CY7C1465V25-133BX [CYPRESS]

ZBT SRAM, 512KX72, 6.5ns, CMOS, PBGA209, 14 X 22 MM, 2.20 MM HEIGHT, PLASTIC, BGA-209;
CY7C1465V25-133BX
型号: CY7C1465V25-133BX
厂家: CYPRESS    CYPRESS
描述:

ZBT SRAM, 512KX72, 6.5ns, CMOS, PBGA209, 14 X 22 MM, 2.20 MM HEIGHT, PLASTIC, BGA-209

时钟 静态存储器 内存集成电路
文件: 总26页 (文件大小:471K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
PRELIMINARY  
1M x 36/2M x 18/512K x 72 F/T SRAM  
with NoBL™ Architecture  
BWSc, BWSd, BWSe, BWSf, BWSg, BWSh), and read-write  
control (WE). BWSc and BWSd apply to CY7C1461V25 and  
CY7C1465V25 only. BWSe, BWSf, BWSg, and BWSh apply to  
CY7C1465V25 only.  
Features  
• Zero Bus Latency , no dead cycles between write and  
read cycles  
•Supports 133-MHz bus operations  
•1M x 36/2M x18/512K x 72 common I/O  
•Fast clock-to-output times  
— 6.5 ns (for 133-MHz device)  
— 7.5 ns (for 117-MHz device)  
A
Clock Enable (CEN) pin allows operation of the  
CY7C1461V25,CY7C1463V25 and CY7C1465V25 to be  
suspended as long as necessary. All synchronous inputs are  
ignored when (CEN) is high and the internal device registers  
will hold their previous values.  
There are three Chip Enable (CE1, CE2, CE3) pins that allow  
the user to deselect the device when desired. If any one of  
these three are not active when ADV/LD is low, no new  
memory operation can be initiated and any burst cycle in  
progress is stopped. However, any pending data transfers  
(read or write) will be completed. The data bus will be in high  
impedance state two cycles after chip is deselected or a write  
cycle is initiated.  
• Single 2.5V –5% and +5% power supply VDD  
• Separate VDDQ for 2.5V or 1.8V I/O  
• Clock Enable (CEN) pin to suspend operation  
• Burst Capability - linear or interleaved burst order  
• Available in 119-ball bump BGA, 165-ball FBGA  
package and 100-pin TQFP packages (CY7C1461V25  
and CY7C1463V25). 209 FBGA package for  
CY7C1465V25.  
The CY7C1461V25,CY7C1463V25 and CY7C1465V25 have  
an on-chip two-bit burst counter. In the burst mode,  
CY7C1461V25,CY7C1463V25 and CY7C1465V25 provide  
four cycles of data for a single address presented to the  
SRAM. The order of the burst sequence is defined by the  
MODE input pin. The MODE pin selects between linear and  
interleaved burst sequence. The ADV/LD signal is used to load  
a new external address (ADV/LD = LOW) or increment the  
internal burst counter (ADV/LD = HIGH)  
Functional Description  
The CY7C1461V25,CY7C1463V25 and CY7C1465V25  
SRAMs are designed to eliminate dead cycles when transi-  
tions from Read to Write or vice versa. These SRAMs are  
optimized for 100 percent bus utilization and achieves Zero  
Bus Latency. They integrate 1,048,576 x 36/2,097,152 x 18/  
524,288 x 72 SRAM cells, respectively, with advanced  
synchronous peripheral circuitry and a two-bit counter for  
internal burst operation. The Synchronous Burst SRAM family  
employs high-speed, low-power CMOS designs using  
advanced single layer polysilicon, three-layer metal  
technology. Each memory cell consists of six transistors.  
Output Enable (OE) and burst sequence select (MODE) are  
the asynchronous signals. OE can be used to disable the  
outputs at any given time. ZZ may be tied to LOW if it is not  
used.  
Four pins are used to implement JTAG test capabilities. The  
JTAG circuitry is used to serially shift data to and from the  
device. JTAG inputs use LVTTL/LVCMOS levels to shift data  
during this testing mode of operation.  
All synchronous inputs are gated by registers controlled by a  
positive-edge-triggered Clock Input (CLK). The synchronous  
inputs include all addresses, all data inputs, depth-expansion  
Chip Enables (CE1, CE2, and CE3), cycle start input (ADV/LD),  
Clock Enable (CEN), Byte Write Selects (BWSa, BWSb,  
Logic Block Diagram  
D
CLK  
Data-In REG.  
CE  
Q
ADV/LD  
A
x
CEN  
CE  
CONTROL  
and WRITE  
LOGIC  
1MX36/  
1
2M x18/  
CE  
2
512KX72  
MEMORY  
ARRAY  
DQ  
x
CE  
DQ  
3
A
BWS  
X
DP  
X
X
X
DP  
WE  
x
BWS  
X = a, b  
, c, d  
x
X = a, b, X= a, b,  
X = 19:0  
X = 20:0  
1Mx36  
c, d  
c, d  
Mode  
X = a, b  
X = a, b X = a, b  
2Mx18  
X = a, b  
X = a, b,  
c,d,e,f,g,h  
X = a, b,  
c,d,e,f,g,h  
X = 18:0  
512Kx72  
OE  
c,d,e,f,g,h  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
Document #: 38-05192 Rev. *B  
Revised November 8, 2002  
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
PRELIMINARY  
Selection Guide  
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
-150  
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
-133  
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
-117  
Unit  
ns  
Maximum Access Time  
5.5  
6.5  
7.5  
Maximum Operating Current  
Coml  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
mA  
mA  
Maximum CMOS Standby Current  
Shaded areas contain advance information.  
Pin Configurations  
100-pin TQFP Packages  
DPc  
DQc  
DQc  
1
2
3
4
5
6
7
8
DPb  
NC  
NC  
NC  
1
2
3
4
5
6
7
8
A
NC  
NC  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQb  
DQb  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
NC  
VSS  
DQc  
DQc  
VSS  
NC  
NC  
DQb  
DQb  
VSS  
DQb  
DQb  
DQb  
DQb  
VSS  
VDDQ  
DQb  
DQb  
VSS  
NC  
DPa  
DQa  
DQa  
VSS  
VDDQ  
DQa  
DQa  
VSS  
DQc  
DQc  
VSS  
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDDQ  
VDDQ  
DQc  
DQc  
NC  
VDD  
NC  
VSS  
DQd  
DQb  
DQb  
NC  
VDD  
NC  
NC  
VDD  
ZZ  
CY7C1461V25  
(1M x 36)  
CY7C1463V25  
(2M x 18)  
VDD  
ZZ  
DQa  
DQa  
VSS  
DQb  
DQa  
DQa  
DQd  
VDDQ  
VSS  
DQd  
DQd  
DQd  
DQd  
VSS  
DQb  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
DQa  
DQa  
NC  
DQa  
DQa  
DQa  
DQa  
VSS  
DQb  
DQb  
DPb  
NC  
VSS  
VDDQ  
NC  
VSS  
VDDQ  
NC  
NC  
NC  
VDDQ  
VDDQ  
DQd  
DQd  
DPd  
DQa  
DQa  
DPa  
NC  
NC  
NC  
Document #: 38-05192 Rev. *B  
Page 2 of 26  
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
PRELIMINARY  
Pin Configurations (continued)  
119-ball Bump BGA  
CY7C1461V25 (1M x 36) 7 x 17 BGA  
1
2
3
4
5
6
7
V
A
A
A
A
A
V
DDQ  
A
DDQ  
NC  
NC  
DQ  
CE  
A
A
A
ADV/LD  
A
A
CE  
A
NC  
NC  
DQ  
B
C
D
2
c
3
b
V
DD  
DP  
V
NC  
V
DP  
c
SS  
SS  
SS  
SS  
SS  
SS  
b
DQ  
DQ  
DQ  
DQ  
DQ  
V
V
V
CE  
V
V
DQ  
DQ  
DQ  
DQ  
V
DQ  
b
E
F
c
c
c
c
c
1
b
b
b
b
V
OE  
A
V
DDQ  
DDQ  
DQ  
BWS  
BWS  
DQ  
G
H
J
c
c
c
b
a
b
DQ  
V
WE  
DQ  
V
SS  
b
SS  
V
NC  
V
NC  
V
DDQ  
DDQ  
DD  
DD  
DD  
DQ  
DQd  
V
CLK  
NC  
V
DQ  
DQ  
K
L
d
SS  
SS  
a
a
a
a
DQ  
DQ  
BWS  
BWS  
DQ  
DQ  
DQ  
DP  
DQ  
d
d
d
V
DQ  
V
CEN  
A1  
V
V
DDQ  
M
N
P
DDQ  
d
SS  
SS  
a
a
DQ  
DQ  
DP  
V
V
DQ  
d
d
SS  
SS  
a
a
DQ  
V
A0  
V
DQ  
d
d
SS  
SS  
a
NC  
NC  
A
MODE  
A
V
NC  
A
A
A
NC  
ZZ  
R
T
DD  
72M  
TMS  
A
V
TDI  
TCK  
TDO  
NC  
V
DDQ  
U
DDQ  
CY7C1463V25 (2M x 18) 7 x 17 BGA  
1
2
3
4
5
6
7
V
A
A
A
A
A
V
A
B
C
D
E
F
DDQ  
DDQ  
NC  
CE  
A
A
A
ADV/LD  
A
A
CE  
NC  
NC  
NC  
DQ  
2
3
NC  
V
A
DD  
DQ  
NC  
DQ  
V
NC  
V
DP  
b
SS  
SS  
SS  
SS  
SS  
SS  
a
NC  
V
V
CE  
V
V
NC  
b
1
a
V
NC  
DQ  
OE  
DQ  
V
DDQ  
DDQ  
a
NC  
BWS  
A
V
V
NC  
DQ  
a
G
H
J
b
b
SS  
SS  
DQ  
NC  
V
WE  
DQ  
NC  
b
SS  
a
V
V
NC  
V
NC  
V
V
DDQ  
DDQ  
DD  
DD  
DD  
NC  
DQ  
V
CLK  
NC  
V
NC  
DQ  
K
L
b
SS  
SS  
a
DQ  
NC  
DQ  
V
BWS  
DQ  
NC  
b
SS  
a
a
V
V
CEN  
A1  
V
NC  
V
DDQ  
M
N
P
R
T
DDQ  
b
SS  
SS  
DQ  
NC  
DP  
V
V
DQ  
NC  
DQ  
b
SS  
SS  
a
NC  
V
A0  
V
NC  
A
b
SS  
SS  
a
NC  
A
A
MODE  
A
V
NC  
A
NC  
ZZ  
DD  
72M  
A
A
V
TMS  
TDI  
TCK  
TDO  
NC  
V
DDQ  
U
DDQ  
Document #: 38-05192 Rev. *B  
Page 3 of 26  
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
PRELIMINARY  
Pin Configurations (continued)  
165-ball Bump FBGA  
CY7C1461V25 (1M x 36) 15 x 17 FBGA  
1
2
3
4
5
6
7
8
9
10  
11  
NC  
A
CE  
BWSc  
BWSb  
CE  
CEN  
A
ADV/LD  
A
A
NC  
1
2
3
NC  
DPc  
DQc  
A
CE  
BWSd  
BWSa  
CLK  
WE  
B
C
D
OE  
A
A
NC  
DPb  
DQb  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
NC  
DDQ  
DDQ  
SS  
SS  
SS  
SS  
SS  
DDQ  
DDQ  
DQc  
DQc  
DQc  
DQc  
V
V
V
V
V
DQb  
DD  
SS  
SS  
SS  
DD  
DQc  
DQc  
DQc  
NC  
V
V
V
V
E
F
V
DQb  
DQb  
DQb  
NC  
DQb  
DQb  
DQb  
ZZ  
DDQ  
DDQ  
DDQ  
DD  
SS  
SS  
SS  
DD  
DDQ  
DDQ  
DDQ  
V
V
V
V
V
DD  
SS  
SS  
SS  
DD  
V
V
V
V
G
H
J
V
DD  
SS  
SS  
SS  
DD  
V
NC  
V
V
V
V
V
NC  
DD  
DD  
SS  
SS  
SS  
DD  
DQd  
DQd  
DQd  
DQd  
DPd  
NC  
DQd  
DQd  
DQd  
DQd  
NC  
V
V
V
V
V
V
V
DQa  
DQa  
DQa  
DQa  
NC  
DQa  
DQa  
DQa  
DQa  
DPa  
NC  
DDQ  
DDQ  
DDQ  
DD  
SS  
SS  
SS  
DD  
DDQ  
DDQ  
DDQ  
V
V
V
V
V
V
V
V
K
L
V
V
V
V
V
DD  
SS  
SS  
SS  
DD  
V
V
V
V
V
DD  
SS  
SS  
SS  
DD  
V
V
V
V
M
N
P
V
DDQ  
DD  
SS  
SS  
SS  
DD  
DDQ  
V
NC  
TDI  
NC  
A1  
A0  
NC  
V
DDQ  
SS  
SS  
DDQ  
72M  
A
A
A
TDO  
TCK  
A
A
A
A
MODE  
A
A
TMS  
R
A
A
A
CY7C1463V25 (2M x 18) 15 x 17 FBGA  
1
2
3
4
5
6
7
8
9
10  
11  
NC  
A
CE  
BWSb  
NC  
CE  
CEN  
A
ADV/LD  
A
A
A
1
2
3
NC  
NC  
NC  
A
CE  
NC  
BWSa  
CLK  
WE  
B
C
D
E
F
OE  
A
A
NC  
DPa  
DQa  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
NC  
NC  
DDQ  
DDQ  
SS  
SS  
SS  
SS  
SS  
DDQ  
DDQ  
DQb  
V
V
V
V
V
DD  
SS  
SS  
SS  
DD  
NC  
NC  
DQb  
DQb  
DQb  
V
V
V
V
V
NC  
NC  
DQa  
DQa  
DQa  
ZZ  
DDQ  
DDQ  
DDQ  
DD  
SS  
SS  
SS  
DD  
DDQ  
DDQ  
DDQ  
V
V
V
V
V
DD  
SS  
SS  
SS  
DD  
NC  
V
V
V
V
G
H
J
V
NC  
DD  
SS  
SS  
SS  
DD  
NC  
V
NC  
V
V
V
V
V
NC  
NC  
DD  
DD  
SS  
SS  
SS  
DD  
DQb  
DQb  
DQb  
DQb  
DPb  
NC  
NC  
NC  
NC  
NC  
NC  
72M  
V
V
V
V
V
V
V
DQa  
DQa  
DQa  
DQa  
NC  
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DD  
SS  
SS  
SS  
DD  
DDQ  
DDQ  
DDQ  
DDQ  
V
V
V
V
V
V
V
V
K
L
V
V
V
V
V
NC  
DD  
SS  
SS  
SS  
DD  
V
V
V
V
V
NC  
DD  
SS  
SS  
SS  
DD  
V
V
V
V
M
N
P
V
NC  
DD  
SS  
SS  
SS  
DD  
V
NC  
TDI  
NC  
A1  
A0  
NC  
V
NC  
DDQ  
SS  
SS  
DDQ  
A
A
A
TDO  
TCK  
A
A
A
A
NC  
MODE  
A
A
TMS  
R
A
A
A
Document #: 38-05192 Rev. *B  
Page 4 of 26  
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
PRELIMINARY  
Pin Configurations (continued)  
209-ball Bump BGA  
CY7C1465V25 (512K x72)  
1
DQg  
DQg  
DQg  
2
3
4
5
6
7
8
9
10  
DQb  
11  
A
B
C
D
E
F
DQg  
DQg  
CE  
CE  
ADV/LD  
WE  
DQb  
DQb  
3
2
A
A
A
A
A
BWS  
NC  
NC  
DQb  
DQb  
BWS  
BWS  
f
BWS  
b
c
g
DQg  
DQg  
DPc  
DQc  
DQc  
NC  
NC  
BWS  
NC  
BWS  
CE  
BWS  
a
BWS  
e
DQb  
DQb  
DPb  
DQf  
DQf  
d
1
h
DQg  
V
NC  
OE  
V
NC  
V
SS  
DQb  
SS  
DPg  
DQc  
V
V
V
V
V
V
DD  
DDQ  
DDQ  
DDQ  
SS  
DDQ  
DD  
DD  
DPf  
DQf  
V
V
V
V
V
NC  
NC  
NC  
NC  
CEN  
NC  
NC  
V
V
SS  
SS  
DD  
SS  
SS  
DD  
SS  
G
H
J
DQc  
DQc  
V
V
V
DDQ  
V
V
V
DDQ  
DQf  
DQf  
DDQ  
DDQ  
V
V
V
V
V
V
SS  
V
DQc  
DQc  
NC  
SS  
SS  
SS  
SSQ  
DDQ  
SS  
DQf  
DQf  
NC  
DQc  
NC  
V
V
V
V
V
V
DDQ  
DD  
DD  
DDQ  
DDQ  
DQf  
NC  
K
L
CLK  
NC  
V
SS  
SS  
NC  
NC  
DQh  
DQh  
DQh  
V
V
V
V
V
DDQ  
DD  
SS  
DD  
SS  
DDQ  
DDQ  
DQa  
DQa  
DQa  
DDQ  
M
N
P
R
T
V
V
V
V
DQh  
DQh  
DQh  
V
V
SS  
SS  
SS  
SS  
DQa  
DQa  
DQa  
V
V
V
V
V
DDQ  
DQh  
DQh  
DPd  
DQd  
DQd  
V
V
V
V
V
V
NC  
ZZ  
DD  
DD  
SS  
DDQ  
DDQ  
SS  
DDQ  
DQa  
DQa  
DPa  
DQe  
DQe  
V
V
V
V
V
V
SS  
SS  
SS  
SS  
V
DPh  
DQd  
DQd  
DQd  
DQd  
V
DDQ  
V
DDQ  
DD  
DD  
DDQ  
DDQ  
SS  
DD  
DPe  
DQe  
DQe  
DQe  
DQe  
NC  
V
NC  
NC  
NC  
A
MODE  
A
SS  
U
V
W
72M  
A
A
NC  
NC  
A
A
A1  
A
DQd  
DQd  
A
A
A
A
DQe  
DQe  
TDI  
TDO  
TCK  
A0  
A
TMS  
Pin Definitions  
Pin Name  
I/O Type  
Pin Description  
A0  
A1  
A
Input-  
Synchronous  
Address inputs used to select one of the 1048576/2097152/524288 address locations.  
Sampled at the rising edge of the CLK.  
BWSa  
BWSb  
BWSc  
BWSd  
BWSe  
BWSf  
BWSg  
BWSh  
Input-  
Synchronous  
Byte Write Select Inputs, active LOW. Qualified with WE to conduct writes to the SRAM.  
Sampled on the rising edge of CLK. BWSa controls DQa and DPa, BWSb controls DQb and DPb,  
BWSc controls DQc and DPc, BWSd controls DQd and DPd.BWSe controls DQe and DPe, BWSf  
controls DQf and DPf, BWSg controls DQg and DPg, BWSh controls DQh and DPh.  
WE  
Input-  
Synchronous  
Write Enable Input, active LOW. Sampled on the rising edge of CLK if CEN is active LOW. This  
signal must be asserted LOW to initiate a write sequence.  
ADV/LD  
Input-  
Synchronous  
Advance/Load Input used to advance the on-chip address counter or load a new address.  
When HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When LOW, a  
new address can be loaded into the device for an access. After being deselected, ADV/LD should  
be driven LOW in order to load a new address.  
Document #: 38-05192 Rev. *B  
Page 5 of 26  
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
PRELIMINARY  
Pin Definitions (continued)  
Pin Name  
I/O Type  
Pin Description  
CLK  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. CLK is qualified with CEN.  
CLK is only recognized if CEN is active LOW.  
CE1  
CE2  
CE3  
OE  
Input-  
Synchronous  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
CE2 and CE3 to select/deselect the device.  
Input-  
Synchronous  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction  
with CE1 and CE3 to select/deselect the device.  
Input-  
Synchronous  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
CE1 and CE2 to select/deselect the device.  
Input-  
Output Enable, active LOW. Combined with the synchronous logic block inside the device to  
Asynchronous control the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs.  
When deasserted HIGH, I/O pins are three-stated, and act as input data pins. OE is masked  
during the data portion of a write sequence, during the first clock when emerging from a  
deselected state and when the device has been deselected.  
CEN  
Input-  
Synchronous  
Clock Enable Input, active LOW. When asserted LOW the clock signal is recognized by the  
SRAM. When deasserted HIGH the clock signal is masked. Since deasserting CEN does not  
deselect the device, CEN can be used to extend the previous cycle when required.  
DQa  
DQb  
DQc  
DQd  
DQe  
DQf  
I/O-  
Synchronous  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is triggered  
by the rising edge of CLK. As outputs, they deliver the data contained in the memory location  
specified by A[x:0] during the previous clock rise of the read cycle. The direction of the pins is  
controlled by OE and the internal control logic. When OE is asserted LOW, the pins can behave  
as outputs. When HIGH, DQaDQd are placed in a three-state condition. The outputs are  
automatically three-stated during the data portion of a write sequence, during the first clock when  
emerging from a deselected state, and when the device is deselected, regardless of the state of  
OE.DQ a,b,c,d,e,f,g,h are eight bits wide.  
DQg  
DQh  
DPa  
DPb  
DPc  
DPd  
DPe  
DPf  
I/O-  
Synchronous  
Bidirectional Data Parity I/O lines. Functionally, these signals are identical to DQ[x:0]. DP  
a,b,c,d,e,f,g and h are one bit wide.  
DPg  
DPh  
ZZ  
Input-  
ZZ sleepInput. This active HIGH input places the device in a non-time criticalsleepcondition  
Asynchronous with data integrity preserved.This pin can also be left as a NC.  
MODE  
Input Strap Pin Mode Input. Selects the burst order of the device. Tied HIGH selects the interleaved burst order.  
Pulled LOW selects the linear burst order. MODE should not change states during operation.  
When left floating MODE will default HIGH, to an interleaved burst order.  
VDD  
Power Supply  
Power supply inputs to the core of the device.  
VDDQ  
VSS  
I/O Power Supply Power supply for the I/O circuitry.  
Ground  
Ground for the device. Should be connected to ground of the system.  
TDO  
JTAG serial output Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. (BGA Only).  
Synchronous  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. (BGA Only). This pin  
Synchronous can be left as a NC if JTAG is not used.  
Test Mode Select This pin controls the Test Access Port state machine. Sampled on the rising edge of TCK.  
Synchronous (BGA Only). This pin can be left as a NC if JTAG is not used.  
JTAG serial clock Serial clock to the JTAG circuit. (BGA Only). This pin can be left as a NC if JTAG is not used.  
This pin can be left as a NC if JTAG is not used.  
TDI  
TMS  
TCK  
72M  
NC  
No connects. Reserved for address expansion.  
No connects.  
Document #: 38-05192 Rev. *B  
Page 6 of 26  
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
PRELIMINARY  
burst counter is determined by the MODE input signal. A LOW  
input on MODE selects a linear burst mode, a HIGH selects an  
interleaved burst sequence. Both burst counters use A0 and  
A1 in the burst sequence, and will wraparound when incre-  
mented sufficiently. A HIGH input on ADV/LD will increment  
the internal burst counter regardless of the state of chip  
enables inputs or WE. WE is latched at the beginning of a burst  
cycle. Therefore, the type of access (Read or Write) is  
maintained throughout the burst sequence.  
Introduction  
Functional Overview  
The CY7C1461V25/CY7C1463V25/CY7C1465V25 is  
a
Synchronous Flow-Through Burst NoBL SRAM designed  
specifically to eliminate wait states during Write-Read transi-  
tions. All synchronous inputs pass through input registers  
controlled by the rising edge of the clock. The clock signal is  
qualified with the Clock Enable input signal (CEN). If CEN is  
HIGH, the clock signal is not recognized and all internal states  
are maintained. All synchronous operations are qualified with  
CEN. Maximum access delay from the clock rise (tCDV) is  
6.5 ns (133-MHz device).  
Single Write Accesses  
Write access are initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) Chip  
Enable(s) asserted active, and (3) the write signal WE is  
asserted LOW. The address presented is loaded into the  
Address Register. The write signals are latched into the  
Control Logic block. The data lines are automatically  
three-stated regardless of the state of the OE input signal. This  
allows the external logic to present the data on DQ and DP.  
Accesses can be initiated by asserting Chip Enable(s) (CE1,  
CE2, CE3 on the TQFP, CE1 on the BGA) active at the rising  
edge of the clock. If Clock Enable (CEN) is active LOW and  
ADV/LD is asserted LOW, the address presented to the device  
will be latched. The access can either be a Read or Write  
operation, depending on the status of the Write Enable (WE).  
Byte Write Selects can be used to conduct byte write opera-  
tions.  
On the next clock rise the data presented to DQ and DP (or a  
subset for byte write operations, see Write Cycle Description  
table for details) inputs is latched into the device and the write  
is complete. Additional accesses (Read/Write/Deselect) can  
be initiated on this cycle.  
Write operations are qualified by the Write Enable (WE). All  
writes are simplified with on-chip synchronous self-timed write  
circuitry.  
The data written during the Write operation is controlled by  
Byte Write Select signals. The CY7C1461V25/CY7C1463V25  
/CY7C1465V25 provide byte write capability that is described  
in the Write Cycle Description table. Asserting the Write  
Enable input (WE) with the selected Byte Write Select input  
will selectively write to only the desired bytes. Bytes not  
selected during a byte write operation will remain unaltered. A  
synchronous self-timed write mechanism has been provided  
to simplify the write operations. Byte write capability has been  
included in order to greatly simplify Read/Modify/Write  
sequences, which can be reduced to simple byte write opera-  
tions.  
Synchronous Chip Enable (CE1, CE2, and CE3 on the TQFP,  
CE1 on the BGA) and an asynchronous Output Enable (OE)  
simplify depth expansion. All operations (Reads, Writes, and  
Deselects) are pipelined. ADV/LD should be driven LOW once  
the device has been deselected in order to load a new address  
for the next operation.  
Single Read Accesses  
A read access is initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, (3) the Write Enable input  
signal WE is deasserted HIGH, and 4) ADV/LD is asserted  
LOW. The address presented to the address inputs is latched  
into the Address Register and presented to the memory core  
and control logic. The control logic determines that a read  
access is in progress and allows the requested data to  
propagate to the output buffers. The data is available within  
6.5 ns (133-MHz device) provided OE is active LOW. After the  
first clock of the read access the output buffers are controlled  
by OE and the internal control logic. OE must be driven LOW  
in order for the device to drive out the requested data. On the  
subsequent clock, another operation (Read/Write/Deselect)  
can be initiated. When the SRAM is deselected at clock rise  
by one of the chip enable signals, its output will be three-stated  
immediately.  
Because the CY7C1461V25/CY7C1463V25/CY7C1465V25  
are common I/O devices, data should not be driven into the  
device while the outputs are active. The Output Enable (OE)  
can be deasserted HIGH before presenting data to the DQand  
DP inputs. Doing so will three-state the output drivers. As a  
safety precaution, DQ and DP are automatically three-stated  
during the data portion of a write cycle, regardless of the state  
of OE.  
Burst Write Accesses  
The CY7C1461V25/CY7C1463V25/CY7C1465V25 has an  
on-chip burst counter that allows the user the ability to supply  
a single address and conduct up to four Write operations  
without reasserting the address inputs. ADV/LD must be  
driven LOW in order to load the initial address, as described  
in the Single Write Access section above. When ADV/LD is  
driven HIGH on the subsequent clock rise, the chip enables  
(CE1, CE2, and CE3) and WE inputs are ignored and the burst  
Burst Read Accesses  
The CY7C1461V25/CY7C1463V25/CY7C1465V25 has an  
on-chip burst counter that allows the user the ability to supply  
a single address and conduct up to four Reads without  
reasserting the address inputs. ADV/LD must be driven LOW  
in order to load a new address into the SRAM, as described in  
the Single Read Access section above. The sequence of the  
counter is incremented. The correct BWSa,b,c,d,e,f,g,h  
/
BWSa,b,c,d/BWSa,b inputs must be driven in each cycle of the  
burst write in order to write the correct bytes of data.  
Document #: 38-05192 Rev. *B  
Page 7 of 26  
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
PRELIMINARY  
Cycle Description Truth Table[1, 2, 3, 4, 5, 6]  
Operation Address Used CE CEN ADV/LD WE BWSx CLK  
Comments  
Deselected External  
Suspend  
1
X
0
0
X
0
1
0
0
0
0
X
0
0
1
X
X
1
X
X
X
L-H I/Os three-state following next recognized clock.  
L-H Clock ignored, all operations suspended.  
L-H Address latched.  
Begin Read External  
Begin Write External  
0
Valid L-H Address latched, data presented two valid clocks later.  
Burst Read Internal  
Operation  
X
X
L-H Burst Read operation. Previous access was a Read  
operation. Addresses incremented internally in  
conjunction with the state of MODE.  
Burst Write Internal  
Operation  
X
0
1
X
Valid L-H Burst Write operation. Previous access was a Write  
operation. Addresses incremented internally in  
conjunction with the state of MODE. Bytes written are  
determined by BWSa,b,c,d,e,f,g,h/ BWSa,b,c,d/BWSa,b  
.
Sleep Mode  
Interleaved Burst Sequence  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation sleepmode. Two  
clock cycles are required to enter into or exit from this sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the sleepmode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the sleepmode. CEs, ADSP, and ADSC must remain  
inactive for the duration of tZZREC after the ZZ input returns  
LOW.  
First  
Second  
Third  
Fourth  
Address  
Address  
Address  
Address  
A[1:0]  
00  
A[1:0]  
01  
A[1:0]  
10  
A[1:0]  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Linear Burst Sequence  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
A[1:0]  
00  
A[1:0]  
01  
A[1:0]  
10  
A[1:0]  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
ZZ Mode Electrical Characteristics  
Parameter  
Description  
Snooze mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
ZZ > VDD 0.2V  
Min. Max. Unit  
15 mA  
IDDZZ  
tZZS  
ZZ > VDD 0.2V  
2tCYC ns  
2tCYC ns  
tZZREC  
ZZ < 0.2V  
Write Cycle Descriptions[1, 2]  
Function (CY7C1461V25)  
Read  
WE  
1
BWSd BWSc BWSb BWSa  
Function (CY7C1461V25)  
X
1
1
1
1
X
1
1
1
1
X
1
1
0
0
X
1
0
1
0
Read  
Write No Bytes Written  
Write Byte 0 (DQa and DPa)  
Write Byte 1 (DQb and DPb)  
0
Write No Bytes Written  
Write Byte 0 (DQa and DPa)  
Write Byte 1 (DQb and DPb)  
Write Bytes 1, 0  
0
0
Write Bytes 1, 0  
0
Notes:  
1. X = Don't Care,1 = Logic HIGH, 0 = Logic LOW, CE stands for ALL Chip Enables active. BWS = 0 signifies at least one Byte Write Select is active, BWS  
x
x
= Valid signifies that the desired byte write selects are asserted, see Write Cycle Description table for details.  
2. Write is defined by WE and BWS . See Write Cycle Description table for details.  
x
Document #: 38-05192 Rev. *B  
Page 8 of 26  
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
PRELIMINARY  
Write Cycle Descriptions[1, 2]  
Function (CY7C1461V25)  
Write Byte 2 (DQc and DPc)  
Write Bytes 2, 0  
WE  
0
BWSd BWSc BWSb BWSa  
Function (CY7C1461V25)  
Write Byte 2 (DQc and DPc)  
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
0
Write Bytes 2, 0  
Write Bytes 2, 1  
0
Write Bytes 2, 1  
Write Bytes 2, 1, 0  
Write Byte 3 (DQd and DPd)  
Write Bytes 3, 0  
0
Write Bytes 2, 1, 0  
Write Byte 3 (DQd and DPd)  
Write Bytes 3, 0  
0
0
Write Bytes 3, 1  
0
Write Bytes 3, 1  
Write Bytes 3, 1, 0  
Write Bytes 3, 2  
0
Write Bytes 3, 1, 0  
Write Bytes 3, 2  
0
Write Bytes 3, 2, 0  
Write Bytes 3, 2, 1  
Write All Bytes  
0
Write Bytes 3, 2, 0  
Write Bytes 3, 2, 1  
Write All Bytes  
0
0
Function (CY7C1463V25)  
Read  
WE  
1
BWSb  
BWSa  
Function (CY7C1463V25)  
x
1
1
0
0
x
1
0
1
0
Read  
Write No Bytes Written  
Write Byte 0 (DQa and DPa)  
Write Byte 1 (DQb and DPb)  
Write Both Bytes  
0
Write No Bytes Written  
Write Byte 0 (DQa and DPa)  
Write Byte 1 (DQb and DPb)  
Write Both Bytes  
0
0
0
Test Mode Select  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this pin unconnected if the TAP is not used. The pin is  
pulled up internally, resulting in a logic HIGH level.  
The CY7C1463V25/CY7C1461V25 incorporates a serial  
boundary scan Test Access Port (TAP) in the BGA package  
only. The TQFP package does not offer this functionality. This  
port operates in accordance with IEEE Standard 1149.1-1900,  
but does not have the set of functions required for full 1149.1  
compliance. These functions from the IEEE specification are  
excluded because their inclusion places an added delay in the  
critical speed path of the SRAM. Note that the TAP controller  
functions in a manner that does not conflict with the operation  
of other devices using 1149.1 fully compliant TAPs. The TAP  
operates using JEDEC standard 2.5V I/O logic levels.  
Test Data-In (TDI)  
The TDI pin is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see the TAP  
Controller State Diagram. TDI is internally pulled up and can  
be unconnected if the TAP is unused in an application. TDI is  
connected to the Most Significant Bit (MSB) on any register.  
Disabling the JTAG Feature  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull-up resistor. TDO should  
be left unconnected. Upon power-up, the device will come up  
in a reset state which will not interfere with the operation of the  
device.  
Test Data Out (TDO)  
The TDO output pin is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine (see TAP Controller State  
Diagram). The output changes on the falling edge of TCK.  
TDO is connected to the Least Significant Bit (LSB) of any  
register.  
Test Access Port (TAP) - Test Clock  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Notes:  
3. The DQ and DP pins are controlled by the current cycle and the OE signal.  
4. CEN = 1 inserts wait states.  
5. Device will power-up deselected and the I/Os in a three-state condition, regardless of OE.  
6. OE assumed LOW.  
Document #: 38-05192 Rev. *B  
Page 9 of 26  
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
PRELIMINARY  
Performing a TAP Reset  
TAP Instruction Set  
A Reset is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This RESET does not affect the operation of  
the SRAM and may be performed while the SRAM is  
operating. At power-up, the TAP is reset internally to ensure  
that TDO comes up in a High-Z state.  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in the  
Instruction Code table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented. The TAP controller  
cannot be used to load address, data, or control signals into  
the SRAM and cannot preload the Input or Output buffers. The  
SRAM does not implement the 1149.1 commands EXTEST or  
INTEST or the PRELOAD portion of SAMPLE/PRELOAD;  
rather it performs a capture of the Inputs and Output ring when  
these instructions are executed.  
TAP Registers  
Registers are connected between the TDI and TDO pins and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction registers. Data is serially loaded into the TDI pin  
on the rising edge of TCK. Data is output on the TDO pin on  
the falling edge of TCK.  
Instruction Register  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO pins.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO pins as shown in the TAP Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
EXTEST  
When the TAP controller is in the CaptureIR state, the two least  
significant bits are loaded with a binary 01pattern to allow for  
fault isolation of the board level serial test path.  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all  
0s. EXTEST is not implemented in the TAP controller, and  
therefore this device is not compliant to the 1149.1 standard.  
Bypass Register  
The TAP controller does recognize an all-0 instruction. When  
an EXTEST instruction is loaded into the instruction register,  
the SRAM responds as if a SAMPLE/PRELOAD instruction  
has been loaded. There is one difference between the two  
instructions. Unlike the SAMPLE/PRELOAD instruction,  
EXTEST places the SRAM outputs in a High-Z state.  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain states. The bypass  
register is a single-bit register that can be placed between TDI  
and TDO pins. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
IDCODE  
Boundary Scan Register  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO pins and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state. The IDCODE instruction  
is loaded into the instruction register upon power-up or  
whenever the TAP controller is given a test logic reset state.  
The boundary scan register is connected to all the input and  
output pins on the SRAM. Several no connect (NC) pins are  
also included in the scan register to reserve pins for higher  
density devices. The x36 configuration has a 70-bit-long  
register, and the x18 configuration has a 51-bit-long register.  
The boundary scan register is loaded with the contents of the  
RAM Input and Output ring when the TAP controller is in the  
Capture-DR state and is then placed between the TDI and  
TDO pins when the controller is moved to the Shift-DR state.  
The EXTEST, SAMPLE/PRELOAD and SAMPLE Z instruc-  
tions can be used to capture the contents of the Input and  
Output ring.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO pins when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI, and the LSB is connected to TDO.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so  
the TAP controller is not fully 1149.1-compliant.  
Identification (ID) Register  
When the SAMPLE/PRELOAD instructions are loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 10 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is  
Document #: 38-05192 Rev. *B  
Page 10 of 26  
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
PRELIMINARY  
possible that during the Capture-DR state, an input or output  
will undergo a transition. The TAP may then try to capture a  
signal while in transition (metastable state). This will not harm  
the device, but there is no guarantee as to the value that will  
be captured. Repeatable results may not be possible.  
Note that since the PRELOAD part of the command is not  
implemented, putting the TAP into the Update to the  
Update-DR state while performing a SAMPLE/PRELOAD  
instruction will have the same effect as the Pause-DR  
command.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controllers capture set-up plus  
hold times (tCS and tCH). The SRAM clock input might not be  
captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE/PRELOAD instruction. If this  
is an issue, it is still possible to capture all other signals and  
simply ignore the value of the CK and CK# captured in the  
boundary scan register.  
Bypass  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO pins. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
Reserved  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO pins.  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
Document #: 38-05192 Rev. *B  
Page 11 of 26  
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
PRELIMINARY  
TAP Controller State Diagram[7]  
TEST-LOGIC  
1
RESET  
1
1
1
TEST-LOGIC/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
1
1
CAPTURE-DR  
CAPTURE-DR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
EXIT1-DR  
0
1
EXIT1-IR  
0
1
0
0
PAUSE-DR  
1
PAUSE-IR  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
1
0
0
Note:  
7. Note: The 0/1 next to each state represents the value at TMS at the rising edge of TCK.  
Document #: 38-05192 Rev. *B  
Page 12 of 26  
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
PRELIMINARY  
TAP Controller Block Diagram  
0
Bypass Register  
Selection  
Circuitry  
Selection  
Circuitry  
2
1
1
1
0
TDO  
TDI  
Instruction Register  
29  
Identification Register  
31 30  
.
.
2
0
.
.
.
.
.
2
0
Boundary Scan Register  
TCK  
TMS  
TAP Controller  
TAP Electrical Characteristics Over the Operating Range[8, 9]  
Parameter  
VOH1  
Description  
Output HIGH Voltage  
Output HIGH Voltage  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
Test Conditions  
IOH = 4.0 mA  
Min.  
2.0  
Max.  
Unit  
V
V
VOH2  
VOL1  
VOL2  
VIH  
IOH = 100 µA  
IOL = 8.0 mA  
IOL = 100 µA  
2.2  
0.4  
0.2  
V
V
1.7  
0.3  
5  
VDD + 0.3  
0.7  
V
VIL  
V
IX  
GND VI VDDQ  
5
µA  
TAP AC Switching Characteristics Over the Operating Range[10, 11]  
Parameter  
tTCYC  
Description  
Min.  
Max  
Unit  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH  
100  
ns  
MHz  
ns  
tTF  
10  
tTH  
40  
40  
tTL  
TCK Clock LOW  
ns  
Set-up Times  
tTMSS  
TMS Set-up to TCK Clock Rise  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
10  
10  
10  
ns  
ns  
ns  
tTDIS  
tCS  
Hold Times  
tTMSH  
TMS Hold after TCK Clock Rise  
10  
ns  
Notes:  
8. All voltage referenced to ground.  
9. Overshoot: VIH(AC) < VDD + 1.5V for t < tTCYC/2; undershoot: VIL(AC) < 0.5V for t < tTCYC/2; power-up: VIH < 2.6V and VDD < 2.4V and VDDQ < 1.4V for t <  
200 ms.  
10. tCS and tCH refer to the set-up and hold time requirements of latching data from the boundary scan register.  
11. Test conditions are specified using the load in TAP AC test conditions. tR/tF = 1 ns.  
Document #: 38-05192 Rev. *B  
Page 13 of 26  
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
PRELIMINARY  
TAP AC Switching Characteristics Over the Operating Range[10, 11]  
Parameter  
tTDIH  
Description  
Min.  
10  
Max  
Unit  
ns  
TDI Hold after Clock Rise  
tCH  
Capture Hold after clock rise  
10  
ns  
Output Times  
tTDOV TCK Clock LOW to TDO Valid  
tTDOX TCK Clock LOW to TDO Invalid  
20  
ns  
ns  
0
TAP Timing and Test Conditions  
1.25V  
50Ω  
ALL INPUT PULSES  
TDO  
Vih  
Z = 50Ω  
0
C = 20 pF  
L
0V  
GND  
tTL  
tTH  
(a)  
Test Clock  
TCK  
tTCYC  
tTMSS  
tTMSH  
Test Mode Select  
TMS  
tTDIS  
tTDIH  
Test Data-In  
TDI  
Test Data-Out  
TDO  
tTDOV  
tTDOX  
Identification Register Definitions  
Instruction Field  
Revision Number (31:29)  
Department Number (27:25)  
Voltage (28&24)  
x 18  
000  
101  
01  
x36  
000  
101  
01  
Description  
Reserved for version number.  
Department number  
Architecture (23:21)  
001  
001  
001  
001  
Architecture type  
Memory Type (20:18)  
Defines type of memory  
Document #: 38-05192 Rev. *B  
Page 14 of 26  
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
PRELIMINARY  
Identification Register Definitions (continued)  
Instruction Field  
Revision Number (31:29)  
Device Width (17:15)  
x 18  
000  
010  
111  
x36  
000  
100  
111  
Description  
Reserved for version number.  
Defines width of the SRAM. x36 or x18  
Defines the density of the SRAM  
Device Density (14:12)  
Cypress JEDEC ID (11:1)  
ID Register Presence (0)  
00000110100 00000110100 Allows unique identification of SRAM vendor.  
Indicate the presence of an ID register.  
1
1
Scan Register Sizes  
Register Name  
Bit Size (x18)  
Bit Size (x36)  
Instruction  
Bypass  
3
1
3
1
ID  
32  
51  
32  
70  
Boundary Scan  
Identification Codes  
Instruction  
EXTEST  
Code  
Description  
000  
Captures the Input/Output ring contents. Places the boundary scan register between the TDI and  
TDO. Forces all SRAM outputs to High-Z state. This instruction is not 1149.1 compliant.  
IDCODE  
001  
010  
011  
Loads the ID register with the vendor ID code and places the register between TDI and TDO. This  
operation does not affect SRAM operation.  
SAMPLE Z  
RESERVED  
Captures the Input/Output contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD 100  
CapturestheInput/Outputringcontents. Placestheboundaryscanregister betweenTDIandTDO.  
Does not affect the SRAM operation. This instruction does not implement 1149.1 preload function  
and is therefore not 1149.1 compliant.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM operation.  
Document #: 38-05192 Rev. *B  
Page 15 of 26  
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
PRELIMINARY  
Boundary Scan Order (1M × 36)  
Boundary Scan Order (2M × 18)  
Document #: 38-05192 Rev. *B  
Page 16 of 26  
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
PRELIMINARY  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage.......................................... > 1500V  
(per MIL-STD-883, Method 3015)  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-up Current.................................................... > 200 mA  
Storage Temperature .................................65°C to +150°C  
Operating Range  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Ambient  
Range Temperature[11]  
VDD  
VDDQ  
Supply Voltage on VDD Relative to GND ...... 0.5V to +3.6V  
DC Voltage Applied to Outputs  
Coml  
0°C to +70°C  
2.5 +5%/  
5%  
1.7V(Min.)  
VDD(Max.)  
in High-Z State[12] ..............................0.5V to VDDQ + 0.5V  
DC Input Voltage[12] ............................0.5V to VDDQ + 0.5V  
Electrical Characteristics Over the Operating Range  
Parameter  
VDD  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min.  
2.375  
2.375  
1.7  
Max.  
2.625  
VDD  
Unit  
V
V
VDDQ  
2.5V range  
1.8V range  
VDD  
V
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage[13]  
VDD = Min., IOH = 1.0 mA  
VDD = Min., IOH = 100 µA  
VDD = Min., IOL = 1.0 mA  
VDD = Min., IOL = 100µA  
VDDQ = 2.5V  
VDDQ = 1.8V  
VDDQ = 2.5V  
VDDQ = 1.8V  
VDDQ = 2.5V  
VDDQ = 1.8V  
VDDQ = 2.5V  
VDDQ = 1.8V  
2.0  
V
1.4  
V
0.4  
0.2  
V
V
1.7  
V
1.26  
0.3  
0.3  
V
0.7  
0.36  
5
V
V
Input Load Current  
GND VI VDDQ  
µA  
µA  
µA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Input Current of MODE  
Output Leakage Current  
VDD Operating Supply  
30  
IOZ  
IDD  
GND VI VDDQ, Output Disabled  
5
VDD = Max., IOUT = 0 mA,  
f = fMAX = 1/tCYC  
150 MHz  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
133 MHz  
117 MHz  
ISB1  
Automatic CE  
Power-down  
CurrentTTL Inputs  
Max. VDD, Device Deselected, 150 MHz  
VIN > VIH or VIN < VIL  
f = fMAX = 1/tCYC  
133 MHz  
117 MHz  
ISB2  
Automatic CE  
Max. VDD, Device Deselected, All speed grades  
Power-down  
CurrentCMOS Inputs  
V
IN 0.3V or VIN > VDDQ  
0.3V, f= 0  
ISB3  
Automatic CE  
Power-down  
CurrentCMOS Inputs  
Max. VDD, Device Deselected, 150 MHz  
TBD  
TBD  
TBD  
TBD  
mA  
mA  
mA  
mA  
or VIN < 0.3V or VIN > VDDQ  
0.3V; f = fMAX = 1/tCYC  
133 MHz  
117 MHz  
ISB4  
Automatic CE  
Power-down  
Max. VDD, Device Deselected, All speed grades  
VIN VIH or VIN VIL, f = 0  
CurrentTTL Inputs  
Shaded areas contain advance information.  
Notes:  
12.  
TA is the case temperature.  
13. Minimum voltage equals 2.0V for pulse durations of less than 20 ns.  
Document #: 38-05192 Rev. *B  
Page 17 of 26  
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
PRELIMINARY  
Capacitance[15]  
Parameter  
Description  
Input Capacitance  
Test Conditions  
Max.  
TBD  
TBD  
TBD  
Unit  
pF  
CIN  
TA = 25°C, f = 1 MHz,  
VDD = VDDQ = 2.5V  
CCLK  
CI/O  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
pF  
AC Test Loads and Waveforms  
R = 317Ω  
V
[14]  
DDQ  
OUTPUT  
ALL INPUT PULSES  
90%  
OUTPUT  
V
DD  
90%  
10%  
Z =50Ω  
0
R =50Ω  
10%  
L
5 pF  
GND  
R = 351Ω  
V = 1.25V  
L
Rise Time:  
1ns  
Fall Time:  
1ns  
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Thermal Resistance[15]  
Parameter  
Description  
Test Conditions  
BGA Typ.  
TQFP Typ.  
Unit  
QJA  
Thermal Resistance  
(Junction to Ambient)  
Still Air, soldered on a 4.25 x 1.125 inch,  
four-layer printed circuit board  
TBD  
TBD  
°C/W  
QJC  
Thermal Resistance  
(Junction to Case)  
TBD  
TBD  
°C/W  
Switching Characteristics (over the operating range)  
150  
133  
117  
Parameter  
Clock  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
tCYC  
Clock Cycle Time  
6.7  
7.5  
8.5  
ns  
MHz  
ns  
FMAX  
Maximum Operating Frequency  
Clock HIGH  
150  
133  
117  
tCH  
2.5  
2.5  
2.5  
2.5  
3.0  
3.0  
tCL  
Clock LOW  
ns  
Output Times  
tCDV  
Data Output Valid After CLK Rise  
OE LOW to Output Valid[15, 17, 19]  
Data Output Hold After CLK Rise  
Clock to High-Z[15, 16, 17, 18, 19]  
Clock to Low-Z[15, 16, 17, 18, 19]  
OE HIGH to Output High-Z[15, 16, 17, 18, 19]  
OE LOW to Output Low-Z[15, 16, 17, 18, 19]  
5.5  
3.0  
6.5  
3.0  
7.5  
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tEOV  
tDOH  
2.5  
2.5  
0
2.5  
2.5  
0
2.5  
2.5  
0
tCHZ  
5.0  
4.0  
5.0  
4.0  
5.0  
4.0  
tCLZ  
tEOHZ  
tEOLZ  
Set-Up Times  
tAS  
Address Set-Up Before CLK Rise  
1.5  
1.5  
1.5  
Notes:  
14. Input waveform should have a slew rate of > 1 V/ns.  
15. Tested initially and after any design or process change that may affect these parameters.  
16. Unless otherwise noted, test conditions assume signal transition time of 2.5 ns or less, timing reference levels of 1.25V, input pulse levels of 0 to 2.5V, and  
output loading of the specified IOL/IOH and load capacitance. Shown in (a), (b) and (c) of AC test loads.  
17. tCHZ, tCLZ, tOEV, tEOLZ, and tEOHZ are specified with AC test conditions shown in (a) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
18. At any given voltage and temperature, tEOHZ is less than tEOLZ and tCHZ is less than tCLZ to eliminate bus contention between SRAMs when sharing the same  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions.  
19. This parameter is sampled and not 100% tested.  
Document #: 38-05192 Rev. *B  
Page 18 of 26  
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
PRELIMINARY  
Switching Characteristics (over the operating range) (continued)  
150  
133  
117  
Parameter  
tDS  
Description  
Data Input Set-Up Before CLK Rise  
CEN Set-Up Before CLK Rise  
WE, BWSx Set-Up Before CLK Rise  
ADV/LD Set-Up Before CLK Rise  
Chip Select Set-Up  
Min.  
1.5  
1.5  
1.5  
1.5  
1.5  
Max.  
Min.  
1.5  
1.5  
1.5  
1.5  
1.5  
Max.  
Min.  
1.5  
1.5  
1.5  
1.5  
1.5  
Max.  
Unit  
ns  
tCENS  
tWES  
tALS  
ns  
ns  
ns  
tCES  
ns  
Hold Times  
tAH  
Address Hold After CLK Rise  
Data Input Hold After CLK Rise  
CEN Hold After CLK Rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tDH  
tCENH  
tWEH  
tALH  
WE, BWx Hold After CLK Rise  
ADV/LD Hold after CLK Rise  
Chip Select Hold After CLK Rise  
tCEH  
Shaded areas contain advance information.  
Switching Waveforms  
Read/Write/Deselect Sequence  
CLK  
tCENH  
tCENH  
tCENS  
tCENS  
tCL  
tCH  
tCYC  
CEN  
tAS  
ADDRESS  
WA2  
WA5  
RA1  
RA3  
RA4  
RA6  
RA7  
tAH  
WE  
CE  
tWEH  
tCEH  
tWES  
tCES  
tCHZ  
tDOH  
tCLZ  
tCHZ  
Data  
In/Out  
Q6  
Q4  
Out  
D5  
In  
D2  
In  
Q7  
Out  
Q3  
Out  
Q1  
Out  
Out  
Device  
originally  
deselected  
tDOH  
tCDV  
WE is the combination of WE and BWSx(x = a, b, c, d) to define a write cycle (see Write Cycle Description table).  
CE is the combination of CE1, CE2, and CE3. All chip selects need to be active in order to select  
the device. Any chip select can deselect the device. RAx stands for Read Address X, WA stands for  
Write Address X, Dx stands for Data-in X, Qx stands for Data-out X.  
= UNDEFINED  
= DONT CARE  
Document #: 38-05192 Rev. *B  
Page 19 of 26  
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
PRELIMINARY  
Switching Waveforms (continued)  
Burst Sequences  
CLK  
tALH  
tALS  
ADV/LD  
tCL  
tCH  
tCYC  
tAH  
tAS  
RA1  
WA2  
ADDRESS  
WE  
RA3  
tWEH  
tWES  
tWS  
tWH  
BWSx  
tCES  
tCEH  
CE  
tCLZ  
tCHZ  
tDH  
tDOH  
Q1  
tCLZ  
Q3  
Out  
Q1+2  
Out  
Q1+3  
Out  
D2  
In  
D2+2  
In  
D2+3  
In  
Data  
In/Out  
Q1+1  
Out  
D2+1  
In  
Q3+1  
Out  
Out  
tCDV  
t
tDS  
DeviceCDV  
originally deselected  
The combination of WE & BWSx(x=a, b, c, d) define a write cycle (see Write Cycle Description table).  
CE is the combination of CE1, CE2, and CE3. All chip enables need to be active in order to select  
the device. Any chip enable can deselect the device. RAx stands for Read Address X, WA stands for  
Write Address X, Dx stands for Data-in for location X, Qx stands for Data-out for location X. CEN held  
LOW. During burst writes, byte writes can be conducted by asserting the appropriate BWSx input signals.  
Burst order determined by the state of the MODE input. CEN held LOW. OE held LOW.  
= UNDEFINED  
= DONT CARE  
Document #: 38-05192 Rev. *B  
Page 20 of 26  
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
PRELIMINARY  
Switching Waveforms (continued)  
OE Timing  
OE  
tEOV  
tEOHZ  
Three-state  
I/Os  
tEOLZ  
Ordering Information  
Speed  
Package  
Operating  
Range  
(MHz)  
Ordering Code  
CY7C1461V25-150AC  
Name  
Package Type  
150  
A101  
100-pin 14 x 20 x 1.4 mm Thin Quad Flat Pack  
Commercial  
CY7C1463V25-150AC  
CY7C1461V25-150BGC  
CY7C1463V25-150BGC  
BG119  
119-ball PBGA (14 x 22 x 2.4 mm)  
CY7C1465V25-150BX  
BG209  
209-ball PBGA (14 x 22 x 2.2 mm)  
165-ball FBGA (15 x 17)  
CY7C1461V25-150BZC  
CY7C1463V25-150BZC  
BB165C  
133  
117  
CY7C1461V25-133AC  
CY7C1463V25-133AC  
A101  
100-pin 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-ball PBGA (14 x 22 x 2.4 mm)  
CY7C1461V25-133BGC  
CY7C1463V25-133BGC  
BG119  
CY7C1465V25-133BX  
BG209  
209-ball PBGA (14 x 22 x 2.2 mm)  
165-ball FBGA (15 x 17)  
CY7C1461V25-133BZC  
CY7C1463V25-133BZC  
BB165C  
CY7C1461V25-117AC  
CY7C1463V25-117AC  
A101  
100-pin 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-ball PBGA (14 x 22 x 2.4 mm)  
CY7C1461V25-117BGC  
CY7C1463V25-117BGC  
BG119  
CY7C1465V25-117BX  
BG209  
209-ball PBGA (14 x 22 x 2.2 mm)  
165-ball FBGA (15 x 17)  
CY7C1461V25-117BZC  
CY7C1463V25-117BZC  
BB165C  
Shaded areas contain advance information.  
Document #: 38-05192 Rev. *B  
Page 21 of 26  
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
PRELIMINARY  
Package Diagram  
100-pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
51-85050-A  
Document #: 38-05192 Rev. *B  
Page 22 of 26  
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
PRELIMINARY  
Package Diagram (continued)  
119-Lead PBGA (14 x 22 x 2.4 mm) BG119  
51-85115-*B  
Document #: 38-05192 Rev. *B  
Page 23 of 26  
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
PRELIMINARY  
Package Diagram (continued)  
209-Lead PBGA (14 x 22 x 2.20 mm) BG209  
51-85143-*B  
Document #: 38-05192 Rev. *B  
Page 24 of 26  
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
PRELIMINARY  
Package Diagram (continued)  
165-ball FBGA (15 x 17 x 1.20 mm) BB165C  
51-85165-**  
Zero Bus Latency, No Bus Latency, and NoBL are trademarks of Cypress Semiconductor Corporation. All products and company  
names mentioned in this document may be the trademarks of their respective holders.  
Document #: 38-05192 Rev. *B  
Page 25 of 26  
© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C1461V25  
CY7C1463V25  
CY7C1465V25  
PRELIMINARY  
Document History Page  
Document Title: CY7C1461V25/CY7C1463V25/CY7C1465V25 1M x 36/2M x 18/512K x 72 F/T SRAM  
with NoBLArchitecture  
Document Number: 38-05192  
Issue  
Date  
Orig. of  
Change  
REV.  
**  
ECN No.  
113769  
116924  
Description of Change  
04/19/02  
08/07/02  
PKS  
FLX  
New Data Sheet  
*A  
Increase Tdoh to 2.5 ns  
Shaded 150-MHz device information  
*B  
121527  
11/19/02  
DSG  
Updated package diagrams 51-85115 (BG119) to rev. *B and 51-85143  
(BG209) to rev. *B  
Document #: 38-05192 Rev. *B  
Page 26 of 26  

相关型号:

CY7C147

4K x 1 STATIC RAM
CYPRESS
ETC

CY7C147-25PC

4K x 1 STATIC RAM
CYPRESS
ETC

CY7C147-35DMB

4K x 1 STATIC RAM
CYPRESS

CY7C147-35KMB

Standard SRAM, 4KX1, 35ns, CMOS, CDFP18, CERPACK-18
CYPRESS

CY7C147-35LC

Standard SRAM, 4KX1, 35ns, CMOS, CQCC18, CERAMIC, LCC-18
CYPRESS
ETC

CY7C147-35PC

4K x 1 STATIC RAM
CYPRESS

CY7C147-45DMB

4K x 1 STATIC RAM
CYPRESS

CY7C147-45KMB

Standard SRAM, 4KX1, 45ns, CMOS, CDFP18, CERPACK-18
CYPRESS

CY7C147-45LC

Standard SRAM, 4KX1, 45ns, CMOS, CQCC18, CERAMIC, LCC-18
CYPRESS