CY7C1443V25-133BZC [CYPRESS]

Standard SRAM, 2MX18, 6.5ns, CMOS, PBGA165, 15 X 17 MM, FBGA-165;
CY7C1443V25-133BZC
型号: CY7C1443V25-133BZC
厂家: CYPRESS    CYPRESS
描述:

Standard SRAM, 2MX18, 6.5ns, CMOS, PBGA165, 15 X 17 MM, FBGA-165

静态存储器 内存集成电路
文件: 总29页 (文件大小:988K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
1M x 36/2M x 18/512K x 72 Flow-Thru SRAM  
inputs are gated by registers controlled by a positive-  
edge-triggered clock input (CLK). The synchronous inputs  
Features  
•Supports 133-MHz bus operations  
•1M x 36/2M x18/512K x 72 common I/O  
•Fast clock-to-output times  
— 5.5 ns (for 150-MHz device)  
— 6.5 ns (for 133-MHz device)  
— 7.5 ns (for 117-MHz device)  
include all addresses, all data inputs, address-pipelining Chip  
Enable (CE), Burst Control Inputs (ADSC, ADSP, and ADV),  
Write Enables (BWa, BWb, BWc, BWd,BWe,BWf,BWg and  
BWh, BWE), and Global Write (GW).  
Asynchronous inputs include the Output Enable (OE) and  
Burst Mode Control (MODE). The data outputs (Q), enabled  
by OE, are also asynchronous.  
• Single 2.5V –5% and +5% power supply VDD  
• Separate VDDQ for 2.5V or 1.8V I/O  
• Byte Write Enable and Global Write control  
• Burst capability–linear or interleaved burst order  
Addresses and chip enables are registered with either  
Address Status Processor (ADSP) or address status controller  
(ADSC) input pins. Subsequent burst addresses can be inter-  
nally generated as controlled by the Burst Advance Pin (ADV).  
• Automatic power down available using ZZ mode or CE  
deselect  
• JTAG boundary scan for BGA packaging version  
• Available in 119-ball bump BGA, 165-ball FBGA, and  
100-pin TQFP packages (CY7C1441V25 and  
CY7C1443V25). 209 FBGA package for CY7C1447V25.  
Address, data inputs, and Write controls are registered on-chip  
to initiate self-timed Write cycle. Write cycles can be one to  
four bytes wide as controlled by the Write control inputs.  
Individual byte Write allows individual byte to be written. BWa  
controls DQ1DQ8 and DP1. BWb controls DQ9DQ16 and  
DP2. BWc controls DQ17DQ24and DP3. BWd controls  
DQ25DQ32 and DP4. BWe controls DQ33DQ40 and DP5.  
BWf controls DQ41DQ48 and DP6. BWg controls  
DQ49DQ56 and DP7. BWh controls DQ57DQ64 and DP8.  
BWa, BWb BWc, BWd, BWe, BWf, BWg, and BWh can be  
active only with BWE LOW. GW LOW causes all bytes to be  
written. Write pass-thru capability allows written data available  
at the output for the immediately next Read cycle. This device  
also incorporates pipelined enable circuit for easy depth  
expansion without penalizing system performance.  
Functional Description  
The Cypress Synchronous Burst SRAM family employs  
high-speed, low-power CMOS designs using advanced  
single-layer polysilicon, triple-layer metal technology. Each  
memory cell consists of six transistors.  
The CY7C1441V25/CY7C1443V25/CY7C1447V25 SRAMs  
integrate 1,048,576 × 36/2,097,152 × 18/524,288 × 72 SRAM  
cells with advanced synchronous peripheral circuitry and a  
two-bit counter for internal burst operation. All synchronous  
All inputs and outputs of the CY7C1441V25/ CY7C1443V25/  
CY7C1447V25 are JEDEC-standard JESD8-5 compatible.  
MODE  
Logic Block Diagram  
2
(A[1;0]  
)
CY7C1441V251M × 36  
Q
Q
CLK  
0
BURST  
COUNTER  
ADV  
CE  
CLR  
ADSC  
1
ADSP  
Q
18  
20  
ADDRESS  
REGISTER  
CE  
D
1M × 36  
Memory  
Array  
A[19:0]  
20  
18  
GW  
DQd, DPd  
BYTEWRITE  
REGISTERS  
D
Q
BWE  
BW  
d
DQc, DPc  
BYTEWRITE  
REGISTERS  
D
D
D
Q
Q
Q
BW  
c
DQb, DPb  
BYTEWRITE  
REGISTERS  
BW  
b
DQa, DPa  
BYTEWRITE  
REGISTERS  
BW  
a
36  
36  
CE  
2
1
CE  
D
D
Q
ENABLE CE  
REGISTER  
CE  
3
Q
OUTPUT  
REGISTERS  
CLK  
INPUT  
REGISTERS  
CLK  
ENABLE DELAY  
REGISTER  
OE  
ZZ  
SLEEP  
CONTROL  
DQa,b,c,d  
DPa,b,c,d  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
Document #: 38-05186 Rev. **  
Revised April 19, 2002  
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
MODE  
Logic Block Diagram  
2
(A[1;0]  
)
CY7C14432M × 18  
Q
Q
CLK  
ADV  
0
BURST  
COUNTER  
CE  
CLR  
ADSC  
1
ADSP  
Q
19  
21  
ADDRESS  
REGISTER  
CE  
D
2M × 18  
Memory  
Array  
A[20:0]  
21  
19  
GW  
DQb, DPb  
BYTEWRITE  
REGISTERS  
D
Q
BWE  
BW  
b
DQa, DPa  
BYTEWRITE  
REGISTERS  
D
Q
BW  
a
18  
18  
CE  
2
1
CE  
D
CE  
Q
ENABLE CE  
REGISTER  
CE  
3
D
Q
OUTPUT  
REGISTERS  
CLK  
INPUT  
REGISTERS  
CLK  
ENABLE DELAY  
REGISTER  
OE  
ZZ  
SLEEP  
CONTROL  
DQa,b  
DPa,b  
Logic Block Diagram  
MODE  
2
(A[1;0]  
)
CY7C1447V25512K×72  
Q
Q
CLK  
ADV  
0
BURST  
COUNTER  
CE  
CLR  
ADSC  
1
ADSP  
Q
17  
19  
ADDRESS  
REGISTER  
CE  
D
512K × 72  
A[18:0]  
19  
17  
Memory  
Array  
GW  
DQh, DPh  
BYTEWRITE  
REGISTERS  
D
Q
BWE  
BW  
h
DQg, DPg  
BYTEWRITE  
REGISTERS  
D
D
D
Q
Q
Q
BW  
g
DQf, DPf  
BYTEWRITE  
REGISTERS  
BW  
f
DQe, DPe  
BYTEWRITE  
REGISTERS  
BW  
e
DQd, DPd  
BYTEWRITE  
REGISTERS  
D
D
D
D
Q
Q
Q
Q
BW  
BW  
d
DQc, DPc  
BYTEWRITE  
REGISTERS  
c
DQb, DPb  
BYTEWRITE  
REGISTERS  
BW  
b
DQa, DPa  
BYTEWRITE  
REGISTERS  
BW  
a
72  
72  
CE  
2
1
CE  
D
D
Q
Q
ENABLE CE  
REGISTER  
CE  
3
OUTPUT  
REGISTERS  
INPUT  
REGISTERS  
CLK  
ENABLE DELAY  
REGISTER  
CLK  
OE  
ZZ  
SLEEP  
CONTROL  
DQa,b,c,d,e,f,g,h  
DPa,b,c,d,e,f,g,h  
Document #: 38-05186 Rev. **  
Page 2 of 29  
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
.
Selection Guide  
CY7C1441V25 CY7C1441V25 CY7C1441V25 CY7C1441V25  
CY7C1443V25 CY7C1443V25 CY7C1443V25 CY7C1443V25  
CY7C1447V25 CY7C1447V25 CY7C1447V25 CY7C1447V25  
-150  
TBD  
TBD  
TBD  
-133  
-117  
-100  
Unit  
ns  
Maximum Access Time  
6.5  
7.5  
8.5  
Maximum Operating Current  
Commercial  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
mA  
mA  
Maximum CMOS Standby Current  
Shaded areas contain advance information.  
Pin Configurations  
100-lead TQFP (Top View)  
DQPc  
1
NC  
NC  
NC  
VDDQ  
VSSQ  
NC  
DQPb  
DQb  
DQb  
VDDQ  
VSSQ  
DQb  
DQb  
DQb  
DQb  
VSSQ  
VDDQ  
DQb  
DQb  
VSS  
A
NC  
NC  
VDDQ  
VSSQ  
NC  
DPa  
DQa  
DQa  
VSSQ  
VDDQ  
DQa  
DQa  
VSS  
NC  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQc  
2
DQc  
VDDQ  
VSSQ  
DQc  
3
4
5
6
DQc  
7
NC  
DQc  
8
DQb  
DQb  
VSSQ  
VDDQ  
DQb  
DQb  
NC  
VDD  
NC  
VSS  
DQb  
DQb  
VDDQ  
VSSQ  
DQb  
DQb  
DPb  
NC  
DQc  
9
9
VSSQ  
10  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDDQ  
11  
DQc  
12  
DQc  
13  
NC  
14  
CY7C1443V25  
CY7C1441V25  
(1M × 36)  
VDD  
NC  
NC  
VDD  
ZZ  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
(2M × 18)  
VDD  
ZZ  
VSS  
DQd  
DQd  
VDDQ  
VSSQ  
DQd  
DQd  
DQd  
DQd  
VSSQ  
VDDQ  
DQd  
DQd  
DQPd  
DQa  
DQa  
VDDQ  
VSSQ  
DQa  
DQa  
DQa  
DQa  
VSSQ  
VDDQ  
DQa  
DQa  
DQa  
DQa  
VDDQ  
VSSQ  
DQa  
DQa  
NC  
NC  
VSSQ  
VDDQ  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
NC  
DQPa NC  
Document #: 38-05186 Rev. **  
Page 3 of 29  
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
Pin Configurations (continued)  
CY7C1441V25 (1M × 36)  
1
3
2
4
5
6
7
A
A
A
VDDQ  
NC  
A
VDDQ  
A
A
ADSP  
ADSC  
VDD  
A
A
B
C
D
E
F
NC  
NC  
A
NC  
A
A
A
A
DQPb  
DQb  
DQb  
VSS  
VSS  
VSS  
VSS  
DQPc  
NC  
DQb  
DQb  
DQc  
DQc  
DQc  
CE1  
OE  
VSS  
VDDQ  
DQc  
VDDQ  
DQb  
DQb  
VDDQ  
DQa  
VSS  
BWb  
VSS  
NC  
DQb  
ADV  
GW  
VDD  
G
H
J
DQc  
DQc  
VDD  
DQd  
DQd  
BWc  
VSS  
NC  
DQc  
DQc  
DQb  
VDD  
VDDQ  
DQd  
DQd  
VDDQ  
DQd  
DQd  
NC  
K
L
VSS  
DQa  
DQa  
DQa  
DQa  
DQPa  
A
VSS  
CLK  
NC  
BWd  
BWa  
VSS  
VSS  
DQa  
VDDQ  
DQa  
M
DQd  
DQd  
BWE  
A1  
VSS  
VSS  
N
P
R
T
DQPd  
DQa  
VSS  
MODE  
A
A0  
VSS  
NC  
A
A
NC  
ZZ  
VDD  
A
72M  
A
NC  
U
VDDQ  
TMS  
TDI  
TCK  
TDO  
NC  
VDDQ  
CY7C1443V25 (2M × 18)  
1
2
3
4
5
6
7
A
B
C
D
E
F
A
A
VDDQ  
NC  
A
A
A
VDDQ  
NC  
A
A
ADSP  
ADSC  
VDD  
A
NC  
NC  
A
A
A
A
VSS  
VSS  
VSS  
VSS  
DQb  
NC  
NC  
DQb  
NC  
DQPa  
NC  
NC  
DQa  
CE1  
OE  
VSS  
DQa  
VDDQ  
NC  
VDDQ  
DQa  
NC  
VSS  
VSS  
VSS  
NC  
NC  
ADV  
GW  
VDD  
G
H
J
NC  
DQb  
DQb  
NC  
BWb  
VSS  
NC  
DQa  
VDD  
VDDQ  
DQa  
VDDQ  
NC  
VDD  
DQb  
NC  
K
L
VSS  
NC  
DQa  
NC  
DQa  
NC  
A
VSS  
VSS  
CLK  
NC  
DQb  
VDDQ  
DQb  
NC  
BWa  
VSS  
VSS  
NC  
M
VDDQ  
NC  
DQb  
NC  
BWE  
A1  
VSS  
VSS  
N
P
R
T
DQPb  
DQa  
VSS  
MODE  
A
A0  
VSS  
NC  
A
NC  
A
A
NC  
ZZ  
Vdd  
A
A
72M  
VDDQ  
U
TMS  
TDI  
TCK  
TDO  
NC  
VDDQ  
Document #: 38-05186 Rev. **  
Page 4 of 29  
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
Pin Configurations (continued)  
165-ball Bump FBGA  
CY7C1441V25 (1M × 36)11 × 15 FBGA  
1
2
3
4
5
6
7
8
9
10  
11  
NC  
A
CE  
BWc  
BWb  
CE  
BWE  
A
ADSC  
ADV  
A
NC  
1
2
3
NC  
DPc  
DQc  
A
CE  
BWd  
BWa  
CLK  
GW  
B
C
D
E
F
OE  
ADSP  
A
A
NC  
V
V
V
V
V
V
V
V
V
V
V
NC  
DPb  
DQb  
DDQ  
DDQ  
SS  
SS  
SS  
SS  
SS  
DDQ  
DQc  
V
V
V
V
V
V
DQb  
DD  
SS  
SS  
SS  
DD  
DDQ  
DQc  
DQc  
DQc  
NC  
DQc  
DQc  
DQc  
V
V
V
V
V
V
DQb  
DQb  
DQb  
NC  
DQb  
DQb  
DQb  
ZZ  
DDQ  
DDQ  
DDQ  
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
G
H
J
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
V
NC  
V
V
V
V
V
NC  
SS  
DD  
SS  
SS  
SS  
DD  
DQd  
DQd  
DQd  
DQd  
DPd  
NC  
DQd  
DQd  
DQd  
DQd  
NC  
V
V
V
V
V
V
V
DQa  
DQa  
DQa  
DQa  
NC  
DQa  
DQa  
DQa  
DQa  
DPa  
A
DDQ  
DDQ  
DDQ  
DDQ  
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
V
V
V
V
K
L
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
M
N
P
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
V
NC  
TDI  
A
V
V
V
DDQ  
SS  
SS  
SS  
DDQ  
72M  
A
A
A
A1  
A0  
TDO  
TCK  
A
A
A
A
A
MODE  
A
A
TMS  
R
A
A
CY7C1443V25 (2M × 18)11 × 15 FBGA  
1
2
3
4
5
6
7
8
9
10  
11  
NC  
A
CE  
BWb  
NC  
CE  
BWE  
A
ADSC  
ADV  
A
A
1
2
3
NC  
NC  
NC  
A
CE  
NC  
BWa  
CLK  
GW  
B
C
D
E
F
OE  
ADSP  
A
A
NC  
V
V
V
V
V
V
V
V
V
V
V
NC  
NC  
DPa  
DQa  
DDQ  
DDQ  
SS  
SS  
SS  
SS  
SS  
DDQ  
DQb  
DQb  
DQb  
DQb  
V
V
V
V
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
NC  
NC  
V
V
V
V
V
V
NC  
NC  
DQa  
DQa  
DQa  
ZZ  
DDQ  
DDQ  
DDQ  
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
NC  
V
V
V
V
G
H
J
V
V
NC  
DD  
SS  
SS  
SS  
DD  
DDQ  
NC  
V
NC  
V
V
V
V
V
NC  
NC  
SS  
DD  
SS  
SS  
SS  
DD  
DQb  
DQb  
DQb  
DQb  
DPb  
NC  
NC  
NC  
NC  
NC  
NC  
72M  
V
V
V
V
V
V
V
DQa  
DQa  
DQa  
DQa  
NC  
NC  
NC  
NC  
NC  
NC  
A
DDQ  
DDQ  
DDQ  
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
V
V
V
V
K
L
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
M
N
P
V
V
DDQ  
DD  
SS  
SS  
SS  
DD  
DDQ  
V
NC  
TDI  
A
V
V
V
DDQ  
SS  
SS  
SS  
DDQ  
A
A
A
A1  
A0  
TDO  
TCK  
A
A
A
A
A
MODE  
A
A
TMS  
R
A
A
Document #: 38-05186 Rev. **  
Page 5 of 29  
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
Pin Configurations (continued)  
CY7C1447V25 (512K × 72)  
1
DQg  
DQg  
DQg  
2
3
4
5
6
7
8
9
10  
DQb  
11  
A
B
C
D
E
F
DQg  
DQg  
CE  
CE  
ADSC  
GW  
DQb  
DQb  
3
2
A
ADSP  
NC  
ADV  
A
A
BWS  
DQb  
DQb  
BWS  
BWS  
f
BWS  
b
c
g
DQg  
DQg  
DPc  
DQc  
DQc  
NC  
NC  
NC  
NC  
BWS  
NC  
BWS  
CE  
BWS  
a
BWS  
e
DQb  
DQb  
DPb  
DQf  
DQf  
d
1
h
DQg  
V
OE  
V
NC  
V
SS  
DQb  
SS  
DPg  
DQc  
V
V
V
V
V
V
DD  
DDQ  
DDQ  
DDQ  
SS  
DDQ  
DD  
DD  
DPf  
DQf  
V
V
V
V
V
NC  
NC  
NC  
NC  
CEN  
NC  
NC  
V
V
SS  
SS  
DD  
SS  
SS  
DD  
SS  
G
H
J
DQc  
DQc  
V
V
V
DDQ  
V
V
V
DDQ  
DQf  
DQf  
DDQ  
DDQ  
V
V
V
V
V
V
SS  
V
DQc  
DQc  
NC  
SS  
SS  
SS  
SSQ  
DDQ  
SS  
DQf  
DQf  
NC  
DQc  
NC  
V
V
V
V
V
V
DDQ  
DD  
DD  
DDQ  
DDQ  
DQf  
NC  
K
L
CLK  
V
NC  
V
SS  
SS  
NC  
NC  
DQh  
DQh  
DQh  
V
V
V
V
DDQ  
DD  
SS  
DD  
SS  
DDQ  
DDQ  
DQa  
DQa  
DQa  
DDQ  
M
N
P
R
T
V
V
V
V
V
V
V
DQh  
DQh  
DQh  
V
V
SS  
SS  
SS  
SS  
DQa  
DQa  
DQa  
V
V
V
V
V
DDQ  
DQh  
DQh  
DPd  
DQd  
DQd  
V
V
V
V
V
NC  
ZZ  
DD  
DD  
SS  
DDQ  
SS  
DDQ  
DDQ  
DQa  
DQa  
DPa  
DQe  
DQe  
V
V
V
V
V
SS  
SS  
SS  
SS  
DPh  
DQd  
DQd  
DQd  
DQd  
V
DDQ  
V
DDQ  
SS  
DD  
DDQ  
SS  
DD  
DDQ  
DD  
DPe  
DQe  
DQe  
DQe  
DQe  
NC  
V
NC  
NC  
NC  
A
MODE  
A
U
V
W
A
A
A
A
NC  
A
A
A1  
A
DQd  
DQd  
A
A
A
DQe  
DQe  
TDI  
TDO  
TCK  
A
A0  
A
TMS  
Pin Definition  
PinName  
I/O  
Pin Description  
A0  
A1  
A
Input-  
Synchronous  
Address Inputs used to select one of the address locations. Sampled at the rising edge of  
the CLK if ADSP or ADSC is active LOW, and CE1, CE2, andCE3 are sampled active. A[1:0] feed  
the two-bit counter.  
BWa  
BWb  
BWc  
BWd  
BWe  
BWf  
Input-  
Synchronous  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes to the SRAM.  
Sampled on the rising edge of CLK.  
BWg  
BWh  
GW  
Input-  
Synchronous  
Global Write Enable Input, active LOW. When asserted LOW on therisingedge ofCLK, aglobal  
Write is conducted (all bytes are written, regardless of the values on BWa,b,c,d,e,f,g,h and BWE).  
BWE  
CLK  
CE1  
Input-  
Synchronous  
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal must  
be asserted LOW to conduct a byte Write.  
Input-Clock  
Clock Input. Used to capture all synchronous inputs to the device. Also used to increment the  
burst counter when ADV is asserted LOW, during a burst operation.  
Input-  
Synchronous  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction  
with CE2 and CE3 to select/deselect the device. ADSP is ignored if CE1 is HIGH.  
Document #: 38-05186 Rev. **  
Page 6 of 29  
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
Pin Definition  
PinName  
I/O  
Pin Description  
CE2  
Input-  
Synchronous  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction  
with CE1 and CE3 to select/deselect the device (TQFP only).  
CE3  
OE  
Input-  
Synchronous  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction  
with CE1 and CE2 to select/deselect the device (TQFP only)  
Input-  
Output Enable, asynchronous input, active LOW. Controls the direction of the I/O pins. When  
Asynchronous LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are three-stated, and  
act as input data pins. OE is masked during the first clock of a Read cycle when emerging from  
a deselected state.  
ADV  
Input-  
Advance Input signal, sampled on the rising edge of CLK. When asserted, it automatically  
Synchronous  
increments the address in a burst cycle.  
ADSP  
Input-  
Synchronous  
Address Strobe from Processor, sampled on the rising edge of CLK. When asserted LOW,  
A is captured in the address registers. A[1:0] are also loaded into the burst counter. When ADSP  
and ADSC are both asserted, only ADSP is recognized. ASDP is ignored when CE1 is  
deasserted HIGH.  
ADSC  
MODE  
ZZ  
Input-  
Synchronous  
Address Strobe from Controller, sampled on the rising edge of CLK. When asserted LOW,  
A[x:0] is captured in the address registers. A[1:0] are also loaded into the burst counter. When  
ADSP and ADSC are both asserted, only ADSP is recognized.  
Input-  
Static  
Selects Burst Order. When tied to GND selects linear burst sequence. When tied to VDDQ or  
left floatingselects interleavedburst sequence. This is astrappin andshould remainstaticduring  
device operation.  
Input-  
ZZ sleepInput. This active HIGH input places the device in a non-time critical sleep”  
Asynchronous condition with data integrity preserved.This pin can also be left as a NC.  
DQa, DPa  
DQb, DPb  
DQc, DPc  
DQd, DPd  
DQe, DPe  
DQf, DPf  
I/O-  
Synchronous  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is triggered  
by the rising edge of CLK. As outputs, they deliver the data contained in the memory location  
specified by A during the previous clock rise of the Read cycle. The direction of the pins is  
controlled by OE. When OE is asserted LOW, the pins behave as outputs. When HIGH, DQx  
and DPx are placed in a three-state condition.DQ a,b,c,d,e,f,g and h are eight bits wide. DP  
a,b,c,d,e,f,g and h are one bit wide.  
DQg, DPg  
DQh, DPh  
TDO  
JTAG serial output Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK (BGA only).  
Synchronous This pin can be left as a NC if JTAG is not used.  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK (BGA only). This pin  
Synchronous can be left as a NC if JTAG is not used.  
Test Mode Select This pin controls the Test Access Port state machine. Sampled on the rising edge of TCK  
Synchronous (BGA only). This pin can be left as a NC if JTAG is not used.  
JTAG serial clock Serial clock to the JTAG circuit (BGA only). This pin can be left as a NC if JTAG is not used.  
TDI  
TMS  
TCK  
VDD  
Power Supply  
Power supply inputs to the core of the device. Should be connected to 2.5V 5% +5% power  
supply.  
VSS  
Ground  
Ground for the core of the device. Should be connected to ground of the system.  
VDDQ  
VSSQ  
72M  
NC  
I/O Power Supply Power supply for the I/O circuitry. Should be connected to a 1.71(min) to Vdd(max)  
I/O Ground  
Ground for the I/O circuitry. Should be connected to ground of the system.  
No Connects. Reserved for address expansion  
No Connects.  
asserted LOW, the requested data will be available at the data  
outputs a maximum to tCDV after clock rise. ADSP is ignored if  
Functional Description  
Single Read Accesses  
CE1 is HIGH.  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW,  
(2) chip enable (CE1, CE2, CE3 on TQFP, CE1 on BGA)  
asserted active, and (3) the Write signals (GW, BWE) are all  
deasserted HIGH. ADSP is ignored if CE1 is HIGH. The  
address presented to the address inputs is stored into the  
address advancement logic and the Address Register while  
being presented to the memory core. If the OE input is  
Single Write Accesses Initiated by ADSP  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and  
(2) Chip Enable asserted active. The address presented is  
loaded into the address register and the address  
advancement logic while being delivered to the RAM core. The  
Write signals (GW, BWE, and BWx) and ADV inputs are  
Document #: 38-05186 Rev. **  
Page 7 of 29  
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
ignored during this first clock cycle. If the Write inputs are  
asserted active (see Write Cycle Descriptions table for appro-  
priate states that indicate a Write) on the next clock rise, the  
appropriate data will be latched and written into the device.  
The CY7C1441V25/ CY7C1443V25/CY7C1447V25 provides  
byte Write capability that is described in the Write Cycle  
Description table. Asserting the Byte Write Enable input  
(BWE) with the selected Byte Write (BWa,b,c,d,e,f,g,h for  
CY7C1447V25, BWa,b,c,d for CY7C1441V25, and BWa,b for  
CY7C1443V25) input will selectively write to only the desired  
bytes. Bytes not selected during a byte Write operation will  
remain unaltered. All I/Os are three-stated during a byte Write.  
Because the CY7C1441V25/CY7C1443V25/CY7C1447V25  
is a common I/O device, the Output Enable (OE) must be  
deasserted HIGH before presenting data to the DQx inputs.  
Doing so will three-state the output drivers. As a safety  
precaution, DQx are automatically three-stated whenever a  
Write cycle is detected, regardless of the state of OE.  
The address presented to A[17:0] is loaded into the address  
register and the address advancement logic while being  
delivered to the RAM core. The ADV input is ignored during  
this cycle. If a global Write is conducted, the data presented to  
the DQx is written into the corresponding address location in  
the RAM core. If a byte Write is conducted, only the selected  
bytes are written. Bytes not selected during a byte Write  
operation will remain unaltered. All I/Os are three-stated  
during  
a
byte Write because the CY7C1441V25/  
CY7C1443V25/CY7C1447V25 is a common I/O device, the  
Output Enable (OE) must be deasserted HIGH before  
presenting data to the DQx inputs. Doing so will three-state the  
output drivers. As a safety precaution, DQx are automatically  
three-stated whenever a Write cycle is detected, regardless of  
the state of OE.  
Burst Sequences  
The CY7C1441V25/CY7C1443V25/CY7C1447V25 provides  
a two-bit wraparound counter, fed by A[1:0], that implements  
either an interleaved or linear burst sequence. to support  
processors that follow a linear burst sequence. The burst  
sequence is user selectable through the MODE input.  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both Read and Write burst operations are supported.  
Single Write Accesses Initiated by ADSC  
ADSC Write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deasserted HIGH, (3) Chip Enable (CE1, CE2, CE3 on TQFP,  
CE1 on BGA) asserted active, and (4) the appropriate combi-  
nation of the Write inputs (GW, BWE, and BWx) are asserted  
active to conduct a Write to the desired byte(s). ADSC is  
ignored if ADSP is active LOW.  
Cycle Descriptions[1, 2, 3, 4]  
Next Cycle  
Unselected  
Unselected  
Unselected  
Unselected  
Unselected  
Begin Read  
Begin Read  
Add. Used  
None  
ZZ  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
CE3  
X
1
CE2  
X
X
0
CE1  
1
ADSP  
X
0
ADSC  
ADV  
X
X
X
X
X
X
X
0
OE  
X
X
X
X
X
X
X
1
DQ  
Hi-Z  
Write  
0
X
X
0
0
X
0
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
X
X
None  
0
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
DQ  
X
None  
X
1
0
0
X
None  
X
0
0
1
X
None  
X
0
0
1
X
External  
External  
1
0
0
X
0
1
0
1
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
X
Continue Read Next  
Continue Read Next  
Continue Read Next  
Continue Read Next  
Suspend Read Current  
Suspend Read Current  
Suspend Read Current  
Suspend Read Current  
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X
1
X
X
1
1
1
0
0
X
X
1
0
1
Hi-Z  
DQ  
1
0
0
X
X
1
1
1
Hi-Z  
DQ  
1
1
0
X
X
1
1
1
Hi-Z  
DQ  
1
1
0
Begin Write  
Begin Write  
Begin Write  
Current  
Current  
External  
X
1
1
X
X
X
X
X
X
X
X
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
X
1
1
0
X
0
Continue Write Next  
Continue Write Next  
Suspend Write Current  
Suspend Write Current  
X
X
X
X
X
X
X
X
X
X
X
1
1
X
1
0
X
1
1
X
X
1
ZZ sleep”  
None  
X
X
Notes:  
1. X = Dont Care.1 = HIGH, 0 = LOW.  
2. Write is defined by BWE, BWx, and GW. See Write Cycle Descriptions table.  
3. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
4. CE1, CE2, and CE3 are available only in the TQFP package. BGA package has a single chip select CE1.  
Document #: 38-05186 Rev. **  
Page 8 of 29  
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
Sleep Mode  
Interleaved Burst Sequence  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation sleepmode. Two  
clock cycles are required to enter into or exit from this sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the sleepmode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the sleepmode. CEs, ADSP, and ADSC must remain  
inactive for the duration of tZZREC after the ZZ input returns  
LOW.  
First  
Second  
Third  
Fourth  
Address  
Address  
Address  
Address  
A[1:0]  
A[1:0]  
A[1:0]  
A[1:0]  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Linear Burst Sequence  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
A[1:0]  
A[1:0]  
A[1:0]  
A[1:0]  
11  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
00  
01  
10  
ZZ Mode Electrical Characteristics  
Parameter Description  
IDDZZ  
Test Conditions  
ZZ > VDD 0.2V  
ZZ > VDD 0.2V  
ZZ < 0.2V  
Min.  
Max.  
15  
Unit  
mA  
ns  
Snooze mode standby current  
Device operation to ZZ  
ZZ recovery time  
tZZS  
2tCYC  
tZZREC  
2tCYC  
ns  
Write Cycle Descriptions[5, 6]  
Function (CY7C1441V25)  
GW  
BWE  
1
BWd  
BWc  
BWb  
BWa  
X
1
Read  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
X
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
X
X
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
X
X
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
X
Read  
0
Write Byte 0 DQa  
Write Byte 1 DQb  
Write Bytes 1, 0  
Write Byte 2 DQc  
Write Bytes 2, 0  
Write Bytes 2, 1  
Write Bytes 2, 1, 0  
Write Byte 3 DQd  
Write Bytes 3, 0  
Write Bytes 3, 1  
Write Bytes 3, 1, 0  
Write Bytes 3, 2  
Write Bytes 3, 2, 0  
Write Bytes 3, 2, 1  
Write All Bytes  
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
Write All Bytes  
X
X
Notes:  
5. X = Don't Care,1 = Logic HIGH, 0 = Logic LOW, CE stands for ALL Chip Enables active. BWS = 0 signifies at least one Byte Write Select is active, BWS  
x
x
= Valid signifies that the desired byte Write selects are asserted, see Write Cycle Description table for details.  
6. Write is defined by WE and BWS . See Write Cycle Description table for details.  
x
Document #: 38-05186 Rev. **  
Page 9 of 29  
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
Function (CY7C1443V25)  
GW  
1
BWE  
BWb  
BWa  
Read  
Read  
1
0
0
0
0
X
X
1
1
0
0
X
X
1
0
1
0
X
1
Write Byte 0 - DQ[7:0] and DP0  
Write Byte 1 - DQ[15:8] and DP1  
Write All Bytes  
1
1
1
Write All Bytes  
0
Performing a TAP Reset  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
A Reset is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This RESET does not affect the operation of  
the SRAM and may be performed while the SRAM is  
operating. At power-up, the TAP is reset internally to ensure  
that TDO comes up in a High-Z state.  
The CY7C1443V25/CY7C1441V25 incorporates a serial  
boundary scan Test Access Port (TAP) in the BGA package  
only. The TQFP package does not offer this functionality. This  
port operates in accordance with IEEE Standard 1149.1-1900,  
but does not have the set of functions required for full 1149.1  
compliance. These functions from the IEEE specification are  
excluded because their inclusion places an added delay in the  
critical speed path of the SRAM. Note that the TAP controller  
functions in a manner that does not conflict with the operation  
of other devices using 1149.1 fully compliant TAPs. The TAP  
operates using JEDEC standard 2.5V I/O logic levels.  
TAP Registers  
Registers are connected between the TDI and TDO pins and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction registers. Data is serially loaded into the TDI pin  
on the rising edge of TCK. Data is output on the TDO pin on  
the falling edge of TCK.  
Disabling the JTAG Feature  
Instruction Register  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull-up resistor. TDO should  
be left unconnected. Upon power-up, the device will come up  
in a reset state which will not interfere with the operation of the  
device.  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO pins as shown in the TAP Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
When the TAP controller is in the CaptureIR state, the two  
least significant bits are loaded with a binary 01pattern to  
allow for fault isolation of the board level serial test path.  
Test Access PortTest Clock  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain states. The bypass  
register is a single-bit register that can be placed between TDI  
and TDO pins. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
Test Mode Select  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this pin unconnected if the TAP is not used. The pin is  
pulled up internally, resulting in a logic HIGH level.  
Boundary Scan Register  
Test Data-In (TDI)  
The boundary scan register is connected to all the input and  
output pins on the SRAM. Several no connect (NC) pins are  
also included in the scan register to reserve pins for higher  
density devices. The x36 configuration has a 70-bit-long  
register, and the x18 configuration has a 51-bit-long register.  
The TDI pin is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see the TAP  
Controller State Diagram. TDI is internally pulled up and can  
be unconnected if the TAP is unused in an application. TDI is  
connected to the Most Significant Bit (MSB) on any register.  
The boundary scan register is loaded with the contents of the  
RAM Input and Output ring when the TAP controller is in the  
Capture-DR state and is then placed between the TDI and  
TDO pins when the controller is moved to the Shift-DR state.  
The EXTEST, SAMPLE/PRELOAD and SAMPLE Z instruc-  
tions can be used to capture the contents of the Input and  
Output ring.  
Test Data Out (TDO)  
The TDO output pin is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine (see TAP Controller State  
Diagram). The output changes on the falling edge of TCK.  
TDO is connected to the Least Significant Bit (LSB) of any  
register.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
Document #: 38-05186 Rev. **  
Page 10 of 29  
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
on the SRAM package. The MSB of the register is connected  
SAMPLE Z  
to TDI, and the LSB is connected to TDO.  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO pins when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so  
the TAP controller is not fully 1149.1 compliant.  
When the SAMPLE/PRELOAD instructions are loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
TAP Instruction Set  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in the  
Instruction Code table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 10 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is  
possible that during the Capture-DR state, an input or output  
will undergo a transition. The TAP may then try to capture a  
signal while in transition (metastable state). This will not harm  
the device, but there is no guarantee as to the value that will  
be captured. Repeatable results may not be possible.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented. The TAP controller  
cannot be used to load address, data, or control signals into  
the SRAM and cannot preload the Input or Output buffers. The  
SRAM does not implement the 1149.1 commands EXTEST or  
INTEST or the PRELOAD portion of SAMPLE/PRELOAD;  
rather it performs a capture of the Inputs and Output ring when  
these instructions are executed.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controllers capture set-up plus  
hold times (tCS and tCH). The SRAM clock input might not be  
captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE/PRELOAD instruction. If this  
is an issue, it is still possible to capture all other signals and  
simply ignore the value of the CK and CK# captured in the  
boundary scan register.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO pins.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO pins.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all  
0s. EXTEST is not implemented in the TAP controller, and  
therefore this device is not compliant to the 1149.1 standard.  
Note that since the PRELOAD part of the command is not  
implemented, putting the TAP into the Update to the  
Update-DR state while performing a SAMPLE/PRELOAD  
instruction will have the same effect as the Pause-DR  
command.  
The TAP controller does recognize an all-0 instruction. When  
an EXTEST instruction is loaded into the instruction register,  
the SRAM responds as if a SAMPLE/PRELOAD instruction  
has been loaded. There is one difference between the two  
instructions. Unlike the SAMPLE/PRELOAD instruction,  
EXTEST places the SRAM outputs in a High-Z state.  
Bypass  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO pins. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO pins and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state. The IDCODE instruction  
is loaded into the instruction register upon power-up or  
whenever the TAP controller is given a test logic reset state.  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
Document #: 38-05186 Rev. **  
Page 11 of 29  
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
TAP Controller State Diagram  
1[7]  
TEST-LOGIC  
RESET  
1
1
1
TEST-LOGIC/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
1
1
CAPTURE-DR  
CAPTURE-DR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
EXIT1-DR  
0
1
EXIT1-IR  
0
1
0
0
PAUSE-DR  
1
PAUSE-IR  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
1
0
0
Note:  
7. The 0/1next to each state represents the value at TMS at the rising edge of TCK.  
Document #: 38-05186 Rev. **  
Page 12 of 29  
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
TAP Controller Block Diagram  
0
Bypass Register  
Selection  
Circuitry  
Selection  
Circuitry  
2
1
0
TDO  
TDI  
Instruction Register  
29  
Identification Register  
31 30  
.
.
2
1
1
0
0
.
.
.
.
.
2
Boundary Scan Register  
TCK  
TMS  
TAP Controller  
TAP Electrical Characteristics Over the Operating Range[8, 9]  
Parameter  
VOH1  
Description  
Output HIGH Voltage  
Output HIGH Voltage  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
Test Conditions  
IOH = 4.0 mA  
Min.  
2.0  
Max.  
Unit  
V
V
VOH2  
VOL1  
VOL2  
VIH  
IOH = 100 µA  
IOL = 8.0 mA  
IOL = 100 µA  
2.2  
0.4  
0.2  
V
V
1.7  
0.3  
5  
V
DD+0.3  
V
VIL  
0.7  
V
IX  
GND VI VDDQ  
5
µA  
[10, 11]  
TAP AC Switching Characteristics Over the Operating Range  
Parameter  
tTCYC  
Description  
Min.  
Max.  
Unit  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH  
100  
ns  
MHz  
ns  
tTF  
10  
tTH  
40  
40  
tTL  
TCK Clock LOW  
ns  
Set-up Times  
tTMSS  
TMS Set-up to TCK Clock Rise  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
10  
10  
10  
ns  
ns  
ns  
tTDIS  
tCS  
Notes:  
8. All Voltage referenced to Ground  
9. Overshoot: VIH(AC) < VDD + 1.5V for t < tTCYC/2; undershoot: VIL(AC) < 0.5V for t < tTCYC/2; power-up: VIH < 2.6V and VDD < 2.4V and VDDQ < 1.4V for t < 200 ms.  
10. CS and tCH refer to the set-up and hold time requirements of latching data from the boundary scan register.  
t
11. Test conditions are specified using the load in TAP AC test conditions. tR/tF = 1 ns.  
Document #: 38-05186 Rev. **  
Page 13 of 29  
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
TAP AC Switching Characteristics Over the Operating Range (continued)[10, 11]  
Parameter  
Hold Times  
tTMSH  
Description  
Min.  
Max.  
Unit  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
10  
10  
10  
ns  
ns  
ns  
tTDIH  
tCH  
Capture Hold after clock rise  
Output Times  
tTDOV TCK Clock LOW to TDO Valid  
tTDOX TCK Clock LOW to TDO Invalid  
20  
ns  
ns  
0
TAP Timing and Test Conditions  
1.25V  
ALL INPUT PULSES  
Vih  
50Ω  
0V  
TDO  
Z = 50Ω  
0
C = 20 pF  
L
GND  
tTL  
tTH  
(a)  
Test Clock  
TCK  
tTCYC  
tTMSS  
tTMSH  
Test Mode Select  
TMS  
tTDIS  
tTDIH  
Test Data-In  
TDI  
Test Data-Out  
TDO  
tTDOV  
tTDOX  
Document #: 38-05186 Rev. **  
Page 14 of 29  
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
Identification Register Definitions  
Instruction Field  
Revision Number (31:29)  
Department Number (27:25)  
Voltage (28&24)  
x 18  
000  
101  
01  
x36  
Description  
Reserved for version number.  
000  
101  
01  
Department Number  
Architecture (23:21)  
000  
001  
010  
111  
000  
001  
100  
111  
Architecture Type  
Memory type (20:18)  
Device Width (17:15)  
Device Density (14:12)  
Cypress JEDEC ID (11:1)  
ID Register Presence (0)  
Defines type of memory  
Defines width of the SRAM. x36 or x18  
Defines the density of the SRAM  
00011100100 00011100100 Allows unique identification of SRAM vendor.  
1
1
Indicate the presence of an ID register.  
Scan Register Sizes  
Register Name  
Bit Size (x18)  
Bit Size (x36)  
Instruction  
Bypass  
3
1
3
1
ID  
32  
51  
32  
70  
Boundary Scan  
Identification Codes  
Instruction  
Code  
Description  
EXTEST  
000  
Captures the Input/Output ring contents. Places the boundary scan  
register between the TDI and TDO. Forces all SRAM outputs to High-Z state.  
This instruction is not 1149.1-compliant.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register  
between TDI and TDO. This operation does not affect SRAM operation.  
SAMPLE Z  
Captures the Input/Output contents. Places the boundary scan register  
between TDI and TDO. Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
100  
Do Not Use. This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures the Input/Output ring contents. Places the boundary scan  
register between TDI and TDO. Does not affect the SRAM operation. This  
instruction does not implement 1149.1 preload function and is therefore not  
1149.1-compliant.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use. This instruction is reserved for future use.  
Do Not Use. This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not  
affect SRAM operation.  
Document #: 38-05186 Rev. **  
Page 15 of 29  
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
Boundary Scan Order (1M × 36)  
Boundary Scan Order (2M × 18)  
Document #: 38-05186 Rev. **  
Page 16 of 29  
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
Current into Outputs (LOW)......................................... 20 mA  
Static Discharge Voltage .......................................... >2001V  
(per MIL-STD-883, Method 3015)  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Storage Temperature .................................55°C to +150°C  
Latch-Up Current.................................................... >200 mA  
Ambient Temperature with  
Operating Range  
Power Applied.............................................55°C to +125°C  
Range  
Ambient Temperature[12] VDD  
VDDQ  
Supply Voltage on VDD Relative to GND ....... 0.3V to +3.6V  
DC Voltage Applied to Outputs  
Commercial  
0°C to +70°C  
2.5 1.7V (min.)  
±5% VDD(max.)  
in High-Z State[13] ............................... 0.5V to VDDQ + 0.5V  
DC Input Voltage[13] ............................ 0.5V to VDDQ + 0.5V  
Electrical Characteristics Over the Operating Range  
Parameter  
VDD  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min.  
2.375  
2.375  
1.7  
Max.  
2.625  
VDD  
Unit  
V
V
VDDQ  
2.5V range  
1.8V range  
VDD  
V
VOH  
VOL  
VIH  
VIL  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage[13]  
VDD = Min., IOH = -1.0 mA  
VDD = Min., IOH = -100 µA  
VDD = Min., IOL = 1.0 mA  
VDD = Min., IOL = 100µA  
Vddq = 2.5V  
2.0  
V
Vddq = 1.8V  
Vddq = 2.5V  
Vddq = 1.8V  
Vddq = 2.5V  
Vddq = 1.8V  
Vddq = 2.5V  
Vddq = 1.8V  
1.4  
V
0.4  
0.2  
V
V
1.7  
1.2  
V
V
0.3  
0.3  
5  
0.7  
0.6  
5
V
V
IX  
Input Load Current except  
ZZ and MODE  
GND £ VI £ VDDQ  
Input = VSS  
µA  
IZZ  
Input Current of MODE  
Input Current of ZZ  
30  
5  
30  
µA  
µA  
IOZ  
IDD  
Output Leakage Current  
VDD Operating Supply  
GND £ VI £ VDDQ, Output Disabled  
2  
2
µA  
VDD = Max., IOUT = 0 mA,  
f = fMAX = 1/tCYC  
150 MHz  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
133 MHz  
117 MHz  
ISB1  
Automatic CE  
Power-down  
CurrentTTL Inputs  
Max. VDD, Device Deselected, 150 MHz  
VIN > VIH or VIN < VIL  
f = fMAX = 1/tCYC  
133 MHz  
117 MHz  
ISB2  
Automatic CE  
Max. VDD, Device Deselected, All speed grades  
Power-down  
CurrentCMOS Inputs  
VIN 0.3V or VIN > VDDQ −  
0.3V,  
f = 0  
ISB3  
Automatic CE  
Power-down  
CurrentCMOS Inputs  
Max. VDD, Device Deselected, 150 MHz  
TBD  
TBD  
TBD  
mA  
mA  
mA  
or VIN £ 0.3V or VIN  
VDDQ0.3V  
>
133 MHz  
117 MHz  
f = fMAX = 1/tCYC  
ISB4  
Automatic CE  
Power-down  
Max. VDD, Device Deselected, All speed grades  
IN VIH or VIN VIL, f = 0  
TBD  
mA  
V
CurrentTTL Inputs  
Shaded areas contain advance information.  
Notes:  
12. TA is the case temperature.  
13. Minimum voltage equals 2.0V for pulse durations of less than 20 ns.  
14. The load used for VOH and VOL testing is shown in figure (b) of the A/C test conditions.  
Document #: 38-05186 Rev. **  
Page 17 of 29  
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
Capacitance[16]  
Parameter  
Description  
Input Capacitance  
Test Conditions  
Max.  
Unit  
pF  
CIN  
TA = 25°C, f = 1 MHz,  
VDD = VDDQ = 2.5V  
TBD  
TBD  
TBD  
CCLK  
CI/O  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
pF  
AC Test Loads and Waveforms  
R=317Ω  
Vddq  
[15]  
OUTPUT  
ALL INPUT PULSES  
90%  
OUTPUT  
Vdd  
90%  
Z =50Ω  
0
R =50Ω  
10%  
10%  
L
5 pF  
GND  
R=351Ω  
V = 1.25V  
L
Rise Time:  
1V/ns  
Fall Time:  
1V/ns  
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Thermal Resistance[16]  
Parameter  
Description  
Test Conditions  
BGA Typ. TQFP Typ. Unit  
QJA  
Thermal Resistance  
(Junction to Ambient)  
Still Air, soldered on a 4.25 x 1.125 inch,  
four-layer printed circuit board  
TBD  
TBD  
°C/W  
QJC  
Thermal Resistance  
(Junction to Case)  
TBD  
TBD  
°C/W  
Switching Characteristics (over the operating range)  
150  
133  
117  
Parameter  
Clock  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
tCYC  
Clock Cycle Time  
6.7  
7.5  
8.5  
ns  
MHz  
ns  
FMAX  
tCH  
Maximum Operating Frequency  
Clock HIGH  
150  
133  
117  
2.5  
2.5  
2.5  
2.5  
3.0  
3.0  
tCL  
Clock LOW  
ns  
Output Times  
tCO  
Data Output Valid After CLK Rise  
OE LOW to Output Valid[16, 18, 20]  
Data Output Hold After CLK Rise  
Clock to High-Z[16, 17, 18, 19, 20]  
Clock to Low-Z[16, 17, 18, 19, 20]  
OE HIGH to Output High-Z[17, 18, 20]  
OE LOW to Output Low-Z[17, 18, 20]  
5.5  
3.0  
6.5  
3.0  
7.5  
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tEOV  
tDOH  
1.5  
2.5  
0
1.5  
2.5  
0
1.5  
2.5  
0
tCHZ  
5.0  
4.0  
5.0  
4.0  
5.0  
4.0  
tCLZ  
tEOHZ  
tEOLZ  
Set-up Times  
tAS  
Address Set-up Before CLK Rise  
Data Input Set-up Before CLK Rise  
ADSP, ADSC Set-up Before CLK Rise  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
tDS  
tADS  
Notes:  
15. Input waveform should have a slew rate of > 1 V/ns.  
16. Tested initially and after any design or process change that may affect these parameters.  
17. Unless otherwise noted, test conditions assume signal transition time of 2.5 ns or less, timing reference levels of 1.25V, input pulse levels of 0 to 2.5V, and  
output loading of the specified IOL/IOH and load capacitance. Shown in (a), (b), and (c) of AC Test Loads.  
18. tCHZ, tCLZ, tOEV, tEOLZ, and tEOHZ are specified with AC test conditions shown in (a) of AC Test Loads. Transition is measured ± 200 mV from steady-state  
voltage.  
19. At any given voltage and temperature, tEOHZ is less than tEOLZ and tCHZ is less than tCLZ to eliminate bus contention between SRAMs when sharing the same  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst-case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions.  
20. This parameter is sampled and not 100% tested.  
Document #: 38-05186 Rev. **  
Page 18 of 29  
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
Switching Characteristics (over the operating range) (continued)  
150  
133  
117  
Parameter  
tWES  
tADVS  
tCES  
Description  
BWE, GW, BWx Set-up Before CLK Rise  
ADV Set-up Before CLK Rise  
Chip Select Set-up  
Min.  
1.5  
Max.  
Min.  
1.5  
Max.  
Min.  
1.5  
Max.  
Unit  
ns  
1.5  
1.5  
1.5  
ns  
1.5  
1.5  
1.5  
ns  
Hold Times  
tAH  
Address Hold After CLK Rise  
Data Input Hold After CLK Rise  
ADSP, ADSC Hold After CLK Rise  
BWE, GW, BWx Hold After CLK Rise  
ADV Hold after CLK Rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tDH  
tADH  
tWEH  
tADVH  
tCEH  
Chip Select Hold After CLK Rise  
Document #: 38-05186 Rev. **  
Page 19 of 29  
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
Switching Waveforms  
Write Cycle Timing[21,22]  
Single Write  
tCYC  
tADH  
Burst Write  
Pipelined Write  
tCH  
Unselected  
CLK  
tADS  
tCL  
ADSP ignored with CE1 inactive  
ADSP  
ADSC  
ADV  
tADH  
tADS  
ADSC initiated Write  
tADVH  
tADVS  
tAS  
ADV Must Be Inactive for ADSP Write  
WD3  
ADD  
GW  
WD1  
WD2  
tAH  
tWH  
tWH  
tWS  
tWS  
BWE  
CE1  
tCES  
tCEH  
CE1 masks ADSP  
tCEH  
tCES  
Unselected with CE2  
CE2  
CE3  
OE  
tCES  
tCEH  
tDH  
tDS  
High-Z  
High-Z  
Data In  
3a  
2a  
1a  
2b  
2c  
2d  
= DONT CARE  
= UNDEFINED  
Notes:  
21. WE is the combination of BWE, BWx, and GW to define a Write cycle (see Write Cycle Descriptions table).  
22. WDx stands for Write Data to Address X.  
Document #: 38-05186 Rev. **  
Page 20 of 29  
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
Switching Waveforms (continued)  
Read Cycle Timing[21, 23]  
Burst Read  
Single Read  
Unselected  
tCYC  
tCH  
Pipelined Read  
CLK  
tADH  
tADS  
tCL  
ADSP ignored with CE1 inactive  
ADSP  
tADS  
ADSC initiated Read  
ADSC  
ADV  
tADVS  
tADH  
Suspend Burst  
tADVH  
tAS  
ADD  
GW  
RD3  
RD1  
RD2  
tAH  
tWS  
tWS  
tWH  
BWE  
CE1  
tCES  
tCEH  
tWH  
CE1 masks ADSP  
Unselected with CE2  
CE2  
tCES  
tCEH  
CE3  
OE  
tCEH  
tEOV  
tCES  
tOEHZ  
tDOH  
tCDV  
3a  
Data Out  
2d  
2a  
2b  
2c  
1a  
tCLZ  
tCHZ  
= DONT CARE  
= UNDEFINED  
Note:  
23. RDx stands for Read Data from Address X.  
Document #: 38-05186 Rev. **  
Page 21 of 29  
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
Switching Waveforms (continued)  
Read/Write Timing  
tCYC  
tCL  
tCH  
CLK  
tAH  
tAS  
A
D
B
C
ADD  
tADH  
tADS  
ADSP  
tADH  
tADS  
ADSC  
tADVH  
tADVS  
ADV  
tCEH  
tCES  
CE1  
CE  
tCEH  
tCES  
tWES  
tWEH  
BWE  
ADSP ignored  
with CE1 HIGH  
OE  
tEOHZ  
tCLZ  
Data  
Q
(B+3)  
D
(C+1)  
D
(C+2)  
D
(C+3)  
Q
(B+2)  
Q
(B+1)  
Q(B)  
Q(B)  
D(C)  
Q(D)  
Q(A)  
In/Out  
tCDV  
tDOH  
tCHZ  
Device originally  
deselected  
WE is the combination of BWE, BWx, and GW to define a Write cycle (see Write Cycle Description table).  
CE is the combination of CE2 and CE3. All chip selects need to be active in order to select  
the device. RAx stands for Read Address X, WAx stands for Write Address X, Dx stands for Data-in X,  
Qx stands for Data-out X.  
= UNDEFINED  
= DONT CARE  
Document #: 38-05186 Rev. **  
Page 22 of 29  
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
Switching Waveforms (continued)  
Back-to-Back Read/Write Timing[24, 25]  
tCYC  
tCL  
tCH  
CLK  
tAS  
WD1  
WD2  
WD3  
WD4  
RD1  
RD2  
RD3  
RD4  
ADD  
tADS  
tADH  
ADSC initiated Reads  
ADSC  
ADSP initiated Reads  
ADSP  
ADV  
tCEH  
tCES  
CE1  
CE  
tWES  
tWEH  
BWE  
OE  
ADSP ignored  
with CE1 HIGH  
tCLZ  
Data In/Out  
tCDV  
1a  
In  
1a  
2a  
3a  
4a  
2a  
In  
3a  
In  
4a  
Out Out Out Out  
In  
tDOH  
Back to Back Reads  
tCHZ  
Back to Back Writes  
= UNDEFINED  
= DONT CARE  
Notes:  
24. Device originally deselected.  
25. CE is the combination of CE2 and CE3. All chip selects need to be active in order to select the device.  
Document #: 38-05186 Rev. **  
Page 23 of 29  
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
Switching Waveforms (continued)  
OE Timing  
OE  
tEOV  
tEOHZ  
Three-state  
I/Os  
tEOLZ  
Ordering Information  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
Package Type  
150  
CY7C1441V25-150AC  
CY7C1443V25-150AC  
A101  
100-lead (14 × 20 × 1.4 mm) Thin Quad Flat  
Pack  
Commercial  
CY7C1441V25-150BGC  
CY7C1443V25-150BGC  
BG119  
119-ball BGA (14 × 22 × 2.4 mm)  
CY7C1447V25-150BX  
BG209  
BC165  
209-ball FBGA (14 × 22 × 2.2 mm)  
165-ball FBGA (15 × 17 mm)  
CY7C1441V25-150BZC  
CY7C1443V25-150BZC  
133  
117  
CY7C1441V25-133AC  
CY7C1443V25-133AC  
A101  
100-lead (14 × 20 × 1.4 mm) Thin Quad Flat  
Pack  
CY7C1441V25-133BGC  
CY7C1443V25-133BGC  
BG119  
119-ball BGA (14 × 22 × 2.4 mm)  
CY7C1447V25-133BX  
BG209  
BC165  
209-ball FBGA (14 × 22 × 2.2 mm)  
165-ball FBGA (15 × 17 mm)  
CY7C1441V25-133BZC  
CY7C1443V25-133BZC  
CY7C1441V25-117AC  
CY7C1443V25-117AC  
A101  
100-lead (14 × 20 × 1.4 mm) Thin Quad Flat  
Pack  
CY7C1441V25-117BGC  
CY7C1443V25-117BGC  
BG119  
119-ball BGA (14 × 22 × 2.4 mm)  
CY7C1447V25-117BX  
BG209  
BC165  
209-ball FBGA (14 × 22 × 2.2 mm)  
165-ball FBGA (15 × 17 mm)  
CY7C1441V25-117BZC  
CY7C1443V25-117BZC  
Shaded areas contain advance information.  
Document #: 38-05186 Rev. **  
Page 24 of 29  
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
Package Diagram  
100-lead Thin Plastic Quad Flatpack (14 × 20 × 1.4 mm) A101  
51-85050-A  
Document #: 38-05186 Rev. **  
Page 25 of 29  
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
Package Diagram (continued)  
119-ball PBGA (14 × 22 × 2.4 mm) BG119  
51-85115-*A  
Document #: 38-05186 Rev. **  
Page 26 of 29  
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
Package Diagram (continued)  
165-Ball FBGA (13 × 15 × 1.62 mm) BB165B  
51-49026-**  
Document #: 38-05186 Rev. **  
Page 27 of 29  
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
Package Diagram (continued)  
209-ball PBGA (14 × 22 × 2.20 mm) BG209  
51-85143-*A  
No Bus Latency and NoBL are trademarks of Cypress Semiconductor Corporation. ZBT is a trademark of Integrated Device  
Technology. All products and company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05186 Rev. **  
Page 28 of 29  
© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C1447V25  
CY7C1443V25  
CY7C1441V25  
PRELIMINARY  
Document Title: CY7C1441V25/CY7C1443V25/CY7C1447V25 1M x 36/2M x 18/512K x 72 Flow-Thru SRAM  
Document Number: 38-05186  
Orig. of  
Change  
REV.  
ECN No.  
Issue Date  
Description of Change  
**  
113763  
04/23/02  
PKS  
New Data Sheet  
Document #: 38-05186 Rev. **  
Page 29 of 29  

相关型号:

CY7C1443V25-150BGC

Standard SRAM, 2MX18, 5.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119
CYPRESS

CY7C1443V25-150BZC

Standard SRAM, 2MX18, 5.5ns, CMOS, PBGA165, 15 X 17 MM, FBGA-165
CYPRESS

CY7C1443V33-117AC

Standard SRAM, 2MX18, 7.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1443V33-150AC

Standard SRAM, 2MX18, 5.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1444AV25

36-Mbit (1M x 36/2M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1444AV25-167AXC

36-Mbit (1M x 36/2M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1444AV25-167AXI

36-Mbit (1M x 36/2M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1444AV25-167BZC

36-Mbit (1M x 36/2M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1444AV25-167BZI

36-Mbit (1M x 36/2M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1444AV25-167BZXC

36-Mbit (1M x 36/2M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1444AV25-167BZXI

36-Mbit (1M x 36/2M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1444AV25-200AXC

36-Mbit (1M x 36/2M x 18) Pipelined DCD Sync SRAM
CYPRESS