CY7C1440AV25-250BZXIT [CYPRESS]

SRAM;
CY7C1440AV25-250BZXIT
型号: CY7C1440AV25-250BZXIT
厂家: CYPRESS    CYPRESS
描述:

SRAM

静态存储器
文件: 总33页 (文件大小:611K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1440AV25  
CY7C1446AV25  
36-Mbit (1 M × 36/512 K × 72)  
Pipelined Sync SRAM  
36-Mbit (1  
M × 36/512 K × 72) Pipelined Sync SRAM  
Features  
Functional Description  
Supports bus operation up to 250 MHz  
Available speed grades are 250 and 167 MHz  
Registered inputs and outputs for pipelined operation  
2.5 V core power supply  
The  
CY7C1440AV25/CY7C1446AV25 SRAM  
integrates  
1 M × 36/512 K × 72 SRAM cells with advanced synchronous  
peripheral circuitry and a two-bit counter for internal burst  
operation. All synchronous inputs are gated by registers  
controlled by a positive-edge-triggered Clock Input (CLK). The  
synchronous inputs include all addresses, all data inputs,  
address-pipelining Chip Enable (CE1), depth-expansion Chip  
Enables (CE2 and CE3), Burst Control inputs (ADSC, ADSP, and  
ADV), Write Enables (BWX, and BWE), and Global Write (GW).  
Asynchronous inputs include the Output Enable (OE) and the ZZ  
pin.  
2.5 V power supply  
Fast clock-to-output times  
2.6 ns (for 250-MHz device)  
Provide high-performance 3-1-1-1 access rate  
Addresses and chip enables are registered at rising edge of  
clock when either Address Strobe Processor (ADSP) or Address  
Strobe Controller (ADSC) are active. Subsequent burst  
addresses can be internally generated as controlled by the  
Advance pin (ADV).  
User-selectable burst counter supporting IntelPentium  
interleaved or linear burst sequences  
Separate processor and controller address strobes  
Synchronous self-timed writes  
Address, data inputs, and write controls are registered on-chip  
to initiate a self-timed Write cycle.This part supports Byte Write  
operations (see Pin Descriptions and Truth Table for further  
details). Write cycles can be one to two or four bytes wide as  
Asynchronous output enable  
Single-cycle Chip Deselect  
controlled by the byte write control inputs. GW when active  
causes all bytes to be written.  
LOW  
CY7C1440AV25 available in Pb-free and non-Pb-free 165-ball  
FBGA package. CY7C1446AV25 available in non-Pb-free  
209-ball FBGA package  
The CY7C1440AV25/CY7C1446AV25 operates from a +2.5 V  
core power supply while all outputs may operate with a +2.5 V  
supply. All inputs and outputs are JEDEC-standard  
JESD8-5-compatible.  
IEEE 1149.1 JTAG-Compatible Boundary Scan  
“ZZ” Sleep Mode Option  
For a complete list of related documentation, click here.  
Selection Guide  
Description  
Maximum Access Time  
250 MHz  
2.6  
167 MHz Unit  
3.4  
335  
120  
ns  
Maximum Operating Current  
435  
mA  
mA  
Maximum CMOS Standby Current  
120  
Cypress Semiconductor Corporation  
Document Number: 001-70167 Rev. *E  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised January 5, 2016  
 
CY7C1440AV25  
CY7C1446AV25  
Logic Block Diagram – CY7C1440AV25  
A0, A1, A  
ADDRESS  
REGISTER  
2
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER  
AND  
CLR  
Q0  
LOGIC  
ADSC  
ADSP  
DQ  
BYTE  
WRITE REGISTER  
D ,DQPD  
DQ  
BYTE  
WRITE DRIVER  
D ,DQPD  
BW  
D
DQC ,DQP  
BYTE  
WRITE DRIVER  
C
DQC ,DQP  
BYTE  
WRITE REGISTER  
C
BW  
C
OUTPUT  
BUFFERS  
OUTPUT  
REGISTERS  
MEMORY  
ARRAY  
DQ s  
SENSE  
AMPS  
DQPA  
DQB ,DQP  
BYTE  
WRITE DRIVER  
B
E
DQB ,DQP  
BYTE  
WRITE REGISTER  
B
DQP  
DQP  
B
C
BW  
BW  
B
A
DQPD  
DQ  
BYTE  
WRITE DRIVER  
A ,DQPA  
DQ  
A ,DQPA  
BYTE  
WRITE REGISTER  
BWE  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
PIPELINED  
ENABLE  
CE  
CE  
CE  
1
2
3
OE  
SLEEP  
CONTROL  
ZZ  
Document Number: 001-70167 Rev. *E  
Page 2 of 33  
CY7C1440AV25  
CY7C1446AV25  
Logic Block Diagram – CY7C1446AV25  
ADDRESS  
REGISTER  
A0, A1,A  
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BINARY  
COUNTER  
CLR  
Q0  
ADSC  
ADSP  
DQH, DQPH  
WRITE DRIVER  
DQH, DQPH  
WRITE DRIVER  
BWH  
BWG  
DQG, DQPG  
WRITE DRIVER  
DQF, DQPF  
WRITE DRIVER  
DQF, DQPF  
DQF, DQPF  
BWF  
BWE  
BWD  
BWC  
WRITE DRIVER  
WRITE DRIVER  
DQE, DQPE  
WRITE DRIVER  
DQE, DQPE  
WRITE DRIVER  
MEMORY  
ARRAY  
DQD, DQPD  
WRITE DRIVER  
DQD, DQPD  
WRITE DRIVER  
DQC, DQPC  
WRITE DRIVER  
DQC, DQPC  
WRITE DRIVER  
OUTPUT  
BUFFERS  
OUTPUT  
REGISTERS  
SENSE  
AMPS  
DQs  
DQPA  
DQPB  
DQPC  
DQPD  
DQPE  
DQPF  
DQPG  
DQPH  
E
DQB, DQPB  
WRITE DRIVER  
DQB, DQPB  
WRITE DRIVER  
BWB  
DQA, DQPA  
WRITE DRIVER  
DQA, DQPA  
WRITE DRIVER  
BWA  
BWE  
INPUT  
GW  
CE1  
CE2  
CE3  
OE  
REGISTERS  
ENABLE  
REGISTER  
PIPELINED  
ENABLE  
SLEEP  
CONTROL  
ZZ  
Document Number: 001-70167 Rev. *E  
Page 3 of 33  
CY7C1440AV25  
CY7C1446AV25  
Contents  
Pin Configurations ...........................................................5  
Pin Definitions ..................................................................7  
Functional Overview ........................................................8  
Single Read Accesses ................................................8  
Single Write Accesses Initiated by ADSP ...................8  
Single Write Accesses Initiated by ADSC ...................9  
Burst Sequences .........................................................9  
Sleep Mode .................................................................9  
Interleaved Burst Address Table .................................9  
Linear Burst Address Table .........................................9  
ZZ Mode Electrical Characteristics ..............................9  
Truth Table ......................................................................10  
Truth Table for Read/Write ............................................11  
Truth Table for Read/Write ............................................11  
IEEE 1149.1 Serial Boundary Scan (JTAG) ..................12  
Disabling the JTAG Feature ......................................12  
Test Access Port (TAP) .............................................12  
PERFORMING A TAP RESET ..................................12  
TAP REGISTERS ......................................................12  
TAP Instruction Set ...................................................12  
TAP Controller State Diagram .......................................14  
TAP Controller Block Diagram ......................................15  
TAP Timing ......................................................................15  
TAP AC Switching Characteristics ...............................16  
2.5 V TAP AC Test Conditions .......................................17  
2.5 V TAP AC Output Load Equivalent .........................17  
TAP DC Electrical Characteristics  
Scan Register Sizes .......................................................18  
Instruction Codes ...........................................................18  
Boundary Scan Order ....................................................19  
Boundary Scan Order ....................................................20  
Maximum Ratings ...........................................................21  
Operating Range .............................................................21  
Electrical Characteristics ...............................................21  
DC Electrical Characteristics .....................................21  
Capacitance ....................................................................22  
Thermal Resistance ........................................................22  
AC Test Loads and Waveforms .....................................22  
Switching Characteristics ..............................................23  
Switching Waveforms ....................................................24  
Ordering Information ......................................................28  
Ordering Code Definitions .........................................28  
Package Diagrams ..........................................................29  
Acronyms ........................................................................31  
Document Conventions .................................................31  
Units of Measure .......................................................31  
Document History Page .................................................32  
Sales, Solutions, and Legal Information ......................33  
Worldwide Sales and Design Support .......................33  
Products ....................................................................33  
PSoC® Solutions ......................................................33  
Cypress Developer Community .................................33  
Technical Support .....................................................33  
and Operating Conditions .............................................17  
Identification Register Definitions ................................18  
Document Number: 001-70167 Rev. *E  
Page 4 of 33  
CY7C1440AV25  
CY7C1446AV25  
Pin Configurations  
Figure 1. 165-ball FBGA (15 × 17 × 1.4 mm) pinout  
CY7C1440AV25 (1 M × 36)  
1
2
3
4
5
6
7
8
9
10  
A
11  
NC  
NC/288M  
NC/144M  
DQPC  
A
B
C
D
CE1  
BWC  
BWD  
VSS  
VDD  
BWB  
BWA  
VSS  
VSS  
CE3  
CLK  
VSS  
VSS  
ADSC  
A
BWE  
GW  
VSS  
VSS  
ADV  
ADSP  
VDDQ  
VDDQ  
A
CE2  
VDDQ  
VDDQ  
A
NC/576M  
DQPB  
DQB  
OE  
VSS  
VDD  
NC  
NC/1G  
DQB  
DQC  
DQC  
DQC  
DQC  
DQC  
NC  
DQC  
DQC  
DQC  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQB  
DQB  
DQB  
NC  
DQB  
DQB  
DQB  
ZZ  
E
F
G
H
J
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
K
L
DQD  
DQPD  
NC  
DQD  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
A
M
N
P
NC/72M  
TDI  
A1  
TDO  
A0  
MODE  
A
A
A
TMS  
TCK  
A
A
A
A
R
Document Number: 001-70167 Rev. *E  
Page 5 of 33  
CY7C1440AV25  
CY7C1446AV25  
Pin Configurations (continued)  
Figure 2. 209-ball FBGA (14 × 22 × 1.76 mm) pinout  
CY7C1446AV25 (512 K × 72)  
1
2
3
4
5
6
7
8
9
10  
11  
DQG  
DQG  
DQG  
A
B
C
D
E
F
DQG  
DQG  
A
ADSP  
ADV  
A
CE3  
BWSB  
BWSE  
NC  
DQB  
DQB  
CE2  
ADSC  
BW  
A
DQB  
DQB  
NC/288M  
NC/144M  
BWSC  
BWSH  
VSS  
BWSF  
BWSG  
BWSD  
DQG  
DQG  
NC/576M  
GW  
CE1  
BWSA DQB  
DQB  
DQB  
DQG  
NC/1G OE  
VSS  
NC  
DQB  
DQPG DQPC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VDD  
VDD  
VSS  
VDD  
DQPF DQPB  
DQC  
DQC  
VSS  
DQF  
DQF  
VSS  
VDDQ  
VSS  
NC  
NC  
NC  
NC  
VSS  
NC  
NC  
VSS  
G
H
J
DQC  
DQC  
DQC VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
DQF  
DQF  
DQF  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
NC  
A
VSS  
VDDQ  
CLK  
VDDQ  
VSS  
DQC  
DQC  
NC  
DQF  
DQF  
NC  
VDDQ  
DQC  
NC  
VDDQ  
VDDQ  
NC  
DQF  
NC  
K
L
NC  
NC  
DQH  
DQH  
DQH  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
DQA  
DQA  
DQA  
M
N
P
R
T
VSS  
VDDQ  
VSS  
VDDQ  
NC  
DQH  
DQH  
DQH  
VSS  
VDD  
VSS  
DQA  
DQA  
DQA  
VDDQ  
DQH  
DQH  
DQPD  
DQD  
DQD  
VDDQ  
VSS  
VDDQ  
NC  
ZZ  
DQA  
DQA  
DQPA  
DQE  
DQE  
VSS  
VDDQ  
VSS  
A
VDD  
NC  
A
DQPH  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDD  
MODE  
A
DQPE  
DQE  
DQE  
DQE  
DQE  
VSS  
NC  
A
U
V
W
A
NC/72M  
A
A
A1  
A
DQD  
DQD  
A
A
A
A
DQE  
DQE  
TDI  
TDO  
TCK  
A0  
A
TMS  
Document Number: 001-70167 Rev. *E  
Page 6 of 33  
CY7C1440AV25  
CY7C1446AV25  
Pin Definitions  
Name  
I/O  
Description  
Address Inputs used to select one of the address locations. Sampled at the rising edge of the CLK  
A0, A1, A  
Input-  
Synchronous if ADSP or ADSC is active LOW, and CE1, CE2, and CE3 are sampled active. A1:A0 are fed to the two-bit  
counter.  
BWA, BWB,  
Input-  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes to the SRAM. Sampled  
BWC, BWD, Synchronous on the rising edge of CLK.  
BWE, BWF,  
BWG, BWH  
GW  
Input-  
Global Write Enable Input, active LOW. When asserted LOW on the rising edge of CLK, a global write  
Synchronous is conducted (ALL bytes are written, regardless of the values on BWX and BWE).  
BWE  
CLK  
CE1  
Input- Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal must be asserted  
Synchronous LOW to conduct a byte write.  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. Also used to increment the burst  
counter when ADV is asserted LOW, during a burst operation.  
Input-  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE2  
Synchronous and CE3 to select/deselect the device. ADSP is ignored if CE1 is HIGH. CE1 is sampled only when a new  
external address is loaded.  
CE2  
CE3  
Input-  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with CE1  
Synchronous and CE3 to select/deselect the device. CE2 is sampled only when a new external address is loaded.  
Input- Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE1  
Synchronous andCE2 to select/deselect the device. Not connected for BGA. Where referenced, CE3 is assumed active  
throughout this document for BGA. CE3 is sampled only when a new external address is loaded.  
OE  
Input-  
Output Enable, asynchronous input, active LOW. Controls the direction of the I/O pins. When LOW,  
Asynchronous the I/O pins behave as outputs. When deasserted HIGH, I/O pins are tri-stated, and act as input data  
pins. OE is masked during the first clock of a read cycle when emerging from a deselected state.  
ADV  
Input-  
Advance Input signal, sampled on the rising edge of CLK, active LOW. When asserted, it  
Synchronous automatically increments the address in a burst cycle.  
ADSP  
Input- Address Strobe from Processor, sampled on the rising edge of CLK, active LOW. When asserted  
Synchronous LOW, addresses presented to the device are captured in the address registers. A1:A0 are also loaded  
into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. ASDP is  
ignored when CE1 is deasserted HIGH.  
ADSC  
Input-  
Address Strobe from Controller, sampled on the rising edge of CLK, active LOW. When asserted  
Synchronous LOW, addresses presented to the device are captured in the address registers. A1:A0 are also loaded  
into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized.  
ZZ  
Input-  
ZZ “sleep” Input, active HIGH. When asserted HIGH places the device in a non-time-critical “sleep”  
Asynchronous condition with data integrity preserved. For normal operation, this pin has to be LOW or left floating. ZZ  
pin has an internal pull-down.  
I/O-  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is triggered by the  
DQs, DQPs  
Synchronous rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by the  
addresses presented during the previous clock rise of the read cycle. The direction of the pins is controlled  
by OE. When OE is asserted LOW, the pins behave as outputs. When HIGH, DQs and DQPX are placed  
in a tri-state condition.  
VDD  
Power Supply Power supply inputs to the core of the device.  
VSS  
Ground  
Ground for the core of the device.  
VSSQ  
VDDQ  
I/O Ground Ground for the I/O circuitry.  
I/O Power Power supply for the I/O circuitry.  
Supply  
Document Number: 001-70167 Rev. *E  
Page 7 of 33  
CY7C1440AV25  
CY7C1446AV25  
Pin Definitions (continued)  
Name  
MODE  
I/O  
Description  
Input-Static Selects Burst Order. When tied to GND selects linear burst sequence. When tied to VDD or left floating  
selects interleaved burst sequence. This is a strap pin and should remain static during device operation.  
Mode Pin has an internal pull-up.  
TDO  
TDI  
JTAG serial Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If the JTAG feature is  
output  
not being utilized, this pin should be disconnected.  
Synchronous  
JTAG serial Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature is not being  
input  
utilized, this pin can be disconnected or connected to VDD.  
Synchronous  
TMS  
JTAG serial Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature is not being  
input  
utilized, this pin can be disconnected or connected to VDD.  
Synchronous  
TCK  
NC  
JTAG-Clock Clock input to the JTAG circuitry. If the JTAG feature is not being utilized, this pin must be connected  
to VSS  
.
No Connects. Not internally connected to the die  
NC/72M,  
NC/144M,  
NC/288M,  
NC/576,  
NC/1G  
No Connects. Not internally connected to the die. 72M, 144M, 288M, 576M and 1G are address  
expansion pins are not internally connected to the die.  
HIGH. The address presented to the address inputs (A) is stored  
Functional Overview  
into the address advancement logic and the Address Register  
while being presented to the memory array. The corresponding  
data is allowed to propagate to the input of the Output Registers.  
At the rising edge of the next clock the data is allowed to  
propagate through the output register and onto the data bus  
within 2.6 ns (250-MHz device) if OE is active LOW. The only  
exception occurs when the SRAM is emerging from a deselected  
state to a selected state, its outputs are always tri-stated during  
the first cycle of the access. After the first cycle of the access,  
the outputs are controlled by the OE signal. Consecutive single  
Read cycles are supported. Once the SRAM is deselected at  
clock rise by the chip select and either ADSP or ADSC signals,  
its output will tri-state immediately.  
All synchronous inputs pass through input registers controlled by  
the rising edge of the clock. All data outputs pass through output  
registers controlled by the rising edge of the clock. Maximum  
access delay from the clock rise (tCO) is 2.6 ns (250-MHz  
device).  
The CY7C1440AV25/CY7C1446AV25 supports secondary cache  
in systems utilizing either a linear or interleaved burst sequence.  
The interleaved burst order supports Pentium and i486  
processors. The linear burst sequence is suited for processors  
that utilize a linear burst sequence. The burst order is user  
selectable, and is determined by sampling the MODE input.  
Accesses can be initiated with either the Processor Address  
Strobe (ADSP) or the Controller Address Strobe (ADSC).  
Address advancement through the burst sequence is controlled  
by the ADV input. A two-bit on-chip wraparound burst counter  
captures the first address in a burst sequence and automatically  
increments the address for the rest of the burst access.  
Single Write Accesses Initiated by ADSP  
This access is initiated when both of the following conditions are  
satisfied at clock rise: (1) ADSP is asserted LOW, and (2) CE1,  
CE2, CE3 are all asserted active. The address presented to A is  
loaded into the address register and the address advancement  
logic while being delivered to the memory array. The Write  
signals (GW, BWE, and BWX) and ADV inputs are ignored during  
this first cycle.  
Byte Write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BWX) inputs. A Global Write  
Enable (GW) overrides all Byte Write inputs and writes data to  
all four bytes. All writes are simplified with on-chip synchronous  
self-timed Write circuitry.  
ADSP-triggered Write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQs inputs is written into the  
corresponding address location in the memory array. If GW is  
HIGH, then the Write operation is controlled by BWE and BWX  
signals.  
Three synchronous Chip Selects (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output tri-state control. ADSP is ignored if CE1 is  
HIGH.  
The CY7C1440AV25/CY7C1446AV25 provides Byte Write  
capability that is described in the Write Cycle Descriptions table.  
Asserting the Byte Write Enable input (BWE) with the selected  
Byte Write (BWX) input, will selectively write to only the desired  
bytes. Bytes not selected during a Byte Write operation will  
Single Read Accesses  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)  
CE1, CE2, CE3 are all asserted active, and (3) the Write signals  
(GW, BWE) are all deserted HIGH. ADSP is ignored if CE1 is  
Document Number: 001-70167 Rev. *E  
Page 8 of 33  
CY7C1440AV25  
CY7C1446AV25  
remain unaltered. A synchronous self-timed Write mechanism  
has been provided to simplify the Write operations.  
Asserting ADV LOW at clock rise will automatically increment the  
burst counter to the next address in the burst sequence. Both  
Read and Write burst operations are supported.  
Because CY7C1440AV25/CY7C1446AV25 is a common I/O  
device, the Output Enable (OE) must be deasserted HIGH  
before presenting data to the DQs inputs. Doing so will tri-state  
the output drivers. As a safety precaution, DQs are automatically  
tri-stated whenever a Write cycle is detected, regardless of the  
state of OE.  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ places  
the SRAM in a power conservation “sleep” mode. Two clock  
cycles are required to enter into or exit from this “sleep” mode.  
While in this mode, data integrity is guaranteed. Accesses  
pending when entering the “sleep” mode are not considered valid  
nor is the completion of the operation guaranteed. The device  
must be deselected prior to entering the “sleep” mode. CE1, CE2,  
CE3, ADSP, and ADSC must remain inactive for the duration of  
Single Write Accesses Initiated by ADSC  
ADSC Write accesses are initiated when the following conditions  
are satisfied: (1) ADSC is asserted LOW, (2) ADSP is deserted  
HIGH, (3) CE1, CE2, CE3 are all asserted active, and (4) the  
appropriate combination of the Write inputs (GW, BWE, and  
BWX) are asserted active to conduct a Write to the desired  
byte(s). ADSC-triggered Write accesses require a single clock  
cycle to complete. The address presented to A is loaded into the  
address register and the address advancement logic while being  
delivered to the memory array. The ADV input is ignored during  
this cycle. If a global Write is conducted, the data presented to  
the DQs is written into the corresponding address location in the  
memory core. If a Byte Write is conducted, only the selected  
bytes are written. Bytes not selected during a Byte Write  
operation will remain unaltered. A synchronous self-timed Write  
mechanism has been provided to simplify the Write operations.  
tZZREC after the ZZ input returns LOW  
.
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
First  
Address  
A1:A0  
Second  
Address  
A1:A0  
Third  
Address  
A1:A0  
Fourth  
Address  
A1:A0  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Because CY7C1440AV25/CY7C1446AV25 is a common I/O  
device, the Output Enable (OE) must be deasserted HIGH  
before presenting data to the DQs inputs. Doing so will tri-state  
the output drivers. As a safety precaution, DQs are automatically  
tri-stated whenever a Write cycle is detected, regardless of the  
state of OE.  
Linear Burst Address Table  
(MODE = GND)  
Burst Sequences  
First  
Address  
A1:A0  
Second  
Address  
A1:A0  
Third  
Address  
A1:A0  
Fourth  
Address  
A1:A0  
The CY7C1440AV25/CY7C1446AV25 provides  
a
two-bit  
wraparound counter, fed by A1:A0, that implements either an  
interleaved or linear burst sequence. The interleaved burst  
sequence is designed specifically to support Intel Pentium appli-  
cations. The linear burst sequence is designed to support  
processors that follow a linear burst sequence. The burst  
sequence is user selectable through the MODE input.  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
Min  
Max  
100  
2tCYC  
Unit  
mA  
ns  
ZZ > VDD– 0.2 V  
tZZS  
ZZ > VDD – 0.2 V  
ZZ < 0.2 V  
2tCYC  
tZZREC  
tZZI  
ns  
ZZ Active to sleep current  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
ZZ Inactive to exit sleep current This parameter is sampled  
0
ns  
Document Number: 001-70167 Rev. *E  
Page 9 of 33  
CY7C1440AV25  
CY7C1446AV25  
Truth Table  
The truth table for CY7C1440AV25/CY7C1446AV25 follows. [1, 2, 3, 4, 5, 6]  
Operation  
Address Used CE1 CE2  
ZZ ADSP ADSC ADV WRITE OE CLK  
DQ  
CE3  
X
X
H
X
H
X
L
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Sleep Mode, Power Down  
READ Cycle, Begin Burst  
READ Cycle, Begin Burst  
WRITE Cycle, Begin Burst  
READ Cycle, Begin Burst  
READ Cycle, Begin Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
None  
None  
H
L
L
L
L
X
L
L
L
L
L
X
X
H
X
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
L
L–H Tri-State  
L–H Tri-State  
L–H Tri-State  
L–H Tri-State  
L–H Tri-State  
None  
X
L
L
None  
H
H
X
L
None  
X
X
H
H
H
H
H
X
X
X
L
None  
X
X
X
L
X
Tri-State  
Q
External  
External  
External  
External  
External  
Next  
L–H  
L
L
H
X
L
L–H Tri-State  
L
H
H
H
H
H
X
L–H  
L–H  
D
Q
L
L
H
H
H
H
H
L
L
H
L
L–H Tri-State  
L–H  
L–H Tri-State  
L–H  
L–H Tri-State  
X
X
X
H
H
H
Q
Next  
L
H
L
Next  
L
Q
READ Cycle, Continue Burst  
WRITE Cycle, Continue Burst  
WRITE Cycle, Continue Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
WRITE Cycle, Suspend Burst  
WRITE Cycle, Suspend Burst  
Next  
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L
L
L
L
L
L
L
L
L
X
H
X
H
H
X
X
H
X
H
H
H
H
H
H
H
H
H
L
L
H
L
H
X
X
L
Next  
L–H  
L–H  
L–H  
D
D
Q
Next  
L
L
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
H
L
L–H Tri-State  
L–H  
L–H Tri-State  
Q
H
X
X
L–H  
L–H  
D
D
L
Notes  
1. X = “Don't Care.” H = Logic HIGH, L = Logic LOW.  
2. WRITE = L when any one or more Byte Write enable signals and BWE = L or GW = L. WRITE = H when all Byte write enable signals, BWE, GW = H.  
3. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
4. BGA package has only two chip selects CE and CE .  
1
2
5. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks after  
X
the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state. OE is a don't care  
for the remainder of the write cycle.  
6. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are Tri-State when OE is  
inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).  
Document Number: 001-70167 Rev. *E  
Page 10 of 33  
 
 
 
 
CY7C1440AV25  
CY7C1446AV25  
Truth Table for Read/Write  
The Truth Table for Read/Write for CY7C1440AV25 follows. [7, 8, 9]  
Function (CY7C1440AV25)  
GW  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
BWE  
H
L
BWD  
X
H
H
H
H
H
H
H
H
L
BWC  
X
H
H
H
H
L
BWB  
X
H
H
L
BWA  
X
H
L
Read  
Read  
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Bytes B, A  
L
L
H
L
L
L
Write Byte C – (DQC and DQPC)  
Write Bytes C, A  
L
H
H
L
H
L
L
L
Write Bytes C, B  
L
L
H
L
Write Bytes C, B, A  
Write Byte D – (DQD and DQPD)  
Write Bytes D, A  
L
L
L
L
H
H
H
H
L
H
H
L
H
L
L
L
Write Bytes D, B  
L
L
H
L
Write Bytes D, B, A  
Write Bytes D, C  
L
L
L
L
L
H
H
L
H
L
Write Bytes D, C, A  
Write Bytes D, C, B  
Write All Bytes  
L
L
L
L
L
L
H
L
L
L
L
L
Write All Bytes  
X
X
X
X
X
Truth Table for Read/Write  
The Truth Table for Read/Write for CY7C1446AV25 follows. [7, 8, 9]  
Function (CY7C1446AV25)  
GW  
H
BWE  
BWx  
Read  
Read  
H
L
L
L
X
H
All BW = H  
L
Write Byte x – (DQx and DQPx)  
Write All Bytes  
H
H
All BW = L  
Notes  
7. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
8. BWx represents any byte write signal. To enable any byte write BW a Logic LOW signal should be applied at clock rise. Any number of bye writes can be enabled  
x,  
at the same time for any given write.  
9. Table only lists a partial listing of the byte write combinations. Any combination of BW is valid. Appropriate write will be done based on which byte write is active.  
X
Document Number: 001-70167 Rev. *E  
Page 11 of 33  
 
CY7C1440AV25  
CY7C1446AV25  
Only one register can be selected at a time through the  
instruction register. Data is serially loaded into the TDI ball on the  
rising edge of TCK. Data is output on the TDO ball on the falling  
edge of TCK.  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The CY7C1440AV25/CY7C1446AV25 incorporates a serial  
boundary scan test access port (TAP). This part is fully compliant  
with IEEE Standard 1149.1.The TAP operates using  
JEDEC-standard 2.5 V I/O logic level.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the TDI  
and TDO balls as shown in the TAP Controller Block Diagram on  
page 15. Upon power-up, the instruction register is loaded with  
the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as described  
in the previous section.  
The CY7C1440AV25/CY7C1446AV25 contains a TAP controller,  
instruction register, boundary scan register, bypass register, and  
ID register.  
Disabling the JTAG Feature  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied  
LOW(VSS) to prevent clocking of the device. TDI and TMS are  
internally pulled up and may be unconnected. They may  
alternately be connected to VDD through a pull-up resistor. TDO  
should be left unconnected. Upon power-up, the device will  
come up in a reset state which will not interfere with the operation  
of the device.  
When the TAP controller is in the Capture-IR state, the two least  
significant bits are loaded with a binary “01” pattern to allow for  
fault isolation of the board-level serial test data path.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW (VSS)  
when the BYPASS instruction is executed.  
Test Access Port (TAP)  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs are  
captured on the rising edge of TCK. All outputs are driven from  
the falling edge of TCK.  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
Test Mode Select (TMS)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to leave  
this ball unconnected if the TAP is not used. The ball is pulled up  
internally, resulting in a logic HIGH level.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR state  
and is then placed between the TDI and TDO balls when the  
controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used to  
capture the contents of the I/O ring.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the registers  
and can be connected to the input of any of the registers. The  
register between TDI and TDO is chosen by the instruction that  
is loaded into the TAP instruction register. For information on  
loading the instruction register, see TAP Controller State  
Diagram on page 14. TDI is internally pulled up and can be  
unconnected if the TAP is unused in an application. TDI is  
connected to the most significant bit (MSB) of any register.  
The Boundary Scan Order on page 19 and Boundary Scan Order  
on page 20 show the order in which the bits are connected. Each  
bit corresponds to one of the bumps on the SRAM package. The  
MSB of the register is connected to TDI, and the LSB is  
connected to TDO.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired into  
the SRAM and can be shifted out when the TAP controller is in  
the Shift-DR state. The ID register has a vendor code and other  
information described in the Identification Register Definitions on  
page 18.  
Test Data-Out (TDO)  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current state  
of the TAP state machine (see Instruction Codes on page 18).  
The output changes on the falling edge of TCK. TDO is  
connected to the least significant bit (LSB) of any register.  
TAP Instruction Set  
Performing a TAP Reset  
Overview  
A RESET is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This RESET does not affect the operation of the  
SRAM and may be performed while the SRAM is operating.  
Eight different instructions are possible with the three bit  
instruction register. All combinations are listed in the Instruction  
Codes on page 18. Three of these instructions are listed as  
RESERVED and should not be used. The other five instructions  
are described in detail below.  
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a High Z state.  
TAP Registers  
Instructions are loaded into the TAP controller during the Shift-IR  
state when the instruction register is placed between TDI and  
TDO. During this state, instructions are shifted through the  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test circuitry.  
Document Number: 001-70167 Rev. *E  
Page 12 of 33  
CY7C1440AV25  
CY7C1446AV25  
instruction register through the TDI and TDO balls. To execute  
the instruction once it is shifted in, the TAP controller needs to be  
moved into the Update-IR state.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the boundary  
scan register between the TDI and TDO pins.  
PRELOAD allows an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells prior  
to the selection of another boundary scan test operation.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
The shifting of data for the SAMPLE and PRELOAD phases can  
occur concurrently when required — that is, while data captured  
is shifted out, the preloaded data can be shifted in.  
The IDCODE instruction is loaded into the instruction register  
upon power-up or whenever the TAP controller is given a test  
logic reset state.  
BYPASS  
When the BYPASS instruction is loaded in the instruction register  
and the TAP is placed in a Shift-DR state, the bypass register is  
placed between the TDI and TDO pins. The advantage of the  
BYPASS instruction is that it shortens the boundary scan path  
when multiple devices are connected together on a board.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register to  
be connected between the TDI and TDO pins when the TAP  
controller is in a Shift-DR state. The SAMPLE Z command puts  
the output bus into a High Z state until the next command is given  
during the “Update IR” state.  
EXTEST  
The EXTEST instruction enables the preloaded data to be driven  
out through the system output pins. This instruction also selects  
the boundary scan register to be connected for serial access  
between the TDI and TDO in the shift-DR controller state.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
EXTEST OUTPUT BUS TRI-STATE  
IEEE Standard 1149.1 mandates that the TAP controller be able  
to put the output bus into a tri-state mode.  
The boundary scan register has a special bit located at bit #89  
(for 165-ball FBGA package) or bit #138 (for 209-ball FBGA  
package). When this scan cell, called the “extest output bus  
tri-state”, is latched into the preload register during the  
“Update-DR” state in the TAP controller, it will directly control the  
state of the output (Q-bus) pins, when the EXTEST is entered as  
the current instruction. When HIGH, it will enable the output  
buffers to drive the output bus. When LOW, this bit will place the  
output bus into a High Z condition.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because there  
is a large difference in the clock frequencies, it is possible that  
during the Capture-DR state, an input or output will undergo a  
transition. The TAP may then try to capture a signal while in  
transition (metastable state). This will not harm the device, but  
there is no guarantee as to the value that will be captured.  
Repeatable results may not be possible.  
This bit can be set by entering the SAMPLE/PRELOAD or  
EXTEST command, and then shifting the desired bit into that cell,  
during the “Shift-DR” state. During “Update-DR”, the value  
loaded into that shift-register cell will latch into the preload  
register. When the EXTEST instruction is entered, this bit will  
directly control the output Q-bus pins. Note that this bit is pre-set  
HIGH to enable the output when the device is powered-up, and  
also when the TAP controller is in the “Test-Logic-Reset” state.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller’s capture set-up plus  
hold times (tCS and tCH). The SRAM clock input might not be  
captured correctly if there is no way in a design to stop (or slow)  
the clock during a SAMPLE/PRELOAD instruction. If this is an  
issue, it is still possible to capture all other signals and simply  
ignore the value of the CK and CK# captured in the boundary  
scan register.  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
Document Number: 001-70167 Rev. *E  
Page 13 of 33  
CY7C1440AV25  
CY7C1446AV25  
TAP Controller State Diagram  
The 0/1 next to each state represents the value of TMS at the rising edge of TCK.  
TEST-LOGIC  
1
RESET  
0
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
1
1
EXIT1-DR  
EXIT1-IR  
0
0
PAUSE-DR  
0
PAUSE-IR  
0
1
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
0
1
0
Document Number: 001-70167 Rev. *E  
Page 14 of 33  
CY7C1440AV25  
CY7C1446AV25  
TAP Controller Block Diagram  
0
Bypass Register  
2 1 0  
Selection  
Circuitry  
Instruction Register  
Selection  
TDI  
TDO  
Circuitr  
y
31 30 29 .  
.
. 2 1 0  
Identification Register  
2 1 0  
x
.
.
.
.
.
Boundary Scan Register  
TCK  
TMS  
TAP CONTROLLER  
TAP Timing  
Figure 3. TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
Document Number: 001-70167 Rev. *E  
Page 15 of 33  
CY7C1440AV25  
CY7C1446AV25  
TAP AC Switching Characteristics  
Over the Operating Range  
Parameter [10, 11]  
Clock  
Description  
Min  
Max  
Unit  
tTCYC  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
50  
20  
ns  
MHz  
ns  
tTF  
tTH  
20  
20  
tTL  
ns  
Output Times  
tTDOV  
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
0
10  
ns  
ns  
tTDOX  
Set-up Times  
tTMSS  
TMS Set-up to TCK Clock Rise  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
5
5
5
ns  
ns  
ns  
tTDIS  
tCS  
Hold Times  
tTMSH  
tTDIH  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tCH  
Capture Hold after Clock Rise  
Notes  
10. t and t refer to the set-up and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
11. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1 ns.  
R
F
Document Number: 001-70167 Rev. *E  
Page 16 of 33  
 
 
CY7C1440AV25  
CY7C1446AV25  
2.5 V TAP AC Test Conditions  
2.5 V TAP AC Output Load Equivalent  
1.25V  
Input pulse levels ...............................................VSS to 2.5 V  
Input rise and fall time ....................................................1 ns  
Input timing reference levels ....................................... 1.25 V  
Output reference levels .............................................. 1.25 V  
Test load termination supply voltage .......................... 1.25 V  
50Ω  
TDO  
ZO= 50Ω  
20pF  
TAP DC Electrical Characteristics and Operating Conditions  
(0 °C < TA < +70 °C; VDD = 2.5 V ± 0.125 V unless otherwise noted)  
Parameter [12]  
Description  
Output HIGH Voltage  
Output HIGH Voltage  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
Test Conditions  
VDDQ = 2.5 V  
Min  
2.0  
2.1  
Max  
Unit  
V
VOH1  
VOH2  
VOL1  
VOL2  
VIH  
IOH = –1.0 mA  
IOH = –100 µA  
IOL = 1.0 mA  
IOL = 100 µA  
VDDQ = 2.5 V  
VDDQ = 2.5 V  
VDDQ = 2.5 V  
VDDQ = 2.5 V  
VDDQ = 2.5 V  
V
0.4  
0.2  
V
V
1.7  
–0.3  
–5  
VDD + 0.3  
V
VIL  
0.7  
5
V
IX  
GND < VIN < VDDQ  
µA  
Note  
12. All voltages referenced to V (GND).  
SS  
Document Number: 001-70167 Rev. *E  
Page 17 of 33  
 
 
CY7C1440AV25  
CY7C1446AV25  
Identification Register Definitions  
CY7C1440AV25  
CY7C1446AV25  
(512 K × 72)  
Instruction Field  
Description  
(1 M × 36)  
Revision Number (31:29)  
000  
000  
01011  
Describes the version number.  
Device Depth (28:24)  
01011  
Reserved for Internal Use  
Architecture/Memory Type (23:18)  
Bus Width/Density (17:12)  
Cypress JEDEC ID Code (11:1)  
ID Register Presence Indicator (0)  
000000  
100111  
00000110100  
1
000000  
110111  
00000110100  
1
Defines memory type and architecture  
Defines width and density  
Allows unique identification of SRAM vendor.  
Indicates the presence of an ID register.  
Scan Register Sizes  
Register Name  
Bit Size (× 36)  
Bit Size (× 72)  
Instruction  
Bypass  
ID  
3
1
3
1
32  
89  
32  
Boundary Scan Order (165-ball FBGA package)  
Boundary Scan Order (209-ball FBGA package)  
138  
Instruction Codes  
Instruction  
EXTEST  
Code  
000  
Description  
Captures I/O ring contents.  
IDCODE  
001  
Loads the ID register with the vendor ID code and places the register between TDI and TDO.  
This operation does not affect SRAM operations.  
SAMPLE Z  
010  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces  
all SRAM output drivers to a High Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Does  
not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
Document Number: 001-70167 Rev. *E  
Page 18 of 33  
CY7C1440AV25  
CY7C1446AV25  
Boundary Scan Order  
165-ball FBGA [13, 14]  
CY7C1440AV25 (1 M × 36)  
Bit #  
1
Ball ID  
Bit #  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
Ball ID  
E11  
D11  
G10  
F10  
E10  
D10  
C11  
A11  
B11  
A10  
B10  
A9  
Bit #  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
Ball ID  
A3  
A2  
B2  
C2  
B1  
A1  
C1  
D1  
E1  
F1  
Bit #  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
Ball ID  
N1  
N6  
N7  
2
N2  
3
N10  
P11  
P8  
P1  
4
R1  
5
R2  
6
R8  
P3  
7
R9  
R3  
8
P9  
P2  
9
P10  
R10  
R11  
H11  
N11  
M11  
L11  
K11  
J11  
M10  
L10  
K10  
J10  
H9  
R4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P4  
G1  
D2  
E2  
F2  
N5  
P6  
B9  
R6  
C10  
A8  
Internal  
G2  
H1  
H3  
J1  
B8  
A7  
B7  
B6  
K1  
L1  
A6  
M1  
J2  
B5  
A5  
A4  
B4  
B3  
H10  
G11  
F11  
K2  
L2  
M2  
Notes  
13. Balls which are NC (No Connect) are Pre-Set LOW.  
14. Bit# 89 is Pre-Set HIGH.  
Document Number: 001-70167 Rev. *E  
Page 19 of 33  
 
CY7C1440AV25  
CY7C1446AV25  
Boundary Scan Order  
209-ball FBGA [15, 16]  
CY7C1446AV25 (512 K × 72)  
Bit #  
1
Ball ID  
Bit #  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
Ball ID  
F6  
Bit #  
71  
Ball ID  
Bit #  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
Ball ID  
K3  
W6  
V6  
H6  
C6  
B6  
A6  
A5  
B5  
C5  
D5  
D4  
C4  
A4  
B4  
C3  
B3  
A3  
A2  
A1  
B2  
B1  
C2  
C1  
D2  
D1  
E1  
E2  
F2  
F1  
G1  
G2  
H2  
H1  
J2  
2
K8  
72  
K4  
3
U6  
K9  
73  
K6  
4
W7  
V7  
K10  
J11  
J10  
H11  
H10  
G11  
G10  
F11  
F10  
E10  
E11  
D11  
D10  
C11  
C10  
B11  
B10  
A11  
A10  
C9  
74  
K2  
5
75  
L2  
6
U7  
76  
L1  
7
T7  
77  
M2  
M1  
N2  
N1  
P2  
8
V8  
78  
9
U8  
79  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
T8  
80  
V9  
81  
U9  
82  
P1  
P6  
83  
R2  
R1  
T2  
W11  
W10  
V11  
V10  
U11  
U10  
T11  
T10  
R11  
R10  
P11  
P10  
N11  
N10  
M11  
M10  
L11  
L10  
K11  
M6  
84  
85  
86  
T1  
87  
U2  
U1  
V2  
88  
89  
90  
V1  
91  
W2  
W1  
T6  
92  
93  
B9  
94  
U3  
V3  
A9  
95  
D7  
96  
T4  
C8  
97  
T5  
B8  
98  
U4  
V4  
A8  
99  
D8  
100  
101  
102  
103  
104  
105  
5W  
5V  
C7  
B7  
5U  
Internal  
A7  
J1  
L6  
D6  
K1  
N6  
J6  
G6  
Notes  
15. Balls which are NC (No Connect) are Pre-Set LOW.  
16. Bit# 138 is Pre-Set HIGH.  
Document Number: 001-70167 Rev. *E  
Page 20 of 33  
 
CY7C1440AV25  
CY7C1446AV25  
DC Input Voltage ................................ –0.5 V to VDD + 0.5 V  
Current into Outputs (LOW) ........................................ 20 mA  
Maximum Ratings  
Exceeding maximum ratings may impair the useful life of the  
device. These user guidelines are not tested.  
Static Discharge Voltage  
(per MIL-STD-883, Method 3015) ......................... > 2001 V  
Storage Temperature ............................... –65 °C to +150 °C  
Latch-up Current ................................................... > 200 mA  
Ambient Temperature  
with Power Applied .................................. –55 °C to +125 °C  
Operating Range  
Supply Voltage on VDD Relative to GND .....–0.3 V to +3.6 V  
Supply Voltage on VDDQ Relative to GND .... –0.3 V to +VDD  
Ambient  
Range  
VDD  
VDDQ  
Temperature  
0 °C to +70 °C  
–40 °C to +85 °C  
DC Voltage Applied to Outputs  
in Tri-State ........................................–0.5 V to VDDQ + 0.5 V  
Commercial  
Industrial  
2.5 V+ 5% 1.7 V to VDD  
Electrical Characteristics  
Over the Operating Range  
DC Electrical Characteristics  
Over the Operating Range  
Parameter [17, 18]  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min  
2.375  
2.375  
2.0  
Max  
2.625  
2.625  
Unit  
V
VDD  
VDDQ  
VOH  
VOL  
VIH  
for 2.5 V I/O  
V
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage[17]  
Input LOW Voltage[17]  
for 2.5 V I/O, IOH = –1.0 mA  
for 2.5 V I/O, IOL = 1.0 mA  
for 2.5 V I/O  
V
0.4  
V
1.7  
VDD + 0.3  
0.7  
V
VIL  
for 2.5 V I/O  
–0.3  
–5  
V
IX  
Input Leakage Current except ZZ GND VI VDDQ  
and MODE  
5
A  
Input Current of MODE  
Input = VSS  
–30  
5
A  
A  
A  
A  
A  
mA  
Input = VDD  
Input Current of ZZ  
Input = VSS  
–5  
Input = VDD  
30  
5
IOZ  
IDD  
Output Leakage Current  
GND VI VDDQ, Output Disabled  
–5  
VDD Operating Supply Current  
VDD = Max, IOUT = 0 mA,  
f = fMAX = 1/tCYC  
4-ns cycle,  
250 MHz  
435  
6-ns cycle,  
167 MHz  
335  
185  
mA  
mA  
ISB1  
ISB2  
ISB3  
ISB4  
Automatic CE Power-down  
Current – TTL Inputs  
VDD = Max, Device Deselected, All speeds  
VIN VIH or VIN VIL,  
f = fMAX = 1/tCYC  
Automatic CE Power-down  
Current – CMOS Inputs  
VDD = Max, Device Deselected, All speeds  
VIN 0.3 V or VIN > VDDQ – 0.3 V,  
f = 0  
120  
160  
135  
mA  
mA  
mA  
Automatic CE Power-down  
Current – CMOS Inputs  
VDD = Max, Device Deselected, All speeds  
VIN 0.3 V or VIN > VDDQ – 0.3 V,  
f = fMAX = 1/tCYC  
Automatic CE Power-down  
Current – TTL Inputs  
VDD = Max, Device Deselected, All speeds  
VIN VIH or VIN VIL, f = 0  
Notes  
17. Overshoot: V  
18. TPower-up: Assumes a linear ramp from 0 V to V  
< V + 1.5 V (Pulse width less than t  
/2), undershoot: V  
> –2 V (Pulse width less than t  
/2).  
IH(AC)  
DD  
CYC  
IL(AC)  
CYC  
.
within 200 ms. During this time V < V and V  
< V  
DD(min)  
IH  
DD  
DDQ DD  
Document Number: 001-70167 Rev. *E  
Page 21 of 33  
 
 
CY7C1440AV25  
CY7C1446AV25  
Capacitance  
165-ball FBGA 209-ball FBGA  
Parameter [19]  
Description  
Input Capacitance  
Test Conditions  
Unit  
Max  
Max  
CIN  
TA = 25 °C, f = 1 MHz, VDD/VDDQ = 2.5 V  
7
7
6
5
5
7
pF  
pF  
pF  
CCLK  
CI/O  
Clock Input Capacitance  
Input/Output Capacitance  
Thermal Resistance  
165-ballFBGA 209-ballFBGA  
Parameter [19]  
Description  
Test Conditions  
Unit  
Package  
Package  
JA  
Thermal resistance  
(junction to ambient)  
Test conditions follow standard test  
methods and procedures for measuring  
thermal impedance, per EIA/JESD51.  
20.8  
25.31  
°C/W  
JC  
Thermal resistance  
(junction to case)  
3.2  
4.48  
°C/W  
AC Test Loads and Waveforms  
Figure 4. AC Test Loads and Waveforms  
2.5 V I/O Test Load  
R = 1667  
2.5 V  
OUTPUT  
R = 50   
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
90%  
10%  
Z = 50   
0
10%  
L
GND  
5 pF  
R = 1538   
1 ns  
1 ns  
INCLUDING  
JIG AND  
SCOPE  
V = 1.25 V  
T
(a)  
(b)  
(c)  
Note  
19. Tested initially and after any design or process change that may affect these parameters.  
Document Number: 001-70167 Rev. *E  
Page 22 of 33  
 
 
CY7C1440AV25  
CY7C1446AV25  
Switching Characteristics  
Over the Operating Range  
-250  
-167  
Unit  
Parameter [20, 21]  
Description  
Min  
Max  
Min  
Max  
tPOWER  
Clock  
tCYC  
VDD(typical) to the first Access[22]  
1
1
ms  
Clock Cycle Time  
Clock HIGH  
4.0  
1.5  
1.5  
6.0  
2.4  
2.4  
ns  
ns  
ns  
tCH  
tCL  
Clock LOW  
Output Times  
tCO  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low Z [23, 24, 25]  
1.0  
1.0  
2.6  
1.5  
1.5  
3.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
tCLZ  
tCHZ  
Clock to High Z [23, 24, 25]  
2.6  
2.6  
3.4  
3.4  
tOEV  
OE LOW to Output Valid  
tOELZ  
tOEHZ  
Set-up Times  
tAS  
OE LOW to Output Low Z [23, 24, 25]  
OE HIGH to Output High Z [23, 24, 25]  
0
0
2.6  
3.4  
Address Set-up Before CLK Rise  
ADSC, ADSP Set-up Before CLK Rise  
ADV Set-up Before CLK Rise  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADS  
tADVS  
tWES  
GW, BWE, BWX Set-up Before CLK Rise  
Data Input Set-up Before CLK Rise  
Chip Enable Set-Up Before CLK Rise  
tDS  
tCES  
Hold Times  
tAH  
Address Hold After CLK Rise  
ADSP, ADSC Hold After CLK Rise  
ADV Hold After CLK Rise  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADH  
tADVH  
tWEH  
GW, BWE, BWX Hold After CLK Rise  
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
tDH  
tCEH  
Notes  
20. Timing reference level is 1.25 V when V  
= 2.5 V.  
DDQ  
21. Test conditions shown in (a) of Figure 4 on page 22 unless otherwise noted.  
22. This part has a voltage regulator internally; t  
is the time that the power needs to be supplied above V  
initially before a read or write operation can  
POWER  
DD(minimum)  
be initiated.  
23. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of Figure 4 on page 22. Transition is measured ± 200 mV from steady-state voltage.  
OEHZ  
CHZ CLZ OELZ  
24. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same data  
OEHZ  
OELZ  
CHZ  
CLZ  
bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve  
High Z prior to Low Z under the same system conditions.  
25. This parameter is sampled and not 100% tested.  
Document Number: 001-70167 Rev. *E  
Page 23 of 33  
 
 
 
 
 
CY7C1440AV25  
CY7C1446AV25  
Switching Waveforms  
Figure 5. Read Cycle Timing [26]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Burst continued with  
new base address  
t
t
WEH  
WES  
GW, BWE,  
BWx  
Deselect  
cycle  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV  
suspends  
burst.  
t
t
OEV  
CO  
t
t
OEHZ  
t
t
CHZ  
OELZ  
DOH  
t
CLZ  
t
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2 + 3)  
Q(A2)  
Q(A2 + 1)  
Q(A1)  
Data Out (Q)  
High-Z  
CO  
Burst wraps around  
to its initial state  
Single READ  
BURST READ  
DON’T CARE  
UNDEFINED  
Note  
26. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
Document Number: 001-70167 Rev. *E  
Page 24 of 33  
 
CY7C1440AV25  
CY7C1446AV25  
Switching Waveforms (continued)  
Figure 6. Write Cycle Timing [27, 28]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
ADDRESS  
BWE,  
t
t
AH  
AS  
A1  
A2  
A3  
Byte write signals are  
ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BW  
X
t
t
WEH  
WES  
GW  
CE  
t
t
CEH  
CES  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
DH  
DS  
Data In (D)  
D(A2)  
D(A2 + 1)  
D(A2 + 1)  
D(A2 + 2)  
D(A2 + 3)  
D(A3)  
D(A3 + 1)  
D(A3 + 2)  
D(A1)  
High-Z  
t
OEHZ  
Data Out (Q)  
BURST READ  
Single WRITE  
BURST WRITE  
Extended BURST WRITE  
Notes  
27. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
28.  
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW LOW.  
X
Document Number: 001-70167 Rev. *E  
Page 25 of 33  
 
 
CY7C1440AV25  
CY7C1446AV25  
Switching Waveforms (continued)  
Figure 7. Read/Write Cycle Timing [29, 30, 31]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE,  
BWX  
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
t
CO  
DS  
t
OELZ  
Data In (D)  
High-Z  
High-Z  
D(A3)  
D(A5)  
D(A6)  
t
t
OEHZ  
CLZ  
Data Out (Q)  
Q(A1)  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
Back-to-Back READs  
Single WRITE  
BURST READ  
Back-to-Back  
WRITEs  
DON’T CARE  
UNDEFINED  
Notes  
29. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
30. The data bus (Q) remains in high Z following a WRITE cycle, unless a new read access is initiated by ADSP or ADSC.  
31. GW is HIGH.  
Document Number: 001-70167 Rev. *E  
Page 26 of 33  
 
 
 
CY7C1440AV25  
CY7C1446AV25  
Switching Waveforms (continued)  
Figure 8. ZZ Mode Timing [32, 33]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes  
32. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.  
33. DQs are in high Z when exiting ZZ sleep mode.  
Document Number: 001-70167 Rev. *E  
Page 27 of 33  
 
 
CY7C1440AV25  
CY7C1446AV25  
Ordering Information  
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or visit  
www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Part and Package Type  
Ordering Code  
250 CY7C1440AV25-250BZXI  
CY7C1446AV25-250BGI  
51-85195 165-ball FBGA (15 × 17 × 1.4mm) Pb-free  
51-85167 209-ball FBGA (14 × 22 × 1.76mm)  
51-85195 165-ball FBGA (15 × 17 × 1.4mm) Pb-free  
Industrial  
167 CY7C1440AV25-167BZXC  
Commercial  
Ordering Code Definitions  
- XXX  
X
XX  
X
CY 7 C 144X A V25  
Temperature range: X = C or I  
C = Commercial = 0 °C to +70 °C; I = Industrial = –40 °C to +85 °C  
Pb-free  
Package Type: XX = BZ or BG  
BZ = 165-ball FBGA; BG = 209-ball FBGA  
Speed grade: XXX = 250 or 167 MHz  
V25 = 2.5 V  
Process Technology: A = greater than or equal to 90 nm  
Part Identifier: 144X = 1440 or 1446  
1440 = SCD 1 Mb × 36 (36 Mb); 1446 = SCD 512 K × 72 (36 MB)  
Technology Code: C = CMOS  
Marketing Code: 7 = SRAM  
Company ID: CY = Cypress  
Document Number: 001-70167 Rev. *E  
Page 28 of 33  
CY7C1440AV25  
CY7C1446AV25  
Package Diagrams  
Figure 9. 165-ball FBGA (15 × 17 × 1.40 mm) (0.50 ball diameter) Package Outline, 51-85195  
51-85195 *D  
Document Number: 001-70167 Rev. *E  
Page 29 of 33  
 
CY7C1440AV25  
CY7C1446AV25  
Package Diagrams (continued)  
Figure 10. 209-ball FBGA (14 × 22 × 1.76 mm) BB209A Package Outline, 51-85167  
51-85167 *C  
Document Number: 001-70167 Rev. *E  
Page 30 of 33  
CY7C1440AV25  
CY7C1446AV25  
Acronyms  
Document Conventions  
Units of Measure  
Acronym  
Description  
CMOS  
CE  
Complementary Metal Oxide Semiconductor  
Chip Enable  
Symbol  
°C  
Unit of Measure  
degree Celsius  
megahertz  
microampere  
microsecond  
milliampere  
millimeter  
millisecond  
millivolt  
MHz  
µA  
µs  
FBGA  
I/O  
Fine-Pitch Ball Grid Array  
Input/Output  
JTAG  
LSB  
MSB  
OE  
Joint Test Action Group  
Least Significant Bit  
Most Significant Bit  
Output Enable  
mA  
mm  
ms  
mV  
ns  
SRAM  
TCK  
TDI  
Static Random Access Memory  
Test Clock  
nanosecond  
percent  
%
Test Data-In  
pF  
V
picofarad  
volt  
TDO  
TMS  
TTL  
Test Data-Out  
Test Mode Select  
W
watt  
Transistor-Transistor Logic  
Write Enable  
WE  
Document Number: 001-70167 Rev. *E  
Page 31 of 33  
CY7C1440AV25  
CY7C1446AV25  
Document History Page  
Document Title:CY7C1440AV25/CY7C1446AV25, 36-Mbit (1 M × 36/512 K × 72) Pipelined Sync SRAM  
Document Number: 001-70167  
Orig. of  
Change  
Rev.  
ECN No.  
Issue Date  
Description of Change  
**  
3281372  
3508385  
4234753  
01/17/2012  
01/25/2012  
01/07/2014  
NJY  
New data sheet.  
*A  
*B  
NJY  
Changed status from Preliminary to Final.  
PRIT  
Updated Package Diagrams:  
Replaced spec 51-85165 with spec 51-85195.  
spec 51-85167 – Changed revision from *B to *C.  
Updated to new template.  
Completing Sunset Review.  
*C  
*D  
4575228  
4905904  
11/20/2014  
09/02/2015  
PRIT  
PRIT  
Updated Functional Description:  
Added “For a complete list of related documentation, click here.” at the end.  
Removed 1.8 V TAP AC Test Conditions.  
Removed 1.8 V TAP AC Output Load Equivalent.  
Updated TAP DC Electrical Characteristics and Operating Conditions:  
Removed details corresponding to Test Condition “VDDQ = 1.8 V” for all  
parameters.  
Updated Electrical Characteristics:  
Removed details corresponding to Test Condition “for 1.8 V I/O” for all  
parameters.  
Updated Package Diagrams:  
spec 51-85195 – Changed revision from *C to *D.  
Updated to new template.  
*E  
5072691  
01/05/2016  
PRIT  
No technical updates.  
Completing Sunset Review.  
Document Number: 001-70167 Rev. *E  
Page 32 of 33  
CY7C1440AV25  
CY7C1446AV25  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
Automotive  
cypress.com/go/automotive  
cypress.com/go/clocks  
cypress.com/go/interface  
cypress.com/go/powerpsoc  
cypress.com/go/memory  
cypress.com/go/psoc  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP  
Clocks & Buffers  
Interface  
Cypress Developer Community  
Lighting & Power Control  
Memory  
Community | Forums | Blogs | Video | Training  
Technical Support  
PSoC  
cypress.com/go/support  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/go/touch  
cypress.com/go/USB  
cypress.com/go/wireless  
© Cypress Semiconductor Corporation, 2012-2016. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 001-70167 Rev. *E  
Revised January 5, 2016  
Page 33 of 33  
i486 is a trademark, and Intel and Pentium are registered trademarks of Intel Corporation. PowerPC is a trademark of IBM Corporation. All products and company names mentioned in this document  
may be the trademarks of their respective holders.  

相关型号:

CY7C1440AV33

36-Mbit (1M x 36/2M x 18/512K x 72) Pipelined Sync SRAM
CYPRESS

CY7C1440AV33-167AC

Cache SRAM, 1MX36, 3.4ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1440AV33-167AXC

36-Mbit (1M x 36/2M x 18/512K x 72) Pipelined Sync SRAM
CYPRESS

CY7C1440AV33-167AXI

36-Mbit (1M x 36/2M x 18/512K x 72) Pipelined Sync SRAM
CYPRESS

CY7C1440AV33-167BZC

36-Mbit (1M x 36/2M x 18/512K x 72) Pipelined Sync SRAM
CYPRESS

CY7C1440AV33-167BZI

36-Mbit (1M x 36/2M x 18/512K x 72) Pipelined Sync SRAM
CYPRESS

CY7C1440AV33-167BZXC

36-Mbit (1M x 36/2M x 18/512K x 72) Pipelined Sync SRAM
CYPRESS

CY7C1440AV33-167BZXI

36-Mbit (1M x 36/2M x 18/512K x 72) Pipelined Sync SRAM
CYPRESS

CY7C1440AV33-200AC

Cache SRAM, 1MX36, 3ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1440AV33-200AXC

36-Mbit (1M x 36/2M x 18/512K x 72) Pipelined Sync SRAM
CYPRESS

CY7C1440AV33-200AXCT

Cache SRAM, 1MX36, 3.2ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, LEAD FREE, MS-026, TQFP-100
CYPRESS

CY7C1440AV33-200AXI

36-Mbit (1M x 36/2M x 18/512K x 72) Pipelined Sync SRAM
CYPRESS