CY7C1473BV25-100BZI [CYPRESS]

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL⑩ Architecture; 72兆位( 2M ×36 / 4M ×18 / 1M X 72 )流通型SRAM与NoBL⑩架构
CY7C1473BV25-100BZI
型号: CY7C1473BV25-100BZI
厂家: CYPRESS    CYPRESS
描述:

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL⑩ Architecture
72兆位( 2M ×36 / 4M ×18 / 1M X 72 )流通型SRAM与NoBL⑩架构

静态存储器
文件: 总30页 (文件大小:848K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
72-Mbit (2M x 36/4M x 18/1M x 72)  
Flow-Through SRAM with NoBL™ Architecture  
Features  
Functional Description  
No Bus Latency™ (NoBL™) architecture eliminates dead  
cycles between write and read cycles  
The CY7C1471BV25, CY7C1473BV25, and CY7C1475BV25  
are 2.5V, 2M x 36/4M x 18/1M x 72 synchronous flow through  
burst SRAMs designed specifically to support unlimited true  
back-to-back read or write operations without the insertion of  
wait states. The CY7C1471BV25, CY7C1473BV25, and  
CY7C1475BV25 are equipped with the advanced No Bus  
Latency (NoBL) logic required to enable consecutive read or  
write operations with data transferred on every clock cycle. This  
feature dramatically improves the throughput of data through the  
SRAM, especially in systems that require frequent write-read  
transitions.  
Supports up to 133 MHz bus operations with zero wait states  
Data transfers on every clock  
Pin compatible and functionally equivalent to ZBT™ devices  
Internally self timed output buffer control to eliminate the need  
to use OE  
Registered inputs for flow through operation  
Byte Write capability  
All synchronous inputs pass through input registers controlled by  
the rising edge of the clock. The clock input is qualified by the  
Clock Enable (CEN) signal, which when deasserted suspends  
operation and extends the previous clock cycle. Maximum  
access delay from the clock rise is 6.5 ns (133-MHz device).  
2.5V IO supply (VDDQ  
)
Fast clock-to-output times  
6.5 ns (for 133-MHz device)  
Write operations are controlled by two or four Byte Write Select  
(BWX) and a Write Enable (WE) input. All writes are conducted  
with on-chip synchronous self timed write circuitry.  
Clock Enable (CEN) pin to enable clock and suspend operation  
Synchronous self timed writes  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide easy bank selection  
and output tri-state control. To avoid bus contention, the output  
drivers are synchronously tri-stated during the data portion of a  
write sequence.  
Asynchronous Output Enable (OE)  
CY7C1471BV25, CY7C1473BV25 available in  
JEDEC-standard Pb-free 100-pin TQFP, Pb-free and  
non-Pb-free 165-ball FBGA package. CY7C1475BV25  
available in Pb-free and non-Pb-free 209-ball FBGA package.  
For best practice recommendations, refer to the Cypress appli-  
cation note AN1064, SRAM System Guidelines.  
Three Chip Enables (CE1, CE2, CE3) for simple depth  
expansion.  
Automatic power down feature available using ZZ mode or CE  
deselect.  
IEEE 1149.1 JTAG Boundary Scan compatible  
Burst Capability - linear or interleaved burst order  
Low standby power  
Selection Guide  
Description  
Maximum Access Time  
133 MHz  
6.5  
100 MHz  
8.5  
Unit  
ns  
Maximum Operating Current  
305  
275  
mA  
mA  
Maximum CMOS Standby Current  
120  
120  
Cypress Semiconductor Corporation  
Document #: 001-15013 Rev. *E  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised February 29, 2008  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
Logic Block Diagram – CY7C1471BV25 (2M x 36)  
ADDRESS  
REGISTER  
A0, A1, A  
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
MODE  
C
BURST  
LOGIC  
CE  
ADV/LD  
CLK  
CEN  
C
WRITE ADDRESS  
REGISTER  
O
U
T
P
U
T
D
A
T
S
E
N
S
E
ADV/LD  
A
B
U
F
F
E
R
S
MEMORY  
ARRAY  
BW  
BW  
BW  
BW  
A
WRITE  
DRIVERS  
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
S
T
E
E
R
I
DQs  
DQP  
DQP  
DQP  
DQP  
B
A
B
A
M
P
C
D
C
D
S
WE  
E
N
G
INPUT  
REGISTER  
E
OE  
CE1  
CE2  
CE3  
READ LOGIC  
SLEEP  
CONTROL  
ZZ  
Logic Block Diagram – CY7C1473BV25 (4M x 18)  
ADDRESS  
REGISTER  
A0, A1,  
A
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
MODE  
BURST  
LOGIC  
CE  
ADV/LD  
CLK  
EN  
C
C
C
WRITE ADDRESS  
REGISTER  
O
U
T
P
U
T
D
A
T
A
S
E
N
S
E
ADV/LD  
B
U
F
MEMORY  
ARRAY  
BWA  
BWB  
WRITE  
DRIVERS  
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
S
T
E
E
R
I
DQs  
DQP  
A
A
M
P
F
DQPB  
E
R
S
S
WE  
E
N
G
INPUT  
REGISTER  
E
OE  
CE1  
CE2  
CE3  
READ LOGIC  
SLEEP  
CONTROL  
ZZ  
Document #: 001-15013 Rev. *E  
Page 2 of 30  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
Logic Block Diagram – CY7C1475BV25 (1M x 72)  
ADDRESS  
REGISTER  
A0, A1,  
A
0
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
C
ADV/LD  
CLK  
CEN  
C
WRITE ADDRESS  
REGISTER 2  
WRITE ADDRESS  
REGISTER  
1
O
U
T
O
U
T
P
U
T
S
E
N
S
E
P
U
T
D
A
T
A
ADV/LD  
BW  
BW  
BW  
BW  
BW  
BW  
BW  
a
R
E
G
I
MEMORY  
ARRAY  
B
U
F
DQ s  
WRITE  
DRIVERS  
b
c
S
T
E
E
R
I
A
M
P
DQ Pa  
DQ Pb  
DQ Pc  
DQ Pd  
DQ Pe  
DQ Pf  
DQ Pg  
DQ Ph  
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
F
S
T
E
R
S
d
e
E
R
S
S
f
N
G
g
E
E
BW  
h
WE  
INPUT  
REGISTER 1  
INPUT  
REGISTER 0  
E
E
OE  
CE1  
CE2  
CE3  
READ LOGIC  
Sleep Control  
ZZ  
Document #: 001-15013 Rev. *E  
Page 3 of 30  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
Pin Configurations  
Figure 1. 100- Pin TQFP Pinout  
DQPC  
DQC  
DQC  
VDDQ  
VSS  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
1
DQPB  
DQB  
DQB  
VDDQ  
VSS  
2
3
4
5
DQC  
6
DQB  
DQB  
DQB  
DQB  
VSS  
BYTE C  
BYTE B  
DQC  
DQC  
DQC  
VSS  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDDQ  
DQC  
DQC  
NC  
VDDQ  
DQB  
DQB  
VSS  
CY7C1471BV25  
VDD  
NC  
NC  
VDD  
ZZ  
VSS  
DQD  
DQD  
VDDQ  
VSS  
DQA  
DQA  
VDDQ  
VSS  
DQD  
DQA  
DQA  
DQA  
DQA  
VSS  
DQD  
BYTE D  
BYTE A  
DQD  
DQD  
VSS  
VDDQ  
DQD  
DQD  
DQPD  
VDDQ  
DQA  
DQA  
DQPA  
Document #: 001-15013 Rev. *E  
Page 4 of 30  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
Pin Configurations (continued)  
Figure 2. 100-Pin TQFP Pinout  
NC  
1
NC  
2
NC  
3
VDDQ  
4
VSS  
5
NC  
6
NC  
7
DQB  
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
A
NC  
NC  
VDDQ  
VSS  
NC  
DQPA  
DQA  
DQA  
VSS  
VDDQ  
DQA  
DQA  
VSS  
NC  
DQB  
9
VSS  
VDDQ  
DQB  
DQB  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
BYTE A  
VDD  
NC  
CY7C1473BV25  
BYTE B  
VDD  
ZZ  
VSS  
DQB  
DQB  
VDDQ  
VSS  
DQA  
DQA  
VDDQ  
VSS  
DQA  
DQA  
NC  
DQB  
DQB  
DQPB  
NC  
NC  
VSS  
VSS  
VDDQ  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
Document #: 001-15013 Rev. *E  
Page 5 of 30  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
Pin Configurations (continued)  
165-Ball FBGA (15 x 17 x 1.4 mm) Pinout  
CY7C1471BV25 (2M x 36)  
1
2
A
3
CE1  
4
BWC  
5
BWB  
6
CE3  
7
CEN  
8
9
A
10  
A
11  
NC  
NC/576M  
NC/1G  
DQPC  
DQC  
ADV/LD  
A
B
C
D
CE2  
VDDQ  
VDDQ  
CLK  
VSS  
VSS  
A
A
NC  
A
BWD  
VSS  
BWA  
VSS  
VSS  
WE  
VSS  
VSS  
OE  
VSS  
VDD  
NC  
DQC  
VDDQ  
VDDQ  
NC  
DQPB  
DQB  
VDD  
DQB  
DQC  
DQC  
DQC  
NC  
DQC  
DQC  
DQC  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQB  
DQB  
DQB  
NC  
DQB  
DQB  
DQB  
ZZ  
E
F
G
H
J
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
K
L
DQD  
DQPD  
DQD  
NC  
A
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
M
N
P
NC/144M  
TDI  
TDO  
NC/288M  
A0  
MODE  
A
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1473BV25 (4M x 18)  
1
NC/576M  
NC/1G  
NC  
2
A
3
CE1  
4
BWB  
5
NC  
6
CE3  
7
CEN  
8
9
A
10  
A
11  
A
ADV/LD  
A
B
C
D
A
CE2  
VDDQ  
VDDQ  
NC  
VSS  
VDD  
CLK  
VSS  
VSS  
A
A
NC  
BWA  
VSS  
VSS  
WE  
VSS  
VSS  
OE  
VSS  
VDD  
NC  
DQB  
VDDQ  
VDDQ  
NC  
NC  
DQPA  
DQA  
NC  
NC  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
DQA  
DQA  
ZZ  
E
F
NC  
NC  
G
H
J
NC  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
NC  
NC  
NC  
K
L
NC  
NC  
DQB  
DQPB  
NC  
NC  
A
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
M
N
P
NC/144M  
TDI  
TDO  
NC/288M  
A0  
MODE  
A
A
A
TMS  
TCK  
A
A
A
A
R
Document #: 001-15013 Rev. *E  
Page 6 of 30  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
Pin Configurations (continued)  
209-Ball FBGA (14 x 22 x 1.76 mm) Pinout  
CY7C1475BV25 (1M × 72)  
1
2
3
4
5
6
7
8
9
10  
11  
DQb  
DQb  
DQb  
DQb  
DQg  
DQg  
DQg  
DQg  
A
CE2  
A
ADV/LD  
WE  
A
A
CE3  
A
DQb  
DQb  
A
B
BWSc  
BWSg  
NC  
BWSb  
BWSf  
DQg  
DQg  
BWSh  
VSS  
BWSd NC/576M CE1  
NC  
BWSe  
NC  
BWSa  
VSS  
DQb  
DQb  
C
DQg  
DQPg  
DQc  
DQg  
DQPc  
DQc  
NC  
NC/1G  
VDD  
VSS  
OE  
VDD  
NC  
NC  
VDD  
VSS  
VDD  
D
E
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
DQPf  
DQf  
DQPb  
DQf  
F
VSS  
VDDQ  
VSS  
VSS  
VDDQ  
VSS  
G
H
J
DQc  
DQc  
DQc  
VDD  
VSS  
NC  
VDDQ  
VSS  
DQf  
DQf  
DQf  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
NC  
A
DQc  
DQc  
NC  
NC  
DQf  
DQf  
NC  
VDDQ  
DQc  
NC  
VDD  
VSS  
VDDQ  
VDDQ  
CLK  
VDDQ  
NC  
NC  
DQf  
NC  
K
L
CEN  
NC  
NC  
NC  
DQh  
DQh  
DQh  
VDDQ  
VSS  
VDDQ  
VSS  
VDD  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
DQa  
DQa  
DQa  
M
N
P
R
T
NC  
VSS  
VDDQ  
VSS  
VDDQ  
NC  
DQh  
DQh  
DQh  
VSS  
VDD  
VSS  
DQa  
DQa  
DQa  
VDDQ  
DQh  
DQh  
DQPd  
DQd  
DQd  
VDDQ  
VSS  
NC  
ZZ  
DQa  
DQa  
DQPa  
DQe  
DQe  
VSS  
VDDQ  
VDDQ  
VDD  
NC  
A
DQPh  
DQd  
DQd  
DQd  
DQd  
VDDQ  
VDD  
DQPe  
DQe  
DQe  
DQe  
DQe  
VSS  
VSS  
NC  
A
MODE  
A
U
V
W
A
NC/288M  
NC/144M  
A
A
A1  
A
DQd  
DQd  
A
A
A
A
DQe  
DQe  
TDI  
TDO  
TCK  
A0  
A
TMS  
Document #: 001-15013 Rev. *E  
Page 7 of 30  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
Table 1. Pin Definitions  
Name  
IO  
Description  
A0, A1, A  
Input-  
Synchronous  
Address Inputs Used to Select One of the Address Locations. Sampled at the rising edge  
of the CLK. A[1:0] are fed to the two-bit burst counter.  
BWA, BWB,  
BWC, BWD,  
BWE, BWF,  
BWG, BWH  
Input-  
Synchronous  
Byte Write Inputs, Active LOW. Qualified with WE to conduct writes to the SRAM. Sampled  
on the rising edge of CLK.  
WE  
Input-  
Synchronous  
Write Enable Input, Active LOW. Sampled on the rising edge of CLK if CEN is active LOW.  
This signal must be asserted LOW to initiate a write sequence.  
ADV/LD  
Input-  
Synchronous  
Advance/Load Input. Used to advance the on-chip address counter or load a new address.  
When HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When LOW, a  
new address can be loaded into the device for an access. After being deselected, ADV/LD must  
be driven LOW to load a new address.  
CLK  
CE1  
CE2  
CE3  
OE  
Input-  
Clock  
Clock Input. Captures all synchronous inputs to the device. CLK is qualified with CEN. CLK is  
only recognized if CEN is active LOW.  
Input-  
Synchronous  
Chip Enable 1 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction  
with CE2 and CE3 to select or deselect the device.  
Input-  
Synchronous  
Chip Enable 2 Input, Active HIGH. Sampled on the rising edge of CLK. Used in conjunction  
with CE1 and CE3 to select or deselect the device.  
Input-  
Synchronous  
Chip Enable 3 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction  
with CE1 and CE2 to select or deselect the device.  
Input-  
Asynchronous  
Output Enable, Asynchronous Input, Active LOW. Combined with the synchronous logic  
block inside the device to control the direction of the IO pins. When LOW, the IO pins are enabled  
to behave as outputs. When deasserted HIGH, IO pins are tri-stated, and act as input data pins.  
OE is masked during the data portion of a write sequence, during the first clock when emerging  
from a deselected state, when the device has been deselected.  
CEN  
ZZ  
Input-  
Synchronous  
Clock Enable Input, Active LOW. When asserted LOW the clock signal is recognized by the  
SRAM. When deasserted HIGH the clock signal is masked. Because deasserting CEN does  
not deselect the device, CEN can be used to extend the previous cycle when required.  
Input-  
Asynchronous  
ZZ “Sleep” Input. This active HIGH input places the device in a non-time-critical “sleep”  
condition with data integrity preserved. For normal operation, this pin must be LOW or left  
floating. ZZ pin has an internal pull down.  
IO-  
Bidirectional Data IO Lines. As inputs, they feed into an on-chip data register that is triggered  
by the rising edge of CLK. As outputs, they deliver the data contained in the memory location  
specified by the addresses presented during the previous clock rise of the read cycle. The  
direction of the pins is controlled by OE. When OE is asserted LOW, the pins behave as outputs.  
When HIGH, DQs and DQPX are placed in a tri-state condition.The outputs are automatically  
tri-stated during the data portion of a write sequence, during the first clock when emerging from  
a deselected state, and when the device is deselected, regardless of the state of OE.  
DQs  
Synchronous  
IO-  
Bidirectional Data Parity IO Lines. Functionally, these signals are identical to DQs. During  
write sequences, DQPX is controlled by BWX correspondingly.  
DQPX  
Synchronous  
MODE  
Input Strap Pin  
Mode Input. Selects the Burst Order of the Device.  
When tied to Gnd selects linear burst sequence. When tied to VDD or left floating selects inter-  
leaved burst sequence.  
VDD  
Power Supply  
Power Supply Inputs to the Core of the Device.  
VDDQ  
VSS  
IO Power Supply Power Supply for the IO Circuitry.  
Ground Ground for the Device.  
JTAG serial output Serial Data Out to the JTAG Circuit. Delivers data on the negative edge of TCK. If the JTAG  
TDO  
Synchronous  
feature is not used, this pin must be left unconnected. This pin is not available on TQFP  
packages.  
Document #: 001-15013 Rev. *E  
Page 8 of 30  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
Table 1. Pin Definitions (continued)  
Name IO  
Description  
TDI  
JTAG serial input Serial Data In to the JTAG Circuit. Sampled on the rising edge of TCK. If the JTAG feature is  
Synchronous  
not used, leave this pin floating or connected to VDD through a pull up resistor. This pin is not  
available on TQFP packages.  
TMS  
JTAG serial input Serial Data In to the JTAG Circuit. Sampled on the rising edge of TCK. If the JTAG feature is  
Synchronous  
JTAG-Clock  
-
not used, this pin can be disconnected or connected to VDD. This pin is not available on TQFP  
packages.  
TCK  
NC  
Clock Input to the JTAG Circuitry. If the JTAG feature is not used, connect this pin to VSS.  
This pin is not available on TQFP packages.  
No Connects. Not internally connected to the die. 144M, 288M, 576M, and 1G are address  
expansion pins and are not internally connected to the die.  
deselected at clock rise by one of the chip enable signals, the  
output is tri-stated immediately.  
Functional Overview  
The CY7C1471BV25, CY7C1473BV25, and CY7C1475BV25  
are synchronous flow through burst SRAMs designed specifi-  
cally to eliminate wait states during write read transitions. All  
synchronous inputs pass through input registers controlled by  
the rising edge of the clock. The clock signal is qualified with the  
Clock Enable input signal (CEN). If CEN is HIGH, the clock signal  
is not recognized and all internal states are maintained. All  
synchronous operations are qualified with CEN. Maximum  
access delay from the clock rise (tCDV) is 6.5 ns (133-MHz  
device).  
Burst Read Accesses  
The CY7C1471BV25, CY7C1473BV25, and CY7C1475BV25  
has an on-chip burst counter that enables the user the ability to  
supply a single address and conduct up to four reads without  
reasserting the address inputs. ADV/LD must be driven LOW to  
load a new address into the SRAM, as described in the Single  
Read Access section. The sequence of the burst counter is  
determined by the MODE input signal. A LOW input on MODE  
selects a linear burst mode, a HIGH selects an interleaved burst  
sequence. Both burst counters use A0 and A1 in the burst  
sequence, and wraps around when incremented sufficiently. A  
HIGH input on ADV/LD increments the internal burst counter  
regardless of the state of chip enable inputs or WE. WE is latched  
at the beginning of a burst cycle. Therefore, the type of access  
(read or write) is maintained throughout the burst sequence.  
Accesses are initiated by asserting all three Chip Enables (CE1,  
CE2, CE3) active at the rising edge of the clock. If CEN is active  
LOW and ADV/LD is asserted LOW, the address presented to  
the device is latched. The access is either a read or write  
operation, depending on the status of the Write Enable (WE).  
Use Byte Write Select (BWX) to conduct Byte Write operations.  
Write operations are qualified by the WE. All writes are simplified  
with on-chip synchronous self- timed write circuitry.  
Single Write Accesses  
Write accesses are initiated when these conditions are satisfied  
at clock rise:  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) simplify depth expansion. All  
operations (reads, writes, and deselects) are pipelined. ADV/LD  
must be driven LOW after the device is deselected to load a new  
address for the next operation.  
CEN is asserted LOW  
CE1, CE2, and CE3 are ALL asserted active  
WE is asserted LOW.  
Single Read Accesses  
The address presented to the address bus is loaded into the  
Address Register. The write signals are latched into the Control  
Logic block. The data lines are automatically tri-stated  
regardless of the state of the OE input signal. This allows the  
external logic to present the data on DQs and DQPX.  
A read access is initiated when the following conditions are  
satisfied at clock rise:  
CEN is asserted LOW  
CE1, CE2, and CE3 are ALL asserted active  
WE is deasserted HIGH  
On the next clock rise the data presented to DQs and DQPX (or  
a subset for Byte Write operations, see “Truth Table for  
Read/Write” on page 12 for details) inputs is latched into the  
device and the write is complete. Additional accesses  
(read/write/deselect) can be initiated on this cycle.  
ADV/LD is asserted LOW.  
The address presented to the address inputs is latched into the  
Address Register and presented to the memory array and control  
logic. The control logic determines that a read access is in  
progress and allows the requested data to propagate to the  
output buffers. The data is available within 6.5 ns (133-MHz  
device) provided OE is active LOW. After the first clock of the  
read access, the output buffers are controlled by OE and the  
internal control logic. OE must be driven LOW to drive out the  
requested data. On the subsequent clock, another operation  
(read/write/deselect) can be initiated. When the SRAM is  
The data written during the write operation is controlled by BWX  
signals.  
The  
CY7C1471BV25,  
CY7C1473BV25, and  
CY7C1475BV25 provide Byte Write capability that is described  
in the “Truth Table for Read/Write” on page 12. The input WE  
with the selected BWx input selectively writes to only the desired  
bytes. Bytes not selected during a Byte Write operation remain  
unaltered. A synchronous self timed write mechanism is  
provided to simplify the write operations. Byte Write capability is  
Document #: 001-15013 Rev. *E  
Page 9 of 30  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
included to greatly simplify read/modify/write sequences, which  
can be reduced to simple byte write operations.  
Table 2. Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
Because the CY7C1471BV25, CY7C1473BV25, and  
CY7C1475BV25 are common IO devices, data must not be  
driven into the device while the outputs are active. The OE can  
be deasserted HIGH before presenting data to the DQs and  
DQPX inputs. This tri-states the output drivers. As a safety  
precaution, DQs and DQPX are automatically tri-stated during  
the data portion of a write cycle, regardless of the state of OE.  
First  
Second  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Address  
A1: A0  
Address  
A1: A0  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Burst Write Accesses  
The CY7C1471BV25, CY7C1473BV25, and CY7C1475BV25  
have an on-chip burst counter that makes it possible to supply a  
single address and conduct up to four Write operations without  
reasserting the address inputs. Drive ADV/LD LOW to load the  
initial address, as described in the Single Write Access section.  
When ADV/LD is driven HIGH on the subsequent clock rise, the  
Chip Enables (CE1, CE2, and CE3) and WE inputs are ignored  
and the burst counter is incremented. You must drive the correct  
BWX inputs in each cycle of the Burst Write to write the correct  
data bytes.  
Table 3. Linear Burst Address Table  
(MODE = GND)  
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ places  
the SRAM in a power conservation “sleep” mode. Two clock  
cycles are required to enter into or exit from this “sleep” mode.  
While in this mode, data integrity is guaranteed. Accesses  
pending when entering the “sleep” mode are not considered valid  
nor is the completion of the operation guaranteed. You must  
select the device before entering the “sleep” mode. CE1, CE2,  
and CE3, must remain inactive for the duration of tZZREC after the  
ZZ input returns LOW.  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
Test Conditions  
ZZ > VDD – 0.2V  
Min  
Max  
Unit  
mA  
ns  
120  
tZZS  
ZZ > VDD – 0.2V  
2tCYC  
tZZREC  
tZZI  
ZZ recovery time  
ZZ < 0.2V  
2tCYC  
ns  
ZZ active to sleep current  
ZZ Inactive to exit sleep current  
This parameter is sampled  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
0
ns  
Document #: 001-15013 Rev. *E  
Page 10 of 30  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
Table 4. Truth Table  
The truth table for CY7C1471BV25, CY7C1473BV25, and CY7C1475BV25 follows.[1, 2, 3, 4, 5, 6, 7]  
Address  
Operation  
Deselect Cycle  
CE1 CE2  
ZZ ADV/LD  
WE  
BWX  
OE  
CEN CLK  
DQ  
CE3  
Used  
None  
H
X
X
X
L
X
X
L
X
H
X
X
L
L
L
L
L
L
L
L
L
H
L
X
X
X
X
H
X
X
X
X
X
X
X
X
X
L
L
L
L
L
L
L->H  
L->H  
L->H  
L->H  
Tri-State  
Tri-State  
Tri-State  
Tri-State  
Deselect Cycle  
None  
Deselect Cycle  
None  
Continue Deselect Cycle  
None  
X
H
Read Cycle  
External  
L->H Data Out (Q)  
(Begin Burst)  
Read Cycle  
(Continue Burst)  
Next  
External  
Next  
X
L
X
H
X
H
X
H
X
X
L
L
L
L
L
L
L
L
H
L
X
H
X
L
X
X
X
L
L
H
H
X
X
X
X
L
L
L
L
L
L
L
L->H Data Out (Q)  
NOP/Dummy Read  
(Begin Burst)  
L->H  
L->H  
Tri-State  
Tri-State  
Dummy Read  
(Continue Burst)  
X
L
X
L
H
L
Write Cycle  
(Begin Burst)  
External  
Next  
L->H Data In (D)  
L->H Data In (D)  
Write Cycle  
(Continue Burst)  
X
L
X
L
H
L
X
L
L
NOP/Write Abort  
(Begin Burst)  
None  
H
H
L->H  
L->H  
Tri-State  
Tri-State  
Write Abort  
Next  
X
X
H
X
(Continue Burst)  
Ignore Clock Edge (Stall)  
Sleep Mode  
Current  
None  
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
H
X
L->H  
X
-
H
Tri-State  
Notes  
1. X = “Don't Care.” H = Logic HIGH, L = Logic LOW. BW = L signifies at least one Byte Write Select is active, BW = Valid signifies that the desired Byte Write Selects  
X
X
are asserted, see “Truth Table for Read/Write” on page 12 for details.  
2. Write is defined by BW , and WE. See “Truth Table for Read/Write” on page 12.  
X
3. When a write cycle is detected, all IOs are tri-stated, even during byte writes.  
4. The DQs and DQP pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
X
5. CEN = H, inserts wait states.  
6. Device powers up deselected with the IOs in a tri-state condition, regardless of OE.  
7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle DQs and DQP = tri-state when OE is inactive  
X
or when the device is deselected, and DQs and DQP = data when OE is active.  
X
Document #: 001-15013 Rev. *E  
Page 11 of 30  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
Table 5. Truth Table for Read/Write  
The read-write truth table for CY7C1471BV25 follows.[1, 2, 8]  
Function  
WE  
H
L
BWA  
X
BWB  
X
BWC  
X
BWD  
X
Read  
Write No bytes written  
H
H
H
H
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Byte C – (DQC and DQPC)  
Write Byte D – (DQD and DQPD)  
Write All Bytes  
L
L
H
H
H
L
H
L
H
H
L
H
H
L
H
L
H
H
H
L
L
L
L
L
L
Table 6. Truth Table for Read/Write  
The read-write truth table for CY7C1473BV25 follows.[1, 2, 8]  
Function  
WE  
BWb  
X
BWa  
Read  
H
L
L
L
L
X
H
L
Write – No Bytes Written  
Write Byte a – (DQa and DQPa)  
Write Byte b – (DQb and DQPb)  
Write Both Bytes  
H
H
L
H
L
L
Table 7. Truth Table for Read/Write  
The read-write truth table for CY7C1475BV25 follows.[1, 2, 8]  
Function  
WE  
H
BWx  
Read  
X
Write – No Bytes Written  
Write Byte X (DQx and DQPx)  
Write All Bytes  
L
H
L
L
L
All BW = L  
Note  
8. This table is only a partial listing of the byte write combinations. Any combination of BW is valid. Appropriate write is based on which byte write is active.  
X
Document #: 001-15013 Rev. *E  
Page 12 of 30  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
Test Access Port (TAP)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
Test Clock (TCK)  
The CY7C1471BV25, CY7C1473BV25, and CY7C1475BV25  
incorporate a serial boundary scan Test Access Port (TAP). This  
port operates in accordance with IEEE Standard 1149.1-1990  
but does not have the set of functions required for full 1149.1  
compliance. These functions from the IEEE specification are  
excluded because their inclusion places an added delay in the  
critical speed path of the SRAM. Note that the TAP controller  
functions in a manner that does not conflict with the operation of  
other devices using 1149.1 fully compliant TAPs. The TAP  
operates using JEDEC-standard 2.5V IO logic levels.  
The test clock is used only with the TAP controller. All inputs are  
captured on the rising edge of TCK. All outputs are driven from  
the falling edge of TCK.  
Test Mode Select (TMS)  
The TMS input gives commands to the TAP controller and is  
sampled on the rising edge of TCK. You can leave this ball  
unconnected if the TAP is not used. The ball is pulled up inter-  
nally, resulting in a logic HIGH level.  
The CY7C1471BV25, CY7C1473BV25, and CY7C1475BV25  
contain a TAP controller, instruction register, boundary scan  
register, bypass register, and ID register.  
Test Data In (TDI)  
The TDI ball serially inputs information into the registers and is  
connected to the input of any of the registers. The register  
between TDI and TDO is chosen by the instruction that is loaded  
into the TAP instruction register. For information about loading  
the instruction register, see the TAP Controller State Diagram.  
TDI is internally pulled up and can be unconnected if the TAP is  
unused in an application. TDI is connected to the most significant  
bit (MSB) of any register. (See TAP Controller Block Diagram.)  
Disabling the JTAG Feature  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, tie TCK LOW (VSS) to  
prevent clocking of the device. TDI and TMS are internally pulled  
up and may be unconnected. They may alternately be connected  
to VDD through a pull up resistor. TDO must be left unconnected.  
During power up, the device comes up in a reset state, which  
does not interfere with the operation of the device.  
Test Data Out (TDO)  
The TDO output ball serially clocks data out from the registers.  
The output is active depending upon the current state of the TAP  
state machine. The output changes on the falling edge of TCK.  
TDO is connected to the least significant bit (LSB) of any register.  
(See Tap Controller State Diagram.)  
Figure 3. TAP Controller State Diagram  
TEST-LOGIC  
1
RESET  
0
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
Figure 4. TAP Controller Block Diagram  
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
0
Bypass Register  
SHIFT-DR  
0
SHIFT-IR  
0
2
1
0
0
0
1
1
Selection  
Circuitry  
Selection  
Circuitry  
Instruction Register  
31 30 29  
Identification Register  
TDI  
TDO  
1
1
EXIT1-DR  
EXIT1-IR  
.
.
. 2 1  
0
0
PAUSE-DR  
0
PAUSE-IR  
1
0
x
.
.
.
.
. 2 1  
1
Boundary Scan Register  
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
TCK  
1
0
1
0
TAP CONTROLLER  
TM S  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
Performing a TAP Reset  
A RESET is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This RESET does not affect the operation of the  
SRAM and may be performed while the SRAM is operating.  
During power up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
Document #: 001-15013 Rev. *E  
Page 13 of 30  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
The TAP controller used in this SRAM is not fully compliant to the  
1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
TAP Registers  
Registers are connected between the TDI and TDO balls and  
enable the scanning of data into and out of the SRAM test  
circuitry. Only one register is selectable at a time through the  
instruction register. Data is serially loaded into the TDI ball on the  
rising edge of TCK. Data is output on the TDO ball on the falling  
edge of TCK.  
You cannot use the TAP controller to load address data or control  
signals into the SRAM and you cannot preload the IO buffers.  
The SRAM does not implement the 1149.1 commands EXTEST  
or INTEST or the PRELOAD portion of SAMPLE/PRELOAD;  
rather, it performs a capture of the IO ring when these instruc-  
tions are executed.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the TDI  
and TDO balls as shown in the “TAP Controller Block Diagram”  
on page 13. During power up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as described  
in the previous section.  
Instructions are loaded into the TAP controller during the Shift-IR  
state when the instruction register is placed between TDI and  
TDO. During this state, instructions are shifted through the  
instruction register through the TDI and TDO balls. To execute  
the instruction after it is shifted in, the TAP controller must be  
moved into the Update-IR state.  
EXTEST  
When the TAP controller is in the Capture-IR state, the two least  
significant bits are loaded with a binary ‘01’ pattern to enable fault  
isolation of the board-level serial test data path.  
EXTEST is a mandatory 1149.1 instruction which is executed  
whenever the instruction register is loaded with all 0s. EXTEST  
is not implemented in this SRAM TAP controller making this  
device not compliant with 1149.1. The TAP controller does  
recognize an all-0 instruction.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This shifts the data through the SRAM with  
minimal delay. The bypass register is set LOW (VSS) when the  
BYPASS instruction is executed.  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction is loaded. There is one difference between the two  
instructions. Unlike the SAMPLE/PRELOAD instruction,  
EXTEST places the SRAM outputs in a High-Z state.  
Boundary Scan Register  
IDCODE  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
The IDCODE instruction causes a vendor specific, 32-bit code to  
load into the instruction register. It also places the instruction  
register between the TDI and TDO balls and enables the  
IDCODE for shifting out of the device when the TAP controller  
enters the Shift-DR state.  
The boundary scan register is loaded with the contents of the  
RAM IO ring when the TAP controller is in the Capture-DR state  
and is then placed between the TDI and TDO balls when the  
controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used to  
capture the contents of the IO ring.  
The IDCODE instruction is loaded into the instruction register  
during power up or whenever the TAP controller is in a test logic  
reset state.  
The Boundary Scan Order tables show the order in which the bits  
are connected. Each bit corresponds to one of the bumps on the  
SRAM package. The MSB of the register is connected to TDI and  
the LSB is connected to TDO.  
SAMPLE Z  
The SAMPLE Z instruction connects the boundary scan register  
between the TDI and TDO pins when the TAP controller is in a  
Shift-DR state. It also places all SRAM outputs into a High-Z  
state.  
Identification (ID) Register  
The ID register is loaded with a vendor specific, 32-bit code  
during the Capture DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired into  
the SRAM and can be shifted out when the TAP controller is in  
the Shift DR state. The ID register has a vendor code and other  
information described in “Identification Register Definitions” on  
page 17.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so the  
device TAP controller is not fully 1149.1 compliant.  
When the SAMPLE/PRELOAD instruction is loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and bidirectional balls is  
captured in the boundary scan register.  
TAP Instruction Set  
Overview  
Be aware that the TAP controller clock only operates at a  
frequency up to 20 MHz, while the SRAM clock operates more  
than an order of magnitude faster. Because there is a large  
difference in the clock frequencies, it is possible that, during the  
Capture-DR state, an input or output may undergo a transition.  
The TAP may then try to capture a signal while in transition  
(metastable state). This does not harm the device, but there is  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in “Identification  
Codes” on page 17. Three of these instructions are listed as  
RESERVED and are not for use. The other five instructions are  
described in this section in detail.  
Document #: 001-15013 Rev. *E  
Page 14 of 30  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
no guarantee as to the value that is captured. Repeatable results  
may not be possible.  
Note that since the PRELOAD part of the command is not imple-  
mented, putting the TAP to the Update-DR state while performing  
a SAMPLE/PRELOAD instruction has the same effect as the  
Pause-DR command.  
To guarantee that the boundary scan register captures the  
correct signal value, make certain that the SRAM signal is stabi-  
lized long enough to meet the TAP controller’s capture setup plus  
hold time (tCS plus tCH).  
BYPASS  
When the BYPASS instruction is loaded in the instruction register  
and the TAP is placed in a Shift-DR state, the bypass register is  
placed between the TDI and TDO balls. The advantage of the  
BYPASS instruction is that it shortens the boundary scan path  
when multiple devices are connected together on a board.  
The SRAM clock input might not be captured correctly if there is  
no way in a design to stop (or slow) the clock during a  
SAMPLE/PRELOAD instruction. If this is an issue, it is still  
possible to capture all other signals and simply ignore the value  
of the CLK captured in the boundary scan register.  
Reserved  
After the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the boundary  
scan register between the TDI and TDO balls.  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
Figure 5. TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TM SS  
TDIS  
TM SH  
Test M ode Select  
(TM S)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
Document #: 001-15013 Rev. *E  
Page 15 of 30  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
TAP AC Switching Characteristics  
Over the Operating Range[9, 10]  
Parameter  
Clock  
tTCYC  
tTF  
Description  
Min  
Max  
Unit  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH Time  
TCK Clock LOW Time  
50  
ns  
MHz  
ns  
20  
tTH  
20  
20  
tTL  
ns  
Output Times  
tTDOV  
TCK Clock LOW to TDO Valid  
10  
ns  
ns  
tTDOX  
TCK Clock LOW to TDO Invalid  
0
Setup Times  
tTMSS  
TMS Setup to TCK Clock Rise  
TDI Setup to TCK Clock Rise  
Capture Setup to TCK Rise  
5
5
5
ns  
ns  
ns  
tTDIS  
tCS  
Hold Times  
tTMSH  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tTDIH  
tCH  
Capture Hold after Clock Rise  
Figure 6. 2.5V TAP AC Output Load Equivalent  
2.5V TAP AC Test Conditions  
1.25V  
Input pulse levels.................................................VSS to 2.5V  
Input rise and fall time .....................................................1 ns  
Input timing reference levels......................................... 1.25V  
Output reference levels ................................................ 1.25V  
Test load termination supply voltage ............................ 1.25V  
50Ω  
TDO  
ZO= 50Ω  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; VDD = 2.375 to 2.625 unless otherwise noted) [11]  
Parameter  
VOH1  
Description  
Test Conditions  
Min  
2.0  
2.1  
Max  
Unit  
V
Output HIGH Voltage IOH = –1.0 mA, VDDQ = 2.5V  
Output HIGH Voltage IOH = –100 µA, VDDQ = 2.5V  
VOH2  
VOL1  
VOL2  
VIH  
V
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
IOL = 1.0 mA, VDDQ = 2.5V  
IOL = 100 µA, VDDQ = 2.5V  
VDDQ = 2.5V  
0.4  
0.2  
V
V
1.7  
–0.3  
–5  
VDD + 0.3  
V
VIL  
VDDQ = 2.5V  
0.7  
5
V
IX  
GND < VIN < VDDQ  
µA  
Notes  
9.t and t refer to the setup and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
10.Test conditions are specified using the load in TAP AC Test Conditions. t /t = 1 ns.  
R
F
11.All voltages refer to V (GND).  
SS  
Document #: 001-15013 Rev. *E  
Page 16 of 30  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
Table 8. Identification Register Definitions  
Instruction Field  
CY7C1471BV25 CY7C1473BV25 CY7C1475BV25  
Description  
(2MX36)  
(4MX18)  
(1MX72)  
Revision Number (31:29)  
Device Depth (28:24)  
000  
000  
000  
Describes the version number  
Reserved for internal use  
01011  
001001  
01011  
01011  
001001  
110100  
Architecture/Memory Type(23:18)  
Bus Width/Density(17:12)  
Cypress JEDEC ID Code (11:1)  
001001  
Defines memory type and architecture  
Defines width and density  
100100  
010100  
00000110100  
00000110100  
00000110100 Allows unique identification of SRAM  
vendor  
ID Register Presence Indicator (0)  
1
1
1
Indicates the presence of an ID register  
Table 9. Scan Register Sizes  
Register Name  
Bit Size (x36)  
Bit Size (x18)  
Bit Size (x72)  
Instruction  
3
1
3
1
3
1
Bypass  
ID  
32  
71  
-
32  
52  
-
32  
-
Boundary Scan Order – 165FBGA  
Boundary Scan Order – 209BGA  
110  
Table 10. Identification Codes  
Instruction  
Code  
Description  
EXTEST  
000  
Captures IO ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state. This instruction is not 1149.1 compliant.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register between TDI  
and TDO. This operation does not affect SRAM operations.  
SAMPLE Z  
Captures IO ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures IO ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation. This instruction does not implement 1149.1 preload  
function and is therefore not 1149.1 compliant.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect  
SRAM operation.  
Document #: 001-15013 Rev. *E  
Page 17 of 30  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
Table 11. Boundary Scan Exit Order (2M x 36)  
Bit #  
1
165-Ball ID  
C1  
Bit #  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
165-Ball ID  
R3  
Bit #  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
165-Ball ID  
J11  
Bit #  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
165-Ball ID  
B7  
B6  
A6  
B5  
A5  
A4  
B4  
B3  
A3  
A2  
B2  
2
D1  
P2  
K10  
J10  
3
E1  
R4  
4
D2  
P6  
H11  
G11  
F11  
E11  
D10  
D11  
C11  
G10  
F10  
E10  
A9  
5
E2  
R6  
6
F1  
R8  
7
G1  
F2  
P3  
8
P4  
9
G2  
J1  
P8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P9  
K1  
P10  
R9  
L1  
J2  
R10  
R11  
N11  
M11  
L11  
M10  
L10  
K11  
M1  
N1  
B9  
K2  
A10  
B10  
A8  
L2  
M2  
R1  
B8  
R2  
A7  
Table 12. Boundary Scan Exit Order (4M x 18)  
Bit #  
1
165-Ball ID  
Bit #  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
165-Ball ID  
R4  
Bit #  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
165-Ball ID  
L10  
Bit #  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
165-Ball ID  
B10  
A8  
D2  
E2  
F2  
G2  
J1  
2
P6  
K10  
J10  
3
R6  
B8  
4
R8  
H11  
G11  
F11  
A7  
5
P3  
B7  
6
K1  
L1  
P4  
B6  
7
P8  
E11  
A6  
8
M1  
N1  
R1  
R2  
R3  
P2  
P9  
D11  
C11  
A11  
B5  
9
P10  
R9  
A4  
10  
11  
12  
13  
B3  
R10  
R11  
M10  
A9  
A3  
B9  
A2  
A10  
B2  
Document #: 001-15013 Rev. *E  
Page 18 of 30  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
Table 13. Boundary Scan Exit Order (1M x 72)  
Bit #  
1
209-Ball ID  
A1  
Bit #  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
209-Ball ID  
T1  
Bit #  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
209-Ball ID  
U10  
T11  
Bit #  
85  
209-Ball ID  
B11  
B10  
A11  
A10  
A7  
2
A2  
T2  
86  
3
B1  
U1  
T10  
R11  
R10  
P11  
P10  
N11  
N10  
M11  
M10  
L11  
87  
4
B2  
U2  
88  
5
C1  
C2  
D1  
D2  
E1  
V1  
89  
6
V2  
90  
A5  
7
W1  
W2  
T6  
91  
A9  
8
92  
U8  
9
93  
A6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
E2  
V3  
94  
D6  
F1  
V4  
95  
K6  
F2  
U4  
96  
B6  
G1  
G2  
H1  
H2  
J1  
W5  
V6  
L10  
97  
K3  
P6  
98  
A8  
W6  
V5  
J11  
99  
B4  
J10  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
B3  
U5  
H11  
H10  
G11  
G10  
F11  
C3  
J2  
U6  
C4  
L1  
W7  
V7  
C8  
L2  
C9  
M1  
M2  
N1  
N2  
P1  
U7  
B9  
V8  
F10  
E10  
E11  
D11  
D10  
C11  
C10  
B8  
V9  
A4  
W11  
W10  
V11  
V10  
U11  
C6  
B7  
P2  
A3  
R2  
R1  
Document #: 001-15013 Rev. *E  
Page 19 of 30  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
DC Input Voltage ................................... –0.5V to VDD + 0.5V  
Current into Outputs (LOW) ........................................ 20 mA  
Maximum Ratings  
Exceeding maximum ratings may impair the useful life of the  
device. These user guidelines are not tested.  
Static Discharge Voltage........................................... >2001V  
(MIL-STD-883, Method 3015)  
Storage Temperature ................................. –65°C to +150°C  
Latch Up Current.................................................... >200 mA  
Ambient Temperature with  
Power Applied ............................................ –55°C to +125°C  
Operating Range  
Supply Voltage on VDD Relative to GND........–0.5V to +3.6V  
Supply Voltage on VDDQ Relative to GND.......–0.5V to +VDD  
Ambient  
Range  
VDD  
VDDQ  
Temperature  
0°C to +70°C  
–40°C to +85°C  
Commercial  
Industrial  
2.5V –5%/+5% 2.5V–5% to  
VDD  
DC Voltage Applied to Outputs  
in Tri-State ...........................................0.5V to VDDQ + 0.5V  
Electrical Characteristics  
Over the Operating Range [12, 13]  
Parameter  
VDD  
Description  
Test Conditions  
Min  
2.375  
2.375  
2.0  
Max  
2.625  
VDD  
Unit  
V
Power Supply Voltage  
IO Supply Voltage  
VDDQ  
VOH  
For 2.5V IO  
V
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage[12]  
Input LOW Voltage[12]  
For 2.5V IO, IOH = –1.0 mA  
For 2.5V IO, IOL= 1.0 mA  
For 2.5V IO  
V
VOL  
0.4  
V
VIH  
1.7  
–0.3  
–5  
VDD + 0.3V  
V
VIL  
For 2.5V IO  
0.7  
5
V
IX  
Input Leakage Current  
except ZZ and MODE  
GND VI VDDQ  
μA  
Input Current of MODE Input = VSS  
Input = VDD  
–30  
–5  
μA  
μA  
5
Input Current of ZZ  
Input = VSS  
Input = VDD  
μA  
30  
5
μA  
IOZ  
Output Leakage Current GND VI VDDQ, Output Disabled  
–5  
μA  
[14]  
IDD  
VDD Operating Supply  
Current  
VDD = Max, IOUT = 0 mA,  
f = fMAX = 1/tCYC  
6.5 ns cycle, 133 MHz  
8.5 ns cycle, 100 MHz  
6.5 ns cycle, 133 MHz  
8.5 ns cycle, 100 MHz  
305  
275  
170  
170  
mA  
mA  
mA  
mA  
ISB1  
ISB2  
ISB3  
ISB4  
Automatic CE  
Power Down  
Current—TTL Inputs  
VDD = Max, Device Deselected,  
VIN VIH or VIN VIL  
f = fMAX, inputs switching  
Automatic CE  
Power Down  
Current—CMOS Inputs f = 0, inputs static  
VDD = Max, Device Deselected,  
VIN 0.3V or VIN > VDD – 0.3V,  
All speeds  
120  
mA  
Automatic CE  
Power Down  
Current—CMOS Inputs f = fMAX, inputs switching  
VDD = Max, Device Deselected, or 6.5 ns cycle, 133 MHz  
VIN 0.3V or VIN > VDDQ – 0.3V  
170  
170  
mA  
mA  
8.5 ns cycle, 100 MHz  
Automatic CE  
Power Down  
Current—TTL Inputs  
VDD = Max, Device Deselected,  
VIN VDD – 0.3V or VIN 0.3V,  
f = 0, inputs static  
All Speeds  
135  
mA  
Notes  
12. Overshoot: V (AC) < V +1.5V (pulse width less than t  
/2). Undershoot: V (AC) > –2V (pulse width less than t  
/2).  
CYC  
IH  
DD  
CYC  
IL  
13. T  
: assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V  
< V  
.
Power-up  
DD  
IH  
DD  
DDQ  
DD  
14. The operation current is calculated with 50% read cycle and 50% write cycle.  
Document #: 001-15013 Rev. *E  
Page 20 of 30  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
Capacitance  
Tested initially and after any design or process change that may affect these parameters.  
100 TQFP 165 FBGA 209 FBGA  
Parameter  
CADDRESS  
Description  
Test Conditions  
Unit  
Max  
Max  
Max  
Address Input Capacitance  
Data Input Capacitance  
Control Input Capacitance  
Clock Input Capacitance  
Input-Output Capacitance  
TA = 25°C, f = 1 MHz,  
DD = 2.5V  
DDQ = 2.5V  
6
5
8
6
5
6
5
8
6
5
6
5
8
6
5
pF  
pF  
pF  
pF  
pF  
V
V
CDATA  
CCTRL  
CCLK  
CIO  
Thermal Resistance  
Tested initially and after any design or process change that may affect these parameters.  
100 TQFP 165 FBGA 209 FBGA  
Parameter  
Description  
Test Conditions  
Unit  
Package  
Package  
Package  
ΘJA  
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow  
24.63  
16.3  
15.2  
°C/W  
standard test methods and  
procedures for measuring  
thermal impedance,  
ΘJC  
Thermal Resistance  
(Junction to Case)  
2.28  
2.1  
1.7  
°C/W  
according to EIA/JESD51.  
Figure 7. AC Test Loads and Waveforms  
2.5V IO Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
OUTPUT  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
L
GND  
5 pF  
R = 1538Ω  
1 ns  
1 ns  
V = 1.25V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Document #: 001-15013 Rev. *E  
Page 21 of 30  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
Switching Characteristics  
Over the Operating Range. Timing reference level is 1.25V when VDDQ = 2.5V. Test conditions shown in (a) of “AC Test Loads and  
Waveforms” on page 21 unless otherwise noted.  
133 MHz  
100 MHz  
Parameter  
Description  
Unit  
Min  
Max  
Min  
Max  
tPOWER  
Clock  
tCYC  
tCH  
1
1
ms  
Clock Cycle Time  
Clock HIGH  
7.5  
2.5  
2.5  
10  
3.0  
3.0  
ns  
ns  
ns  
tCL  
Clock LOW  
Output Times  
tCDV  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z [16, 17, 18]  
6.5  
8.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
2.5  
3.0  
2.5  
3.0  
tCLZ  
tCHZ  
Clock to High-Z [16, 17, 18]  
3.8  
3.0  
4.5  
3.8  
tOEV  
OE LOW to Output Valid  
tOELZ  
tOEHZ  
Setup Times  
tAS  
OE LOW to Output Low-Z [16, 17, 18]  
OE HIGH to Output High-Z [16, 17, 18]  
0
0
3.0  
4.0  
Address Setup Before CLK Rise  
ADV/LD Setup Before CLK Rise  
WE, BWX Setup Before CLK Rise  
CEN Setup Before CLK Rise  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tALS  
tWES  
tCENS  
tDS  
Data Input Setup Before CLK Rise  
Chip Enable Setup Before CLK Rise  
tCES  
Hold Times  
tAH  
Address Hold After CLK Rise  
ADV/LD Hold After CLK Rise  
WE, BWX Hold After CLK Rise  
CEN Hold After CLK Rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tALH  
tWEH  
tCENH  
tDH  
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
tCEH  
Notes  
15. This part has a voltage regulator internally; t  
is the time that the power is supplied above V (minimum) initially, before a read or write operation can be initiated.  
DD  
POWER  
16. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of “AC Test Loads and Waveforms” on page 21. Transition is measured ±200 mV  
CHZ CLZ OELZ  
OEHZ  
from steady-state voltage.  
17. At any supplied voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same data  
OEHZ  
OELZ  
CHZ  
CLZ  
bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve  
High-Z before Low-Z under the same system conditions.  
18. This parameter is sampled and not 100% tested.  
Document #: 001-15013 Rev. *E  
Page 22 of 30  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
Switching Waveforms  
Figure 8 shows read-write timing waveform.[19, 20, 21]  
Figure 8. Read/Write Timing  
t
1
2
3
4
5
6
7
8
9
10  
CYC  
t
CLK  
t
t
t
t
t
CENS  
CES  
CENH  
CEH  
CL  
CH  
CEN  
CE  
ADV/LD  
W E  
BW  
X
A1  
A2  
A4  
A3  
A5  
A6  
A7  
ADDRESS  
DQ  
t
CDV  
t
t
AS  
AH  
t
t
t
t
CHZ  
DOH  
OEV  
CLZ  
D(A1)  
t
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6)  
D(A7)  
t
OEHZ  
t
DS  
DH  
t
DOH  
t
OELZ  
OE  
COM M AND  
W RITE  
D(A1)  
W RITE  
D(A2)  
BURST  
W RITE  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
W RITE  
D(A5)  
READ  
Q(A6)  
W RITE  
D(A7)  
DESELECT  
D(A2+1)  
Q(A4+1)  
DON’T CARE  
UNDEFINED  
Notes  
For this waveform ZZ is tied LOW.  
19.  
20. When CE is LOW, CE is LOW, CE is HIGH, and CE is LOW. When CE is HIGH, CE is HIGH, CE is LOW or CE is HIGH.  
1
2
3
1
2
3
21. Order of the Burst sequence is determined by the status of the MODE (0 = Linear, 1 = Interleaved). Burst operations are optional.  
Document #: 001-15013 Rev. *E  
Page 23 of 30  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
Switching Waveforms (continued)  
Figure 9 shows NOP, STALL and DESELECT Cycles waveform.[19, 20, 22]  
Figure 9. NOP, STALL and DESELECT Cycles  
1
2
3
4
5
6
7
8
9
10  
CLK  
CEN  
CE  
ADV/LD  
WE  
BW [A:D]  
ADDRESS  
A1  
A2  
A3  
A4  
A5  
t
CHZ  
D(A1)  
Q(A2)  
Q(A3)  
D(A4)  
Q(A5)  
DQ  
t
DOH  
COMMAND  
WRITE  
D(A1)  
READ  
Q(A2)  
STALL  
READ  
Q(A3)  
WRITE  
D(A4)  
STALL  
NOP  
READ  
Q(A5)  
DESELECT  
CONTINUE  
DESELECT  
DON’T CARE  
UNDEFINED  
Note  
22. The IGNORE CLOCK EDGE or STALL cycle (Clock 3) illustrates CEN being used to create a pause. A write is not performed during this cycle.  
Document #: 001-15013 Rev. *E  
Page 24 of 30  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
Switching Waveforms (continued)  
Figure 10 shows ZZ Mode timing waveform.[23, 24]  
Figure 10. ZZ Mode Timing  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes  
23. Device must be deselected when entering ZZ mode. See “Truth Table” on page 11 for all possible signal conditions to deselect the device.  
24. DQs are in high-Z when exiting ZZ sleep mode.  
Document #: 001-15013 Rev. *E  
Page 25 of 30  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
Ordering Information  
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or  
visit www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Part and Package Type  
Ordering Code  
133 CY7C1471BV25-133AXC  
CY7C1473BV25-133AXC  
CY7C1471BV25-133BZC  
CY7C1473BV25-133BZC  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
Commercial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1471BV25-133BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
CY7C1473BV25-133BZXC  
CY7C1475BV25-133BGC  
CY7C1475BV25-133BGXC  
CY7C1471BV25-133AXI  
CY7C1473BV25-133AXI  
CY7C1471BV25-133BZI  
CY7C1473BV25-133BZI  
CY7C1471BV25-133BZXI  
CY7C1473BV25-133BZXI  
CY7C1475BV25-133BGI  
CY7C1475BV25-133BGXI  
100 CY7C1471BV25-100AXC  
CY7C1473BV25-100AXC  
CY7C1471BV25-100BZC  
CY7C1473BV25-100BZC  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
lndustrial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
Commercial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1471BV25-100BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
CY7C1473BV25-100BZXC  
CY7C1475BV25-100BGC  
CY7C1475BV25-100BGXC  
CY7C1471BV25-100AXI  
CY7C1473BV25-100AXI  
CY7C1471BV25-100BZI  
CY7C1473BV25-100BZI  
CY7C1471BV25-100BZXI  
CY7C1473BV25-100BZXI  
CY7C1475BV25-100BGI  
CY7C1475BV25-100BGXI  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
lndustrial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free  
Document #: 001-15013 Rev. *E  
Page 26 of 30  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
Package Diagrams  
Figure 11. 100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm), 51-85050  
16.00 0.20  
14.00 0.10  
1.40 0.05  
100  
81  
80  
1
0.30 0.08  
0.65  
TYP.  
12° 1°  
(8X)  
SEE DETAIL  
A
30  
51  
31  
50  
0.20 MAX.  
1.60 MAX.  
R 0.08 MIN.  
0.20 MAX.  
0° MIN.  
SEATING PLANE  
STAND-OFF  
0.05 MIN.  
0.15 MAX.  
NOTE:  
1. JEDEC STD REF MS-026  
0.25  
GAUGE PLANE  
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH  
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE  
R 0.08 MIN.  
0.20 MAX.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH  
3. DIMENSIONS IN MILLIMETERS  
0°-7°  
0.60 0.15  
0.20 MIN.  
1.00 REF.  
51-85050-*B  
DETAIL  
A
Document #: 001-15013 Rev. *E  
Page 27 of 30  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
Package Diagrams (continued)  
Figure 12. 165-Ball FBGA (15 x 17 x 1.4 mm), 51-85165  
PIN 1 CORNER  
BOTTOM VIEW  
TOP VIEW  
Ø0.05 M C  
PIN 1 CORNER  
Ø0.25 M C A B  
Ø0.45 0.05(165X)  
1
2
3
4
5
6
7
8
9
10  
11  
11 10  
9
8
7
6
5
4
3
2
1
A
B
A
B
C
D
C
D
E
E
F
F
G
G
H
J
H
J
K
K
L
L
M
M
N
P
R
N
P
R
A
1.00  
5.00  
10.00  
B
15.00 0.10  
0.15(4X)  
SEATING PLANE  
C
51-85165-*A  
Document #: 001-15013 Rev. *E  
Page 28 of 30  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
Package Diagrams (continued)  
Figure 13. 209-Ball FBGA (14 x 22 x 1.76 mm), 51-85167  
51-85167-**  
Document #: 001-15013 Rev. *E  
Page 29 of 30  
[+] Feedback  
CY7C1471BV25  
CY7C1473BV25, CY7C1475BV25  
Document History Page  
Document Title: CY7C1471BV25/CY7C1473BV25/CY7C1475BV25, 72-Mbit (2M x 36/4M x 18/1M x 72)  
Flow-Through SRAM with NoBL™ Architecture  
Document Number: 001-15013  
Issue  
Date  
Orig. of  
Change  
REV.  
ECN NO.  
Description of Change  
**  
1024500  
1274731  
1562503  
1897447  
2082487  
2159486  
See ECN VKN/KKVTMP New Data Sheet  
*A  
*B  
*C  
*D  
*E  
See ECN  
See ECN  
See ECN  
See ECN  
See ECN  
VKN/AESA Corrected typo in the “NOP, STALL and DESELECT Cycles” waveform  
VKN/AESA Removed 1.8V IO offering from the data sheet  
VKN/AESA Added footnote 14 related to IDD  
VKN  
Converted from preliminary to final  
VKN/PYRS Minor Change-Moved to the external web  
© Cypress Semiconductor Corporation, 2007-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used  
for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use  
as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support  
systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document #: 001-15013 Rev. *E  
Revised February 29, 2008  
Page 30 of 30  
NoBL and No Bus Latency are trademarks of Cypress Semiconductor Corporation. ZBT is a trademark of Integrated Device Technology, Inc. All products and company names mentioned in this  
document may be the trademarks of their respective holders.  
[+] Feedback  

相关型号:

CY7C1473BV25-100BZXC

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1473BV25-100BZXI

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1473BV25-133AXC

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1473BV25-133AXI

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1473BV25-133BZC

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1473BV25-133BZI

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1473BV25-133BZXC

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1473BV25-133BZXI

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1473BV33

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL Architecture
CYPRESS

CY7C1473BV33-117AXC

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL Architecture
CYPRESS

CY7C1473BV33-117AXI

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL Architecture
CYPRESS

CY7C1473BV33-117BZC

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL Architecture
CYPRESS