CY7C1472V33-250AXC [CYPRESS]

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL Architecture; 72兆位( 2M ×36 / 4M ×18 / 1M X 72 )流水线SRAM与NOBL架构
CY7C1472V33-250AXC
型号: CY7C1472V33-250AXC
厂家: CYPRESS    CYPRESS
描述:

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL Architecture
72兆位( 2M ×36 / 4M ×18 / 1M X 72 )流水线SRAM与NOBL架构

静态存储器
文件: 总28页 (文件大小:379K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
PRELIMINARY  
72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined  
SRAM with NoBL™ Architecture  
Features  
Functional Description  
The CY7C1470V33, CY7C1472V33, and CY7C1474V33 are  
• Pin-compatible and functionally equivalent to ZBT™  
• Supports 250-MHz bus operations with zero wait states  
— Available speed grades are 250, 200, and 167 MHz  
3.3V, 2M x 36/4M x 18/1M x 72 Synchronous pipelined burst  
SRAMs with No Bus Latency™ (NoBL™) logic, respectively.  
They are designed to support unlimited true back-to-back  
Read/Write operations with no wait states. The  
CY7C1470V33, CY7C1472V33, and CY7C1474V33 are  
equipped with the advanced (NoBL) logic required to enable  
consecutive Read/Write operations with data being trans-  
ferred on every clock cycle. This feature dramatically improves  
the throughput of data in systems that require frequent  
Write/Read transitions. The CY7C1470V33, CY7C1472V33,  
and CY7C1474V33 are pin compatible and functionally equiv-  
alent to ZBT devices.  
• Internally self-timed output buffer control to eliminate  
the need to use asynchronous OE  
• Fully registered (inputs and outputs) for pipelined  
operation  
• Byte Write capability  
• Single 3.3V power supply  
• 3.3V/2.5V I/O power supply  
• Fast clock-to-output time  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock. The  
clock input is qualified by the Clock Enable (CEN) signal,  
which when deasserted suspends operation and extends the  
previous clock cycle.  
— 3.0 ns (for 250-MHz device)  
— 3.0 ns (for 200-MHz device)  
— 3.4 ns (for 167-MHz device)  
• Clock Enable (CEN) pin to suspend operation  
• Synchronous self-timed writes  
Write operations are controlled by the Byte Write Selects  
(BWa–BWh for CY7C1474V33, BWa–BWd for CY7C1470V33  
and BWa–BWb for CY7C1472V33) and a Write Enable (WE)  
input. All writes are conducted with on-chip synchronous  
self-timed write circuitry.  
• CY7C1470V33 and CY7C1472V33 available in lead-free  
100 TQFP, and 165-ball fBGA packages. CY7C1474V33  
available in 209-ball fBGA package  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output tri-state control. In order to avoid bus  
contention, the output drivers are synchronously tri-stated  
during the data portion of a write sequence.  
• IEEE 1149.1 JTAG Boundary Scan compatible  
• Burst capability—linear or interleaved burst order  
• “ZZ” Sleep Mode option and Stop Clock option  
Logic Block Diagram-CY7C1470V33 (2M x 36)  
ADDRESS  
REGISTER 0  
A0, A1, A  
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
C
ADV/LD  
C
CLK  
CEN  
WRITE ADDRESS  
REGISTER 1  
WRITE ADDRESS  
REGISTER 2  
O
O
S
U
D
A
T
U
T
P
T
P
E
N
S
U
T
U
T
ADV/LD  
A
E
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
R
E
G
I
MEMORY  
ARRAY  
B
U
F
S
T
E
E
R
I
DQs  
DQP  
DQP  
DQP  
DQP  
WRITE  
DRIVERS  
BW  
BW  
a
a
b
c
d
A
M
P
b
BW  
BW  
c
S
T
E
R
S
F
d
E
R
S
S
WE  
E
E
N
G
INPUT  
REGISTER 1  
INPUT  
REGISTER 0  
E
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
SLEEP  
CONTROL  
ZZ  
Cypress Semiconductor Corporation  
Document #: 38-05289 Rev. *E  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Revised November 23, 2004  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
PRELIMINARY  
Logic Block Diagram-CY7C1474V33 (1M x 72)  
ADDRESS  
REGISTER 0  
A0, A1, A  
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
C
ADV/LD  
C
CLK  
CEN  
WRITE ADDRESS  
REGISTER 1  
WRITE ADDRESS  
REGISTER 2  
O
U
T
P
O
U
T
P
S
E
N
S
D
A
T
U
T
U
T
ADV/LD  
BWa  
BWb  
BWc  
BWd  
BWe  
BWf  
BWg  
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
A
R
E
G
I
S
T
E
R
S
MEMORY  
ARRAY  
E
B
U
F
DQs  
WRITE  
DRIVERS  
S
T
E
E
R
I
A
M
P
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
a
b
c
d
e
f
F
E
R
S
S
N
G
E
E
BWh  
g
h
WE  
INPUT  
REGISTER 1  
INPUT  
REGISTER 0  
E
E
OE  
CE1  
CE2  
CE3  
READ LOGIC  
Sleep  
Control  
ZZ  
Logic Block Diagram-CY7C1472V33 (4M x 18)  
ADDRESS  
REGISTER 0  
A0, A1, A  
A1  
A0  
A1'  
Q1  
D1  
D0  
A0'  
BURST  
LOGIC  
Q0  
MODE  
C
ADV/LD  
C
CLK  
CEN  
WRITE ADDRESS  
REGISTER 1  
WRITE ADDRESS  
REGISTER 2  
O
O
U
T
P
U
T
P
S
E
N
S
D
A
T
U
T
U
T
ADV/LD  
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
A
R
E
G
I
S
T
E
R
S
MEMORY  
ARRAY  
E
B
U
F
DQs  
DQP  
DQP  
WRITE  
DRIVERS  
BW  
BW  
a
S
T
E
E
R
I
A
M
P
a
F
b
b
E
R
S
S
N
G
WE  
E
E
INPUT  
REGISTER 1  
INPUT  
REGISTER 0  
E
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
Sleep  
Control  
ZZ  
Selection Guide  
CY7C1470V33-250 CY7C1470V33-200 CY7C1470V33-167  
CY7C1472V33-250 CY7C1472V33-200 CY7C1472V33-167  
CY7C1474V33-250 CY7C1474V33-200 CY7C1474V33-167  
Unit  
ns  
Maximum Access Time  
3.0  
500  
120  
3.0  
500  
120  
3.4  
450  
120  
Maximum Operating Current  
Maximum CMOS Standby Current  
Shaded areas contain advance information.  
mA  
mA  
Please contact your local Cypress sales representative for availability of these parts.  
Document #: 38-05289 Rev. *E  
Page 2 of 28  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
PRELIMINARY  
Pin Configurations  
100-pin TQFP Packages  
DQPc  
DQc  
DQc  
1
2
3
4
5
6
7
8
NC  
NC  
NC  
DDQ  
1
2
3
4
5
6
7
8
A
NC  
NC  
78  
DQPb  
DQb  
DQb  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
80  
79  
V
V
DDQ  
VDDQ  
VSS  
V
V
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DDQ  
SS  
V
V
SS  
SS  
DQc  
DQc  
NC  
NC  
DQb  
NC  
DQb  
DQb  
DQb  
DQb  
VSS  
VDDQ  
DQb  
DQb  
VSS  
NC  
DQPa  
DQa  
DQa  
DQc  
DQc  
9
DQb  
9
V
V
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
V
V
DDQ  
DDQ  
V
DQa  
DQa  
DDQ  
DQc  
DQc  
NC  
DQb  
DQb  
NC  
V
CY7C1470V33  
(2M × 36)  
SS  
V
V
DD  
DD  
NC  
CY7C1472V33  
(4M × 18)  
NC  
NC  
VDD  
ZZ  
DQa  
DQa  
V
DD  
V
V
SS  
SS  
ZZ  
DQd  
DQb  
DQb  
DQa  
DQa  
DQd  
V
V
DDQ  
DDQ  
VDDQ  
VSS  
DQa  
DQa  
V
DDQ  
V
V
SS  
SS  
V
SS  
DQd  
DQd  
DQd  
DQd  
DQb  
DQb  
DQa DQPb  
DQa  
DQa  
NC  
DQa  
VSS  
VDDQ  
DQa  
DQa  
DQPa  
NC  
NC  
V
SS  
V
V
SS  
SS  
V
V
DDQ  
DQd  
DDQ  
V
DDQ  
NC  
NC  
NC  
NC  
NC  
NC  
DQd  
DQPd  
Document #: 38-05289 Rev. *E  
Page 3 of 28  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
PRELIMINARY  
Pin Configurations (continued)  
165-Ball fBGA Pinout  
CY7C1470V33 (2M × 36)  
1
2
A
3
4
5
6
7
8
9
A
10  
A
11  
NC  
E(288)  
ADV/LD  
A
B
C
D
CE1  
BWc  
BWd  
VSS  
VDD  
BWb  
BWa  
VSS  
VSS  
CE3  
CLK  
VSS  
VSS  
CEN  
WE  
NC  
A
CE2  
VDDQ  
VDDQ  
OE  
VSS  
VDD  
A
A
E(144)  
DQPb  
DQb  
DQPc  
DQc  
NC  
DQc  
VSS  
VSS  
VDDQ  
VDDQ  
NC  
DQb  
DQc  
DQc  
DQc  
NC  
DQc  
DQc  
DQc  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQb  
DQb  
DQb  
NC  
DQb  
DQb  
DQb  
ZZ  
E
F
G
H
J
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
K
L
DQd  
DQPd  
NC  
DQd  
NC  
A
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQa  
NC  
A
DQa  
DQPa  
NC  
M
N
P
TDI  
TDO  
A
MODE  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
CY7C1472V33 (4M × 18)  
1
E(288)  
NC  
2
A
3
4
5
NC  
6
CE3  
7
8
9
A
10  
A
11  
A
A
B
C
D
CE1  
BWb  
NC  
CEN  
ADV/LD  
A
CE2  
VDDQ  
VDDQ  
BWa  
VSS  
VSS  
CLK  
VSS  
VSS  
A
A
E(144)  
DQPa  
DQa  
WE  
VSS  
VSS  
OE  
VSS  
VDD  
NC  
NC  
DQb  
VSS  
VDD  
VDDQ  
VDDQ  
NC  
NC  
NC  
NC  
NC  
DQb  
DQb  
DQb  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQa  
DQa  
DQa  
ZZ  
E
F
NC  
NC  
G
H
J
NC  
NC  
DQb  
DQb  
DQb  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQa  
DQa  
DQa  
NC  
NC  
NC  
K
L
NC  
NC  
DQb  
DQPb  
NC  
NC  
NC  
A
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQa  
NC  
A
NC  
NC  
NC  
M
N
P
TDI  
TDO  
A
MODE  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 38-05289 Rev. *E  
Page 4 of 28  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
PRELIMINARY  
Pin Configurations (continued)  
209-ball PBGA  
CY7C1474V33 (1M X 72)  
1
2
3
4
5
6
7
8
9
10  
11  
DQg  
DQg  
DQg  
DQg  
A
CE2  
A
ADV/LD  
WE  
A
A
CE3  
A
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
A
B
BWSc  
BWSg  
BWSd  
NC  
BWSb  
BWSf  
DQg  
DQg  
DQg  
DQg  
BWSh  
VSS  
NC  
NC  
CE1  
OE  
NC  
NC  
BWSe  
NC  
BWSa  
VSS  
C
D
NC  
DQb  
DQPb  
DQf  
E
F
DQPg  
DQc  
DQPc  
DQc  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VDD  
NC  
VDD  
VSS  
VDD  
DQPf  
DQf  
VSS  
VDDQ  
VSS  
VSS  
VDDQ  
VSS  
G
H
J
DQc  
DQc  
DQc  
NC  
VDDQ  
VSSQ  
VDDQ  
DQf  
DQf  
DQf  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
NC  
A
DQc  
DQc  
NC  
NC  
DQf  
DQf  
NC  
VDDQ  
DQc  
NC  
VDDQ  
CLK  
VDDQ  
NC  
NC  
DQf  
NC  
K
L
CEN  
NC  
NC  
VDDQ  
VSS  
NC  
DQh  
DQh  
DQh  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
DQa  
DQa  
DQa  
M
N
P
R
T
NC  
VSS  
VDDQ  
VSS  
VDDQ  
NC  
DQh  
DQh  
DQh  
VSS  
VDD  
VSS  
DQa  
DQa  
DQa  
VDDQ  
DQh  
DQh  
DQPd  
DQd  
DQd  
NC  
ZZ  
DQa  
DQa  
DQPa  
DQe  
DQe  
VSS  
VDDQ  
VSS  
VDDQ  
VDD  
NC  
A
DQPh  
DQd  
DQd  
DQd  
DQd  
VDDQ  
VDD  
DQPe  
DQe  
DQe  
DQe  
DQe  
VSS  
NC  
A
MODE  
A
U
V
W
A
NC  
NC  
A
A
A1  
A
DQd  
DQd  
A
A
A
A
DQe  
DQe  
TDI  
TDO  
TCK  
A0  
A
TMS  
Document #: 38-05289 Rev. *E  
Page 5 of 28  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
PRELIMINARY  
Pin Definitions  
Pin Name  
I/O Type  
Input-  
Synchronous the CLK.  
Pin Description  
A0  
A1  
A
Address Inputs used to select one of the address locations. Sampled at the rising edge of  
BWa  
BWb  
BWc  
BWd  
BWe  
BWf  
Input-  
Byte Write Select Inputs, active LOW. Qualified with WE to conduct writes to the SRAM.  
Synchronous Sampled on the rising edge of CLK. BWa controls DQa and DQPa, BWb controls DQb and DQPb,  
BWc controls DQc and DQPc, BWd controls DQd and DQPd, BWe controls DQe and DQPe, BWf  
controls DQf and DQPf, BWg controls DQg and DQPg, BWh controls DQh and DQPh.  
BWg  
BWh  
Input-  
Write Enable Input, active LOW. Sampled on the rising edge of CLK if CEN is active LOW. This  
WE  
Synchronous signal must be asserted LOW to initiate a write sequence.  
Input- Advance/Load Input used to advance the on-chip address counter or load a new address.  
ADV/LD  
Synchronous When HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When LOW, a  
new address can be loaded into the device for an access. After being deselected, ADV/LD should  
be driven LOW in order to load a new address.  
CLK  
CE1  
CE2  
CE3  
OE  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. CLK is qualified with CEN.  
CLK is only recognized if CEN is active LOW.  
Input-  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
Synchronous CE2 and CE3 to select/deselect the device.  
Input-  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with  
Synchronous CE1 and CE3 to select/deselect the device.  
Input-  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
Synchronous CE1 and CE2 to select/deselect the device.  
Input-  
Output Enable, active LOW. Combined with the synchronous logic block inside the device to  
Asynchronous control the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs.  
When deasserted HIGH, I/O pins are tri-stated, and act as input data pins. OE is masked during  
the data portion of a write sequence, during the first clock when emerging from a deselected state  
and when the device has been deselected.  
CEN  
DQS  
Input-  
Clock Enable Input, active LOW. When asserted LOW the clock signal is recognized by the  
Synchronous SRAM. When deasserted HIGH the clock signal is masked. Since deasserting CEN does not  
deselect the device, CEN can be used to extend the previous cycle when required.  
I/O-  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is triggered  
Synchronous by the rising edge of CLK. As outputs, they deliver the data contained in the memory location  
specified by A[17:0] during the previous clock rise of the read cycle. The direction of the pins is  
controlled by OE and the internal control logic. When OE is asserted LOW, the pins can behave  
as outputs. When HIGH, DQa–DQd are placed in a tri-state condition. The outputs are automat-  
ically tri-stated during the data portion of a write sequence, during the first clock when emerging  
from a deselected state, and when the device is deselected, regardless of the state of OE.  
DQPX  
I/O-  
Bidirectional Data Parity I/O lines. Functionally, these signals are identical to DQX. During write  
Synchronous sequences, DQPa is controlled by BWa, DQPb is controlled by BWb, DQPc is controlled by BWc,  
and DQPd is controlled by BWd, DQPe is controlled by BWe, DQPf is controlled by BWf, DQPg  
is controlled by BWg, DQPh is controlled by BWh.  
MODE  
TDO  
TDI  
Input Strap Pin Mode Input. Selects the burst order of the device. Tied HIGH selects the interleaved burst order.  
Pulled LOW selects the linear burst order. MODE should not change states during operation.  
When left floating MODE will default HIGH, to an interleaved burst order.  
JTAG Serial  
Output  
Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK.  
Synchronous  
JTAG Serial Input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK.  
Synchronous  
Document #: 38-05289 Rev. *E  
Page 6 of 28  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
PRELIMINARY  
Pin Definitions (continued)  
Pin Name  
I/O Type  
Pin Description  
TMS  
Test Mode Select This pin controls the Test Access Port state machine. Sampled on the rising edge of TCK.  
Synchronous  
TCK  
JTAG Clock  
Clock input to the JTAG circuitry.  
VDD  
Power Supply Power supply inputs to the core of the device.  
I/O Power Supply Power supply for the I/O circuitry.  
VDDQ  
VSS  
Ground  
Ground for the device. Should be connected to ground of the system.  
NC  
No connects. This pin is not connected to the die.  
E(144, 288)  
ZZ  
These pins are not connected. They will be used for expansion to the 144M and 288M densities.  
Input-  
ZZ “sleep” Input. This active HIGH input places the device in a non-time critical “sleep” condition  
Asynchronous with data integrity preserved. During normal operation, this pin can be connected to Vss or left  
floating.  
OE and the internal control logic. OE must be driven LOW in  
Functional Overview  
order for the device to drive out the requested data. During the  
second clock, a subsequent operation (Read/Write/Deselect)  
can be initiated. Deselecting the device is also pipelined.  
Therefore, when the SRAM is deselected at clock rise by one  
of the chip enable signals, its output will tri-state following the  
next clock rise.  
The CY7C1470V33, CY7C1472V33, and CY7C1474V33 are  
synchronous-pipelined Burst NoBL SRAMs designed specifi-  
cally to eliminate wait states during Write/Read transitions. All  
synchronous inputs pass through input registers controlled by  
the rising edge of the clock. The clock signal is qualified with  
the Clock Enable input signal (CEN). If CEN is HIGH, the clock  
signal is not recognized and all internal states are maintained.  
All synchronous operations are qualified with CEN. All data  
outputs pass through output registers controlled by the rising  
edge of the clock. Maximum access delay from the clock rise  
(tCO) is 3.0 ns (225-MHz device).  
Burst Read Accesses  
The CY7C1470V33/CY7C1472V33/CY7C1474V33 have an  
on-chip burst counter that allows the user the ability to supply  
a single address and conduct up to four Reads without  
reasserting the address inputs. ADV/LD must be driven LOW  
in order to load a new address into the SRAM, as described in  
the Single Read Access section above. The sequence of the  
burst counter is determined by the MODE input signal. A LOW  
input on MODE selects a linear burst mode, a HIGH selects an  
interleaved burst sequence. Both burst counters use A0 and  
A1 in the burst sequence, and will wrap-around when incre-  
mented sufficiently. A HIGH input on ADV/LD will increment  
the internal burst counter regardless of the state of chip  
enables inputs or WE. WE is latched at the beginning of a burst  
cycle. Therefore, the type of access (Read or Write) is  
maintained throughout the burst sequence.  
Accesses can be initiated by asserting all three Chip Enables  
(CE1, CE2, CE3) active at the rising edge of the clock. If Clock  
Enable (CEN) is active LOW and ADV/LD is asserted LOW,  
the address presented to the device will be latched. The  
access can either be a Read or Write operation, depending on  
the status of the Write Enable (WE). BW[x] can be used to  
conduct Byte Write operations.  
Write operations are qualified by the Write Enable (WE). All  
Writes are simplified with on-chip synchronous self-timed write  
circuitry.  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) simplify depth expansion.  
All operations (Reads, Writes, and Deselects) are pipelined.  
ADV/LD should be driven LOW once the device has been  
deselected in order to load a new address for the next  
operation.  
Single Write Accesses  
Write accesses are initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, and (3) the Write signal WE  
is asserted LOW. The address presented to the address inputs  
is loaded into the Address Register. The write signals are  
latched into the Control Logic block.  
Single Read Accesses  
A read access is initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, (3) the Write Enable input  
signal WE is deasserted HIGH, and (4) ADV/LD is asserted  
LOW. The address presented to the address inputs is latched  
into the Address Register and presented to the memory core  
and control logic. The control logic determines that a read  
access is in progress and allows the requested data to  
propagate to the input of the output register. At the rising edge  
of the next clock the requested data is allowed to propagate  
through the output register and onto the data bus within 3.0 ns  
(225-MHz device) provided OE is active LOW. After the first  
clock of the Read access the output buffers are controlled by  
On the subsequent clock rise the data lines are automatically  
tri-stated regardless of the state of the OE input signal. This  
allows the external logic to present the data on DQ and DQP  
(DQa,b,c,d,e,f,g,h/DQPa,b,c,d,e,f,g,h  
for  
CY7C1474V33,  
DQa,b,c,d/DQPa,b,c,d for CY7C1470V33 and DQa,b/DQPa,b for  
CY7C1472V33). In addition, the address for the subsequent  
access (Read/Write/Deselect) is latched into the Address  
Register (provided the appropriate control signals are  
asserted).  
On the next clock rise the data presented to DQ and DQP  
(DQa,b,c,d,e,f,g,h/DQPa,b,c,d,e,f,g,h  
for  
CY7C1474V33,  
DQa,b,c,d/DQPa,b,c,d for CY7C1470V33 & DQa,b/DQPa,b for  
CY7C1472V33) (or a subset for byte write operations, see  
Document #: 38-05289 Rev. *E  
Page 7 of 28  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
PRELIMINARY  
Write Cycle Description table for details) inputs is latched into  
the device and the write is complete.  
CY7C1472V33) inputs must be driven in each cycle of the  
burst write in order to write the correct bytes of data.  
The data written during the Write operation is controlled by BW  
Sleep Mode  
(BWa,b,c,d,e,f,g,h  
for  
CY7C1474V33,  
BWa,b,c,d  
for  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the “sleep” mode. CE1, CE2, and CE3, must remain inactive  
for the duration of tZZREC after the ZZ input returns LOW.  
CY7C1470V33 and BWa,b for CY7C1472V33) signals. The  
CY7C1470V33/CY7C1472V33/CY7C1474V33 provides Byte  
Write capability that is described in the Write Cycle Description  
table. Asserting the Write Enable input (WE) with the selected  
Byte Write Select (BW) input will selectively write to only the  
desired bytes. Bytes not selected during a Byte Write  
operation will remain unaltered. A synchronous self-timed  
Write mechanism has been provided to simplify the Write  
operations. Byte Write capability has been included in order to  
greatly simplify Read/Modify/Write sequences, which can be  
reduced to simple Byte Write operations.  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
Because the CY7C1470V33/CY7C1472V33/CY7C1474V33  
are common I/O devices, data should not be driven into the  
device while the outputs are active. The Output Enable (OE)  
can be deasserted HIGH before presenting data to the DQ and  
DQP (DQa,b,c,d,e,f,g,h/DQPa,b,c,d,e,f,g,h for CY7C1474V33,  
DQa,b,c,d/DQPa,b,c,d for CY7C1470V33 and DQa,b/DQPa,b for  
CY7C1472V33) inputs. Doing so will tri-state the output  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
A1,A0  
00  
A1,A0  
01  
A1,A0  
10  
A1,A0  
11  
01  
00  
11  
10  
drivers. As a safety precaution, DQ and DQP (DQa,b,c,d,e,f,g,h  
/
10  
11  
00  
01  
DQPa,b,c,d,e,f,g,h for CY7C1474V33, DQa,b,c,d/ DQPa,b,c,d for  
CY7C1470V33 and DQa,b/DQPa,b for CY7C1472V33) are  
automatically tri-stated during the data portion of a Write cycle,  
regardless of the state of OE.  
11  
10  
01  
00  
Linear Burst Address Table  
(MODE = GND)  
Burst Write Accesses  
The CY7C1470V33/CY7C1472V33/CY7C1474V33 has an  
on-chip burst counter that allows the user the ability to supply  
a single address and conduct up to four Write operations  
without reasserting the address inputs. ADV/LD must be  
driven LOW in order to load the initial address, as described  
in the Single Write Access section above. When ADV/LD is  
driven HIGH on the subsequent clock rise, the Chip Enables  
(CE1, CE2, and CE3) and WE inputs are ignored and the burst  
counter is incremented. The correct BW (BWa,b,c,d,e,f,g,h for  
CY7C1474V33, BWa,b,c,d for CY7C1470V33 and BWa,b for  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
A1,A0  
00  
A1,A0  
01  
A1,A0  
10  
A1,A0  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
Min.  
Max  
Unit  
mA  
ns  
ZZ > VDD 0.2V  
120  
tZZS  
ZZ > VDD 0.2V  
2tCYC  
tZZREC  
tZZI  
ZZ < 0.2V  
2tCYC  
0
ns  
ZZ active to sleep current  
ZZ Inactive to exit sleep current  
This parameter is sampled  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
ns  
Document #: 38-05289 Rev. *E  
Page 8 of 28  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
PRELIMINARY  
Truth Table[1, 2, 3, 4, 5, 6, 7]  
Address  
Used  
Operation  
CE  
H
ZZ  
L
ADV/LD WE BWx  
OE  
CEN CLK  
L-H  
DQ  
Deselect Cycle  
None  
L
X
X
X
X
X
L
L
Tri-State  
Tri-State  
Continue  
None  
X
L
H
X
L-H  
Deselect Cycle  
Read Cycle  
(Begin Burst)  
External  
Next  
L
X
L
L
L
L
L
L
L
L
L
L
H
L
H
L
H
X
H
X
L
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
Data Out (Q)  
Data Out (Q)  
Tri-State  
Tri-State  
Data In (D)  
Data In (D)  
Tri-State  
Tri-State  
-
Read Cycle  
(Continue Burst)  
L
NOP/Dummy Read External  
(Begin Burst)  
H
H
X
X
X
X
X
X
Dummy Read  
(Continue Burst)  
Next  
X
L
H
L
Write Cycle  
(Begin Burst)  
External  
Next  
Write Cycle  
(Continue Burst)  
X
L
H
L
X
L
L
NOP/Write Abort  
(Begin Burst)  
None  
Next  
H
H
X
X
Write Abort  
(Continue Burst)  
X
X
X
H
X
X
X
X
X
Ignore Clock Edge  
(Stall)  
Current  
None  
H
X
L-H  
X
Sleep Mode  
Tri-State  
Notes:  
1. X = “Don't Care”, H = Logic HIGH, L = Logic LOW, CE stands for ALL Chip Enables active. BWx = 0 signifies at least one Byte Write Select is active, BWx = Valid  
signifies that the desired byte write selects are asserted, see Write Cycle Description table for details.  
2. Write is defined by WE and BW  
. See Write Cycle Description table for details.  
[a:d]  
3. When a Write cycle is detected, all I/Os are tri-stated, even during Byte Writes.  
4. The DQ and DQP pins are controlled by the current cycle and the OE signal.  
5. CEN = H inserts wait states.  
6. Device will power-up deselected and the I/Os in a tri-state condition, regardless of OE.  
7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during Write cycles. During a Read cycle DQ and DQP  
= Tri-state when  
s
[a:d]  
OE is inactive or when the device is deselected, and DQ = data when OE is active.  
s
Document #: 38-05289 Rev. *E  
Page 9 of 28  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
PRELIMINARY  
Partial Write Cycle Description[1, 2, 3, 8]  
Function (CY7C1470V33)  
Read  
BWd  
BWc  
X
BWb  
X
H
H
L
BWa  
X
H
L
WE  
H
L
X
H
H
H
H
H
H
H
H
L
Write – No bytes written  
Write Byte a – (DQa and DQPa)  
Write Byte b – (DQb and DQPb)  
Write Bytes b, a  
H
H
H
H
L
L
L
H
L
L
L
Write Byte c – (DQc and DQPc)  
Write Bytes c, a  
L
H
H
L
H
L
L
L
Write Bytes c, b  
L
LL  
L
H
L
Write Bytes c, b, a  
L
L
Write Byte d – (DQd and DQPd)  
Write Bytes d, a  
L
H
H
H
H
L
H
H
L
H
L
L
L
Write Bytes d, b  
L
L
H
L
Write Bytes d, b, a  
L
L
L
Write Bytes d, c  
L
L
H
H
L
H
L
Write Bytes d, c, a  
L
L
L
Write Bytes d, c, b  
L
L
L
H
L
Write All Bytes  
L
L
L
L
Function (CY7C1472V33)  
Read  
WE  
H
L
BWb  
BWa  
x
H
H
L
x
H
L
Write – No Bytes Written  
Write Byte a – (DQa and DQPa)  
Write Byte b – (DQb and DQPb)  
Write Both Bytes  
L
L
H
L
L
L
Function (CY7C1474V33)  
Read  
WE  
BWx  
H
L
L
L
x
Write – No Bytes Written  
H
L
Write Byte X (DQx and DQPx)  
Write All Bytes  
All BW = L  
Note:  
8. Table only lists a partial listing of the Byte Write combinations. Any combination of BW  
active.  
is valid. Appropriate Write will be done based on which Byte Write is  
[a:d]  
Document #: 38-05289 Rev. *E  
Page 10 of 28  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
PRELIMINARY  
Test MODE SELECT (TMS)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this ball unconnected if the TAP is not used. The ball is  
pulled up internally, resulting in a logic HIGH level.  
The CY7C1470V33/CY7C1472V33/CY7C1474V33 incorpo-  
rates a serial boundary scan test access port (TAP). This port  
operates in accordance with IEEE Standard 1149.1-1990 but  
does not have the set of functions required for full 1149.1  
compliance. These functions from the IEEE specification are  
excluded because their inclusion places an added delay in the  
critical speed path of the SRAM. Note that the TAP controller  
functions in a manner that does not conflict with the operation  
of other devices using 1149.1 fully compliant TAPs. The TAP  
operates using JEDEC-standard 3.3V or 2.5V I/O logic levels.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see the TAP  
Controller State Diagram. TDI is internally pulled up and can  
be unconnected if the TAP is unused in an application. TDI is  
connected to the most significant bit (MSB) of any register.  
(See Tap Controller Block Diagram.)  
The CY7C1470V33/CY7C1472V33/CY7C1474V33 contains  
a TAP controller, instruction register, boundary scan register,  
bypass register, and ID register.  
Disabling the JTAG Feature  
Test Data-Out (TDO)  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull-up resistor. TDO should be  
left unconnected. Upon power-up, the device will come up in  
a reset state which will not interfere with the operation of the  
device.  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See Tap Controller State Diagram.)  
TAP Controller Block Diagram  
TAP Controller State Diagram  
0
Bypass Register  
TEST-LOGIC  
1
RESET  
0
2
1
0
0
0
1
1
1
Selection  
Circuitry  
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
Instruction Register  
31 30 29  
Identification Register  
0
S
election  
TDI  
TDO  
Circuitr  
y
0
0
.
.
. 2 1  
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
x
.
.
.
.
. 2 1  
SHIFT-DR  
0
SHIFT-IR  
0
Boundary Scan Register  
1
1
1
1
EXIT1-DR  
EXIT1-IR  
TCK  
TMS  
0
0
TAP CONTROLLER  
PAUSE-DR  
0
PAUSE-IR  
0
1
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
Performing a TAP Reset  
A RESET is performed by forcing TMS HIGH (VDD) for five  
rising edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is  
operating.  
UPDATE-DR  
UPDATE-IR  
1
0
1
0
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
TAP Registers  
Test Access Port (TAP)  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Document #: 38-05289 Rev. *E  
Page 11 of 28  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
PRELIMINARY  
Instruction Register  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO balls as shown in the Tap Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all  
0s. EXTEST is not implemented in this SRAM TAP controller,  
and therefore this device is not compliant to 1149.1. The TAP  
controller does recognize an all-0 instruction.  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test data path.  
Bypass Register  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between  
the two instructions. Unlike the SAMPLE/PRELOAD  
instruction, EXTEST places the SRAM outputs in a High-Z  
state.  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
IDCODE  
Boundary Scan Register  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used  
to capture the contents of the I/O ring.  
The IDCODE instruction is loaded into the instruction register  
upon power-up or whenever the TAP controller is given a test  
logic reset state.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI and the LSB is connected to TDO.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so  
the device TAP controller is not fully 1149.1 compliant.  
When the SAMPLE/PRELOAD instruction is loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and bidirectional balls  
is captured in the boundary scan register.  
TAP Instruction Set  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is  
possible that during the Capture-DR state, an input or output  
will undergo a transition. The TAP may then try to capture a  
signal while in transition (metastable state). This will not harm  
the device, but there is no guarantee as to the value that will  
be captured. Repeatable results may not be possible.  
Overview  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in the  
Instruction Codes table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller’s capture set-up plus  
hold time (tCS plus tCH).  
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the I/O  
buffers. The SRAM does not implement the 1149.1 commands  
EXTEST or INTEST or the PRELOAD portion of  
SAMPLE/PRELOAD; rather, it performs a capture of the I/O  
ring when these instructions are executed.  
The SRAM clock input might not be captured correctly if there  
is no way in a design to stop (or slow) the clock during a  
SAMPLE/PRELOAD instruction. If this is an issue, it is still  
Document #: 38-05289 Rev. *E  
Page 12 of 28  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
PRELIMINARY  
possible to capture all other signals and simply ignore the  
BYPASS  
value of the CLK captured in the boundary scan register.  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO balls. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO balls.  
Note that since the PRELOAD part of the command is not  
implemented, putting the TAP to the Update-DR state while  
performing a SAMPLE/PRELOAD instruction will have the  
same effect as the Pause-DR command.  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics Over the Operating Range[9, 10]  
Parameter  
Clock  
tTCYC  
tTF  
Description  
Min.  
Max  
Unit  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
50  
ns  
MHz  
ns  
20  
5
tTH  
25  
25  
tTL  
ns  
Output Times  
tTDOV TCK Clock LOW to TDO Valid  
tTDOX TCK Clock LOW to TDO Invalid  
Set-up Times  
tTMSS TMS Set-up to TCK Clock Rise  
tTDIS  
ns  
ns  
0
5
5
5
ns  
ns  
ns  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
tCS  
Hold Times  
tTMSH  
tTDIH  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tCH  
Capture Hold after Clock Rise  
Notes:  
t
9.  
and t refer to the set-up and hold time requirements of latching data from the boundary scan register.  
CH  
CS  
10. Test conditions are specified using the load in TAP AC Test Conditions. t /t = 1 ns.  
R
F
Document #: 38-05289 Rev. *E  
Page 13 of 28  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
PRELIMINARY  
3.3V TAP AC Test Conditions  
2.5V TAP AC Test Conditions  
Input pulse levels ................................................ VSS to 3.3V  
Input rise and fall times................................................... 1 ns  
Input timing reference levels...........................................1.5V  
Output reference levels...................................................1.5V  
Test load termination supply voltage...............................1.5V  
Input pulse levels.................................................VSS to 2.5V  
Input rise and fall time .....................................................1 ns  
Input timing reference levels......................................... 1.25V  
Output reference levels ................................................ 1.25V  
Test load termination supply voltage ............................ 1.25V  
3.3V TAP AC Output Load Equivalent  
2.5V TAP AC Output Load Equivalent  
1.5V  
1.25V  
50  
50  
TDO  
TDO  
ZO= 50Ω  
ZO= 50Ω  
20pF  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; VDD = 3.135V to 3.6V unless otherwise noted)[11]  
Parameter  
VOH1  
Description  
Output HIGH Voltage IOH = –4.0 mA,VDDQ = 3.3V  
OH = –1.0 mA,VDDQ = 2.5V  
Test Conditions  
Min.  
2.4  
2.0  
2.9  
2.1  
Max.  
Unit  
V
I
V
VOH2  
VOL1  
VOL2  
VIH  
Output HIGH Voltage IOH = –100 µA  
VDDQ = 3.3V  
DDQ = 2.5V  
V
V
V
Output LOW Voltage IOL = 8.0 mA  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
0.4  
0.4  
V
IOL = 1.0 mA  
V
Output LOW Voltage IOL = 100 µA  
0.2  
V
0.2  
V
Input HIGH Voltage  
2.0  
1.7  
VDD + 0.3  
VDD + 0.3  
0.8  
V
V
DDQ = 2.5V  
VDDQ = 3.3V  
DDQ = 2.5V  
V
VIL  
Input LOW Voltage  
–0.3  
–0.3  
–5  
V
V
0.7  
V
IX  
Input Load Current  
GND < VIN < VDDQ  
5
µA  
Note:  
11. All voltages referenced to V (GND.  
SS  
Document #: 38-05289 Rev. *E  
Page 14 of 28  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
PRELIMINARY  
Identification Register Definitions  
CY7C1470V33  
CY7C1472V33  
(4M x 18)  
CY7C1474V33  
Instruction Field  
Revision Number (31:29)  
Device Depth (28:24)[12]  
(2M x 36)  
(1M x 72)  
Description  
000  
000  
000  
Describes the version number  
Reserved for internal use  
01011  
01011  
001000  
01011  
Architecture/Memory  
Type(23:18)  
001000  
001000  
Defines memory type and archi-  
tecture  
Bus Width/Density(17:12)  
100100  
010100  
110100  
Defines width and density  
Cypress JEDEC ID Code  
(11:1)  
00000110100  
00000110100  
00000110100  
Allows unique identification of  
SRAM vendor  
ID Register Presence  
Indicator (0)  
1
1
1
Indicates the presence of an ID  
register  
Scan Register Sizes  
Register Name  
Bit Size (x36)  
Bit Size (x18)  
Bit Size (x72)  
Instruction  
3
1
3
1
3
1
Bypass  
ID  
32  
71  
-
32  
52  
-
32  
-
Boundary Scan Order-165FBGA  
Boundary Scan Order- 209BGA  
110  
Identification Codes  
Instruction  
EXTEST  
Code  
Description  
000  
001  
010  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state. This instruction is not 1149.1 compliant.  
IDCODE  
Loads the ID register with the vendor ID code and places the register between TDI  
and TDO. This operation does not affect SRAM operations.  
SAMPLE Z  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation. This instruction does not implement 1149.1 preload  
function and is therefore not 1149.1 compliant.  
RESERVED  
101  
Do Not Use: This instruction is reserved for future use.  
Note:  
12. Bit #24 is “1” in the ID Register Definitions for both 2.5V and 3.3V versions of this device.  
Document #: 38-05289 Rev. *E  
Page 15 of 28  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
PRELIMINARY  
Boundary Scan Exit Order (x36) (continued)  
Boundary Scan Exit Order (x36)  
Bit #  
165-Ball ID  
J10  
H11  
G11  
F11  
E11  
D10  
D11  
C11  
G10  
F10  
E10  
A10  
B10  
A9  
Bit #  
1
165-Ball ID  
C1  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
2
D1  
3
E1  
4
D2  
5
E2  
6
F1  
7
G1  
F2  
8
9
G2  
J1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
K1  
L1  
J2  
M1  
N1  
B9  
A8  
K2  
B8  
L2  
A7  
M2  
R1  
B7  
B6  
R2  
A6  
R3  
B5  
P2  
A5  
R4  
A4  
P6  
B4  
R6  
B3  
N6  
A3  
P11  
R8  
A2  
B2  
P3  
P4  
Boundary Scan Exit Order (x72)  
P8  
Bit #  
1
209-Ball ID  
P9  
A1  
A2  
B1  
B2  
C1  
C2  
D1  
D2  
E1  
E2  
F1  
F2  
P10  
R9  
2
3
R10  
R11  
N11  
M11  
L11  
M10  
L10  
K11  
J11  
K10  
4
5
6
7
8
9
10  
11  
12  
Document #: 38-05289 Rev. *E  
Page 16 of 28  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
PRELIMINARY  
Boundary Scan Exit Order (x72) (continued)  
Boundary Scan Exit Order (x72) (continued)  
Bit #  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
209-Ball ID  
G1  
G2  
H1  
H2  
J1  
Bit #  
209-Ball ID  
V10  
U11  
U10  
T11  
T10  
R11  
R10  
P11  
P10  
N11  
N10  
M11  
M10  
L11  
L10  
P6  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
J2  
L1  
L2  
M1  
M2  
N1  
N2  
P1  
P2  
R2  
R1  
T1  
J11  
T2  
J10  
H11  
H10  
G11  
G10  
F11  
F10  
E10  
E11  
D11  
D10  
C11  
C10  
B11  
B10  
A11  
A10  
A9  
U1  
U2  
V1  
V2  
W1  
W2  
T6  
V3  
V4  
U4  
W5  
V6  
W6  
U3  
U9  
V5  
U5  
U6  
W7  
V7  
U8  
A7  
A5  
U7  
V8  
A6  
D6  
V9  
B6  
W11  
W10  
V11  
D7  
K3  
A8  
Document #: 38-05289 Rev. *E  
Page 17 of 28  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
PRELIMINARY  
Boundary Scan Exit Order (x72) (continued)  
Boundary Scan Exit Order (x18) (continued)  
Bit #  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
209-Ball ID  
30  
K10  
J10  
H11  
G11  
F11  
E11  
D11  
C11  
A11  
A10  
B10  
A9  
B4  
B3  
C3  
C4  
C8  
C9  
B9  
B8  
A4  
C6  
B7  
A3  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
112  
B9  
A8  
Boundary Scan Exit Order (x18)  
B8  
Bit #  
1
165-Ball ID  
D2  
A7  
B7  
2
E2  
B6  
3
F2  
A6  
4
G2  
B5  
5
J1  
A4  
6
K1  
B3  
7
L1  
A3  
8
M1  
N1  
A2  
9
B2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
R1  
R2  
R3  
P2  
R4  
P6  
R6  
N6  
P11  
R8  
P3  
P4  
P8  
P9  
P10  
R9  
R10  
R11  
M10  
L10  
Document #: 38-05289 Rev. *E  
Page 18 of 28  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
PRELIMINARY  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage.......................................... > 2001V  
(per MIL-STD-883, Method 3015)  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-up Current.................................................... > 200 mA  
Storage Temperature .................................65°C to +150°C  
Operating Range  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Ambient  
Temperature  
Supply Voltage on VDD Relative to GND........ –0.5V to +4.6V  
DC to Outputs in Tri-State................... –0.5V to VDDQ + 0.5V  
DC Input Voltage....................................–0.5V to VDD + 0.5V  
Range  
VDD  
VDDQ  
Commercial 0°C to +70°C  
Industrial -40°C to +85°C  
3.3V –  
5%/+10%  
2.5V – 5%  
to VDD  
Electrical Characteristics Over the Operating Range[13, 14]  
Parameter  
VDD  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min.  
3.135  
3.135  
2.375  
2.4  
Max.  
Unit  
V
3.6  
VDD  
VDDQ  
VOH  
VOL  
VIH  
VIL  
VDDQ = 3.3V  
VDDQ = 2.5V  
V
2.625  
V
Output HIGH Voltage  
Output LOW Voltage  
VDD = Min., IOH = 4.0 mA, VDDQ = 3.3V  
VDD = Min., IOH= 1.0 mA, VDDQ = 2.5V  
VDD = Min., IOL= 8.0 mA, VDDQ = 3.3V  
VDD = Min., IOL= 1.0 mA, VDDQ = 2.5V  
V
2.0  
V
0.4  
0.4  
V
V
Input HIGH Voltage[13] VDDQ = 3.3V  
2.0  
1.7  
VDD + 0.3V  
V
VDDQ = 2.5V  
VDD + 0.3V  
V
Input LOW Voltage[13] VDDQ = 3.3V  
VDDQ = 2.5V  
–0.3  
–0.3  
–5  
0.8  
0.7  
5
V
V
IX  
Input Load Current ex- GND VI VDDQ  
cept ZZ and MODE  
µA  
Input Current of MODE Input = VSS  
Input = VDD  
–5  
–30  
–5  
µA  
µA  
30  
Input Current of ZZ  
Input = VSS  
Input = VDD  
µA  
5
µA  
IOZ  
IDD  
Output Leakage Current GND VI VDDQ, Output Disabled  
5
µA  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
f = fMAX = 1/tCYC  
4.0-ns cycle, 250 MHz  
500  
500  
450  
245  
245  
245  
120  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
ISB1  
Automatic CE  
Power-down  
Current—TTL Inputs  
Max. VDD, Device Deselected, 4.0-ns cycle, 250 MHz  
VIN VIH or VIN VIL, f = fMAX =  
1/tCYC  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
ISB2  
Automatic CE  
Power-down  
Current—CMOS Inputs f = 0  
Max. VDD, Device Deselected, All speed grades  
VIN 0.3V or VIN > VDDQ 0.3V,  
ISB3  
Automatic CE  
Power-down  
Current—CMOS Inputs f = fMAX = 1/tCYC  
Max. VDD, Device Deselected, 4.0-ns cycle, 250 MHz  
245  
245  
245  
135  
mA  
mA  
mA  
mA  
VIN 0.3V or VIN > VDDQ 0.3V,  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
ISB4  
Automatic CE  
Max. VDD, Device Deselected, All speed grades  
Power-down  
Current—TTL Inputs  
VIN VIH or VIN VIL, f = 0  
Shaded areas contain advance information.  
Notes:  
13. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC)> –2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
.
14. T  
: Assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V  
< V  
Power-up  
DD  
IH  
DD  
DDQ DD  
Document #: 38-05289 Rev. *E  
Page 19 of 28  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
PRELIMINARY  
Capacitance[15]  
TQFP  
Max.  
209-BGA 165-fBGA  
Parameter  
Description  
Test Conditions  
Max.  
Max.  
Unit  
pF  
CADDRESS  
CDATA  
CCTRL  
CCLK  
Address Input Capacitance  
Data Input Capacitance  
Control Input Capacitance  
Clock Input Capacitance  
Input/Output Capacitance  
TA = 25°C, f = 1 MHz,  
DD = 3.3V  
DDQ = 2.5V  
6
5
8
6
5
6
5
8
6
5
6
5
8
6
5
V
V
pF  
pF  
pF  
CI/O  
pF  
Thermal Resistance[15]  
165 fBGA  
Package  
209 BGA  
TQFP  
Parameters  
Description  
Test Conditions  
Package Package Unit  
ΘJA  
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow standard  
test methods and procedures for  
measuring thermal impedance,  
per EIA / JESD51.  
16.3  
15.2  
1.7  
24.63  
2.28  
°C/W  
ΘJC  
Thermal Resistance  
(Junction to Case)  
2.1  
°C/W  
AC Test Loads and Waveforms  
3.3V I/O Test Load  
R = 317Ω  
3.3V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
90%  
10%  
Z = 50Ω  
0
10%  
L
GND  
5 pF  
R = 351Ω  
1 ns  
1 ns  
V = 1.5V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
90%  
10%  
Z = 50Ω  
0
10%  
L
GND  
5 pF  
R = 1538Ω  
1 ns  
1 ns  
V = 1.25V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Note:  
15. Tested initially and after any design or process changes that may affect these parameters.  
Document #: 38-05289 Rev. *E  
Page 20 of 28  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
PRELIMINARY  
[16, 17]  
Switching Characteristics Over the Operating Range  
-250  
-200  
Max.  
-167  
Parameter  
Description  
Min.  
Max.  
Min.  
Min.  
Max. Unit  
[18]  
tPower  
VCC (typical) to the First Access Read or Write  
1
1
1
ms  
Clock  
tCYC  
Clock Cycle Time  
Maximum Operating Frequency  
Clock HIGH  
4.0  
5.0  
6.0  
ns  
FMAX  
tCH  
250  
200  
167  
MHz  
ns  
2.0  
2.0  
2.0  
2.0  
2.2  
2.2  
tCL  
Clock LOW  
ns  
Output Times  
tCO  
Data Output Valid After CLK Rise  
OE LOW to Output Valid  
3.0  
3.0  
3.0  
3.0  
3.4  
3.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tOEV  
tDOH  
Data Output Hold After CLK Rise  
Clock to High-Z[19, 20, 21]  
Clock to Low-Z[19, 20, 21]  
OE HIGH to Output High-Z[19, 20, 21]  
OE LOW to Output Low-Z[19, 20, 21]  
1.3  
1.3  
0
1.3  
1.3  
0
1.5  
1.5  
0
tCHZ  
3.0  
3.0  
3.0  
3.0  
3.4  
3.4  
tCLZ  
tEOHZ  
tEOLZ  
Set-up Times  
tAS  
Address Set-up Before CLK Rise  
Data Input Set-up Before CLK Rise  
CEN Set-up Before CLK Rise  
WE, BWx Set-up Before CLK Rise  
ADV/LD Set-up Before CLK Rise  
Chip Select Set-up  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tDS  
tCENS  
tWES  
tALS  
tCES  
Hold Times  
tAH  
Address Hold After CLK Rise  
Data Input Hold After CLK Rise  
CEN Hold After CLK Rise  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tDH  
tCENH  
tWEH  
WE, BWx Hold After CLK Rise  
ADV/LD Hold after CLK Rise  
Chip Select Hold After CLK Rise  
tALH  
tCEH  
Shaded areas contain advance information.  
Notes:  
16. Timing reference is 1.5V when V  
3.3V and is 1.25V when V  
2.5V.  
DDQ=  
DDQ=  
17. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
18. This part has a voltage regulator internally; t  
is the time power needs to be supplied above V minimum initially, before a Read or Write operation can be  
power  
DD  
initiated.  
19. t  
, t  
, t  
, and t  
are specified with AC test conditions shown in (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
EOHZ  
CHZ CLZ EOLZ  
20. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
EOHZ  
EOLZ  
CHZ  
CLZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions.  
21. This parameter is sampled and not 100% tested.  
Document #: 38-05289 Rev. *E  
Page 21 of 28  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
PRELIMINARY  
Switching Waveforms  
Read/Write/Timing[22, 23, 24]  
1
2
3
4
5
6
7
8
9
10  
t
CYC  
t
CLK  
t
t
t
CENS CENH  
CL  
CH  
CEN  
t
t
CES  
CEH  
CE  
ADV/LD  
WE  
BW  
x
A1  
A2  
A4  
CO  
A3  
A5  
A6  
A7  
ADDRESS  
t
t
t
t
DS  
DH  
t
t
t
DOH  
OEV  
CLZ  
CHZ  
t
t
AS  
AH  
Data  
D(A1)  
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6)  
In-Out (DQ)  
t
OEHZ  
t
DOH  
t
OELZ  
OE  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
D(A2+1)  
Q(A4+1)  
DON’T CARE  
UNDEFINED  
Notes:  
22. For this waveform ZZ is tied LOW.  
23. When CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH, CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
24. Order of the Burst sequence is determined by the status of the MODE (0 = Linear, 1= Interleaved). Burst operations are optional.  
Document #: 38-05289 Rev. *E  
Page 22 of 28  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
PRELIMINARY  
Switching Waveforms (continued)  
NOP, STALL and DESELECT Cycles[22, 23, 25]  
1
2
3
4
5
6
7
8
9
10  
CLK  
CEN  
CE  
ADV/LD  
WE  
BWx  
A1  
A2  
A3  
A4  
A5  
ADDRESS  
t
CHZ  
D(A4)  
D(A1)  
Q(A2)  
Q(A3)  
Q(A5)  
Data  
In-Out (DQ)  
WRITE  
D(A1)  
READ  
Q(A2)  
STALL  
READ  
Q(A3)  
WRITE  
D(A4)  
STALL  
NOP  
READ  
Q(A5)  
DESELECT  
CONTINUE  
DESELECT  
DON’T CARE  
UNDEFINED  
ZZ Mode Timing[26, 27]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes:  
25. The IGNORE CLOCK EDGE or STALL cycle (Clock 3) illustrated CEN being used to create a pause. A Write is not performed during this cycle  
26. Device must be deselected when entering ZZ mode. See cycle description table for all possible signal conditions to deselect the device.  
27. I/Os are in High-Z when exiting ZZ sleep mode.  
Document #: 38-05289 Rev. *E  
Page 23 of 28  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
PRELIMINARY  
Ordering Information  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
Package Type  
250  
CY7C1470V33-250AXC  
CY7C1472V33-250AXC  
CY7C1470V33-250BZC  
CY7C1472V33-250BZC  
CY7C1474V33-250BGC  
CY7C1470V33-250BZXC  
CY7C1472V33-250BZXC  
CY7C1474V33-250BGXC  
CY7C1470V33-200AXC  
CY7C1472V33-200AXC  
CY7C1470V33-200BZC  
CY7C1472V33-200BZC  
CY7C1474V33-200BGC  
CY7C1470V33-200BZXC  
CY7C1472V33-200BZXC  
CY7C1474V33-200BGXC  
CY7C1470V33-167AXC  
CY7C1472V33-167AXC  
CY7C1470V33-167BZC  
CY7C1472V33-167BZC  
CY7C1474V33-167BGC  
CY7C1470V33-167BZXC  
CY7C1472V33-167BZXC  
CY7C1474V33-167BGXC  
CY7C1470V33-167AXI  
CY7C1472V33-167AXI  
CY7C1470V33-167BZI  
CY7C1472V33-167BZI  
CY7C1474V33-167BGI  
CY7C1470V33-167BZXI  
CY7C1472V33-167BZXI  
CY7C1474V33-167BGXI  
A101  
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x  
1.4 mm)  
Commercial  
BB165C 165-ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
BB209A 209-ball Ball Grid Array (14 × 22 × 1.76 mm)  
BB165C Lead-Free 165-ball Fine Pitch Ball Grid Array  
(15 x 17 x 1.4 mm)  
BB209A Lead-Free 209-ball Ball Grid Array (14 × 22 × 1.76 mm)  
200  
167  
167  
A101  
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x  
1.4 mm)  
BB165C 165-ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
BB209A 209-ball Ball Grid Array (14 × 22 × 1.76 mm)  
BB165C Lead-Free 165-ball Fine Pitch Ball Grid Array  
(15 x 17 x 1.4 mm)  
BB209A Lead-Free 209-ball Ball Grid Array (14 × 22 × 1.76 mm)  
A101  
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x  
1.4 mm)  
BB165C 165-ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
BB209A 209-ball Ball Grid Array (14 × 22 × 1.76 mm)  
BB165C Lead-Free 165-ball Fine Pitch Ball Grid Array  
(15 x 17 x 1.4 mm)  
BB209A Lead-Free 209-ball Ball Grid Array (14 × 22 × 1.76 mm)  
A101  
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x  
1.4 mm)  
Industrial  
BB165C 165-ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
BB209A 209-ball Ball Grid Array (14 × 22 × 1.76 mm)  
BB165C Lead-Free 165-ball Fine Pitch Ball Grid Array  
(15 x 17 x 1.4 mm)  
BB209A Lead-Free 209-ball Ball Grid Array (14 × 22 × 1.76 mm)  
Shaded area contains advance information  
Please contact your local Cypress sales representative for availability of these parts.  
Lead-free BG packages (Ordering Code: BGX) will be available in 2005.  
Document #: 38-05289 Rev. *E  
Page 24 of 28  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
PRELIMINARY  
Package Diagrams  
100-pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
51-85050-*A  
Document #: 38-05289 Rev. *E  
Page 25 of 28  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
PRELIMINARY  
Package Diagrams (continued)  
209-Ball FBGA (14 x 22 x 1.76 mm) BB209A  
51-85167-**  
Document #: 38-05289 Rev. *E  
Page 26 of 28  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
PRELIMINARY  
Package Diagrams (continued)  
165-Ball FBGA (15 x 17 x 1.40 mm) BB165C  
PIN 1 CORNER  
BOTTOM VIEW  
TOP VIEW  
Ø0.05 M C  
PIN 1 CORNER  
Ø0.25 M C A B  
Ø0.45 0.05ꢀ1ꢁ5ꢂX  
1
2
3
4
5
7
8
9
10  
11  
11 10  
9
8
7
5
4
3
2
1
A
B
A
B
C
D
C
D
E
E
F
F
G
G
H
J
H
J
K
K
L
L
M
M
N
P
R
N
P
R
A
1.00  
5.00  
10.00  
B
15.00 0.10  
0.15ꢀ4ꢂX  
SEATING PLANE  
C
51-85165-*A  
ZBT is a trademark of Integrated Device Technology. No Bus Latency and NoBL are trademarks of Cypress Semiconductor  
Corporation. All products and company names mentioned in this document may be the trademarks of their respective holders.  
Document #: 38-05289 Rev. *E  
Page 27 of 28  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
Cypressproductsarenotwarrantednorintendedtobeusedformedical, life-support, life-saving, criticalcontrolorsafetyapplications, unlesspursuanttoanexpresswrittenagreementwithCypress.  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
PRELIMINARY  
Document History Page  
Document Title: CY7C1470V33/CY7C1472V33/CY7C1474V33 72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with  
NoBL™ Architecture  
Document Number: 38-05289  
Orig. of  
REV.  
**  
ECN No. Issue Date Change  
Description of Change  
114676  
121520  
08/06/02  
01/27/03  
PKS  
CJM  
New Data Sheet  
*A  
Updated features for package offering  
Removed 300-MHz offering  
Changed tCO, tEOV, tCHZ, tEOHZ from 2.4 ns to 2.6 ns (250 MHz),  
tDOH, tCLZ from 0.8 ns to 1.0 ns (250 MHz), tDOH, tCLZ from 1.0 ns  
to 1.3 ns (200 MHz)  
Updated ordering information  
Changed Advanced Information to Preliminary  
*B  
223721  
See ECN  
NJY  
Changed timing diagrams  
Changed logic block diagrams  
Modified Functional Description  
Modified “Functional Overview” section  
Added boundary scan order for all packages  
Included thermal numbers and capacitance values for all packages  
Included IDD and ISB values  
Removed 250-MHz offering and included 225-MHz speed bin  
Changed package outline for 165FBGA package and 209-ball BGA package  
Removed 119-BGA package offering  
*C  
*D  
235012  
243572  
See ECN  
See ECN  
RYQ  
NJY  
Minor Change: The data sheets do not match on the spec system and  
external web.  
Changed ball C11,D11,E11,F11,G11 from DQPb,DQb,DQb,DQb,DQb to  
DQPa,DQa,DQa,DQa,DQa in page 4  
Modified capacitance values in page 20  
*E  
299511  
See ECN  
SYT  
Removed 225-MHz offering and included 250-MHz speed bin  
Changed tCYC from 4.4 ns to 4.0 ns for 250-MHz Speed Bin  
Changed ΘJA from 16.8 to 24.63 °C/W and ΘJC from 3.3 to 2.28 °C/W for  
100 TQFP Package on Page # 20  
Added lead-free information for 100-Pin TQFP and 165 FBGA Packages  
Added comment of ‘Lead-free BG packages availability’ below the Ordering  
Information  
VBL  
Add Industrial part numbers in Ordering Info section.  
Document #: 38-05289 Rev. *E  
Page 28 of 28  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY