CY7C1460AV25-225AC [CYPRESS]

ZBT SRAM, 1MX36, CMOS, PQFP100,;
CY7C1460AV25-225AC
型号: CY7C1460AV25-225AC
厂家: CYPRESS    CYPRESS
描述:

ZBT SRAM, 1MX36, CMOS, PQFP100,

时钟 静态存储器 内存集成电路
文件: 总27页 (文件大小:382K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1460AV25  
CY7C1462AV25  
CY7C1464AV25  
PRELIMINARY  
36-Mbit(1Mx36/2Mx18/512Kx72)PipelinedSRAM  
with NoBL™ Architecture  
Features  
Functional Description  
• Pin-compatible and functionally equivalent to ZBT™  
• Supports 250-MHz bus operations with zero wait states  
— Available speed grades are 250, 200 and 167MHz  
• Internally self-timed output buffer control to eliminate  
The CY7C1460AV25/CY7C1462AV25/CY7C1464AV25 are  
2.5V, 1M x 36 / 2M x 18 /Synchronous pipelined burst SRAMs  
with No Bus Latency™ (NoBL™) logic, respectively. They are  
designed to support unlimited true back-to-back Read/Write  
operations with no wait states. The CY7C1460AV25/  
CY7C1462AV25/CY7C1464AV25 are equipped with the  
advanced (NoBL) logic required to enable consecutive  
Read/Write operations with data being transferred on every  
clock cycle. This feature dramatically improves the throughput  
of data in systems that require frequent Write/Read transitions.  
The CY7C1460AV25/ CY7C1462AV25/ CY7C1464AV25 are  
pin compatible and functionally equivalent to ZBT devices.  
the need to use asynchronous  
OE  
• Fully registered (inputs and outputs) for pipelined  
operation  
• Byte Write capability  
• Single 2.5V power supply  
• 2.5V/1.8V I/O operation  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock. The  
clock input is qualified by the Clock Enable (CEN) signal,  
which when deasserted suspends operation and extends the  
previous clock cycle. Write operations are controlled by the  
Byte Write Selects (BWa–BWh for CY7C1464AV25,  
BWa–BWd for CY7C1460AV25 and BWa–BWb for  
CY7C1462AV25) and a Write Enable (WE) input. All writes are  
conducted with on-chip synchronous self-timed write circuitry.  
• Fast clock-to-output times  
— 2.6 ns (for 250-MHz device)  
— 3.0 ns (for 200-MHz device)  
— 3.4 ns (for 167-MHz device)  
• Clock Enable (CEN) pin to suspend operation  
• Synchronous self-timed writes  
• CY7C1460AV25 and CY7C1462AV25 available in 100  
TQFPand165fBGApackagesCY7C1464AV25available  
in 209-Ball fBGA package  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output three-state control. In order to avoid bus  
contention, the output drivers are synchronously three-stated  
during the data portion of a write sequence.  
• IEEE 1149.1 JTAG Boundary Scan  
• Burst capability—linear or interleaved burst order  
• “ZZ” Sleep Mode option and Stop Clock option  
Logic Block Diagram-CY7C1460AV25 (1M x 36)  
ADDRESS  
REGISTER 0  
A0, A1, A  
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
C
ADV/LD  
C
CLK  
CEN  
WRITE ADDRESS  
REGISTER 1  
WRITE ADDRESS  
REGISTER 2  
O
O
S
U
D
A
T
U
T
P
T
P
E
N
S
U
T
U
T
ADV/LD  
A
E
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
R
E
G
I
MEMORY  
ARRAY  
B
U
F
S
T
E
E
R
I
DQs  
DQP  
DQP  
DQP  
DQP  
WRITE  
DRIVERS  
BW  
BW  
a
a
b
c
d
A
M
P
b
BW  
BW  
c
S
T
E
R
S
F
d
E
R
S
S
WE  
E
E
N
G
INPUT  
REGISTER 1  
INPUT  
REGISTER 0  
E
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
SLEEP  
CONTROL  
ZZ  
Cypress Semiconductor Corporation  
Document #: 38-05354 Rev. **  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Revised August 12, 2004  
CY7C1460AV25  
CY7C1462AV25  
CY7C1464AV25  
PRELIMINARY  
Logic Block Diagram-CY7C1462AV25 (2M x 18)  
ADDRESS  
REGISTER 0  
A0, A1, A  
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
C
ADV/LD  
C
CLK  
CEN  
WRITE ADDRESS  
REGISTER 1  
WRITE ADDRESS  
REGISTER 2  
O
U
T
P
O
U
T
P
S
E
N
S
D
A
T
U
T
U
T
ADV/LD  
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
A
R
E
G
I
S
T
E
R
S
MEMORY  
ARRAY  
E
B
DQs  
U
WRITE  
DRIVERS  
BW  
BW  
a
S
T
E
E
R
I
A
M
P
F
F
E
R
S
DQP  
DQP  
a
b
b
S
N
G
WE  
E
E
INPUT  
REGISTER 1  
INPUT  
REGISTER 0  
E
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
Sleep  
Control  
ZZ  
Logic Block Diagram-CY7C1464AV25 (512K x 72)  
ADDRESS  
REGISTER 0  
A0, A1, A  
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
C
ADV/LD  
C
CLK  
CEN  
WRITE ADDRESS  
REGISTER 1  
WRITE ADDRESS  
REGISTER 2  
O
U
T
P
O
U
T
P
S
D
A
T
U
T
E
N
S
U
T
ADV/LD  
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
A
BW  
BW  
BW  
a
R
E
G
I
S
T
E
R
S
MEMORY  
ARRAY  
E
B
U
F
DQs  
WRITE  
DRIVERS  
b
S
T
E
E
R
I
A
M
P
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
a
b
c
d
e
f
c
F
BW  
d
E
R
S
S
BW  
e
BW  
BW  
f
N
G
g
E
E
BW  
h
g
h
WE  
INPUT  
REGISTER 1  
INPUT  
REGISTER 0  
E
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
Sleep  
Control  
ZZ  
Selection Guide  
CY7C1460AV25-250  
CY7C1462AV25-250  
CY7C1464AV25-250  
CY7C1460AV25-200  
CY7C1462AV25-200  
CY7C1464AV25-200  
CY7C1460AV25-167  
CY7C1462AV25-167  
CY7C1464AV25-167  
Unit  
ns  
Maximum Access Time  
2.6  
410  
100  
3.0  
340  
100  
3.4  
305  
100  
Maximum Operating Current  
mA  
mA  
Maximum CMOS Standby Current  
Shaded areas contain advance information. Please contact your local Cypress sales representative for availability of these parts.  
Document #: 38-05354 Rev. **  
Page 2 of 27  
CY7C1460AV25  
CY7C1462AV25  
CY7C1464AV25  
PRELIMINARY  
Pin Configurations  
100-pin TQFP Packages  
DQPc  
DQc  
DQc  
1
2
3
4
5
6
7
8
NC  
NC  
NC  
DDQ  
1
2
3
4
5
6
7
8
A
NC  
NC  
78  
DQPb  
DQb  
DQb  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
80  
79  
V
V
DDQ  
VDDQ  
VSS  
V
V
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DDQ  
SS  
V
V
SS  
SS  
DQc  
DQc  
NC  
NC  
DQb  
NC  
DQb  
DQb  
DQb  
DQb  
VSS  
VDDQ  
DQb  
DQb  
VSS  
NC  
DQPa  
DQa  
DQa  
DQc  
DQc  
9
DQb  
9
V
V
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
V
V
DDQ  
DDQ  
V
DQa  
DQa  
DDQ  
DQc  
DQc  
NC  
DQb  
DQb  
NC  
V
CY7C1460AV25  
(1M × 36)  
SS  
V
V
DD  
DD  
NC  
CY7C1462AV25  
(2M × 18)  
NC  
NC  
VDD  
ZZ  
DQa  
DQa  
V
DD  
V
V
SS  
SS  
ZZ  
DQd  
DQb  
DQb  
DQa  
DQa  
DQd  
V
V
DDQ  
DDQ  
VDDQ  
VSS  
DQa  
DQa  
V
DDQ  
V
V
SS  
SS  
V
SS  
DQd  
DQd  
DQd  
DQd  
DQb  
DQb  
DQa DQPb  
DQa  
DQa  
NC  
DQa  
VSS  
VDDQ  
DQa  
DQa  
DQPa  
NC  
NC  
V
SS  
V
V
SS  
SS  
V
V
DDQ  
DQd  
DDQ  
V
DDQ  
NC  
NC  
NC  
NC  
NC  
NC  
DQd  
DQPd  
Document #: 38-05354 Rev. **  
Page 3 of 27  
CY7C1460AV25  
CY7C1462AV25  
CY7C1464AV25  
PRELIMINARY  
Pin Configurations (continued)  
165-Ball fBGA Pinout  
CY7C1462AV25 (1M × 36)  
1
NC/288M  
NC  
2
A
3
4
5
6
7
8
9
A
10  
A
11  
NC  
ADV/LD  
A
B
C
D
CE1  
BWc  
BWb  
CE3  
CLK  
VSS  
VSS  
CEN  
WE  
VSS  
VSS  
A
CE2  
VDDQ  
VDDQ  
OE  
VSS  
VDD  
A
A
NC/144M  
DQPb  
DQb  
BWd  
VSS  
VDD  
BWa  
VSS  
VSS  
DQPc  
DQc  
NC  
DQc  
VDDQ  
VDDQ  
NC  
DQb  
DQc  
DQc  
DQc  
DQc  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQb  
DQb  
DQb  
NC  
DQb  
E
F
DQc  
DQc  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQb  
DQb  
ZZ  
G
H
J
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
K
L
DQd  
DQPd  
NC  
DQd  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQa  
NC  
A
DQa  
DQPa  
NC  
M
N
P
NC/72M  
TDI  
TDO  
A
MODE  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
CY7C1462AV25 (2M × 18)  
1
NC/288M  
NC  
2
A
3
4
5
NC  
6
CE3  
7
8
9
A
10  
A
11  
A
A
B
C
D
CE1  
BWb  
NC  
CEN  
ADV/LD  
NC/144M  
A
CE2  
VDDQ  
VDDQ  
BWa  
VSS  
VSS  
CLK  
VSS  
VSS  
A
A
WE  
VSS  
VSS  
OE  
VSS  
VDD  
NC  
NC  
DQb  
VSS  
VDD  
VDDQ  
VDDQ  
NC  
NC  
DQPa  
DQa  
NC  
NC  
DQb  
DQb  
DQb  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQa  
E
F
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQa  
DQa  
ZZ  
NC  
G
H
J
NC  
NC  
DQb  
DQb  
DQb  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQa  
DQa  
DQa  
NC  
NC  
NC  
NC  
K
L
NC  
DQb  
DQPb  
NC  
NC  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQa  
NC  
A
NC  
NC  
NC  
M
N
P
NC/72M  
TDI  
TDO  
A
MODE  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 38-05354 Rev. **  
Page 4 of 27  
CY7C1460AV25  
CY7C1462AV25  
CY7C1464AV25  
PRELIMINARY  
209-Ball PBGA  
CY7C1464AV25 (512K x 72)  
1
DQg  
DQg  
DQg  
2
3
4
5
6
7
8
9
10  
DQb  
DQb  
11  
A
B
C
D
E
F
DQg  
DQg  
CE3  
CE2  
ADV/LD  
WE  
DQb  
DQb  
A
A
A
A
A
BWSb  
NC  
NC  
BWSc  
BWSh  
VSS  
BWSf  
BWSg  
BWSd  
DQg  
DQg  
DQPc  
DQc  
DQc  
NC  
NC  
BWSe  
NC  
CE1  
BWSa DQb  
DQb  
DQb  
DQPb  
DQf  
DQg  
NC  
OE  
VSS  
NC  
DQb  
DQPg  
DQc  
VDDQ  
VDDQ  
VDDQ  
DQPf  
VDDQ  
VSS  
VDDQ  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VDD  
NC  
VDD  
VSS  
VDD  
VSS  
DQf  
VSS  
VDDQ  
VSS  
VSS  
G
H
J
DQc  
DQc  
VDDQ  
VSS  
NC  
VDDQ  
VSSQ  
DQf  
DQf  
DQf  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
NC  
A
DQc  
DQc  
NC  
NC  
DQf  
DQf  
NC  
VDDQ  
DQc  
NC  
VDDQ  
VDDQ  
CLK  
VDDQ  
NC  
NC  
DQf  
NC  
K
L
CEN  
NC  
NC  
NC  
DQh  
DQh  
DQh  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
DQa  
DQa  
DQa  
M
N
P
R
T
NC  
VSS  
VDDQ  
VSS  
VDDQ  
NC  
DQh  
DQh  
DQh  
VSS  
VDD  
VSS  
DQa  
DQa  
DQa  
VDDQ  
DQh  
DQh  
DQPd  
DQd  
DQd  
NC  
ZZ  
DQa  
DQa  
DQPa  
DQe  
DQe  
VSS  
VDDQ  
VSS  
NC  
VDDQ  
VDD  
NC  
DQPh  
DQd  
DQd  
DQd  
DQd  
VDDQ  
VDD  
DQPe  
DQe  
DQe  
DQe  
DQe  
VSS  
NC  
A
MODE  
A
U
V
W
NC/72M  
A
NC  
A
A
A1  
A
DQd  
DQd  
A
A
A
A
DQe  
DQe  
TDI  
TDO  
TCK  
A0  
A
TMS  
Pin Definitions  
Pin Name  
I/O Type  
Pin Description  
A0  
A1  
A
Input-  
Synchronous  
Address Inputs used to select one of the address locations. Sampled at the rising edge of  
the CLK.  
BWa  
BWb  
BWc  
BWd  
BWe  
BWf  
Input-  
Synchronous  
Byte Write Select Inputs, active LOW. Qualified with WE to conduct writes to the SRAM.  
Sampled on the rising edge of CLK. BWa controls DQa and DQPa, BWb controls DQb and DQPb,  
BWc controls DQc and DQPc, BWd controls DQd and DQPd, BWe controls DQe and DQPe, BWf  
controls DQf and DQPf, BWg controls DQg and DQPg, BWh controls DQh and DQPh.  
BWg  
BWh  
Input-  
Synchronous  
Write Enable Input, active LOW. Sampled on the rising edge of CLK if CEN is active LOW. This  
signal must be asserted LOW to initiate a write sequence.  
WE  
Input-  
Synchronous  
Advance/Load Input used to advance the on-chip address counter or load a new address.  
When HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When LOW, a  
new address can be loaded into the device for an access. After being deselected, ADV/LD should  
be driven LOW in order to load a new address.  
ADV/LD  
Document #: 38-05354 Rev. **  
Page 5 of 27  
CY7C1460AV25  
CY7C1462AV25  
CY7C1464AV25  
PRELIMINARY  
Pin Definitions  
Pin Name  
I/O Type  
Pin Description  
A0  
A1  
A
Input-  
Synchronous  
Address Inputs used to select one of the address locations. Sampled at the rising edge of  
the CLK.  
BWa  
BWb  
BWc  
BWd  
BWe  
BWf  
Input-  
Synchronous  
Byte Write Select Inputs, active LOW. Qualified with WE to conduct writes to the SRAM.  
Sampled on the rising edge of CLK. BWa controls DQa and DQPa, BWb controls DQb and DQPb,  
BWc controls DQc and DQPc, BWd controls DQd and DQPd, BWe controls DQe and DQPe, BWf  
controls DQf and DQPf, BWg controls DQg and DQPg, BWh controls DQh and DQPh.  
BWg  
BWh  
Input-  
Synchronous  
Write Enable Input, active LOW. Sampled on the rising edge of CLK if CEN is active LOW. This  
signal must be asserted LOW to initiate a write sequence.  
WE  
Input-  
Synchronous  
Advance/Load Input used to advance the on-chip address counter or load a new address.  
When HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When LOW, a  
new address can be loaded into the device for an access. After being deselected, ADV/LD should  
be driven LOW in order to load a new address.  
ADV/LD  
CLK  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. CLK is qualified with CEN.  
CLK is only recognized if CEN is active LOW.  
Input-  
Synchronous  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
CE2 and CE3 to select/deselect the device.  
CE1  
CE2  
Input-  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with  
Synchronous  
CE1 and CE3 to select/deselect the device.  
Input-  
Synchronous  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
CE1 and CE2 to select/deselect the device.  
CE3  
OE  
Input-  
Output Enable, active LOW. Combined with the synchronous logic block inside the device to  
Asynchronous control the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs.  
When deasserted HIGH, I/O pins are tri-stated, and act as input data pins. OE is masked during  
the data portion of a write sequence, during the first clock when emerging from a deselected state  
and when the device has been deselected.  
Input-  
Synchronous  
Clock Enable Input, active LOW. When asserted LOW the clock signal is recognized by the  
SRAM. When deasserted HIGH the clock signal is masked. Since deasserting CEN does not  
deselect the device, CEN can be used to extend the previous cycle when required.  
CEN  
DQa  
DQb  
DQc  
DQd  
DQe  
DQf  
I/O-  
Synchronous  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is triggered  
by the rising edge of CLK. As outputs, they deliver the data contained in the memory location  
specified by AX during the previous clock rise of the read cycle. The direction of the pins is  
controlled by OE and the internal control logic. When OE is asserted LOW, the pins can behave  
as outputs. When HIGH, DQa–DQd are placed in a tri-state condition. The outputs are automat-  
ically tri-stated during the data portion of a write sequence, during the first clock when emerging  
from a deselected state, and when the device is deselected, regardless of the state of OE.  
DQg  
DQh  
DQPa  
DQPb  
DQPc  
DQPd  
DQPe  
DQPf  
DQPg  
DQPh  
I/O-  
Synchronous  
Bidirectional Data Parity I/O lines. Functionally, these signals are identical to DQ[31:0]. During  
write sequences, DQPa is controlled by BWa, DQPb is controlled by BWb, DQPc is controlled by  
BWc, and DQPd is controlled by BWd, DQPe is controlled by BWe, DQPf is controlled by BWf,  
DQPg is controlled by BWg, DQPh is controlled by BWh.  
MODE  
Input Strap Pin Mode Input. Selects the burst order of the device. Tied HIGH selects the interleaved burst order.  
Pulled LOW selects the linear burst order. MODE should not change states during operation.  
When left floating MODE will default HIGH, to an interleaved burst order.  
Document #: 38-05354 Rev. **  
Page 6 of 27  
CY7C1460AV25  
CY7C1462AV25  
CY7C1464AV25  
PRELIMINARY  
Pin Definitions (continued)  
Pin Name  
I/O Type  
Pin Description  
TDO  
JTAG serial output Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK.  
Synchronous  
TDI  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK.  
Synchronous  
TMS  
Test Mode Select This pin controls the Test Access Port state machine. Sampled on the rising edge of TCK.  
Synchronous  
TCK  
JTAG-Clock  
Clock input to the JTAG circuitry.  
VDD  
Power Supply Power supply inputs to the core of the device.  
I/O Power Supply Power supply for the I/O circuitry.  
VDDQ  
VSS  
Ground  
N/A  
Ground for the device. Should be connected to ground of the system.  
NC  
No connects. This pin is not connected to the die.  
NC/72M  
NC/144M  
NC/288M  
ZZ  
N/A  
Not connected to the die. Can be tied to any voltage level.  
Not connected to the die. Can be tied to any voltage level.  
Not connected to the die. Can be tied to any voltage level.  
ZZ “sleep” Input. This active HIGH input places the device in a non-time critical “sleep” condition  
N/A  
N/A  
Input-  
Asynchronous with data integrity preserved. During normal operation, this pin can be connected to Vss or left  
floating.  
into the Address Register and presented to the memory core  
Introduction  
and control logic. The control logic determines that a read  
access is in progress and allows the requested data to  
propagate to the input of the output register. At the rising edge  
of the next clock the requested data is allowed to propagate  
through the output register and onto the data bus within 2.6 ns  
(200-MHz device) provided OE is active LOW. After the first  
clock of the read access the output buffers are controlled by  
OE and the internal control logic. OE must be driven LOW in  
order for the device to drive out the requested data. During the  
second clock, a subsequent operation (Read/Write/Deselect)  
can be initiated. Deselecting the device is also pipelined.  
Therefore, when the SRAM is deselected at clock rise by one  
of the chip enable signals, its output will three-state following  
the next clock rise.  
Functional Overview  
The CY7C1460AV25/CY7C1462AV25/CY7C1464AV25 are  
synchronous-pipelined Burst NoBL SRAMs designed specifi-  
cally to eliminate wait states during Write/Read transitions. All  
synchronous inputs pass through input registers controlled by  
the rising edge of the clock. The clock signal is qualified with  
the Clock Enable input signal (CEN). If CEN is HIGH, the clock  
signal is not recognized and all internal states are maintained.  
All synchronous operations are qualified with CEN. All data  
outputs pass through output registers controlled by the rising  
edge of the clock. Maximum access delay from the clock rise  
(tCO) is 2.6 ns (250-MHz device).  
Accesses can be initiated by asserting all three Chip Enables  
(CE1, CE2, CE3) active at the rising edge of the clock. If Clock  
Enable (CEN) is active LOW and ADV/LD is asserted LOW,  
the address presented to the device will be latched. The  
access can either be a read or write operation, depending on  
the status of the Write Enable (WE). BW[x] can be used to  
conduct byte write operations.  
Burst Read Accesses  
The CY7C1460AV25/CY7C1462AV25/CY7C1464AV25 have  
an on-chip burst counter that allows the user the ability to  
supply a single address and conduct up to four Reads without  
reasserting the address inputs. ADV/LD must be driven LOW  
in order to load a new address into the SRAM, as described in  
the Single Read Access section above. The sequence of the  
burst counter is determined by the MODE input signal. A LOW  
input on MODE selects a linear burst mode, a HIGH selects an  
interleaved burst sequence. Both burst counters use A0 and  
A1 in the burst sequence, and will wrap-around when incre-  
mented sufficiently. A HIGH input on ADV/LD will increment  
the internal burst counter regardless of the state of chip  
enables inputs or WE. WE is latched at the beginning of a burst  
cycle. Therefore, the type of access (Read or Write) is  
maintained throughout the burst sequence.  
Write operations are qualified by the Write Enable (WE). All  
writes are simplified with on-chip synchronous self-timed write  
circuitry.  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) simplify depth expansion.  
All operations (Reads, Writes, and Deselects) are pipelined.  
ADV/LD should be driven LOW once the device has been  
deselected in order to load a new address for the next  
operation.  
Single Read Accesses  
Single Write Accesses  
A read access is initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, (3) the Write Enable input  
signal WE is deasserted HIGH, and (4) ADV/LD is asserted  
LOW. The address presented to the address inputs is latched  
Write access are initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, and (3) the write signal WE  
is asserted LOW. The address presented to the address inputs  
Document #: 38-05354 Rev. **  
Page 7 of 27  
CY7C1460AV25  
CY7C1462AV25  
CY7C1464AV25  
PRELIMINARY  
is loaded into the Address Register. The write signals are  
Burst Write Accesses  
latched into the Control Logic block.  
The CY7C1460AV25/CY7C1462AV25/CY7C1464AV25 has  
an on-chip burst counter that allows the user the ability to  
supply a single address and conduct up to four WRITE opera-  
tions without reasserting the address inputs. ADV/LD must be  
driven LOW in order to load the initial address, as described  
in the Single Write Access section above. When ADV/LD is  
driven HIGH on the subsequent clock rise, the chip enables  
(CE1, CE2, and CE3) and WE inputs are ignored and the burst  
counter is incremented. The correct BW (BWa,b,c,d,e,f,g,h for  
CY7C1460AV25, BWa,b,c,d for CY7C1460AV25 and BWa,b for  
CY7C1462AV25) inputs must be driven in each cycle of the  
burst write in order to write the correct bytes of data.  
On the subsequent clock rise the data lines are automatically  
three-stated regardless of the state of the OE input signal. This  
allows the external logic to present the data on DQ and DQP  
(DQa,b,c,d,e,f,g,h/DQPa,b,c,d,e,f,g,h  
for  
CY7C1464AV25,  
DQa,b,c,d/DQPa,b,c,d for CY7C1460AV25 and DQa,b/DQPa,b  
for CY7C1462AV25). In addition, the address for the subse-  
quent access (Read/Write/Deselect) is latched into the  
Address Register (provided the appropriate control signals are  
asserted).  
On the next clock rise the data presented to DQ and DQP  
(DQa,b,c,d,e,f,g,h/DQPa,b,c,d,e,f,g,h  
for  
CY7C1464AV25,  
DQa,b,c,d/DQPa,b,c,d for CY7C1460AV25 and DQa,b/DQPa,b  
for CY7C1462AV25) (or a subset for byte write operations, see  
Write Cycle Description table for details) inputs is latched into  
the device and the write is complete.  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the “sleep” mode. CE1, CE2, and CE3, must remain inactive  
for the duration of tZZREC after the ZZ input returns LOW.  
The data written during the Write operation is controlled by BW  
(BWa,b,c,d,e,f,g,h  
for  
CY7C1464AV25,  
BWa,b,c,d  
for  
CY7C1460AV25 and BWa,b for CY7C1462AV25) signals. The  
CY7C1460AV25/CY7C1462AV25/CY7C1464AV25 provides  
byte write capability that is described in the Write Cycle  
Description table. Asserting the Write Enable input (WE) with  
the selected Byte Write Select (BW) input will selectively write  
to only the desired bytes. Bytes not selected during a byte  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
write operation will remain unaltered.  
A synchronous  
self-timed write mechanism has been provided to simplify the  
write operations. Byte write capability has been included in  
order to greatly simplify Read/Modify/Write sequences, which  
can be reduced to simple byte write operations.  
First  
Second  
Third  
Fourth  
Address  
Address  
Address  
Address  
A1,A0  
00  
A1,A0  
01  
A1,A0  
10  
A1,A0  
11  
Because the CY7C1460AV25/CY7C1462AV25/ CY7C1464AV25  
are common I/O devices, data should not be driven into the  
device while the outputs are active. The Output Enable (OE)  
can be deasserted HIGH before presenting data to the DQ and  
DQP (DQa,b,c,d,e,f,g,h/DQPa,b,c,d,e,f,g,h for CY7C1464AV25,  
DQa,b,c,d/DQPa,b,c,d for CY7C1460AV25 and DQa,b/DQPa,b  
for CY7C1462AV25) inputs. Doing so will three-state the  
output drivers. As a safety precaution, DQ and DQP  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Linear Burst Address Table (MODE = GND)  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
(DQa,b,c,d,e,f,g,h  
/
DQPa,b,c,d,e,f,g,h for CY7C1464AV25,  
DQa,b,c,d/DQPa,b,c,d for CY7C1460AV25 and DQa,b/DQPa,b  
for CY7C1462AV25) are automatically three-stated during the  
data portion of a write cycle, regardless of the state of OE.  
A1,A0  
00  
A1,A0  
01  
A1,A0  
10  
A1,A0  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
ZZ > VDD 0.2V  
Min.  
Max  
Unit  
100  
mA  
tZZS  
ZZ > VDD 0.2V  
2tCYC  
ns  
ns  
ns  
ns  
tZZREC  
tZZI  
ZZ < 0.2V  
2tCYC  
0
ZZ active to sleep current  
ZZ Inactive to exit sleep current  
This parameter is sampled  
This parameter is sampled  
2tCYC  
tRZZI  
Document #: 38-05354 Rev. **  
Page 8 of 27  
CY7C1460AV25  
CY7C1462AV25  
CY7C1464AV25  
PRELIMINARY  
Truth Table[1, 2, 3, 4, 5, 6, 7]  
Address  
Used  
Operation  
Deselect Cycle  
CE  
H
X
L
ZZ  
L
ADV/LD WE  
BWx  
X
OE CEN CLK  
DQ  
None  
L
H
L
X
X
H
X
H
X
L
X
X
L
L
L
L
L
L
L
L
L
L
L
H
X
L-H Three-State  
L-H Three-State  
L-H Data Out (Q)  
L-H Data Out (Q)  
L-H Three-State  
L-H Three-State  
L-H Data In (D)  
L-H Data In (D)  
L-H Three-State  
L-H Three-State  
Continue Deselect Cycle  
Read Cycle (Begin Burst)  
Read Cycle (Continue Burst)  
NOP/Dummy Read (Begin Burst)  
Dummy Read (Continue Burst)  
Write Cycle (Begin Burst)  
Write Cycle (Continue Burst)  
NOP/WRITE ABORT (Begin Burst)  
WRITE ABORT (Continue Burst)  
IGNORE CLOCK EDGE (Stall)  
Sleep MODE  
None  
L
X
External  
Next  
L
X
X
L
L
H
L
X
L
External  
Next  
L
X
H
H
X
X
X
X
X
X
X
L
L
H
L
X
External  
Next  
L
L
X
L
L
H
L
X
L
L
None  
L
H
H
X
Next  
X
X
X
L
H
X
X
X
X
X
Current  
None  
L
L-H  
X
H
X
Three-State  
Partial Write Cycle Description[1, 2, 3, 8]  
Function (CY7C1460AV25)  
Read  
BWd  
BWc  
X
BWb  
X
H
H
L
BWa  
X
H
L
WE  
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
H
H
H
H
H
H
H
H
L
Write – No bytes written  
Write Byte a – (DQa and DQPa)  
Write Byte b – (DQb and DQPb)  
Write Bytes b, a  
H
H
H
H
L
H
L
L
Write Byte c – (DQc and DQPc)  
Write Bytes c, a  
H
H
L
H
L
L
Write Bytes c, b  
LL  
L
H
L
Write Bytes c, b, a  
L
Write Byte d – (DQd and DQPd)  
Write Bytes d, a  
H
H
H
H
L
H
H
L
H
L
L
Write Bytes d, b  
L
H
L
Write Bytes d, b, a  
L
L
Write Bytes d, c  
L
H
H
L
H
L
Write Bytes d, c, a  
L
L
Write Bytes d, c, b  
L
L
H
L
Write All Bytes  
L
L
L
Notes:  
1. X = “Don't Care”, H = Logic HIGH, L = Logic LOW, CE stands for ALL Chip Enables active. BWx = L signifies at least one Byte Write Select is active, BWx = Valid  
signifies that the desired byte write selects are asserted, see Write Cycle Description table for details.  
2. Write is defined by WE and BW . See Write Cycle Description table for details.  
X
3. When a write cycle is detected, all I/Os are tri-stated, even during byte writes.  
4. The DQ and DQP pins are controlled by the current cycle and the OE signal.  
5. CEN = H inserts wait states.  
6. Device will power-up deselected and the I/Os in a tri-state condition, regardless of OE.  
7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles.During a read cycle DQ and DQP = Three-state when  
s
X
OE is inactive or when the device is deselected, and DQ =data when OE is active.  
s
Document #: 38-05354 Rev. **  
Page 9 of 27  
CY7C1460AV25  
CY7C1462AV25  
CY7C1464AV25  
PRELIMINARY  
Function (CY7C1462AH33)  
WE  
H
L
BWb  
BWa  
Read  
x
H
H
L
x
Write – No Bytes Written  
Write Byte a – (DQa and DQPa)  
Write Byte b – (DQb and DQPb)  
Write Both Bytes  
H
L
L
L
H
L
L
L
Function (CY7C1464AV25)  
WE  
H
BWx  
Read  
x
Write – No Bytes Written  
Write Byte X (DQx and DQPx)  
Write All Bytes  
L
H
L
L
L
All BW = L  
Disabling the JTAG Feature  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied  
LOW(VSS) to prevent clocking of the device. TDI and TMS are  
internally pulled up and may be unconnected. They may alter-  
nately be connected to VDD through a pull-up resistor. TDO  
should be left unconnected. Upon power-up, the device will  
come up in a reset state which will not interfere with the  
operation of the device.  
The CY7C1460AV25/CY7C1462AV25/CY7C1464AV25 incor-  
porates a serial boundary scan test access port (TAP). This  
part is fully compliant with 1149.1. The TAP operates using  
JEDEC-standard 2.5V/1.8V I/O logic level.  
The CY7C1460AV25/CY7C1462AV25/CY7C1464AV25 contains  
a TAP controller, instruction register, boundary scan register,  
bypass register, and ID register.  
Note:  
8. Table only lists a partial listing of the byte write combinations. Any combinaion of BW is valid. Appropriate write will be done based on which byte write is active.  
X
Test Access Port (TAP)  
TAP Controller State Diagram  
TEST-LOGIC  
RESET  
Test Clock (TCK)  
1
The test clock is used only with the TAP controller. All inputs  
0
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
Test MODE SELECT (TMS)  
1
1
CAPTURE-DR  
CAPTURE-IR  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this ball unconnected if the TAP is not used. The ball is  
pulled up internally, resulting in a logic HIGH level.  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
1
1
EXIT1-DR  
EXIT1-IR  
Test Data-In (TDI)  
0
0
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see Figure . TDI  
is internally pulled up and can be unconnected if the TAP is  
unused in an application. TDI is connected to the most signif-  
icant bit (MSB) of any register. (See Tap Controller Block  
Diagram.)  
PAUSE-DR  
0
PAUSE-IR  
0
1
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
0
1
0
Test Data-Out (TDO)  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See Tap Controller State Diagram.)  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
Document #: 38-05354 Rev. **  
Page 10 of 27  
CY7C1460AV25  
CY7C1462AV25  
CY7C1464AV25  
PRELIMINARY  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used  
to capture the contents of the I/O ring.  
TAP Controller Block Diagram  
0
Bypass Register  
2
1
0
0
0
Selection  
Circuitry  
Instruction Register  
31 30 29  
Identification Register  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI, and the LSB is connected to TDO.  
S
election  
TDI  
TDO  
Circuitr  
y
.
.
. 2 1  
x
.
.
.
.
. 2 1  
Identification (ID) Register  
Boundary Scan Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
TCK  
TMS  
TAP CONTROLLER  
TAP Instruction Set  
Performing a TAP Reset  
Overview  
A RESET is performed by forcing TMS HIGH (VDD) for five  
rising edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is  
operating.  
Eight different instructions are possible with the three bit  
instruction register. All combinations are listed in the  
Instruction Codes table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
TAP Registers  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO balls as shown in the Tap Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
The IDCODE instruction is loaded into the instruction register  
upon power-up or whenever the TAP controller is given a test  
logic reset state.  
SAMPLE Z  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test data path.  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO pins when the TAP  
controller is in a Shift-DR state. The SAMPLE Z command puts  
the output bus into a High-Z state until the next command is  
given during the “Update IR” state.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1-mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM. The length of the Boundary  
Scan Register for the SRAM in different packages is listed in  
the Scan Register Sizes table.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is  
Document #: 38-05354 Rev. **  
Page 11 of 27  
CY7C1460AV25  
CY7C1462AV25  
CY7C1464AV25  
PRELIMINARY  
possible that during the Capture-DR state, an input or output  
EXTEST  
will undergo a transition. The TAP may then try to capture a  
signal while in transition (metastable state). This will not harm  
the device, but there is no guarantee as to the value that will  
be captured. Repeatable results may not be possible.  
The EXTEST instruction enables the preloaded data to be  
driven out through the system output pins. This instruction also  
selects the boundary scan register to be connected for serial  
access between the TDI and TDO in the shift-DR controller  
state.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller's capture set-up plus  
hold times (tCS and tCH). The SRAM clock input might not be  
captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE/PRELOAD instruction. If this  
is an issue, it is still possible to capture all other signals and  
simply ignore the value of the CK and CK# captured in the  
boundary scan register.  
EXTEST Output Bus Tri-State  
IEEE Standard 1149.1 mandates that the TAP controller be  
able to put the output bus into a tri-state mode.  
The boundary scan register has a special bit located at bit #89  
( for 165-FBGA package) or bit #138 ( for 209 BGA package).  
When this scan cell, called the “extest output bus tri-state,” is  
latched into the preload register during the “Update-DR” state  
in the TAP controller, it will directly control the state of the  
output (Q-bus) pins, when the EXTEST is entered as the  
current instruction. When HIGH, it will enable the output  
buffers to drive the output bus. When LOW, this bit will place  
the output bus into a High-Z condition.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO pins.  
PRELOAD allows an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells  
prior to the selection of another boundary scan test operation.  
This bit can be set by entering the SAMPLE/PRELOAD or  
EXTEST command, and then shifting the desired bit into that  
cell, during the “Shift-DR” state. During “Update-DR,” the value  
loaded into that shift-register cell will latch into the preload  
register. When the EXTEST instruction is entered, this bit will  
directly control the output Q-bus pins. Note that this bit is  
preset HIGH to enable the output when the device is  
powered-up, and also when the TAP controller is in the  
Test-Logic-Reset” state.  
The shifting of data for the SAMPLE and PRELOAD phases  
can occur concurrently when required - that is, while data  
captured is shifted out, the preloaded data can be shifted in.  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO pins. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
Document #: 38-05354 Rev. **  
Page 12 of 27  
CY7C1460AV25  
CY7C1462AV25  
CY7C1464AV25  
PRELIMINARY  
TAP AC Switching Characteristics Over the Operating Range[9, 10]  
Parameter  
Clock  
tTCYC  
tTF  
Description  
Min.  
Max.  
Unit  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
50  
ns  
MHz  
ns  
20  
tTH  
25  
25  
tTL  
ns  
Output Times  
tTDOV TCK Clock LOW to TDO Valid  
tTDOX TCK Clock LOW to TDO Invalid  
Set-up Times  
tTMSS TMS Set-up to TCK Clock Rise  
tTDIS  
5
ns  
ns  
0
5
5
5
ns  
ns  
ns  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
tCS  
Hold Times  
tTMSH  
TMS hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tTDIH  
tCH  
Capture Hold after Clock Rise  
Notes:  
t
t
9. CS and CH refer to the set-up and hold time requirements of latching data from the boundary scan register.  
10. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1ns.  
R
F
Document #: 38-05354 Rev. **  
Page 13 of 27  
CY7C1460AV25  
CY7C1462AV25  
CY7C1464AV25  
PRELIMINARY  
2.5V TAP AC Test Conditions  
1.8V TAP AC Test Conditions  
Input pulse levels ........................................ VSS to 2.5V  
Input rise and fall time .................................................... 1 ns  
Input timing reference levels.........................................1.25V  
Output reference levels.................................................1.25V  
Test load termination supply voltage.............................1.25V  
Input pulse levels .............................. 0.2V to V  
– 0.2  
DDQ  
Input rise and fall time .....................................................1 ns  
Input timing reference levels..................... ......................0.9V  
Output reference levels .................... ..............................0.9V  
Test load termination supply voltage ...................... ........0.9V  
2.5V TAP AC Output Load Equivalent  
1.8V TAP AC Output Load Equivalent  
1.25V  
0.9V  
50  
50  
TDO  
TDO  
ZO= 50Ω  
ZO= 50Ω  
20pF  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; Vdd = 2.5V ±0.125V unless otherwise noted)[11]  
Parameter  
VOH1  
Description  
Test Conditions  
VDDQ = 2.5V  
Min.  
1.7  
Max.  
Unit  
V
Output HIGH Voltage IOH = –1.0 mA  
Output HIGH Voltage IOH = –100 µA  
VOH2  
VDDQ = 2.5V  
VDDQ = 1.8V  
VDDQ = 2.5V  
VDDQ = 2.5V  
VDDQ = 1.8V  
VDDQ = 2.5V  
2.1  
V
1.6  
V
VOL1  
VOL2  
Output LOW Voltage IOL = 1.0 mA  
0.4  
0.2  
V
Output LOW Voltage IOL = 100 µA  
V
0.2  
V
VIH  
VIL  
IX  
Input HIGH Voltage  
Input LOW Voltage  
1.7  
1.26  
–0.3  
–0.3  
–5  
VDD + 0.3  
VDD + 0.3  
0.7  
V
V
DDQ = 1.8V  
VDDQ = 2.5V  
DDQ = 1.8V  
V
V
V
0.36  
V
Input Load Current  
GND VI VDDQ  
5
µA  
Identification Register Definitions  
CY7C1460AV25 CY7C1462AV25 CY7C1464AV25  
Instruction Field  
Revision Number (31:29)  
Device Depth (28:24)  
(1M ×36)  
(2M ×18)  
(512k ×72)  
Description  
000  
000  
000  
Describes the version number  
Reserved for Internal Use  
01011  
001000  
01011  
001000  
01011  
001000  
Architecture/Memory Type(23:18)  
Defines memory type and  
architecture  
100111  
010111  
110111  
Bus Width/Density(17:12)  
Defines width and density  
00000110100  
00000110100  
00000110100  
Cypress JEDEC ID Code (11:1)  
Allows unique identification of  
SRAM vendor  
1
1
1
ID Register Presence Indicator (0)  
Indicates the presence of an ID  
register  
Note:  
11. All voltages referenced to VSS (GND).  
Document #: 38-05354 Rev. **  
Page 14 of 27  
CY7C1460AV25  
CY7C1462AV25  
CY7C1464AV25  
PRELIMINARY  
Scan Register Sizes  
Register Name  
Bit Size (x36)  
Bit Size (x18)  
Bit Size (x72)  
Instruction  
3
1
3
1
3
1
Bypass  
ID  
32  
89  
32  
89  
32  
Boundary Scan Order–165FBGA  
Boundary Scan Order–209BGA  
138  
Identification Codes  
Instruction  
EXTEST  
Code  
Description  
000  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
SAMPLE Z  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
Document #: 38-05354 Rev. **  
Page 15 of 27  
CY7C1460AV25  
CY7C1462AV25  
CY7C1464AV25  
PRELIMINARY  
165-Ball fBGA Boundary Scan Order [12]  
CY7C1460AV33 (1M x 36)  
CY7C1460AV33 (1M x 36)  
Bit#  
1
Ball ID  
N6  
Bit#  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
Ball ID  
Bit#  
83  
84  
85  
86  
87  
88  
89  
Ball ID  
P2  
A7  
B7  
B6  
A6  
B5  
A5  
A4  
B4  
B3  
A3  
A2  
B2  
C2  
B1  
A1  
C1  
D1  
E1  
F1  
G1  
D2  
E2  
F2  
G2  
H1  
H3  
J1  
2
N7  
R4  
3
N10  
P11  
P8  
P4  
4
N5  
5
P6  
6
R8  
R6  
7
R9  
Internal  
8
P9  
9
P10  
R10  
R11  
H11  
N11  
M11  
L11  
K11  
J11  
M10  
L10  
K10  
J10  
H9  
CY7C1462AV33 (2M x 18)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
1
N6  
N7  
2
3
10N  
P11  
P8  
4
5
6
R8  
7
R9  
8
P9  
9
P10  
R10  
R11  
H11  
N11  
M11  
L11  
K11  
J11  
M10  
L10  
K10  
J10  
H9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
H10  
G11  
F11  
E11  
D11  
G10  
F10  
E10  
D10  
C11  
A11  
B11  
A10  
B10  
A9  
K1  
L1  
M1  
J2  
K2  
L2  
H10  
G11  
F11  
E11  
D11  
G10  
F10  
E10  
D10  
C11  
M2  
N1  
N2  
P1  
R1  
R2  
P3  
R3  
B9  
C10  
A8  
B8  
Note:  
12. Bit# 89 is preset HIGH.  
Document #: 38-05354 Rev. **  
Page 16 of 27  
CY7C1460AV25  
CY7C1462AV25  
CY7C1464AV25  
PRELIMINARY  
165-Ball fBGA Boundary Scan Order [12]  
CY7C1462AV33 (2M x 18)  
Bit#  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Ball ID  
A11  
B11  
A10  
B10  
A9  
Bit#  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
Ball ID  
G1  
D2  
E2  
F2  
G2  
H1  
H3  
J1  
B9  
C10  
A8  
B8  
K1  
A7  
L1  
B7  
M1  
J2  
B6  
A6  
K2  
B5  
L2  
A5  
M2  
N1  
N2  
P1  
A4  
B4  
B3  
A3  
R1  
R2  
P3  
A2  
B2  
C2  
B1  
R3  
P2  
A1  
R4  
P4  
C1  
D1  
E1  
N5  
P6  
F1  
R6  
Internal  
Document #: 38-05354 Rev. **  
Page 17 of 27  
CY7C1460AV25  
CY7C1462AV25  
CY7C1464AV25  
PRELIMINARY  
209-Ball BGA Boundary Scan Order [12, 13]  
CY7C1465V25 (512K x 72)  
CY7C1465V25 (512K x 72)  
Bit#  
1
Ball ID  
W6  
V6  
Bit#  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
Ball ID  
J6  
Bit#  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
Ball ID  
D6  
G6  
H6  
C6  
B6  
A6  
A5  
B5  
C5  
D5  
D4  
C4  
A4  
B4  
C3  
B3  
A3  
A2  
A1  
B2  
B1  
C2  
C1  
D2  
D1  
E1  
E2  
F2  
Bit#  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
Ball ID  
K1  
2
F6  
N6  
K3  
3
U6  
K8  
4
W7  
V7  
K9  
K4  
5
K10  
J11  
J10  
H11  
H10  
G11  
G10  
F11  
F10  
E10  
E11  
D11  
D10  
C11  
C10  
B11  
B10  
A11  
A10  
C9  
K6  
6
U7  
K2  
7
T7  
L2  
8
V8  
L1  
9
U8  
M2  
M1  
N2  
N1  
P2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
T8  
V9  
U9  
P6  
W11  
W10  
V11  
V10  
U11  
U10  
T11  
T10  
R11  
R10  
P11  
P10  
N11  
N10  
M11  
M10  
L11  
L10  
K11  
M6  
P1  
R2  
R1  
T2  
T1  
U2  
U1  
V2  
V1  
W2  
W1  
T6  
B9  
A9  
U3  
V3  
D8  
C8  
T4  
B8  
F1  
T5  
A8  
G1  
G2  
H2  
H1  
J2  
U4  
V4  
D7  
C7  
W5  
V5  
B7  
L6  
A7  
U5  
Internal  
J1  
Note:  
13. Bit# 138 is preset HIGH.  
Document #: 38-05354 Rev. **  
Page 18 of 27  
CY7C1460AV25  
CY7C1462AV25  
CY7C1464AV25  
PRELIMINARY  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage.......................................... > 2001V  
(per MIL-STD-883, Method 3015)  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-up Current.................................................... > 200 mA  
Storage Temperature .................................65°C to +150°C  
Operating Range  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Ambient  
Temperature  
Supply Voltage on VDD Relative to GND........ –0.5V to +3.6V  
DC to Outputs in Tri-State................... –0.5V to VDDQ + 0.5V  
DC Input Voltage....................................–0.5V to VDD + 0.5V  
Range  
VDD  
VDDQ  
Commercial 0°C to +70°C 2.5V–5%/+5% 1.7V to VDD  
Electrical Characteristics Over the Operating Range[14, 15]  
Parameter  
VDD  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min.  
2.375  
2.375  
1.7  
Max.  
2.625  
VDD  
Unit  
V
VDDQ  
VOH  
VOL  
VIH  
VIL  
VDDQ = 2.5V  
DDQ = 1.8V  
VDD = Min., IOH= 1.0 mA, VDDQ = 2.5V  
DD = Min., IOH = –100 µA,VDDQ = 1.8V  
VDD = Min., IOL= 1.0 mA, VDDQ = 2.5V  
DD = Min., IOL= 100 µA,VDDQ = 1.8V  
V
V
1.9  
V
Output HIGH Voltage  
Output LOW Voltage  
2.0  
V
V
1.6  
V
0.4  
0.2  
V
V
V
Input HIGH Voltage[14] VDDQ = 2.5V  
1.7  
1.26  
–0.3  
–0.3  
–5  
VDD + 0.3V  
VDD + 0.3V  
0.7  
V
VDDQ = 1.8V  
V
Input LOW Voltage[14] VDDQ = 2.5V  
V
VDDQ = 1.8V  
0.36  
V
IX  
Input Load Current ex- GND VI VDDQ  
cept ZZ and MODE  
5
µA  
Input Current of MODE Input = VSS  
Input = VDD  
–5  
–30  
–5  
µA  
µA  
30  
Input Current of ZZ  
Input = VSS  
Input = VDD  
µA  
5
µA  
IOZ  
IDD  
Output Leakage Current GND VI VDDQ, Output Disabled  
5
µA  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
f = fMAX = 1/tCYC  
4.0-ns cycle, 250 MHz  
410  
340  
305  
170  
120  
115  
100  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
ISB1  
Automatic CE  
Power-down  
Current—TTL Inputs  
Max. VDD, Device Deselected, 4.0-ns cycle, 250 MHz  
VIN VIH or VIN VIL, f = fMAX =  
1/tCYC  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
ISB2  
Automatic CE  
Power-down  
Current—CMOS Inputs f = 0  
Max. VDD, Device Deselected, All speed grades  
VIN 0.3V or VIN > VDDQ 0.3V,  
ISB3  
Automatic CE  
Power-down  
Current—CMOS Inputs f = fMAX = 1/tCYC  
Max. VDD, Device Deselected, 4.0-ns cycle, 250 MHz  
170  
120  
115  
120  
mA  
mA  
mA  
mA  
VIN 0.3V or VIN > VDDQ 0.3V,  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
ISB4  
Automatic CE  
Max. VDD, Device Deselected, All speed grades  
Power-down  
Current—TTL Inputs  
VIN VIH or VIN VIL, f = 0  
Shaded areas contain advance information.  
Notes:  
14. Overshoot: VIH(AC) < VDD +1.5V (Pulse width less than tCYC/2), undershoot: VIL(AC)> -2V (Pulse width less than tCYC/2).  
15. T : Assumes a linear ramp from 0V to VDD (min.) within 200ms. During this time VIH < VDD and VDDQ < VDD.  
Power-up  
Document #: 38-05354 Rev. **  
Page 19 of 27  
CY7C1460AV25  
CY7C1462AV25  
CY7C1464AV25  
PRELIMINARY  
Capacitance[16]  
Parameter  
Description  
Test Conditions  
BGA Max.  
fBGA Max.  
TQFP Max.  
Unit  
pF  
CIN  
Input Capacitance  
TA = 25°C, f = 1 MHz,  
DD = 2.5V VDDQ = 2.5V  
5
5
7
5
5
7
5
5
7
V
CCLK  
CI/O  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
pF  
AC Test Loads and Waveforms  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50Ω  
0
10%  
L
5 pF  
R =1538Ω  
1ns  
1ns  
V = 1.25V  
INCLUDING  
JIG AND  
SCOPE  
T
(c)  
(a)  
(b)  
1.8V I/O Test Load  
R = 14KΩ  
1.8V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ – 0.2  
0.2  
90%  
10%  
Z = 50Ω  
0
10%  
L
5 pF  
R =14KΩ  
1ns  
1ns  
V =0.9V  
INCLUDING  
JIG AND  
SCOPE  
T
(a)  
(b)  
(c)  
Thermal Resistance[16]  
Parameters  
Description  
Test Conditions  
BGA Typ.  
fBGA Typ.  
TBD  
TQFP Typ.  
TBD  
Unit  
QJA  
Thermal Resistance  
(Junction to Ambient)  
Testconditionsfollowstandard  
test methods and procedures  
for measuring thermal  
TBD  
°C/W  
QJC  
Thermal Resistance  
(Junction to Case)  
TBD  
TBD  
TBD  
°C/W  
impedence, per EIA / JESD51.  
Switching Characteristics Over the Operating Range [ 21, 22]  
250  
200  
167  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
[17]  
tPower  
VCC (typical) to the first access read or write  
1
1
1
ms  
Clock  
tCYC  
Clock Cycle Time  
Maximum Operating Frequency  
Clock HIGH  
4.0  
5
6
ns  
MHz  
ns  
FMAX  
tCH  
250  
200  
167  
1.5  
1.5  
2.0  
2.0  
2.4  
2.4  
tCL  
Clock LOW  
ns  
Output Times  
tCO  
Data Output Valid After CLK Rise  
OE LOW to Output Valid  
2.6  
2.6  
3.0  
3.0  
3.4  
3.4  
ns  
ns  
ns  
tEOV  
tDOH  
Data Output Hold After CLK Rise  
1.0  
1.3  
1.5  
Notes:  
16. Tested initially and after any design or process changes that may affect these parameters.  
17. This part has a voltage regulator internally; tpower is the time power needs to be supplied above Vdd minimum initially, before a Read or Write operation can be  
initiated.  
18. t  
, t  
, t  
, and t  
are specified with AC test conditions shown in (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
CHZ CLZ EOLZ  
EOHZ  
19. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
EOHZ  
EOLZ  
CHZ  
CLZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions.  
20. This parameter is sampled and not 100% tested.  
21. Timing reference is 1.25V when V  
2.5V and 0.9V when Vddq=1.8V.  
DDQ=  
22. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
Document #: 38-05354 Rev. **  
Page 20 of 27  
CY7C1460AV25  
CY7C1462AV25  
CY7C1464AV25  
PRELIMINARY  
Switching Characteristics Over the Operating Range (continued)[ 21, 22]  
250  
200  
167  
Parameter  
tCHZ  
Description  
Clock to High-Z[18, 19, 20]  
Clock to Low-Z[18, 19, 20]  
Min.  
1.0  
0
Max.  
Min.  
1.3  
0
Max.  
Min.  
1.5  
0
Max.  
Unit  
ns  
2.6  
3.0  
3.4  
tCLZ  
ns  
HIGH to Output High-Z[18, 19, 20]  
tEOHZ  
tEOLZ  
Set-up Times  
tAS  
2.6  
3.0  
3.4  
ns  
OE  
OE LOW to Output Low-Z[18, 19, 20]  
ns  
Address Set-up Before CLK Rise  
Data Input Set-up Before CLK Rise  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tDS  
tCENS  
tWES  
CEN Set-up Before CLK Rise  
WE, BWx Set-up Before CLK Rise  
tALS  
ADV/LD Set-up Before CLK Rise  
Chip Select Set-up  
tCES  
Hold Times  
tAH  
Address Hold After CLK Rise  
Data Input Hold After CLK Rise  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tDH  
tCENH  
tWEH  
CEN Hold After CLK Rise  
WE, BWx Hold After CLK Rise  
tALH  
ADV/LD Hold after CLK Rise  
tCEH  
Chip Select Hold After CLK Rise  
Shaded areas contain advance information.  
Document #: 38-05354 Rev. **  
Page 21 of 27  
CY7C1460AV25  
CY7C1462AV25  
CY7C1464AV25  
PRELIMINARY  
Switching Waveforms  
Read/Write/Timing[23,24,25]  
1
2
3
4
5
6
7
8
9
10  
t
CYC  
t
CLK  
t
t
t
CENS CENH  
CL  
CH  
CEN  
t
t
CES  
CEH  
CE  
ADV/LD  
WE  
BW  
x
A1  
A2  
A4  
CO  
A3  
A5  
A6  
A7  
ADDRESS  
t
t
t
t
DS  
DH  
t
t
t
DOH  
OEV  
CLZ  
CHZ  
t
t
AS  
AH  
Data  
D(A1)  
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6)  
In-Out (DQ)  
t
OEHZ  
t
DOH  
t
OELZ  
OE  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
D(A2+1)  
Q(A4+1)  
DON’T CARE  
UNDEFINED  
6
NOP, STALL and DESELECT Cycles[23,24,25]  
1
2
3
4
5
7
8
9
10  
CLK  
CEN  
CE  
ADV/LD  
WE  
BWx  
A1  
A2  
A3  
A4  
A5  
ADDRESS  
t
CHZ  
D(A4)  
D(A1)  
Q(A2)  
Q(A3)  
STALL  
Q(A5)  
Data  
In-Out (DQ)  
WRITE  
D(A1)  
READ  
Q(A2)  
STALL  
READ  
Q(A3)  
WRITE  
D(A4)  
NOP  
READ  
Q(A5)  
DESELECT  
CONTINUE  
DESELECT  
DON’T CARE  
UNDEFINED  
Document #: 38-05354 Rev. **  
Page 22 of 27  
CY7C1460AV25  
CY7C1462AV25  
CY7C1464AV25  
PRELIMINARY  
Switching Waveforms (continued)  
ZZ ModeTiming[27,28]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Ordering Information  
Speed  
Package  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
Package Type  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
250  
CY7C1460AV25-250AC  
CY7C1462AV25-250AC  
A101  
Commercial  
CY7C1460AV25-250BZC  
CY7C1462AV25-250BZC  
BB165C 165-ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
BB209A 209-ball Ball Grid Array (14 × 22 × 1.76 mm)  
CY7C1464AV25-250BGC  
225  
200  
CY7C1460AV25-225AC  
CY7C1462AV25-225AC  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
CY7C1460AV25-225BZC  
CY7C1462AV25-225BZC  
BB165C 165-ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
BB209A 209-ball Ball Grid Array (14 × 22 × 1.76 mm)  
CY7C1464AV25-225BGC  
CY7C1460AV25-200AC  
CY7C1462AV25-200AC  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
CY7C1460AV25-200BZC  
CY7C1462AV25-200BZC  
BB165C 165-ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
BB209A 209-ball Ball Grid Array (14 × 22 × 1.76 mm)  
CY7C1464AV25-200BGC  
CY7C1460AV25-167AC  
CY7C1462AV25-167AC  
CY7C1460AV25-167BZC  
CY7C1462AV25-167BZC  
CY7C1464AV25-167BGC  
167  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
BB165C 165-ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
BB209A 209-ball Ball Grid Array (14 × 22 × 1.76 mm)  
Shaded areas contain advance information. Please contact your local Cypress sales representative for availability of these parts  
Notes:  
23. For this waveform ZZ is tied low.  
24. When CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH,CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
25. Order of the Burst sequence is determined by the status of the MODE (0=Linear, 1=Interleaved).Burst operations are optional.  
26. The IGNORE CLOCK EDGE or STALL cycle (Clock 3) illustrated CEN being used to create a pause. A write is not performed during this cycle  
27. Device must be deselected when entering ZZ mode. See cycle description table for all possible signal conditions to deselect the device.  
28. I/Os are in High-Z when exiting ZZ sleep mode.  
Document #: 38-05354 Rev. **  
Page 23 of 27  
CY7C1460AV25  
CY7C1462AV25  
CY7C1464AV25  
PRELIMINARY  
Package Diagrams  
100-pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
51-85050-*A  
Document #: 38-05354 Rev. **  
Page 24 of 27  
CY7C1460AV25  
CY7C1462AV25  
CY7C1464AV25  
PRELIMINARY  
Package Diagrams (continued)  
165-Ball FBGA (15 x 17 x 1.40 mm) BB165C  
PIN 1 CORNER  
BOTTOM VIEW  
TOP VIEW  
Ø0.05 M C  
PIN 1 CORNER  
Ø0.25 M C A B  
Ø0.45 0.05ꢀ1ꢁ5ꢂX  
1
2
3
4
5
7
8
9
10  
11  
11 10  
9
8
7
5
4
3
2
1
A
B
A
B
C
D
C
D
E
E
F
F
G
G
H
J
H
J
K
K
L
L
M
M
N
P
R
N
P
R
A
1.00  
5.00  
10.00  
B
15.00 0.10  
0.15ꢀ4ꢂX  
SEATING PLANE  
C
51-85165-*A  
Document #: 38-05354 Rev. **  
Page 25 of 27  
CY7C1460AV25  
CY7C1462AV25  
CY7C1464AV25  
PRELIMINARY  
Package Diagrams (continued)  
209-Ball FBGA (14 x 22 x 1.76 mm) BB209A  
51-85167-**  
ZBT is a registered trademark of Integrated Device Technology. No Bus Latency and NoBL are trademarks of Cypress Semicon-  
ductor Corporation. All product and company names mentioned in this document are trademarks of their respective holders.  
Document #: 38-05354 Rev. **  
Page 26 of 27  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
CY7C1460AV25  
CY7C1462AV25  
CY7C1464AV25  
PRELIMINARY  
Document History Page  
Document Title: CY7C1460AV25/CY7C1462AV25/CY7C1464AV25 36-Mbit (1M x 36/2M x 18/512K x 72) Pipelined SRAM  
with NoBL™ Architecture  
Document Number: 38-05354  
Orig. of  
REV.  
ECN No. Issue Date Change  
Description of Change  
**  
254911  
See ECN  
SYT  
New Data Sheet  
Part number changed from previous revision. New and old part number differ  
by the letter "A”  
Document #: 38-05354 Rev. **  
Page 27 of 27  

相关型号:

CY7C1460AV25-225BZC

ZBT SRAM, 1MX36, CMOS, PBGA165,
CYPRESS

CY7C1460AV25-250

36-Mbit (1M x 36/2M x 18/512K x 72) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1460AV25-250AC

ZBT SRAM, 1MX36, 2.6ns, CMOS, PQFP100
CYPRESS

CY7C1460AV25-250AXC

36-Mbit (1M x 36/2M x 18/512K x 72) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1460AV25-250AXCT

ZBT SRAM, 1MX36, 2.6ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, LEAD FREE, PLASTIC, MS-026, TQFP-100
CYPRESS

CY7C1460AV25-250AXI

36-Mbit (1M x 36/2M x 18/512K x 72) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1460AV25-250BZC

36-Mbit (1M x 36/2M x 18/512K x 72) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1460AV25-250BZI

36-Mbit (1M x 36/2M x 18/512K x 72) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1460AV25-250BZXC

36-Mbit (1M x 36/2M x 18/512K x 72) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1460AV25-250BZXI

36-Mbit (1M x 36/2M x 18/512K x 72) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1460AV25_06

36-Mbit (1M x 36/2M x 18/512K x 72) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1460AV33

36-Mbit (1M x 36/2M x 18/512K x 72) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS