CY7C1471V33-100AXI [CYPRESS]

ZBT SRAM, 2MX36, 8.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, LEAD FREE, PLASTIC, TQFP-100;
CY7C1471V33-100AXI
型号: CY7C1471V33-100AXI
厂家: CYPRESS    CYPRESS
描述:

ZBT SRAM, 2MX36, 8.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, LEAD FREE, PLASTIC, TQFP-100

静态存储器
文件: 总30页 (文件大小:374K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through  
SRAM with NoBL™ Architecture  
• JTAG boundary scan for BGA and fBGA packages  
• Burst Capability—linear or interleaved burst order  
Features  
• No Bus Latency™ (NoBL™) architecture eliminates  
dead cycles between write and read cycles.  
• Low standby power  
Functional Description[1]  
• Can support up to 133-MHz bus operations with zero  
wait states  
The CY7C1471V33, CY7C1473V33 and CY7C1475V33 are  
3.3V, 2M x 36/4M x 18/1M x 72 Synchronous Flow-through  
Burst SRAMs designed specifically to support unlimited true  
back-to-back Read/Write operations without the insertion of  
wait states. The CY7C1471V33, CY7C1473V33 and  
CY7C1475V33 are equipped with the advanced No Bus  
Latency (NoBL) logic required to enable consecutive  
Read/Write operations with data being transferred on every  
clock cycle. This feature dramatically improves the throughput  
of data through the SRAM, especially in systems that require  
frequent Write-Read transitions.  
• Data is transferred on every clock  
• Pin compatible and functionally equivalent to ZBT™  
devices  
• Internally self-timed output buffer control to eliminate  
the need to use OE  
• Registered inputs for flow-through operation  
• Byte Write capability  
• 3.3V/2.5V I/O power supply  
• Fast clock-to-output times  
— 6.5 ns (for 133-MHz device)  
— 8.5 ns (for 100-MHz device)  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. The clock input is qualified by  
the Clock Enable (CEN) signal, which when deasserted  
suspends operation and extends the previous clock cycle.  
Maximum access delay from the clock rise is 6.5 ns (133-MHz  
device).  
• Clock Enable (CEN) pin to enable clock and suspend  
operation  
• Synchronous self-timed writes  
• Asynchronous Output Enable  
Write operations are controlled by the two or four Byte Write  
Select (BWX) and a Write Enable (WE) input. All writes are  
conducted with on-chip synchronous self-timed write circuitry.  
• Offered in JEDEC-standard lead-free 100 TQFP, and  
165-ball fBGA packages for CY7C1471V33 and  
CY7C1473V33. Lead-free 209-ball fBGA package for  
CY7C1475V33.  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output tri-state control. In order to avoid bus  
contention, the output drivers are synchronously tri-stated  
during the data portion of a write sequence.  
• Three chip enables for simple depth expansion.  
• Automatic Power-down feature available using ZZ  
mode or CE deselect.  
Selection Guide  
133 MHz  
6.5  
100 MHz  
8.5  
Unit  
ns  
Maximum Access Time  
Maximum Operating Current  
335  
305  
mA  
mA  
Maximum CMOS Standby Current  
150  
150  
Note:  
1. For best-practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
Cypress Semiconductor Corporation  
Document #: 38-05288 Rev. *G  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Revised March 10, 2005  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
Logic Block Diagram – CY7C1471V33 (2M x 36)  
ADDRESS  
REGISTER  
A0, A1, A  
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
MODE  
C
BURST  
LOGIC  
CE  
ADV/LD  
C
CLK  
CEN  
WRITE ADDRESS  
REGISTER  
O
U
T
P
U
T
D
A
T
S
E
N
S
ADV/LD  
A
B
U
F
MEMORY  
ARRAY  
BWA  
BWB  
BWC  
BWD  
WRITE  
DRIVERS  
E
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
S
T
E
E
R
I
DQs  
DQP  
DQP  
DQP  
DQP  
A
B
C
D
A
M
P
F
E
R
S
S
WE  
E
N
G
INPUT  
REGISTER  
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
SLEEP  
CONTROL  
ZZ  
Logic Block Diagram – CY7C1473V33 (4M x 18)  
ADDRESS  
A0, A1, A  
A1  
A1'  
A0'  
REGISTER  
D1  
A0  
Q1  
Q0  
D0  
MODE  
BURST  
LOGIC  
CE  
ADV/LD  
C
CLK  
CEN  
C
WRITE ADDRESS  
REGISTER  
O
U
T
P
U
T
D
A
T
S
E
N
S
ADV/LD  
A
B
U
F
MEMORY  
ARRAY  
BW  
A
B
WRITE  
DRIVERS  
E
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
S
T
E
E
R
I
DQs  
DQP  
DQP  
BW  
A
B
A
M
P
F
E
R
S
S
WE  
E
N
G
INPUT  
REGISTER  
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
SLEEP  
ZZ  
CONTROL  
Document #: 38-05288  
Page 2 of 30  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
Logic Block Diagram – CY7C1475V33 (1M x 72)  
ADDRESS  
REGISTER 0  
A0, A1, A  
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
C
ADV/LD  
C
CLK  
CEN  
WRITE ADDRESS  
REGISTER 1  
WRITE ADDRESS  
REGISTER 2  
O
U
T
P
O
U
T
S
E
N
S
P
U
T
D
A
T
U
T
ADV/LD  
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
A
BW  
BW  
BW  
a
R
E
G
I
S
T
E
R
S
MEMORY  
ARRAY  
E
B
U
F
DQs  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
WRITE  
DRIVERS  
b
S
T
E
E
R
I
A
M
P
a
b
c
d
e
f
c
F
BW  
d
E
R
S
S
BW  
e
BW  
BW  
f
N
G
g
E
E
BW  
h
g
h
WE  
INPUT  
REGISTER 1  
INPUT  
REGISTER 0  
E
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
Sleep  
Control  
ZZ  
Document #: 38-05288  
Page 3 of 30  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
Pin Configurations  
100-lead TQFP  
DQPC  
DQC  
DQC  
VDDQ  
VSS  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
1
DQPB  
DQB  
DQB  
VDDQ  
VSS  
2
3
4
5
DQC  
6
DQB  
BYTE C  
BYTE B  
DQB  
DQC  
DQC  
DQC  
VSS  
7
8
DQB  
DQB  
VSS  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDDQ  
DQC  
DQC  
NC  
VDDQ  
DQB  
DQB  
VSS  
CY7C1471V33  
VDD  
NC  
NC  
VDD  
ZZ  
VSS  
DQD  
DQD  
VDDQ  
VSS  
DQA  
DQA  
VDDQ  
VSS  
DQD  
DQA  
DQA  
DQD  
BYTE D  
BYTE A  
DQD  
DQD  
VSS  
DQA  
DQA  
VSS  
VDDQ  
DQD  
DQD  
DQPD  
VDDQ  
DQA  
DQA  
DQPA  
Document #: 38-05288  
Page 4 of 30  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
Pin Configurations (continued)  
100-lead TQFP  
NC  
1
NC  
2
NC  
3
VDDQ  
4
VSS  
5
NC  
6
NC  
7
DQB  
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
A
NC  
NC  
VDDQ  
VSS  
NC  
DQPA  
DQA  
DQA  
VSS  
VDDQ  
DQA  
DQA  
VSS  
DQB  
9
VSS  
10  
VDDQ  
11  
DQB  
DQB  
NC  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
CY7C1473V33  
BYTE A  
NC  
VDD  
NC  
BYTE B  
VDD  
ZZ  
VSS  
DQB  
DQB  
VDDQ  
VSS  
DQB  
DQB  
DQPB  
NC  
DQA  
DQA  
VDDQ  
VSS  
DQA  
DQA  
NC  
NC  
VSS  
VDDQ  
NC  
VSS  
VDDQ  
NC  
NC  
NC  
NC  
NC  
Document #: 38-05288  
Page 5 of 30  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
Pin Configurations (continued)  
165-ball fBGA (3 Chip Enable with JTAG)  
CY7C1471V33 (2M x 36)  
1
2
A
3
CE1  
4
BWC  
5
BWB  
6
CE3  
7
8
9
A
10  
A
11  
NC  
NC / 576M  
NC/1G  
DQPC  
CEN  
WE  
VSS  
VSS  
VSS  
ADV/LD  
A
B
C
D
A
CE2  
VDDQ  
VDDQ  
BWD  
VSS  
BWA  
VSS  
VSS  
CLK  
VSS  
VSS  
OE  
VSS  
VDD  
A
A
NC  
NC  
DQC  
VDDQ  
VDDQ  
NC  
DQPB  
DQB  
DQC  
VDD  
DQB  
DQC  
DQC  
DQC  
DQC  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQB  
DQB  
DQB  
NC  
DQB  
E
F
DQC  
DQC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQB  
DQB  
ZZ  
G
H
J
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
K
L
DQD  
DQPD  
DQD  
NC  
A
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
M
N
P
NC/144M  
TDI  
TDO  
NC/288M  
A0  
MODE  
A
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1473V33 (4M x 18)  
1
NC / 576M  
NC/1G  
NC  
2
A
3
CE1  
4
BWB  
5
NC  
6
CE3  
7
8
9
A
10  
A
11  
A
CEN  
WE  
VSS  
VSS  
ADV/LD  
A
B
C
D
A
CE2  
VDDQ  
VDDQ  
NC  
VSS  
VDD  
BWA  
VSS  
VSS  
CLK  
VSS  
VSS  
OE  
VSS  
VDD  
A
A
NC  
NC  
DQB  
VDDQ  
VDDQ  
NC  
NC  
DQPA  
DQA  
NC  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
E
F
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQA  
DQA  
ZZ  
NC  
G
H
J
NC  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
NC  
NC  
NC  
K
L
NC  
NC  
DQB  
DQPB  
NC  
NC  
A
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
M
N
P
NC/144M  
TDI  
TDO  
NC/288M  
A0  
MODE  
A
A
A
TMS  
TCK  
A
A
A
A
R
Document #: 38-05288  
Page 6 of 30  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
Pin Configurations (continued)  
209-ball PBGA  
CY7C1475V33 (1M × 72)  
1
2
3
4
5
6
7
8
9
10  
11  
DQg  
DQg  
DQg  
DQg  
DQg  
DQg  
DQg  
DQg  
DQPc  
DQc  
DQc  
A
CE2  
A
ADV/LD  
WE  
A
A
CE3  
BWSb  
BWSe  
NC  
A
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
A
B
BWSc  
BWSh  
VSS  
BWSg  
NC  
BWSf  
BWSa  
VSS  
BWSd NC/576M CE1  
NC  
NC  
C
D
NC/1G  
OE  
NC  
DQb  
DQb  
DQPb  
DQf  
E
F
DQPg  
DQc  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VDD  
NC  
VDD  
VSS  
VDD  
DQPf  
DQf  
VSS  
VDDQ  
VSS  
VSS  
VDDQ  
VSS  
G
H
J
DQc  
DQc  
NC  
VDDQ  
VSSQ  
VDDQ  
DQf  
DQf  
DQf  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
NC  
A
DQc  
DQc  
NC  
NC  
DQf  
DQf  
NC  
VDDQ  
DQc  
NC  
VDDQ  
CLK  
VDDQ  
NC  
NC  
DQf  
NC  
K
L
CEN  
NC  
NC  
NC  
DQh  
DQh  
DQh  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
DQa  
DQa  
DQa  
M
N
P
R
T
NC  
VSS  
VDDQ  
VSS  
VDDQ  
NC  
DQh  
DQh  
DQh  
VSS  
VDD  
VSS  
DQa  
DQa  
DQa  
VDDQ  
DQh  
DQh  
DQPd  
DQd  
DQd  
NC  
ZZ  
DQa  
DQa  
DQPa  
DQe  
DQe  
VSS  
VDDQ  
VDDQ  
VDD  
NC  
A
DQPh  
DQd  
DQd  
DQd  
DQd  
VDDQ  
VDD  
DQPe  
DQe  
DQe  
DQe  
DQe  
VSS  
VSS  
NC  
A
MODE  
A
U
V
W
A
NC/288M  
NC/144M  
A
A
A1  
A
DQd  
DQd  
A
A
A
A
DQe  
DQe  
TDI  
TDO  
TCK  
A0  
A
TMS  
Document #: 38-05288  
Page 7 of 30  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
Pin Definitions  
Name  
I/O  
Description  
A0, A1, A  
Input-  
Synchronous  
Address Inputs used to select one of the address locations. Sampled at the rising edge  
of the CLK. A[1:0] are fed to the two-bit burst counter.  
BWA,BWB,BWC,  
BWD, BWE, BWF,  
BWG, BWH  
Input-  
Synchronous  
Byte Write Inputs, active LOW. Qualified withWE to conduct writes to the SRAM. Sampled  
on the rising edge of CLK.  
WE  
Input-  
Synchronous  
Write Enable Input, active LOW. Sampled on the rising edge of CLK if CEN is active LOW.  
This signal must be asserted LOW to initiate a write sequence.  
ADV/LD  
Input-  
Synchronous  
Advance/Load Input. Used to advance the on-chip address counter or load a new address.  
When HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When  
LOW, a new address can be loaded into the device for an access. After being deselected,  
ADV/LD should be driven LOW in order to load a new address.  
CLK  
CE1  
CE2  
CE3  
OE  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. CLK is qualified with  
CEN. CLK is only recognized if CEN is active LOW.  
Input-  
Synchronous  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction  
with CE2, and CE3 to select/deselect the device.  
Input-  
Synchronous  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction  
with CE1 and CE3 to select/deselect the device.  
Input-  
Synchronous  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction  
with CE1 and CE2 to select/deselect the device.  
Input-  
Output Enable, asynchronous input, active LOW. Combined with the synchronous logic  
Asynchronous block inside the device to control the direction of the I/O pins. When LOW, the I/O pins are  
allowed to behave as outputs. When deasserted HIGH, I/O pins are tri-stated, and act as  
input data pins. OE is masked during the data portion of a write sequence, during the first  
clock when emerging from a deselected state, when the device has been deselected.  
CEN  
ZZ  
Input-  
Synchronous  
Clock Enable Input, active LOW. When asserted LOW the Clock signal is recognized by  
the SRAM. When deasserted HIGH the Clock signal is masked. Since deasserting CEN  
does not deselect the device, CEN can be used to extend the previous cycle when required.  
Input-  
ZZ “Sleep” Input. This active HIGH input places the device in a non-time critical “sleep”  
Asynchronous condition with data integrity preserved. During normal operation, this pin can be connected  
to Vss or left floating.  
I/O-  
Synchronous  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is  
triggered by the rising edge of CLK. As outputs, they deliver the data contained in the  
DQs  
memory location specified by the addresses presented during the previous  
clock rise of the  
read cycle. The direction of the pins is controlled by OE. When OE is asserted LOW, the  
pins behave as outputs. When HIGH, DQs and DQPX are placed in a tri-state condition.The  
outputs are automatically tri-stated during the data portion of a write sequence, during the  
first clock when emerging from a deselected state, and when the device is deselected,  
regardless of the state of OE.  
I/O-  
Synchronous  
Bidirectional Data Parity I/O Lines. Functionally, these signals are identical to DQs.During  
write sequences, DQPX is controlled by BWX correspondingly.  
DQPX  
MODE  
Input Strap Pin Mode Input. Selects the burst order of the device.  
When tied to Gnd selects linear burst sequence. When tied to VDD or left floating selects  
interleaved burst sequence.  
VDD  
VDDQ  
VSS  
Power Supply Power supply inputs to the core of the device.  
I/O Power Supply Power supply for the I/O circuitry.  
Ground  
Ground for the device.  
TDO  
JTAG serial output Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If the  
Synchronous  
JTAG feature is not being utilized, this pin should be left unconnected. This pin is not  
available on TQFP packages.  
TDI  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature  
Synchronous  
is not being utilized, this pin can be left floating or connected to VDD through a pull up  
resistor. This pin is not available on TQFP packages.  
Document #: 38-05288  
Page 8 of 30  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
Pin Definitions (continued)  
Name  
I/O  
Description  
TMS  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature  
Synchronous  
is not being utilized, this pin can be disconnected or connected to VDD. This pin is not  
available on TQFP packages.  
TCK  
NC  
JTAG  
-Clock  
Clock input to the JTAG circuitry. If the JTAG feature is not being utilized, this pin must  
be connected to VSS. This pin is not available on TQFP packages.  
-
No Connects. Not internally connected to the die. 144M, 288M, 576M and 1G are address  
expansion pins and are not internally connected to the die.  
supply a single address and conduct up to four Reads without  
reasserting the address inputs. ADV/LD must be driven LOW  
Functional Overview  
The CY7C1471V33, CY7C1473V33 and CY7C1475V33 are  
synchronous flow-through burst SRAMs designed specifically  
to eliminate wait states during Write-Read transitions. All  
synchronous inputs pass through input registers controlled by  
the rising edge of the clock. The clock signal is qualified with  
the Clock Enable input signal (CEN). If CEN is HIGH, the clock  
signal is not recognized and all internal states are maintained.  
All synchronous operations are qualified with CEN. Maximum  
access delay from the clock rise (tCDV) is 6.5 ns (133-MHz  
device).  
in order to load a new address into the SRAM, as described in  
the Single Read Access section above. The sequence of the  
burst counter is determined by the MODE input signal. A LOW  
input on MODE selects a linear burst mode, a HIGH selects an  
interleaved burst sequence. Both burst counters use A0 and  
A1 in the burst sequence, and will wrap around when incre-  
mented sufficiently. A HIGH input on ADV/LD will increment  
the internal burst counter regardless of the state of chip enable  
inputs or WE. WE is latched at the beginning of a burst cycle.  
Therefore, the type of access (Read or Write) is maintained  
throughout the burst sequence.  
Accesses can be initiated by asserting all three Chip Enables  
(CE1, CE2, CE3) active at the rising edge of the clock. If Clock  
Enable (CEN) is active LOW and ADV/LD is asserted LOW,  
the address presented to the device will be latched. The  
access can either be a Read or Write operation, depending on  
the status of the Write Enable (WE). BWX can be used to  
conduct Byte Write operations.  
Single Write Accesses  
Write accesses are initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, and (3) the Write signal WE  
is asserted LOW. The address presented to the address bus  
is loaded into the Address Register. The Write signals are  
latched into the Control Logic block. The data lines are  
automatically tri-stated regardless of the state of the OE input  
signal. This allows the external logic to present the data on  
DQs and DQPX.  
Write operations are qualified by the Write Enable (WE). All  
writes are simplified with on-chip synchronous self-timed write  
circuitry.  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) simplify depth expansion.  
All operations (Reads, Writes, and Deselects) are pipelined.  
ADV/LD should be driven LOW once the device has been  
deselected in order to load a new address for the next  
operation.  
On the next clock rise the data presented to DQs and DQPX  
(or a subset for Byte Write operations, see Truth Table for  
details) inputs is latched into the device and the write is  
complete. Additional accesses (Read/Write/Deselect) can be  
initiated on this cycle.  
Single Read Accesses  
The data written during the Write operation is controlled by  
BWX signals. The CY7C1471V33, CY7C1473V33 and  
CY7C1475V33 provides Byte Write capability that is described  
in the Truth Table. Asserting the Write Enable input (WE) with  
the selected Byte Write Select input will selectively write to  
only the desired bytes. Bytes not selected during a Byte Write  
operation will remain unaltered. A synchronous self-timed  
write mechanism has been provided to simplify the Write  
operations. Byte Write capability has been included in order to  
greatly simplify Read/Modify/Write sequences, which can be  
reduced to simple byte write operations.  
A read access is initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, (3) the Write Enable input  
signal WE is deasserted HIGH, and 4) ADV/LD is asserted  
LOW. The address presented to the address inputs is latched  
into the Address Register and presented to the memory array  
and control logic. The control logic determines that a read  
access is in progress and allows the requested data to  
propagate to the output buffers. The data is available within 6.5  
ns (133-MHz device) provided OE is active LOW. After the first  
clock of the read access, the output buffers are controlled by  
OE and the internal control logic. OE must be driven LOW in  
order for the device to drive out the requested data. On the  
subsequent clock, another operation (Read/Write/Deselect)  
can be initiated. When the SRAM is deselected at clock rise  
by one of the chip enable signals, its output will be tri-stated  
immediately.  
Because  
the  
CY7C1471V33,  
CY7C1473V33  
and  
CY7C1475V33 are common I/O devices, data should not be  
driven into the device while the outputs are active. The Output  
Enable (OE) can be deasserted HIGH before presenting data  
to the DQs and DQPX inputs. Doing so will tri-state the output  
drivers. As a safety precaution, DQs and DQPX are automati-  
cally tri-stated during the data portion of a write cycle,  
regardless of the state of OE.  
Burst Read Accesses  
The CY7C1471V33, CY7C1473V33 and CY7C1475V33 have  
an on-chip burst counter that allows the user the ability to  
Document #: 38-05288  
Page 9 of 30  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
Burst Write Accesses  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
The CY7C1471V33, CY7C1473V33, and CY7C1475V33  
have an on-chip burst counter that allows the user the ability  
to supply a single address and conduct up to four Write opera-  
tions without reasserting the address inputs. ADV/LD must be  
driven LOW in order to load the initial address, as described  
in the Single Write Access section above. When ADV/LD is  
driven HIGH on the subsequent clock rise, the Chip Enables  
(CE1, CE2, and CE3) and WE inputs are ignored and the burst  
counter is incremented. The correct BWX inputs must be  
driven in each cycle of the burst write, in order to write the  
correct bytes of data.  
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Linear Burst Address Table  
(MODE = GND)  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the “sleep” mode. CE1, CE2, and CE3, must remain inactive  
for the duration of tZZREC after the ZZ input returns LOW.  
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
Test Conditions  
ZZ > VDD – 0.2V  
Min.  
Max.  
Unit  
mA  
ns  
150  
tZZS  
ZZ > VDD – 0.2V  
2tCYC  
tZZREC  
tZZI  
ZZ recovery time  
ZZ < 0.2V  
2tCYC  
0
ns  
ZZ active to sleep current  
ZZ Inactive to exit sleep current  
This parameter is sampled  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
ns  
Truth Table [2, 3, 4, 5, 6, 7, 8]  
Address  
Used  
Operation  
Deselect Cycle  
CE1 CE2  
ZZ ADV/LD  
WE  
X
BWX OE  
CEN CLK  
DQ  
CE3  
X
None  
None  
H
X
X
X
L
X
X
L
L
L
L
L
L
L
L
L
H
L
X
X
X
X
X
X
X
X
X
L
L
L
L
L
L
L->H  
L->H  
L->H  
L->H  
Tri-State  
Tri-State  
Tri-State  
Tri-State  
Deselect Cycle  
H
X
Deselect Cycle  
None  
X
X
Continue Deselect Cycle  
None  
X
H
X
X
Read Cycle  
External  
L
H
L->H Data Out (Q)  
(Begin Burst)  
Read Cycle  
(Continue Burst)  
Next  
External  
Next  
X
L
X
H
X
H
X
L
L
L
L
L
H
L
X
H
X
L
X
X
X
L
L
H
H
X
L
L
L
L
L->H Data Out (Q)  
NOP/Dummy Read  
(Begin Burst)  
L->H  
L->H  
Tri-State  
Tri-State  
Dummy Read  
(Continue Burst)  
X
L
X
L
H
L
Write Cycle (Begin Burst)  
External  
L->H Data In (D)  
Notes:  
2. X = “Don't Care.” H = Logic HIGH, L = Logic LOW. BWx = L signifies at least one Byte Write Select is active, BWx = Valid signifies that the desired Byte Write  
Selects are asserted, see Truth Table for details.  
3. Write is defined by BW , and WE. See Truth Table for Read/Write.  
X
4. When a Write cycle is detected, all I/Os are tri-stated, even during Byte Writes.  
5. The DQs and DQP pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
X
6. CEN = H, inserts wait states.  
7. Device will power-up deselected and the I/Os in a tri-state condition, regardless of OE.  
8. OE is asynchronous and is not sampled with the clock rise. It is masked internally during Write cycles. During a read cycle DQs and DQP = Tri-state when OE  
X
is inactive or when the device is deselected, and DQs and DQP = data when OE is active.  
X
Document #: 38-05288  
Page 10 of 30  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
Truth Table (continued)[2, 3, 4, 5, 6, 7, 8]  
Address  
Operation  
Used  
CE1 CE2  
ZZ ADV/LD  
WE  
X
BWX OE  
CEN CLK  
DQ  
CE3  
X
Write Cycle (Continue Burst)  
Next  
X
L
X
H
X
X
X
L
L
L
L
H
H
L
L
H
H
X
X
X
X
X
X
X
L
L
L->H Data In (D)  
NOP/Write Abort (Begin Burst) None  
L
L
L->H  
L->H  
L->H  
X
Tri-State  
Tri-State  
-
Write Abort (Continue Burst)  
Ignore Clock Edge (Stall)  
Sleep Mode  
Next  
Current  
None  
X
X
X
X
H
X
X
X
L
X
X
H
X
X
X
Tri-State  
Truth Table for Read/Write[2, 3, 9]  
Function (CY7C1471V33)  
Read  
WE  
H
L
BWA  
BWB  
BWC  
BWD  
X
X
H
L
X
H
H
L
X
H
H
H
L
Write No bytes written  
H
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Byte C – (DQC and DQPC)  
Write Byte D – (DQD and DQPD)  
Write All Bytes  
L
H
L
H
H
H
L
H
L
H
H
L
H
L
H
L
L
L
L
Truth Table for Read/Write[2, 3, 9]  
Function (CY7C1473V33)  
WE  
H
L
BWB  
BWA  
X
Read  
X
H
H
L
Write – No Bytes Written  
H
Write Byte a – (DQa and DQPa)  
Write Byte b – (DQb and DQPb)  
Write Both Bytes  
L
L
L
H
L
L
L
Truth Table for Read/Write[2, 3, 9]  
Function (CY7C1475V33)  
WE  
BWx  
Read  
H
L
L
L
X
Write – No Bytes Written  
Write Byte X (DQx and DQPx)  
H
L
Write All Bytes  
All BW = L  
Note:  
9. Table only lists a partial listing of the byte write combinations. Any Combination of BW is valid Appropriate write will be done based on which byte write is active.  
X
Document #: 38-05288  
Page 11 of 30  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
Test MODE SELECT (TMS)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this ball unconnected if the TAP is not used. The ball is  
pulled up internally, resulting in a logic HIGH level.  
The CY7C1471V33, CY7C1473V33, and CY7C1475V33  
incorporate a serial boundary scan test access port (TAP).  
This port operates in accordance with IEEE Standard  
1149.1-1990 but does not have the set of functions required  
for full 1149.1 compliance. These functions from the IEEE  
specification are excluded because their inclusion places an  
added delay in the critical speed path of the SRAM. Note that  
the TAP controller functions in a manner that does not conflict  
with the operation of other devices using 1149.1 fully compliant  
TAPs. The TAP operates using JEDEC-standard 3.3V or 2.5V  
I/O logic levels.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see the TAP  
Controller State Diagram. TDI is internally pulled up and can  
be unconnected if the TAP is unused in an application. TDI is  
connected to the most significant bit (MSB) of any register.  
(See Tap Controller Block Diagram.)  
The CY7C1471V33, CY7C1473V33, and CY7C1475V33  
contain a TAP controller, instruction register, boundary scan  
register, bypass register, and ID register.  
Disabling the JTAG Feature  
Test Data-Out (TDO)  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull-up resistor. TDO should be  
left unconnected. Upon power-up, the device will come up in  
a reset state which will not interfere with the operation of the  
device.  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See Tap Controller State Diagram.)  
TAP Controller Block Diagram  
0
TAP Controller State Diagram  
Bypass Register  
TEST-LOGIC  
1
2
1
0
0
0
RESET  
0
Selection  
Circuitry  
Instruction Register  
31 30 29  
Identification Register  
Selection  
TDI  
TDO  
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
Circuitr  
y
.
.
. 2 1  
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
x
.
.
.
.
. 2 1  
0
0
Boundary Scan Register  
SHIFT-DR  
0
SHIFT-IR  
0
1
1
1
1
EXIT1-DR  
EXIT1-IR  
TCK  
TMS  
0
0
TAP CONTROLLER  
PAUSE-DR  
0
PAUSE-IR  
0
1
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
Performing a TAP Reset  
A RESET is performed by forcing TMS HIGH (VDD) for five  
rising edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is  
operating.  
UPDATE-DR  
UPDATE-IR  
1
0
1
0
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
TAP Registers  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
Test Access Port (TAP)  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Document #: 38-05288  
Page 12 of 30  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
Instruction Register  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO balls as shown in the Tap Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all  
0s. EXTEST is not implemented in this SRAM TAP controller,  
and therefore this device is not compliant to 1149.1. The TAP  
controller does recognize an all-0 instruction.  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test data path.  
Bypass Register  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between  
the two instructions. Unlike the SAMPLE/PRELOAD  
instruction, EXTEST places the SRAM outputs in a High-Z  
state.  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
IDCODE  
Boundary Scan Register  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used  
to capture the contents of the I/O ring.  
The IDCODE instruction is loaded into the instruction register  
upon power-up or whenever the TAP controller is given a test  
logic reset state.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI and the LSB is connected to TDO.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so  
the device TAP controller is not fully 1149.1 compliant.  
When the SAMPLE/PRELOAD instruction is loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and bidirectional balls  
is captured in the boundary scan register.  
TAP Instruction Set  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is  
possible that during the Capture-DR state, an input or output  
will undergo a transition. The TAP may then try to capture a  
signal while in transition (metastable state). This will not harm  
the device, but there is no guarantee as to the value that will  
be captured. Repeatable results may not be possible.  
Overview  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in the  
Instruction Codes table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller’s capture set-up plus  
hold time (tCS plus tCH).  
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the I/O  
buffers. The SRAM does not implement the 1149.1 commands  
EXTEST or INTEST or the PRELOAD portion of  
SAMPLE/PRELOAD; rather, it performs a capture of the I/O  
ring when these instructions are executed.  
The SRAM clock input might not be captured correctly if there  
is no way in a design to stop (or slow) the clock during a  
SAMPLE/PRELOAD instruction. If this is an issue, it is still  
Document #: 38-05288  
Page 13 of 30  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
possible to capture all other signals and simply ignore the  
BYPASS  
value of the CLK captured in the boundary scan register.  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO balls. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO balls.  
Note that since the PRELOAD part of the command is not  
implemented, putting the TAP to the Update-DR state while  
performing a SAMPLE/PRELOAD instruction will have the  
same effect as the Pause-DR command.  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics Over the Operating Range[10, 11]  
Parameter  
Clock  
tTCYC  
tTF  
Description  
Min.  
Max  
Unit  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
50  
ns  
MHz  
ns  
20  
5
tTH  
25  
25  
tTL  
ns  
Output Times  
tTDOV TCK Clock LOW to TDO Valid  
tTDOX TCK Clock LOW to TDO Invalid  
Set-up Times  
tTMSS TMS Set-up to TCK Clock Rise  
tTDIS  
ns  
ns  
0
5
5
5
ns  
ns  
ns  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
tCS  
Hold Times  
tTMSH  
tTDIH  
TMS hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tCH  
Capture Hold after Clock Rise  
Notes:  
10.t and t refer to the set-up and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
11.Test conditions are specified using the load in TAP AC test Conditions. t /t = 1 ns.  
R
F
Document #: 38-05288  
Page 14 of 30  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
3.3V TAP AC Test Conditions  
2.5V TAP AC Test Conditions  
Input pulse levels ................................................ VSS to 3.3V  
Input rise and fall times................................................... 1 ns  
Input timing reference levels...........................................1.5V  
Output reference levels...................................................1.5V  
Test load termination supply voltage...............................1.5V  
Input pulse levels.................................................VSS to 2.5V  
Input rise and fall time .....................................................1 ns  
Input timing reference levels......................................... 1.25V  
Output reference levels ................................................ 1.25V  
Test load termination supply voltage ............................ 1.25V  
3.3V TAP AC Output Load Equivalent  
2.5V TAP AC Output Load Equivalent  
1.5V  
1.25V  
50W  
50W  
TDO  
TDO  
ZO= 50W  
ZO= 50W  
20pF  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; VDD = 3.3V ±0.165V unless otherwise noted)[12]  
Parameter  
VOH1  
Description  
Output HIGH Voltage IOH = –4.0 mA, VDDQ = 3.3V  
OH = –1.0 mA, VDDQ = 2.5V  
Test Conditions  
Min.  
2.4  
2.0  
2.9  
2.1  
Max.  
Unit  
V
I
V
VOH2  
VOL1  
VOL2  
VIH  
Output HIGH Voltage IOH = –100 µA  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
V
V
Output LOW Voltage IOL = 8.0 mA  
0.4  
0.4  
V
IOL = 1.0 mA  
V
Output LOW Voltage IOL = 100 µA  
0.2  
V
VDDQ = 2.5V  
0.2  
V
Input HIGH Voltage  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
2.0  
1.7  
VDD + 0.3  
VDD + 0.3  
0.8  
V
V
VIL  
Input LOW Voltage  
–0.3  
–0.3  
–5  
V
VDDQ = 2.5V  
0.7  
V
IX  
Input Load Current  
GND < VIN < VDDQ  
5
µA  
Identification Register Definitions  
CY7C1471V33 CY7C1473V33 CY7C1475V33  
Instruction Field  
Revision Number (31:29)  
Device Depth (28:24)[13]  
(2Mx36)  
(4Mx18)  
(1Mx72)  
Description  
000  
000  
000  
Describes the version number  
Reserved for internal use  
01011  
01011  
01011  
001001  
110100  
Architecture/Memory Type(23:18)  
Bus Width/Density(17:12)  
Cypress JEDEC ID Code (11:1)  
001001  
100100  
00000110100  
001001  
010100  
00000110100  
Defines memory type and architecture  
Defines width and density  
00000110100 Allows unique identification of SRAM  
vendor  
ID Register Presence Indicator (0)  
1
1
1
Indicates the presence of an ID register  
Notes:  
12. All voltages referenced to V (GND).  
SS  
13. Bit #24 is “1” in the ID Register Definitions for both 2.5V and 3.3V versions of this device.  
Document #: 38-05288  
Page 15 of 30  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
Scan Register Sizes  
Register Name  
Bit Size (x36)  
Bit Size (x18)  
Bit Size (x72)  
Instruction  
3
1
3
1
3
1
Bypass  
ID  
32  
71  
-
32  
52  
-
32  
-
Boundary Scan Order–165FBGA  
Boundary Scan Order– 209BGA  
110  
Identification Codes  
Instruction  
EXTEST  
Code  
Description  
000 Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state. This instruction is not 1149.1-compliant.  
IDCODE  
001 Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
SAMPLE Z  
010 Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011 Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
100 Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation. This instruction does not implement 1149.1 preload  
function and is therefore not 1149.1 compliant.  
RESERVED  
RESERVED  
BYPASS  
101 Do Not Use: This instruction is reserved for future use.  
110 Do Not Use: This instruction is reserved for future use.  
111 Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
Document #: 38-05288  
Page 16 of 30  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
Boundary Scan Exit Order (x36) (continued)  
Boundary Scan Exit Order (x36)  
Bit #  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
165-Ball ID  
M11  
L11  
M10  
L10  
K11  
J11  
K10  
J10  
H11  
G11  
F11  
E11  
D10  
D11  
C11  
G10  
F10  
E10  
A10  
B10  
A9  
Bit #  
1
165-Ball ID  
C1  
D1  
E1  
D2  
E2  
F1  
2
3
4
5
6
7
G1  
F2  
8
9
G2  
J1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
K1  
L1  
J2  
M1  
N1  
K2  
L2  
M2  
R1  
R2  
R3  
P2  
R4  
P6  
R6  
N6  
P11  
R8  
P3  
P4  
P8  
P9  
P10  
R9  
R10  
R11  
N11  
B9  
A8  
B8  
A7  
B7  
B6  
A6  
B5  
A5  
A4  
B4  
B3  
A3  
A2  
B2  
Document #: 38-05288  
Page 17 of 30  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
Boundary Scan Exit Order (x18) (continued)  
Boundary Scan Exit Order (x18)  
Bit #  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
165-Ball ID  
Bit #  
1
165-Ball ID  
A7  
B7  
B6  
A6  
B5  
A4  
B3  
A3  
A2  
B2  
D2  
E2  
2
3
F2  
4
G2  
J1  
5
6
K1  
7
L1  
8
M1  
N1  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
R1  
R2  
Boundary Scan Exit Order (x72)  
R3  
Bit #  
1
209-Ball ID  
P2  
A1  
A2  
B1  
B2  
C1  
C2  
D1  
D2  
E1  
E2  
F1  
F2  
G1  
G2  
H1  
H2  
J1  
R4  
2
P6  
3
R6  
4
N6  
5
P11  
R8  
6
7
P3  
8
P4  
9
P8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
P9  
P10  
R9  
R10  
R11  
M10  
L10  
K10  
J10  
H11  
G11  
F11  
E11  
D11  
C11  
A11  
A10  
B10  
A9  
J2  
L1  
L2  
M1  
M2  
N1  
N2  
P1  
P2  
R2  
R1  
T1  
T2  
U1  
B9  
A8  
B8  
Document #: 38-05288  
Page 18 of 30  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
Boundary Scan Exit Order (x72) (continued)  
Boundary Scan Exit Order (x72) (continued)  
Bit #  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
209-Ball ID  
U2  
Bit #  
76  
209-Ball ID  
H10  
G11  
G10  
F11  
F10  
E10  
E11  
D11  
D10  
C11  
C10  
B11  
B10  
A11  
A10  
A9  
V1  
77  
V2  
78  
W1  
W2  
T6  
79  
80  
81  
V3  
82  
V4  
83  
U4  
84  
W5  
V6  
85  
86  
W6  
U3  
87  
88  
U9  
89  
V5  
90  
U5  
91  
U6  
92  
U8  
W7  
V7  
93  
A7  
94  
A5  
U7  
95  
A6  
V8  
96  
D6  
V9  
97  
B6  
W11  
W10  
V11  
V10  
U11  
U10  
T11  
T10  
R11  
R10  
P11  
P10  
N11  
N10  
M11  
M10  
L11  
L10  
P6  
98  
D7  
99  
K3  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
A8  
B4  
B3  
C3  
C4  
C8  
C9  
B9  
B8  
A4  
C6  
B7  
A3  
J11  
J10  
H11  
Document #: 38-05288  
Page 19 of 30  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage........................................... >2001V  
(per MIL-STD-883, Method 3015)  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-up Current..................................................... >200 mA  
Storage Temperature .................................65°C to +150°C  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Operating Range  
Ambient  
Supply Voltage on VDD Relative to GND........ –0.5V to +4.6V  
Range  
Temperature  
VDD  
VDDQ  
DC Voltage Applied to Outputs  
in Tri-State........................................... –0.5V to VDDQ + 0.5V  
Commercial 0°C to +70°C 3.3V – 5%/+10% 2.5V – 5%  
to VDD  
Industrial  
-40°C to +85°C  
DC Input Voltage....................................–0.5V to VDD + 0.5V  
Electrical Characteristics Over the Operating Range[14, 15]  
Parameter  
VDD  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min.  
3.135  
3.135  
2.375  
2.4  
Max.  
3.6  
Unit  
V
VDDQ  
for 3.3V I/O  
for 2.5V I/O  
VDD  
V
2.625  
V
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH Voltage  
Output LOW Voltage  
for 3.3V I/O, IOH = –4.0 mA  
for 2.5V I/O, IOH = –1.0 mA  
for 3.3V I/O, IOL = 8.0 mA  
for 2.5V I/O, IOL = 1.0 mA  
V
2.0  
V
0.4  
0.4  
V
V
Input HIGH Voltage[14] for 3.3V I/O  
2.0  
1.7  
VDD + 0.3V  
VDD + 0.3V  
0.8  
V
for 2.5V I/O  
V
Input LOW Voltage[14]  
for 3.3V I/O  
–0.3  
–0.3  
–5  
V
for 2.5V I/O  
0.7  
V
Input Load Current  
except ZZ and MODE  
GND VI VDDQ  
5
µA  
Input Current of MODE Input = VSS  
Input = VDD  
–5  
–30  
–5  
µA  
µA  
30  
Input Current of ZZ  
Input = VSS  
Input = VDD  
µA  
5
µA  
IOZ  
IDD  
Output Leakage Current GND VI VDD, Output Disabled  
5
µA  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
7.5-ns cycle, 133 MHz  
10-ns cycle, 100 MHz  
7.5-ns cycle, 133 MHz  
10-ns cycle, 100 MHz  
335  
305  
200  
200  
mA  
mA  
mA  
mA  
Current  
f = fMAX = 1/tCYC  
ISB1  
ISB2  
ISB3  
Automatic CE  
Power-down  
Current—TTL Inputs  
VDD = Max, Device Deselected,  
VIN VIH or VIN VIL  
f = fMAX, inputs switching  
Automatic CE  
Power-down  
Current—CMOS Inputs f = 0, inputs static  
VDD = Max, Device Deselected,  
VIN 0.3V or VIN > VDD – 0.3V,  
All speeds  
150  
mA  
Automatic CE  
Power-down  
Current—CMOS Inputs f = fMAX, inputs switching  
V
DD = Max, Device Deselected, or 7.5-ns cycle, 133 MHz  
200  
200  
mA  
mA  
VIN 0.3V or VIN > VDDQ – 0.3V  
10-ns cycle, 100 MHz  
ISB4  
Automatic CE  
Power-down  
Current—TTL Inputs  
V
DD = Max, Device Deselected,  
All Speeds  
165  
mA  
VIN VDD – 0.3V or VIN  
f = 0, inputs static  
,
0.3V  
Notes:  
14. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > –2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
15. T  
: Assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V  
< V  
.
Power-up  
DD  
IH  
DD  
DDQ  
DD  
Document #: 38-05288  
Page 20 of 30  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
Thermal Resistance[16]  
100 TQFP 165 fBGA  
209 BGA  
Typ.  
Parameter  
Description  
Test Conditions  
Typ.  
Typ.  
Unit  
ΘJA  
Thermal Resistance Test conditions follow standard test  
(Junction to Ambient) methods and procedures for  
24.63  
16.3  
15.2  
°C/W  
measuringthermalimpedance, per  
EIA / JESD51.  
ΘJC  
Thermal Resistance  
(Junction to Case)  
2.28  
2.1  
1.7  
°C/W  
Capacitance[16]  
100 TQFP 165-fBGA 209-BGA  
Parameter  
CADDRESS  
CDATA  
Description  
Test Conditions  
Max.  
Max.  
Max.  
Unit  
Address Input Capacitance  
Data Input Capacitance  
Control Input Capacitance  
Clock Input Capacitance  
Input/Output Capacitance  
TA = 25°C, f = 1 MHz,  
VDD = 3.3V  
DDQ = 2.5V  
6
5
8
6
5
6
5
8
6
5
6
5
8
6
5
pF  
pF  
pF  
pF  
pF  
V
CCTRL  
CCLK  
CI/O  
AC Test Loads and Waveforms  
3.3V I/O Test Load  
R = 317Ω  
3.3V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
OUTPUT  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
L
5 pF  
R = 351Ω  
1 ns  
1 ns  
V = 1.5V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50Ω  
0
10%  
L
5 pF  
R = 1538Ω  
1 ns  
1 ns  
V = 1.25V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Note:  
16. Tested initially and after any design or process change that may affect these parameters.  
Document #: 38-05288  
Page 21 of 30  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
Switching Characteristics Over the Operating Range[21, 22]  
133 MHz  
100 MHz  
Parameter  
tPOWER‘  
Clock  
tCYC  
Description  
Min.  
Max.  
Min.  
Max.  
Unit  
1
1
ms  
Clock Cycle Time  
7.5  
2.5  
2.5  
10  
3.0  
3.0  
ns  
ns  
ns  
tCH  
Clock HIGH  
Clock LOW  
tCL  
Output Times  
tCDV  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z[18, 19, 20]  
6.5  
8.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
2.5  
3.0  
2.5  
3.0  
tCLZ  
tCHZ  
Clock to High-Z[18, 19, 20]  
3.8  
3.0  
4.5  
3.8  
tOEV  
OE LOW to Output Valid  
tOELZ  
tOEHZ  
Set-up Times  
tAS  
OE LOW to Output Low-Z[18, 19, 20]  
OE HIGH to Output High-Z[18, 19, 20]  
0
0
3.0  
4.0  
Address Set-up Before CLK Rise  
ADV/LD Set-up Before CLK Rise  
WE, BWX Set-up Before CLK Rise  
CEN Set-up Before CLK Rise  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tALS  
tWES  
tCENS  
tDS  
Data Input Set-up Before CLK Rise  
Chip Enable Set-Up Before CLK Rise  
tCES  
Hold Times  
tAH  
Address Hold After CLK Rise  
ADV/LD Hold After CLK Rise  
WE, BWX Hold After CLK Rise  
CEN Hold After CLK Rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tALH  
tWEH  
tCENH  
tDH  
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
tCEH  
Notes:  
17. This part has a voltage regulator internally; t  
is the time that the power needs to be supplied above V (minimum) initially, before a Read or Write operation  
DD  
POWER  
can be initiated.  
18. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
CHZ CLZ OELZ  
OEHZ  
19. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
OEHZ  
OELZ  
CHZ  
CLZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions  
20. This parameter is sampled and not 100% tested.  
21. Timing reference level is 1.5V when V  
= 3.3V and is 1.25V when V  
= 2.5V.  
DDQ  
DDQ  
22. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
Document #: 38-05288  
Page 22 of 30  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
Switching Waveforms  
Read/Write Waveforms[23, 24, 25]  
t
1
2
3
4
5
6
7
8
9
10  
CYC  
t
CLK  
CEN  
t
t
t
t
t
CENS  
CES  
CENH  
CEH  
CL  
CH  
CE  
ADV/LD  
WE  
BW  
X
A1  
A2  
A4  
A3  
A5  
A6  
A7  
ADDRESS  
DQ  
t
CDV  
t
t
AS  
AH  
t
t
t
t
CHZ  
DOH  
OEV  
CLZ  
D(A1)  
t
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6)  
D(A7)  
t
OEHZ  
t
DS  
DH  
t
DOH  
t
OELZ  
OE  
COMMAND  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
D(A2+1)  
Q(A4+1)  
DON’T CARE  
UNDEFINED  
Notes:  
For this waveform ZZ is tied LOW.  
23.  
24. When CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH, CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
25. Order of the Burst sequence is determined by the status of the MODE (0 = Linear, 1 = Interleaved). Burst operations are optional.  
Document #: 38-05288  
Page 23 of 30  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
Switching Waveforms (continued)  
NOP, STALL and DESELECT Cycles[23, 24, 26]  
t
1
2
3
4
5
6
7
8
9
10  
CYC  
CLK  
CEN  
t
t
t
t
t
t
CENS  
CES  
CENH  
CEH  
CL  
CH  
CE  
ADV/LD  
WE  
BW  
X
A1  
A2  
A4  
A3  
A5  
A6  
A7  
ADDRESS  
DQ  
t
CDV  
t
t
AS  
AH  
t
t
t
t
CHZ  
DOH  
OEV  
CLZ  
D(A1)  
t
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6)  
D(A7)  
t
OEHZ  
t
DS  
DH  
t
DOH  
t
OELZ  
OE  
COMMAND  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
D(A2+1)  
Q(A4+1)  
DON’T CARE  
UNDEFINED  
Note:  
26. The IGNORE CLOCK EDGE or STALL cycle (Clock 3) illustrates CEN being used to create a pause. A Write is not performed during this cycle.  
Document #: 38-05288  
Page 24 of 30  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
Switching Waveforms (continued)  
ZZ Mode Timing[27, 28]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Ordering Information  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
Part and Package Type  
133  
CY7C1471V33-133AXC  
CY7C1473V33-133AXC  
CY7C1471V33-133BZC  
CY7C1473V33-133BZC  
CY7C1475V33-133BGC  
A101  
A101  
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm) Commercial  
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
BB165C 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
BB165C 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
BB209A 209-ball Ball Grid Array (14 × 22 × 1.76 mm)  
CY7C1471V33-133BZXC BB165C Lead-Free 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4  
mm)  
CY7C1473V33-133BZXC BB165C Lead-Free 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4  
mm)  
CY7C1475V33-133BGXC BB209A Lead-Free 209-ball Ball Grid Array (14 × 22 × 1.76 mm)  
100  
CY7C1471V33-100AXC  
CY7C1473V33-100AXC  
CY7C1471V33-100BZC  
CY7C1473V33-100BZC  
CY7C1475V33-100BGC  
A101  
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
BB165C 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
BB165C 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
BB209A 209-ball Ball Grid Array (14 × 22 × 1.76 mm)  
CY7C1471V33-100BZXC BB165C Lead-Free 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4  
mm)  
CY7C1473V33-100BZXC BB165C Lead-Free 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4  
mm)  
CY7C1475V33-100BGXC BB209A Lead-Free 209-ball Ball Grid Array (14 × 22 × 1.76 mm)  
Please contact your local Cypress sales representative for availability of these parts.  
Notes:  
27. Device must be deselected when entering ZZ mode. See Truth Table for all possible signal conditions to deselect the device.  
28. DQs are in high-Z when exiting ZZ sleep mode.  
Document #: 38-05288  
Page 25 of 30  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
Ordering Information  
Speed  
Package  
Name  
Operating  
Range  
(MHz)  
Ordering Code  
Part and Package Type  
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
133  
CY7C1471V33-133AXI  
CY7C1473V33-133AXI  
CY7C1471V33-133BZI  
CY7C1473V33-133BZI  
CY7C1475V33-133BGI  
CY7C1471V33-133BZXI  
A101  
Industrial  
BB165C 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
BB165C 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
BB209A 209-ball Ball Grid Array (14 × 22 × 1.76 mm)  
BB165C Lead-Free 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4  
mm)  
CY7C1473V33-133BZXI  
BB165C Lead-Free 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4  
mm)  
CY7C1475V33-133BGXI  
CY7C1471V33-100AXI  
CY7C1473V33-100AXI  
CY7C1471V33-100BZI  
CY7C1473V33-100BZI  
CY7C1475V33-100BGI  
CY7C1471V33-100BZXI  
BB209A Lead-Free 209-ball Ball Grid Array (14 × 22 × 1.76 mm)  
100  
A101  
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
BB165C 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
BB165C 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
BB209A 209-ball Ball Grid Array (14 × 22 × 1.76 mm)  
BB165C Lead-Free 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4  
mm)  
CY7C1473V33-100BZXI  
CY7C1475V33-100BGXI  
BB165C Lead-Free 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4  
mm)  
BB209A Lead-Free 209-ball Ball Grid Array (14 × 22 × 1.76 mm)  
Please contact your local Cypress sales representative for availability of these parts.  
Document #: 38-05288  
Page 26 of 30  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
Package Diagrams  
100-pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
51-85050-*A  
Document #: 38-05288  
Page 27 of 30  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
Package Diagrams (continued)  
165-Ball FBGA (15 x 17 x 1.40 mm) BB165C  
PIN 1 CORNER  
BOTTOM VIEW  
TOP VIEW  
Ø0.05 M C  
PIN 1 CORNER  
Ø0.25 M C A B  
Ø0.45 0.05ꢀ1ꢁ5ꢂX  
1
2
3
4
5
7
8
9
10  
11  
11 10  
9
8
7
5
4
3
2
1
A
B
A
B
C
D
C
D
E
E
F
F
G
G
H
J
H
J
K
K
L
L
M
M
N
P
R
N
P
R
A
1.00  
5.00  
10.00  
B
15.00 0.10  
0.15ꢀ4ꢂX  
SEATING PLANE  
C
51-85165-*A  
Document #: 38-05288  
Page 28 of 30  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
Package Diagrams (continued)  
209-Ball FBGA (14 x 22 x 1.76 mm) BB209A  
51-85167-**  
NoBL and No Bus Latency are trademarks of Cypress Semiconductor Corporation. ZBT is a trademark of Integrated Device  
Technology. All product and company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05288  
Page 29 of 30  
© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
Cypressproductsarenotwarrantednorintendedtobeusedformedical, life-support, life-saving, criticalcontrolorsafetyapplications, unlesspursuanttoanexpresswrittenagreementwithCypress.  
CY7C1471V33  
CY7C1473V33  
CY7C1475V33  
PRELIMINARY  
Document History Page  
Document Title: CY7C1471V33/CY7C1473V33/CY7C1475V33, 72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM  
with NoBL™ Architecture  
Document #: 38-05288  
Orig. of  
REV.  
**  
ECN NO. Issue Date Change  
Description of Change  
114675  
121521  
08/06/02  
02/07/03  
PKS  
CJM  
New Data Sheet  
*A  
Updated features for package offering  
Updated ordering information  
Changed Advanced Information to Preliminary  
*B  
223721  
See ECN  
NJY  
Changed timing diagrams  
Changed logic block diagrams  
Modified Functional Description  
Modified “Functional Overview” section  
Added boundary scan order for all packages  
Included thermal numbers and capacitance values for all packages  
Removed 150-MHz speed grade offering  
Included ISB and IDD values  
Changed package outline for 165FBGA package and 209-ball BGA package  
Removed 119-BGA package offering  
*C  
*D  
*E  
235012  
243572  
299511  
See ECN  
See ECN  
See ECN  
RYQ  
NJY  
SYT  
Minor Change: The data sheets do not match on the spec system and  
external web.  
Changed ball H2 from VDD to NC in the 165-ball FBGA package in page 6  
Modified capacitance values on page 21  
Removed 117-MHz Speed Bin  
Changed ΘJA from 16.8 to 24.63 °C/W and ΘJC from 3.3 to 2.28 °C/W for 100  
TQFP Package on Page # 21  
Added lead-free information for 100-Pin TQFP, 165 FBGA and 209 BGA  
Packages  
Added comment of ‘Lead-free BG packages availability’ below the Ordering  
Information  
*F  
320197  
331513  
See ECN  
See ECN  
PCI  
PCI  
Corrected part number typos in the logic block diagram on page# 2  
*G  
Address expansion pins/balls in the pinouts for all packages are modified as  
per JEDEC standard  
Added Address Expansion pins in the Pin Definitions Table  
Added Industrial Operating Range  
Modified VOL, VOH Test Conditions  
Updated Ordering Information Table  
Document #: 38-05288  
Page 30 of 30  

相关型号:

CY7C1471V33-100BZC

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL Architecture
CYPRESS

CY7C1471V33-100BZXC

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL Architecture
CYPRESS

CY7C1471V33-100BZXI

ZBT SRAM, 2MX36, 8.5ns, CMOS, PBGA165, 15 X 17 MM, 1.40 MM HEIGHT, LEAD FREE, FBGA-165
CYPRESS

CY7C1471V33-117AXC

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1471V33-117AXI

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1471V33-117BZC

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1471V33-117BZI

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1471V33-117BZXC

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1471V33-117BZXI

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1471V33-133AXC

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL Architecture
CYPRESS

CY7C1471V33-133AXI

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1471V33-133BZC

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL Architecture
CYPRESS