9  
0.8  
TA = 25°C  
0.6  
55  
0.0  
1.0  
2.0  
3.0  
4.0  
25  
125  
5.0  
4.0  
4.5  
5.0  
5.5  
6.0  
AMBIENT TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TYPICAL POWER-ON CURRENT  
vs. SUPPLY VOLTAGE  
TYPICAL ACCESS TIME CHANGE  
vs. OUTPUT LOADING  
NORMALIZED ICC vs. CYCLE TIME  
1.25  
30.0  
25.0  
1.00  
V
CC = 5.0V  
TA = 25°C  
VIN = 5.0V  
0.75  
0.50  
1.0  
20.0  
15.0  
10.0  
0.75  
0.25  
0.0  
VCC = 4.5V  
TA = 25°C  
5.0  
0
0.50  
40  
10  
28  
66  
0
1.0  
2.0  
3.0  
4.0 5.0  
0
200 400 600 800 1000  
CAPACITANCE (pF)  
CYCLE FREQUENCY (MHz)  
SUPPLY VOLTAGE (V)  
Document #: 38-06034 Rev. *E  
Page 16 of 20  
[+] Feedback  
CY7C144, CY7C145  
Ordering Information  
8K x8 Dual-Port SRAM  
Speed  
Package  
Diagram  
Operating  
Range  
(ns)  
Ordering Code  
Package Type  
64-Pin Thin Quad Flat Pack  
15  
CY7C144-15AC  
CY7C144-15AXC  
CY7C144-15JC  
CY7C144-15JXC  
CY7C144-15AI  
CY7C144-15JXI  
CY7C144-15AXI  
CY7C144-25AC  
CY7C144-25AXC  
CY7C144-25JC  
CY7C144-25AI  
CY7C144-25JI  
CY7C144-35AC  
CY7C144-35JC  
CY7C144-35AI  
CY7C144-35JI  
CY7C144-55AC  
CY7C144-55AXC  
CY7C144-55JC  
CY7C144-55JXC  
CY7C144-55AI  
CY7C144-55JI  
51-85046  
51-85046  
51-85005  
51-85005  
51-85046  
51-85005  
51-85046  
51-85046  
51-85046  
51-85005  
51-85046  
51-85005  
51-85046  
51-85005  
51-85046  
51-85005  
51-85046  
51-85046  
51-85005  
51-85005  
51-85046  
51-85005  
Commercial  
64-Pin Thin Quad Flat Pack (Pb-Free)  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier (Pb-Free)  
64-Pin Thin Quad Flat Pack  
Industrial  
68-Pin Plastic Leaded Chip Carrier (Pb-Free)  
64-Pin Thin Quad Flat Pack (Pb-Free)  
64-Pin Thin Quad Flat Pack  
25  
Commercial  
64-Pin Thin Quad Flat Pack (Pb-Free)  
68-Pin Plastic Leaded Chip Carrier  
64-Pin Thin Quad Flat Pack  
Industrial  
Commercial  
Industrial  
68-Pin Plastic Leaded Chip Carrier  
64-Pin Thin Quad Flat Pack  
35  
55  
68-Pin Plastic Leaded Chip Carrier  
64-Pin Thin Quad Flat Pack  
68-Pin Plastic Leaded Chip Carrier  
64-Pin Thin Quad Flat Pack  
Commercial  
64-Pin Thin Quad Flat Pack (Pb-Free)  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier (Pb-Free)  
64-Pin Thin Quad Flat Pack  
Industrial  
68-Pin Plastic Leaded Chip Carrier  
8K x9 Dual-Port SRAM  
15  
CY7C145-15AC  
CY7C145-15AXC  
CY7C145-15JC  
CY7C145-25AC  
CY7C145-25JC  
CY7C145-25AI  
CY7C145-25JI  
CY7C145-35AC  
CY7C145-35JC  
CY7C145-35JXC  
CY7C145-35AI  
CY7C145-35JI  
CY7C145-55AC  
CY7C145-55JC  
CY7C145-55AI  
CY7C145-55JI  
51-85065  
51-85065  
51-85005  
51-85065  
51-85005  
51-85065  
51-85005  
51-85065  
51-85005  
51-85005  
51-85065  
51-85005  
51-85065  
51-85005  
51-85065  
51-85005  
80-Pin Thin Quad Flat Pack  
Commercial  
80-Pin Thin Quad Flat Pack (Pb-Free)  
68-Pin Plastic Leaded Chip Carrier  
80-Pin Thin Quad Flat Pack  
25  
Commercial  
Industrial  
68-Pin Plastic Leaded Chip Carrier  
80-Pin Thin Quad Flat Pack  
68-Pin Plastic Leaded Chip Carrier  
80-Pin Thin Quad Flat Pack  
35  
55  
Commercial  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier (Pb-Free)  
80-Pin Thin Quad Flat Pack  
Industrial  
Commercial  
Industrial  
68-Pin Plastic Leaded Chip Carrier  
80-Pin Thin Quad Flat Pack  
68-Pin Plastic Leaded Chip Carrier  
80-Pin Thin Quad Flat Pack  
68-Pin Plastic Leaded Chip Carrier  
Document #: 38-06034 Rev. *E  
Page 17 of 20  
[+] Feedback  
CY7C144, CY7C145  
Package Diagrams  
Figure 18. 64-Pin Thin Plastic Quad Flat Pack (14 x 14 x 1.4 mm), 51-85046  
51-85046 *C  
Document #: 38-06034 Rev. *E  
Page 18 of 20  
[+] Feedback  
CY7C144, CY7C145  
Package Diagrams (continued)  
Figure 19. 80-Pin Thin Plastic Quad Flat Pack, 51-85065  
51-85065-*B  
Figure 20. 68-Pin Plastic Leaded Chip Carrier, 51-85005  
51-85005-*A  
Document #: 38-06034 Rev. *E  
Page 19 of 20  
[+] Feedback  
CY7C144, CY7C145  
Document History Page  
Document Title: CY7C145, CY7C144 8K x 8/9 Dual-Port Static RAM with Sem, Int, Busy  
Document Number: 38-06034  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN No.  
Description of Change  
**  
110175  
122285  
236752  
SZV  
RBI  
09/29/01 Change from Spec number: 38-00163 to 38-06034  
*A  
*B  
12/27/02 Power up requirements added to Maximum Ratings Information  
YDT  
See ECN Removed cross information from features section, added CY7C144-15AI to  
ordering information section  
*C  
393320  
YIM  
See ECN Added Pb-Free Logo  
Added Pb-Free parts to ordering information:  
CY7C144-15AXC, CY7C144-15JXC, CY7C144-15AXI, CY7C144-25AXC,  
CY7C144-55AXC, CY7C144-55JXC, CY7C145-15AXC, CY7C145-35JXC  
*D  
*E  
2623658  
2699693  
VKN/PYRS  
VKN/PYRS  
12/17/2008 Added CY7C144-15JXI in the Ordering information table  
04/29/2009 Corrected defective Logic Block diagram, Pinouts and Package diagrams  
Sales, Solutions and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at cypress.com/sales.  
Products  
PSoC  
PSoC Solutions  
General  
psoc.cypress.com  
clocks.cypress.com  
wireless.cypress.com  
memory.cypress.com  
image.cypress.com  
psoc.cypress.com/solutions  
psoc.cypress.com/low-power  
psoc.cypress.com/precision-analog  
psoc.cypress.com/lcd-drive  
psoc.cypress.com/can  
Clocks & Buffers  
Wireless  
Low Power/Low Voltage  
Precision Analog  
LCD Drive  
Memories  
Image Sensors  
CAN 2.0b  
USB  
psoc.cypress.com/usb  
© Cypress Semiconductor Corporation, 2005-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used  
for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use  
as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support  
systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document #: 38-06034 Rev. *E  
Revised April 26, 2009  
Page 20 of 20  
All products and company names mentioned in this document may be the trademarks of their respective holders.  
[+] Feedback  

相关型号:

CY7C144-15AI

8K x 8/9 Dual-Port Static RAM with SEM, INT, BUSY
CYPRESS

CY7C144-15AI

8KX8 DUAL-PORT SRAM, 15ns, PQFP64, 14 X 14 MM, 1.4 MM HEIGHT, PLASTIC, TQFP-64
ROCHESTER

CY7C144-15AIT

Dual-Port SRAM, 8KX8, 15ns, CMOS, PQFP64, 14 X 14 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-64
CYPRESS

CY7C144-15AXC

8K x 8/9 Dual-Port Static RAM with SEM, INT, BUSY
CYPRESS

CY7C144-15AXCT

Multi-Port SRAM, 8KX8, 15ns, CMOS, PQFP64
CYPRESS

CY7C144-15AXI

8K x 8/9 Dual-Port Static RAM with SEM, INT, BUSY
CYPRESS

CY7C144-15AXIT

Multi-Port SRAM, 8KX8, 15ns, CMOS, PQFP64
CYPRESS

CY7C144-15JC

8K x 8/9 Dual-Port Static RAM with Sem, Int, Busy
CYPRESS

CY7C144-15JCT

Dual-Port SRAM, 8KX8, 15ns, CMOS, PQCC68, PLASTIC, LCC-68
CYPRESS

CY7C144-15JXC

8K x 8/9 Dual-Port Static RAM with SEM, INT, BUSY
CYPRESS

CY7C144-15JXC

8KX8 DUAL-PORT SRAM, 15ns, PQCC68, LEAD FREE, PLASTIC, LCC-68
ROCHESTER

CY7C144-15JXCT

Dual-Port SRAM, 8KX8, 15ns, CMOS, PQCC68, LEAD FREE, PLASTIC, LCC-68
CYPRESS