CY7C1480BV33-200BZC [CYPRESS]

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM; 72兆位( 2M ×36 / 4M ×18 / 1M X 72 ),流水线同步SRAM
CY7C1480BV33-200BZC
型号: CY7C1480BV33-200BZC
厂家: CYPRESS    CYPRESS
描述:

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
72兆位( 2M ×36 / 4M ×18 / 1M X 72 ),流水线同步SRAM

静态存储器
文件: 总34页 (文件大小:974K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
72-Mbit (2M x 36/4M x 18/1M x 72)  
Pipelined Sync SRAM  
Features  
Functional Description  
Supports bus operation up to 250 MHz  
Available speed grades are 250, 200, and 167 MHz  
Registered inputs and outputs for pipelined operation  
3.3V core power supply  
The CY7C1480BV33, CY7C1482BV33, and CY7C1486BV33  
SRAM integrates 2M x 36/4M x 18/1M × 72 SRAM cells with  
advanced synchronous peripheral circuitry and a 2-bit counter  
for internal burst operation. All synchronous inputs are gated by  
registers controlled by a positive-edge-triggered Clock Input  
(CLK). The synchronous inputs include all addresses, all data  
inputs, address-pipelining Chip Enable (CE1), depth-expansion  
Chip Enables (CE2 and CE3), Burst Control inputs (ADSC,  
ADSP, and ADV), Write Enables (BWX, and BWE), and Global  
Write (GW). Asynchronous inputs include the Output Enable  
(OE) and the ZZ pin.  
2.5V/3.3V IO operation  
Fast clock-to-output times  
3.0 ns (for 250 MHz device)  
Provide high performance 3-1-1-1 access rate  
Addresses and chip enables are registered at the rising edge of  
the clock when either Address Strobe Processor (ADSP) or  
Address Strobe Controller (ADSC) are active. Subsequent burst  
addresses may be internally generated as controlled by the  
Advance pin (ADV).  
User selectable burst counter supporting Intel®  
Pentium® interleaved or linear burst sequences  
Separate processor and controller address strobes  
Synchronous self timed writes  
Address, data inputs, and write controls are registered on-chip  
to initiate a self timed write cycle.This part supports byte write  
operations (see sections Pin Definitions on page 7 and Truth  
Table on page 10 for further details). Write cycles can be one to  
two or four bytes wide as controlled by the byte write control  
inputs. GW when active LOW causes all bytes to be written.  
Asynchronous output enable  
Single cycle chip deselect  
CY7C1480BV33, CY7C1482BV33 available in  
JEDEC-standard Pb-free 100-pin TQFP, Pb-free and  
non Pb-free 165-ball FBGA package. CY7C1486BV33  
The CY7C1480BV33, CY7C1482BV33, and CY7C1486BV33  
available in Pb-free and non-Pb-free 209-ball FBGA package  
IEEE 1149.1 JTAG-Compatible Boundary Scan  
“ZZ” Sleep Mode option  
operates from a +3.3V core power supply while all outputs may  
operate with either a +2.5 or +3.3V supply. All inputs and outputs  
are JEDEC standard JESD8-5 compatible. For best practices  
recommendations, refer to the Cypress application note AN1064  
“SRAM System Guidelines”.  
Selection Guide  
Description  
Maximum Access Time  
250 MHz  
3.0  
200 MHz  
3.0  
167 MHz  
3.4  
Unit  
ns  
Maximum Operating Current  
Maximum CMOS Standby Current  
500  
500  
450  
mA  
mA  
120  
120  
120  
Cypress Semiconductor Corporation  
Document #: 001-15145 Rev. *A  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised March 05, 2008  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
Logic Block Diagram – CY7C1480BV33 (2M x 36)  
A0, A1,  
A
ADDRESS  
REGISTER  
2
A
[1:0]  
MODE  
Q1  
Q0  
ADV  
CLK  
BURST  
COUNTER  
AND  
CLR  
LOGIC  
ADSC  
ADSP  
DQ D ,DQP D  
BYTE  
WRITE REGISTER  
DQ D ,DQP  
BYTE  
WRITE DRIVER  
D
BW  
BW  
D
DQ C ,DQP  
BYTE  
C
DQ C ,DQP  
BYTE  
C
C
OUTPUT  
OUTPUT  
REGISTERS  
WRITE DRIVER  
WRITE REGISTER  
MEMORY  
ARRAY  
DQs  
SENSE  
AMPS  
BUFFERS  
E
DQP  
DQP  
DQP  
DQP  
A
DQ B ,DQP  
BYTE  
WRITE DRIVER  
B
DQ B ,DQP  
BYTE  
WRITE REGISTER  
B
B
C
D
BW  
B
A
DQ A ,DQP  
BYTE  
WRITE DRIVER  
A
DQ A ,DQP  
BYTE  
WRITE REGISTER  
A
BW  
BWE  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
PIPELINED  
ENABLE  
CE  
CE  
CE  
1
2
3
OE  
SLEEP  
CONTROL  
ZZ  
Logic Block Diagram – CY7C1482BV33 (4M x 18)  
ADDRESS  
REGISTER  
A0, A1,  
A
A[1:0]  
2
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQ B, DQP  
WRITE DRIVER  
B
DQ B, DQP  
WRITE REGISTER  
B
OUTPUT  
BUFFERS  
BW  
B
DQs  
DQP  
DQP  
OUTPUT  
REGISTERS  
SENSE  
AMPS  
MEMORY  
ARRAY  
A
B
DQ A, DQP  
WRITE DRIVER  
A
E
DQ A, DQP  
WRITE REGISTER  
A
BW  
A
BWE  
GW  
INPUT  
REGISTERS  
ENABLE  
REGISTER  
CE  
1
PIPELINED  
ENABLE  
CE2  
CE3  
OE  
SLEEP  
CONTROL  
ZZ  
Document #: 001-15145 Rev. *A  
Page 2 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
Logic Block Diagram – CY7C1486BV33 (1M x 72)  
ADDRESS  
REGISTER  
A0, A1,A  
A[1:0]  
MODE  
Q1  
Q0  
ADV  
CLK  
BINARY  
COUNTER  
CLR  
ADSC  
ADSP  
DQ  
H
,
DQP  
H
DQ  
H, DQPH  
BW  
BW  
H
G
WRITE DRIVER  
WRITE DRIVER  
DQ  
G, DQPG  
DQ  
F, DQPF  
WRITE DRIVER  
WRITE DRIVER  
DQ  
F, DQPF  
DQ  
F, DQPF  
BW  
BW  
BW  
BW  
F
E
WRITE DRIVER  
WRITE DRIVER  
DQ E  
E
,
DQP  
DQ  
E, DQPE  
WRITE DRIVER  
WRITE DRIVER  
MEMORY  
ARRAY  
DQ  
D, DQPD  
DQ  
D, DQPD  
D
WRITE DRIVER  
WRITE DRIVER  
DQ  
C, DQPC  
DQ  
C, DQPC  
C
WRITE DRIVER  
WRITE DRIVER  
OUTPUT  
BUFFERS  
OUTPUT  
REGISTERS  
SENSE  
AMPS  
DQs  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
A
B
C
D
E
E
DQ  
B, DQPB  
DQ  
B, DQPB  
WRITE DRIVER  
BW  
BW  
B
WRITE DRIVER  
DQ  
A, DQPA  
DQ  
A
,
DQP  
A
F
WRITE DRIVER  
A
WRITE DRIVER  
G
H
BWE  
INPUT  
GW  
CE1  
CE2  
CE3  
OE  
REGISTERS  
ENABLE  
REGISTER  
PIPELINED  
ENABLE  
SLEEP  
CONTROL  
ZZ  
Document #: 001-15145 Rev. *A  
Page 3 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
Pin Configurations  
Figure 1. CY7C1480BV33 100-Pin TQFP Pinout  
Figure 2. CY7C1482BV33 100-Pin TQFP Pinout  
DQPC  
DQPB  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
NC  
VDDQ  
VSSQ  
NC  
A
NC  
NC  
VDDQ  
VSSQ  
NC  
DQPA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
VSS  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
DQc  
VDDQ  
VSSQ  
DQC  
DQC  
DQC  
DQC  
VSSQ  
VDDQ  
DQC  
DQC  
NC  
NC  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
NC  
VDD  
NC  
VSS  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQPB  
NC  
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDD  
NC  
VSS  
NC  
VDD  
ZZ  
CY7C1482BV33  
(4M x 18)  
CY7C1480BV33  
(2M x 36)  
VDD  
ZZ  
DQD  
DQD  
VDDQ  
VSSQ  
DQD  
DQD  
DQD  
DQD  
VSSQ  
VDDQ  
DQD  
DQD  
DQPD  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
DQPA  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
NC  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
Document #: 001-15145 Rev. *A  
Page 4 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
Pin Configurations (continued)  
165-Ball FBGA (15 x 17 x 1.4 mm) Pinout  
CY7C1480BV33 (2M x 36)  
1
2
3
4
5
6
7
8
9
10  
A
11  
NC  
NC/288M  
NC/144M  
DQPC  
A
B
C
D
CE1  
BWC  
BWD  
VSS  
VDD  
BWB  
BWA  
VSS  
VSS  
CE3  
CLK  
VSS  
VSS  
ADSC  
A
BWE  
GW  
VSS  
ADV  
ADSP  
VDDQ  
VDDQ  
A
CE2  
VDDQ  
VDDQ  
A
NC/576M  
DQPB  
DQB  
OE  
VSS  
VDD  
NC  
NC/1G  
DQB  
DQC  
DQC  
VSS  
DQC  
DQC  
DQC  
DQC  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQB  
DQB  
DQB  
NC  
DQB  
E
F
DQC  
DQC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQB  
DQB  
ZZ  
G
H
J
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
K
L
DQD  
DQPD  
NC  
DQD  
NC  
A
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
A
M
N
P
TDI  
A1  
TDO  
A0  
MODE  
A
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1482BV33 (4M x 18)  
1
2
3
4
5
6
7
8
9
10  
11  
NC/288M  
NC/144M  
NC  
A
NC  
A
A
A
B
C
D
BWB  
NC  
CE  
CE1  
CE2  
BWE  
GW  
VSS  
ADSC  
OE  
ADV  
ADSP  
VDDQ  
VDDQ  
3
A
BWA  
VSS  
VSS  
CLK  
VSS  
VSS  
A
NC/576M  
DQPA  
DQA  
NC  
VDDQ  
VDDQ  
VSS  
VDD  
VSS  
NC/1G  
NC  
NC  
DQB  
VSS  
VDD  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
E
F
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQA  
DQA  
ZZ  
NC  
G
H
J
NC  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
NC  
NC  
NC  
K
L
NC  
NC  
DQB  
DQPB  
NC  
NC  
NC  
A
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
A
M
N
P
TDI  
A1  
TDO  
MODE  
A
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 001-15145 Rev. *A  
Page 5 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
Pin Configurations (continued)  
209-Ball FBGA (14 x 22 x 1.76 mm) Pinout  
CY7C1486BV33 (1M × 72)  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
A
DQB  
DQB  
DQB  
DQB  
DQB  
CE3  
DQG  
DQG  
DQG  
DQG  
CE2  
ADSC  
DQG  
DQG  
ADSP  
ADV  
A
A
BWSB  
NC/288M  
NC/144M  
BWSC  
BWSH  
VSS  
BWE  
CE1  
OE  
BWSF  
BWSA  
VSS  
BWSG  
BWSD  
DQB  
DQB  
DQB  
DQG  
DQG  
NC/576M  
GW  
BWSE  
NC  
NC/1G  
NC  
DQPG DQPC  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VDD  
NC  
NC  
NC  
VDD  
VSS  
VDD  
DQPB  
DQF  
DQPF  
DQF  
DQC  
DQC  
DQC  
VSS  
VDDQ  
VSS  
VSS  
G
H
J
VDDQ  
VSS  
DQC  
DQC  
DQC  
NC  
VDDQ  
VSS  
DQF  
DQF  
DQF  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
NC  
A
DQC  
DQC  
NC  
DQ  
F
VDDQ  
VDDQ  
VDDQ  
CLK  
VDDQ  
NC  
NC  
DQF  
NC  
DQF  
NC  
K
L
VSS  
NC  
NC  
DQH  
DQH  
DQH  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
NC  
NC  
VDDQ  
VDDQ  
VSS  
DQA  
DQA  
DQ  
A
M
N
P
R
T
VSS  
VDDQ  
VSS  
VDDQ  
NC  
DQH  
DQH  
DQH  
VSS  
VDD  
VSS  
DQA  
DQA  
DQA  
VDDQ  
DQH  
DQH  
DQPD  
DQD  
DQD  
VDDQ  
VSS  
NC  
ZZ  
DQA  
DQA  
DQPA  
DQE  
DQE  
VSS  
VDDQ  
VSS  
A
VDDQ  
VDD  
NC  
A
DQPH  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDD  
DQPE  
DQE  
DQE  
DQE  
DQE  
VSS  
NC  
A
MODE  
A
U
V
W
A
A
A
A
A1  
A
DQD  
DQD  
A
A
A
A
DQE  
DQE  
TDI  
TDO  
TCK  
A0  
A
TMS  
Document #: 001-15145 Rev. *A  
Page 6 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
Pin Definitions  
Pin Name  
IO  
Description  
A0, A1, A  
Input-  
Address Inputs used to Select One of the Address Locations. Sampled at the  
Synchronous rising edge of the CLK if ADSP or ADSC is active LOW, and CE1, CE2, and CE3 are  
sampled active. A1: A0 are fed to the 2-bit counter.  
Input-  
Byte Write Select Inputs, Active LOW. Qualified with BWE to conduct byte writes to  
BWA,BWB,BWC,BWD,  
BWE,BWF,BWG,BWH  
Synchronous the SRAM. Sampled on the rising edge of CLK.  
GW  
Input-  
Global Write Enable Input, Active LOW. When asserted LOW on the rising edge of  
Synchronous CLK, a global write is conducted (all bytes are written, regardless of the values on  
BWX and BWE).  
BWE  
CLK  
CE1  
Input-  
Byte Write Enable Input, Active LOW. Sampled on the rising edge of CLK. This  
Synchronous signal must be asserted LOW to conduct a byte write.  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. Also used to  
increment the burst counter when ADV is asserted LOW during a burst operation.  
Input-  
Chip Enable 1 Input, Active LOW. Sampled on the rising edge of CLK. Used in  
Synchronous conjunction with CE2 and CE3 to select or deselect the device. ADSP is ignored if CE1  
is HIGH. CE1 is sampled only when a new external address is loaded.  
CE2  
Input-  
Chip Enable 2 Input, Active HIGH. Sampled on the rising edge of CLK. Used in  
Synchronous conjunction with CE1 and CE3 to select or deselect the device. CE2 is sampled only  
when a new external address is loaded.  
Input-  
Chip Enable 3 Input, Active LOW. Sampled on the rising edge of CLK. Used in  
CE3  
OE  
Synchronous conjunction with CE1 and CE2 to select or deselect the device. CE3 is sampled only  
when a new external address is loaded.  
Input-  
Output Enable, Asynchronous Input, Active LOW. Controls the direction of the IO  
Asynchronous pins. When LOW, the IO pins behave as outputs. When deasserted HIGH, IO pins are  
tri-stated, and act as input data pins. OE is masked during the first clock of a read  
cycle when emerging from a deselected state.  
ADV  
Input-  
Advance Input Signal, Sampled on the Rising Edge of CLK, Active LOW. When  
Synchronous asserted, it automatically increments the address in a burst cycle.  
ADSP  
Input- Address Strobe from Processor, Sampled on the Rising Edge of CLK, Active  
Synchronous LOW. When asserted LOW, addresses presented to the device are captured in the  
address registers. A1: A0 are also loaded into the burst counter. When ADSP and  
ADSC are both asserted, only ADSP is recognized. ASDP is ignored when CE1 is  
deasserted HIGH.  
ADSC  
Input-  
Address Strobe from Controller, Sampled on the Rising Edge of CLK, Active  
Synchronous LOW. When asserted LOW, addresses presented to the device are captured in the  
address registers. A1: A0 are also loaded into the burst counter. When ADSP and  
ADSC are both asserted, only ADSP is recognized.  
ZZ  
Input-  
ZZ “Sleep” Input, Active HIGH. When asserted HIGH, places the device in a  
Asynchronous non-time-critical “sleep” condition with data integrity preserved. For normal operation,  
this pin must be LOW or left floating. ZZ pin has an internal pull down.  
IO-  
Bidirectional Data IO Lines. As inputs, they feed into an on-chip data register that is  
DQs, DQPs  
Synchronous triggered by the rising edge of CLK. As outputs, they deliver the data contained in the  
memory location specified by the addresses presented during the previous clock rise  
of the read cycle. The direction of the pins is controlled by OE. When OE is asserted  
LOW, the pins behave as outputs. When HIGH, DQs and DQPX are placed in a tri-state  
condition.  
VDD  
VSS  
Power Supply Power Supply Inputs to the Core of the Device.  
Ground  
Ground for the Core of the Device.  
Ground for the IO Circuitry.  
[1]  
VSSQ  
IO Ground  
VDDQ  
IO Power Supply Power supply for the IO circuitry.  
Note  
1. Applicable for TQFP package. For BGA package V serves as ground for the core and the IO circuitry.  
SS  
Document #: 001-15145 Rev. *A  
Page 7 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
Pin Definitions (continued)  
Pin Name  
IO  
Description  
MODE  
Input Static  
Selects Burst Order. When tied to GND selects linear burst sequence. When tied to  
VDD or left floating selects interleaved burst sequence. This is a strap pin and must  
remain static during device operation. Mode Pin has an internal pull up.  
TDO  
TDI  
JTAG Serial  
Output  
Synchronous on TQFP packages.  
Serial Data-Out to the JTAG Circuit. Delivers data on the negative edge of TCK. If  
the JTAG feature is not used, this pin must be disconnected. This pin is not available  
JTAG Serial  
Input  
Serial Data-In to the JTAG Circuit. Sampled on the rising edge of TCK. If the JTAG  
feature is not used, this pin can be disconnected or connected to VDD. This pin is not  
Synchronous available on TQFP packages.  
TMS  
JTAG Serial  
Input  
Serial Data-In to the JTAG Circuit. Sampled on the rising edge of TCK. If the JTAG  
feature is not used, this pin can be disconnected or connected to VDD. This pin is not  
Synchronous available on TQFP packages.  
TCK  
NC  
JTAG Clock  
Clock Input to the JTAG Circuitry. If the JTAG feature is not used, this pin must be  
connected to VSS. This pin is not available on TQFP packages.  
-
No Connects. Not internally connected to the die. 144M, 288M, 576M, and 1G are  
address expansion pins and are not internally connected to the die.  
allowed to propagate through the output register and onto the  
data bus within 3.0 ns (250 MHz device) if OE is active LOW. The  
Functional Overview  
All synchronous inputs pass through input registers controlled by  
the rising edge of the clock. All data outputs pass through output  
registers controlled by the rising edge of the clock. Maximum  
access delay from the clock rise (tCO) is 3.0 ns (250 MHz device).  
only exception occurs when the SRAM is emerging from a  
deselected state to a selected state; its outputs are always  
tri-stated during the first cycle of the access. After the first cycle  
of the access, the outputs are controlled by the OE signal.  
Consecutive single read cycles are supported. After the SRAM  
is deselected at clock rise by the chip select and either ADSP or  
ADSC signals, its output tri-states immediately.  
The CY7C1480BV33, CY7C1482BV33, and CY7C1486BV33  
support secondary cache in systems using either a linear or inter-  
leaved burst sequence. The interleaved burst order supports  
Pentium and i486processors. The linear burst sequence is  
suited for processors that use a linear burst sequence. The burst  
order is user selectable, and is determined by sampling the  
MODE input. Accesses may be initiated with the Processor  
Address Strobe (ADSP) or the Controller Address Strobe  
(ADSC). Address advancement through the burst sequence is  
controlled by the ADV input. A two-bit on-chip wraparound burst  
counter captures the first address in a burst sequence and  
automatically increments the address for the rest of the burst  
access.  
Single Write Accesses Initiated by ADSP  
This access is initiated when both of the following conditions are  
satisfied at clock rise: (1) ADSP is asserted LOW, and (2) CE1,  
CE2, CE3 are all asserted active. The address presented to A is  
loaded into the address register and the address advancement  
logic while being delivered to the memory array. The write signals  
(GW, BWE, and BWX) and ADV inputs are ignored during this  
first cycle.  
ADSP triggered write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQs inputs is written into the corre-  
sponding address location in the memory array. If GW is HIGH,  
then the write operation is controlled by BWE and BWX signals.  
Byte Write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BWX) inputs. A Global Write  
Enable (GW) overrides all byte write inputs and writes data to all  
four bytes. All writes are simplified with on-chip synchronous  
self-timed write circuitry.  
The CY7C1480BV33, CY7C1482BV33, and CY7C1486BV33  
provide byte write capability that is described in the section The  
read/write truth table for CY7C1480BV33 follows.[4] on page 11.  
Asserting the Byte Write Enable input (BWE) with the selected  
Byte Write (BWX) input, selectively writes to only the desired  
bytes. Bytes not selected during a Byte Write operation remain  
unaltered. A synchronous self-timed Write mechanism is  
provided to simplify the Write operations.  
Three synchronous Chip Selects (CE1, CE2, and CE3) and an  
asynchronous Output Enable (OE) provide easy bank selection  
and output tri-state control. ADSP is ignored if CE1 is HIGH.  
Single Read Accesses  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW,  
(2) CE1, CE2, CE3 are all asserted active, and (3) the write  
signals (GW, BWE) are all deasserted HIGH. ADSP is ignored if  
CE1 is HIGH. The address presented to the address inputs (A)  
is stored into the address advancement logic and the Address  
Register while being presented to the memory array. The  
corresponding data is allowed to propagate to the input of the  
Output Registers. At the rising edge of the next clock the data is  
Because the CY7C1480BV33, CY7C1482BV33, and  
CY7C1486BV33 are a common IO device, the Output Enable  
(OE) must be deasserted HIGH before presenting data to the  
DQs inputs. Doing so tri-states the output drivers. As a safety  
precaution, DQs are automatically tri-stated whenever a Write  
cycle is detected, regardless of the state of OE.  
Document #: 001-15145 Rev. *A  
Page 8 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
Single Write Accesses Initiated by ADSC  
Sleep Mode  
ADSC Write accesses are initiated when the following conditions  
are satisfied: (1) ADSC is asserted LOW, (2) ADSP is deasserted  
HIGH, (3) CE1, CE2, CE3 are all asserted active, and (4) the  
appropriate combination of the Write inputs (GW, BWE, and  
BWX) are asserted active to conduct a Write to the desired byte.  
ADSC-triggered Write accesses require a single clock cycle to  
complete. The address presented to A is loaded into the address  
register and the address advancement logic when being  
delivered to the memory array. The ADV input is ignored during  
this cycle. If a global Write is conducted, the data presented to  
the DQs is written into the corresponding address location in the  
memory core. If a Byte Write is conducted, only the selected  
bytes are written. Bytes not selected during a Byte Write  
operation remain unaltered. A synchronous self-timed Write  
mechanism is provided to simplify the Write operations.  
The ZZ input pin is an asynchronous input. Asserting ZZ places  
the SRAM in a power conservation “sleep” mode. Two clock  
cycles are required to enter into or exit from this “sleep” mode.  
When in this mode, data integrity is guaranteed. Accesses  
pending when entering the “sleep” mode are not considered  
valid, and the completion of the operation is not guaranteed. The  
device must be deselected before entering the “sleep” mode.  
CE1, CE2, CE3, ADSP, and ADSC must remain inactive for the  
duration of tZZREC after the ZZ input returns LOW.  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Because the CY7C1480BV33, CY7C1482BV33, and  
CY7C1486BV33 are a common IO device, the Output Enable  
(OE) must be deasserted HIGH before presenting data to the  
DQs inputs. Doing so tri-states the output drivers. As a safety  
precaution, DQs are automatically tri-stated whenever a Write  
cycle is detected, regardless of the state of OE.  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Burst Sequences  
The CY7C1480BV33, CY7C1482BV33, and CY7C1486BV33  
provide a 2-bit wraparound counter, fed by A1: A0, that  
implements either an interleaved or linear burst sequence. The  
interleaved burst sequence is designed specifically to support  
Intel Pentium applications. The linear burst sequence is  
designed to support processors that follow a linear burst  
sequence. The burst sequence is user selectable through the  
MODE input.  
Linear Burst Address Table  
(MODE = GND)  
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
Asserting ADV LOW at clock rise automatically increments the  
burst counter to the next address in the burst sequence. Both  
Read and Write burst operations are supported.  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
Test Conditions  
Min  
Max  
Unit  
ZZ > VDD – 0.2V  
ZZ > VDD – 0.2V  
ZZ < 0.2V  
120  
mA  
ns  
ns  
ns  
ns  
tZZS  
2tCYC  
tZZREC  
tZZI  
ZZ recovery time  
2tCYC  
ZZ Active to Sleep current  
ZZ Inactive to exit Sleep current  
This parameter is sampled  
This parameter is sampled  
2tCYC  
tRZZI  
0
Document #: 001-15145 Rev. *A  
Page 9 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
The truth table for CY7C1480BV33, CY7C1482BV33, and CY7C1486BV33 follows.[2, 3, 4, 5, 6  
Truth Table  
Operation  
Add. Used CE1 CE2 CE3 ZZ ADSP ADSC ADV WRITE OE CLK  
DQ  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Sleep Mode, Power Down  
Read Cycle, Begin Burst  
None  
None  
H
L
X
L
X
X
H
X
H
X
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
L
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
None  
L
X
L
L
None  
L
H
H
X
L
None  
L
X
X
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
L
None  
X
L
X
X
X
L
X
Tri-State  
Q
External  
External  
External  
External  
External  
Next  
L-H  
Read Cycle, Begin Burst  
L
L
L
H
X
L
L-H Tri-State  
Write Cycle, Begin Burst  
L
L
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
L-H  
L-H  
D
Q
Read Cycle, Begin Burst  
L
L
L
H
H
H
H
H
H
L
Read Cycle, Begin Burst  
L
L
L
H
L
L-H Tri-State  
L-H  
L-H Tri-State  
L-H  
L-H Tri-State  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Write Cycle,Suspend Burst  
Write Cycle,Suspend Burst  
X
X
H
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
Q
Next  
L
H
L
Next  
L
Q
Next  
L
H
X
X
L
Next  
L
L-H  
L-H  
L-H  
D
D
Q
Next  
L
L
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
H
L
L-H Tri-State  
L-H  
L-H Tri-State  
Q
H
X
X
L-H  
L-H  
D
D
L
Notes  
2. X = Do Not Care, H = Logic HIGH, L = Logic LOW.  
3. WRITE = L when any one or more Byte Write enable signals and BWE = L or GW = L. WRITE = H when all Byte write enable signals, BWE, GW = H.  
4. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
5. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks after the  
X
ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH before the start of the write cycle to allow the outputs to tri-state. OE is a do not care for  
the remainder of the write cycle.  
6. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tri-state when OE is inactive  
or when the device is deselected, and all data bits behave as outputs when OE is active (LOW).  
Document #: 001-15145 Rev. *A  
Page 10 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
The read/write truth table for CY7C1480BV33 follows.[4]  
Truth Table for Read/Write  
Function (CY7C1480BV33)  
GW  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
BWE  
H
L
BWD  
X
H
H
H
H
H
H
H
H
L
BWC  
X
H
H
H
H
L
BWB  
X
H
H
L
BWA  
X
H
L
Read  
Read  
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Bytes B, A  
L
L
H
L
L
L
Write Byte C – (DQC and DQPC)  
Write Bytes C, A  
L
H
H
L
H
L
L
L
Write Bytes C, B  
L
L
H
L
Write Bytes C, B, A  
Write Byte D – (DQD and DQPD)  
Write Bytes D, A  
L
L
L
L
H
H
H
H
L
H
H
L
H
L
L
L
Write Bytes D, B  
L
L
H
L
Write Bytes D, B, A  
Write Bytes D, C  
L
L
L
L
L
H
H
L
H
L
Write Bytes D, C, A  
Write Bytes D, C, B  
Write All Bytes  
L
L
L
L
L
L
H
L
L
L
L
L
Write All Bytes  
X
X
X
X
X
The read/write truth table for CY7C1482BV33 follows.[4]  
Truth Table for Read/Write  
Function (CY7C1482BV33)  
GW  
BWE  
BWB  
BWA  
Read  
Read  
H
H
H
H
H
H
L
H
L
L
L
L
L
X
X
H
H
L
X
H
L
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Bytes B, A  
H
L
L
Write All Bytes  
L
L
Write All Bytes  
X
X
The read/write truth table for CY7C1482BV33 follows.[7]  
Truth Table for Read/Write  
Function (CY7C1486BV33)  
GW  
BWE  
BWX  
Read  
Read  
H
H
H
H
L
H
L
L
L
X
X
All BW = H  
Write Byte x – (DQx and DQPx)  
Write All Bytes  
L
All BW = L  
X
Write All Bytes  
Note  
7. BWx represents any byte write signal BW[0..7].To enable any byte write BWx, a Logic LOW signal must be applied at clock rise. Any number of bye writes can be  
enabled at the same time for any given write.  
Document #: 001-15145 Rev. *A  
Page 11 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
Performing a TAP Reset  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
Perform a RESET by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This RESET does not affect the operation of the  
SRAM and may be performed while the SRAM is operating.  
The CY7C1480BV33, CY7C1482BV33, and CY7C1486BV33  
incorporate a serial boundary scan test access port (TAP). This  
port operates in accordance with IEEE Standard 1149.1-1990  
but does not have the set of functions required for full 1149.1  
compliance. These functions from the IEEE specification are  
excluded because their inclusion places an added delay in the  
critical speed path of the SRAM. Note that the TAP controller  
functions in a manner that does not conflict with the operation of  
other devices using 1149.1 fully compliant TAPs. The TAP  
operates using JEDEC-standard 3.3V or 2.5V IO logic levels.  
At power up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
TAP Registers  
Registers are connected between the TDI and TDO balls and  
enable data to be scanned into and out of the SRAM test circuitry.  
Only one register can be selected at a time through the  
instruction register. Data is serially loaded into the TDI ball on the  
rising edge of TCK. Data is output on the TDO ball on the falling  
edge of TCK.  
The CY7C1480BV33, CY7C1482BV33, and CY7C1486BV33  
contain a TAP controller, instruction register, boundary scan  
register, bypass register, and ID register.  
Instruction Register  
Disabling the JTAG Feature  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the TDI  
and TDO balls as shown in the TAP Controller Block Diagram on  
page 15. At power up, the instruction register is loaded with the  
IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state, as described  
in the previous section.  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, tie TCK LOW (VSS) to  
prevent device clocking. TDI and TMS are internally pulled up  
and may be unconnected. They may alternatively be connected  
to VDD through a pull up resistor. TDO must be left unconnected.  
At power up, the device comes up in a reset state, which does  
not interfere with the operation of the device.  
When the TAP controller is in the Capture-IR state, the two least  
significant bits are loaded with a binary “01” pattern to enable  
fault isolation of the board-level serial test data path.  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
Test Access Port (TAP)  
Bypass Register  
Test Clock (TCK)  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This enables data to be shifted through the  
The test clock is used only with the TAP controller. All inputs are  
captured on the rising edge of TCK. All outputs are driven from  
the falling edge of TCK.  
SRAM with minimal delay. The bypass register is set LOW (VSS  
)
when the BYPASS instruction is executed.  
Test Mode Select (TMS)  
The TMS input gives commands to the TAP controller and is  
sampled on the rising edge of TCK. Leave this ball unconnected  
if the TAP is not used. The ball is pulled up internally, resulting in  
a logic HIGH level.  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM. The x36 configuration has a  
73-bit-long register, and the x18 configuration has a 54-bit-long  
register.  
Test Data-In (TDI)  
The boundary scan register is loaded with the contents of the  
RAM IO ring when the TAP controller is in the Capture-DR state  
and is then placed between the TDI and TDO balls when the  
controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD, and SAMPLE Z instructions can be used  
to capture the contents of the IO ring.  
The TDI ball serially inputs information into the registers and can  
be connected to the input of any of the registers. The register  
between TDI and TDO is chosen by the instruction that is loaded  
into the TAP instruction register. For information about loading  
the instruction register, see the TAP Controller State Diagram on  
page 14. TDI is internally pulled up and can be unconnected if  
the TAP is unused in an application. TDI is connected to the most  
significant bit (MSB) of any register. (See the TAP Controller  
Block Diagram on page 15.)  
The Boundary Scan Order tables show the order in which the bits  
are connected. Each bit corresponds to one of the bumps on the  
SRAM package. The MSB of the register is connected to TDI and  
the LSB is connected to TDO.  
Test Data-Out (TDO)  
Identification (ID) Register  
The TDO output ball serially clocks data-out from the registers.  
The output is active depending upon the current state of the TAP  
state machine. The output changes on the falling edge of TCK.  
TDO is connected to the least significant bit (LSB) of any register.  
(See the TAP Controller State Diagram on page 14.)  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired into  
the SRAM and can be shifted out when the TAP controller is in  
the Shift-DR state. The ID register has a vendor code and other  
information described in the section Identification Register  
Definitions on page 18.  
Document #: 001-15145 Rev. *A  
Page 12 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
SAMPLE/PRELOAD  
TAP Instruction Set  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so the  
device TAP controller is not fully 1149.1 compliant.  
Overview  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in “Identification  
Codes” on page 18. Three of these instructions are listed as  
RESERVED and must not be used. The other five instructions  
are described in detail in this section.  
When the SAMPLE/PRELOAD instruction is loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and bidirectional balls is  
captured in the boundary scan register.  
The TAP controller used in this SRAM is not fully compliant to the  
1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
Be aware that the TAP controller clock can only operate at a  
frequency up to 10 MHz, while the SRAM clock operates more  
than an order of magnitude faster. Because there is a large  
difference in the clock frequencies, it is possible that during the  
Capture-DR state, an input or output may undergo a transition.  
The TAP may then try to capture a signal when in transition  
(metastable state). This does not harm the device, but there is  
no guarantee as to the value that may be captured. Repeatable  
results may not be possible.  
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the IO buffers.  
The SRAM does not implement the 1149.1 commands EXTEST  
or INTEST or the PRELOAD portion of SAMPLE/PRELOAD;  
rather, it performs a capture of the IO ring when these  
instructions are executed.  
Instructions are loaded into the TAP controller during the Shift-IR  
state when the instruction register is placed between TDI and  
TDO. During this state, instructions are shifted through the  
instruction register through the TDI and TDO balls. To execute  
the instruction after it is shifted in, the TAP controller must be  
moved into the Update-IR state.  
To guarantee that the boundary scan register captures the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller’s capture setup plus hold  
time (tCS plus tCH).  
The SRAM clock input might not be captured correctly if there is  
no way in a design to stop (or slow) the clock during a  
SAMPLE/PRELOAD instruction. If this is an issue, it is still  
possible to capture all other signals and simply ignore the value  
of the CLK captured in the boundary scan register.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction, which must be  
executed whenever the instruction register is loaded with all  
zeros. EXTEST is not implemented in this SRAM TAP controller,  
and therefore this device is not compliant to 1149.1. The TAP  
controller does recognize an all-zero instruction.  
After the data is captured, the data is shifted out by putting the  
TAP into the Shift-DR state. This places the boundary scan  
register between the TDI and TDO balls.  
Note that because the PRELOAD part of the command is not  
implemented, putting the TAP to the Update-DR state when  
performing a SAMPLE/PRELOAD instruction has the same  
effect as the Pause-DR command.  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between the  
two instructions. Unlike the SAMPLE/PRELOAD instruction,  
EXTEST places the SRAM outputs in a High-Z state.  
BYPASS  
IDCODE  
When the BYPASS instruction is loaded in the instruction register  
and the TAP is placed in a Shift-DR state, the bypass register is  
placed between the TDI and TDO balls. The advantage of the  
BYPASS instruction is that it shortens the boundary scan path  
when multiple devices are connected together on a board.  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and enables  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
Reserved  
The IDCODE instruction is loaded into the instruction register at  
power up or whenever the TAP controller is in a test logic reset  
state.  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register to  
be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
Document #: 001-15145 Rev. *A  
Page 13 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
TAP Controller State Diagram  
TEST-LOGIC  
1
RESET  
0
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
1
1
EXIT1-DR  
EXIT1-IR  
0
0
PAUSE-DR  
0
PAUSE-IR  
1
0
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
0
1
0
Document #: 001-15145 Rev. *A  
Page 14 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
TAP Controller Block Diagram  
0
Bypass Register  
2
1
0
0
0
Selection  
Circuitry  
Selection  
Circuitry  
Instruction Register  
31 30 29  
Identification Register  
TDI  
TDO  
.
.
. 2 1  
x
.
.
.
.
. 2 1  
Boundary Scan Register  
TCK  
TAP CONTROLLER  
TM S  
Document #: 001-15145 Rev. *A  
Page 15 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
3.3V TAP AC Test Conditions  
2.5V TAP AC Test Conditions  
Input pulse levels.................................................VSS to 3.3V  
Input rise and fall times....................................................1 ns  
Input timing reference levels........................................... 1.5V  
Output reference levels .................................................. 1.5V  
Test load termination supply voltage .............................. 1.5V  
Input pulse levels.................................................VSS to 2.5V  
Input rise and fall time .....................................................1 ns  
Input timing reference levels......................................... 1.25V  
Output reference levels ................................................ 1.25V  
Test load termination supply voltage ............................ 1.25V  
3.3V TAP AC Output Load Equivalent  
2.5V TAP AC Output Load Equivalent  
1.5V  
1.25V  
50Ω  
50Ω  
TDO  
TDO  
ZO= 50Ω  
20pF  
ZO= 50Ω  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; VDD = 3.135 to 3.6V unless otherwise noted)[8]  
Parameter  
Description  
Test Conditions  
Min  
Max  
Unit  
V
VOH1  
Output HIGH Voltage  
IOH = –4.0 mA, VDDQ = 3.3V  
2.4  
2.0  
2.9  
2.1  
I
OH = –1.0 mA, VDDQ = 2.5V  
V
VOH2  
VOL1  
VOL2  
VIH  
Output HIGH Voltage  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
IOH = –100 µA  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
V
V
IOL = 8.0 mA  
0.4  
0.4  
V
IOL = 1.0 mA  
V
IOL = 100 µA  
0.2  
V
VDDQ = 2.5V  
0.2  
V
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
2.0  
1.7  
VDD + 0.3  
VDD + 0.3  
0.8  
V
V
VIL  
–0.3  
–0.3  
–5  
V
VDDQ = 2.5V  
0.7  
V
IX  
GND < VIN < VDDQ  
5
µA  
Note  
8. All voltages referenced to V (GND).  
SS  
Document #: 001-15145 Rev. *A  
Page 16 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
TAP AC Switching Characteristics  
Over the Operating Range[9, 10]  
Parameter  
Clock  
tTCYC  
Description  
Min  
Max  
Unit  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH Time  
TCK Clock LOW Time  
50  
ns  
MHz  
ns  
tTF  
20  
tTH  
20  
20  
tTL  
ns  
Output Times  
tTDOV  
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
10  
ns  
ns  
tTDOX  
0
Setup Times  
tTMSS  
TMS Setup to TCK Clock Rise  
TDI Setup to TCK Clock Rise  
Capture Setup to TCK Rise  
5
5
5
ns  
ns  
ns  
tTDIS  
tCS  
Hold Times  
tTMSH  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tTDIH  
tCH  
Capture Hold after Clock Rise  
TAP Timing  
Figure 3. TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TM SS  
TDIS  
TM SH  
Test M ode Select  
(TM S)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
Notes  
9.  
t
and t refer to the setup and hold time requirements of latching data from the boundary scan register.  
CS CH  
10. Test conditions are specified using the load in TAP AC Test Conditions. t /t = 1 ns.  
R
F
Document #: 001-15145 Rev. *A  
Page 17 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
Identification Register Definitions  
CY7C1480BV33 CY7C1482BV33 CY7C1486BV33  
Instruction Field  
(2M x36)  
Description  
(4M x 18)  
(1M x72)  
Revision Number (31:29)  
Device Depth (28:24)  
000  
01011  
000  
000  
Describes the version number  
Reserved for internal use  
01011  
01011  
Architecture/Memory Type(23:18)  
Bus Width/Density(17:12)  
Cypress JEDEC ID Code (11:1)  
000000  
000000  
000000  
110100  
Defines memory type and architecture  
Defines width and density  
100100  
010100  
00000110100  
00000110100  
00000110100 Enables unique identification of SRAM  
vendor  
ID Register Presence Indicator (0)  
1
1
1
Indicates the presence of an ID register  
Scan Register Sizes  
Register Name  
Bit Size (x36)  
Bit Size (x18)  
Bit Size (x72)  
Instruction  
3
1
3
1
3
1
Bypass  
ID  
32  
73  
-
32  
54  
-
32  
-
Boundary Scan Order – 165FBGA  
Boundary Scan Order – 209BGA  
112  
Identification Codes  
Instruction  
EXTEST  
Code  
000  
Description  
Captures the IO ring contents.  
IDCODE  
001  
Loads the ID register with the vendor ID code and places the register between  
TDI and TDO. This operation does not affect SRAM operations.  
SAMPLE Z  
010  
Captures IO ring contents. Places the boundary scan register between TDI and  
TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures IO ring contents. Places the boundary scan register between TDI and  
TDO.  
Does not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not  
affect SRAM operations.  
Document #: 001-15145 Rev. *A  
Page 18 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
Boundary Scan Exit Order (2M x 36)  
Bit #  
1
165-Ball ID  
C1  
Bit #  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
165-Ball ID  
R3  
Bit #  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
165-Ball ID  
L10  
K11  
J11  
Bit #  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
165-Ball ID  
B8  
A7  
B7  
B6  
A6  
B5  
A5  
A4  
B4  
B3  
A3  
A2  
B2  
2
D1  
P2  
3
E1  
R4  
4
D2  
P6  
K10  
J10  
5
E2  
R6  
6
F1  
N6  
H11  
G11  
F11  
7
G1  
F2  
P11  
R8  
8
9
G2  
J1  
P3  
E11  
D10  
D11  
C11  
G10  
F10  
E10  
A10  
B10  
A9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P4  
K1  
P8  
L1  
P9  
J2  
P10  
R9  
M1  
N1  
R10  
R11  
N11  
M11  
L11  
M10  
K2  
L2  
M2  
R1  
B9  
R2  
A8  
Boundary Scan Exit Order (4M x 18)  
Bit #  
1
165-Ball ID  
D2  
Bit #  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
165-Ball ID  
R8  
Bit #  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
165-Ball ID  
C11  
A11  
A10  
B10  
A9  
2
E2  
P3  
3
F2  
P4  
4
G2  
P8  
5
J1  
P9  
6
K1  
P10  
R9  
B9  
7
L1  
A8  
8
M1  
N1  
R10  
R11  
M10  
L10  
K10  
J10  
H11  
G11  
F11  
E11  
D11  
B8  
9
A7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
R1  
B7  
R2  
B6  
R3  
A6  
P2  
B5  
R4  
A4  
P6  
B3  
R6  
A3  
N6  
A2  
P11  
B2  
Document #: 001-15145 Rev. *A  
Page 19 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
Boundary Scan Exit Order (1M x 72)  
Bit #  
1
209-Ball ID  
A1  
Bit #  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
209-Ball ID  
T1  
Bit #  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
209-Ball ID  
V10  
U11  
U10  
T11  
Bit #  
85  
209-Ball ID  
C11  
C10  
B11  
B10  
A11  
A10  
A9  
2
A2  
T2  
86  
3
B1  
U1  
87  
4
B2  
U2  
88  
5
C1  
C2  
D1  
D2  
E1  
V1  
T10  
R11  
R10  
P11  
P10  
N11  
N10  
M11  
M10  
L11  
89  
6
V2  
90  
7
W1  
W2  
T6  
91  
8
92  
U8  
9
93  
A7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
E2  
V3  
94  
A5  
F1  
V4  
95  
A6  
F2  
U4  
96  
D6  
G1  
G2  
H1  
H2  
J1  
W5  
V6  
97  
B6  
98  
D7  
W6  
U3  
L10  
99  
K3  
P6  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
A8  
U9  
J11  
B4  
J2  
V5  
J10  
B3  
L1  
U5  
H11  
H10  
G11  
G10  
F11  
C3  
L2  
U6  
C4  
M1  
M2  
N1  
N2  
P1  
W7  
V7  
C8  
C9  
U7  
B9  
V8  
F10  
E10  
E11  
D11  
D10  
B8  
V9  
A4  
P2  
W11  
W10  
V11  
C6  
R2  
R1  
B7  
A3  
Document #: 001-15145 Rev. *A  
Page 20 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
DC Input Voltage ................................... –0.5V to VDD + 0.5V  
Current into Outputs (LOW)......................................... 20mA  
Maximum Ratings  
Exceeding the maximum ratings may impair the useful life of the  
device. These user guidelines are not tested.  
Static Discharge Voltage........................................... >2001V  
(MIL-STD-883, Method 3015)  
Storage Temperature ................................. –65°C to +150°C  
Latch up Current..................................................... >200 mA  
Ambient Temperature with  
Power Applied ............................................ –55°C to +125°C  
Operating Range  
Supply Voltage on VDD Relative to GND ........–0.3V to +4.6V  
Supply Voltage on VDDQ Relative to GND...... –0.3V to +VDD  
Ambient  
Range  
VDD  
VDDQ  
Temperature  
0°C to +70°C  
–40°C to +85°C  
Commercial  
Industrial  
3.3V –5%/+10% 2.5V – 5%  
to VDD  
DC Voltage Applied to Outputs  
in Tri-State ...........................................–0.5V to VDDQ + 0.5V  
Electrical Characteristics  
Over the Operating Range[11, 12]  
Parameter  
VDD  
Description  
Power Supply Voltage  
IO Supply Voltage  
Test Conditions  
Min  
3.135  
3.135  
2.375  
2.4  
Max  
3.6  
Unit  
V
VDDQ  
For 3.3V IO  
For 2.5V IO  
VDD  
2.625  
V
V
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage[11]  
Input LOW Voltage[11]  
For 3.3V IO, IOH = –4.0 mA  
For 2.5V IO, IOH = –1.0 mA  
For 3.3V IO, IOL = 8.0 mA  
For 2.5V IO, IOL = 1.0 mA  
For 3.3V IO  
V
2.0  
V
0.4  
0.4  
V
V
2.0  
1.7  
VDD + 0.3V  
V
For 2.5V IO  
V
DD + 0.3V  
V
For 3.3V IO  
–0.3  
–0.3  
–5  
0.8  
0.7  
5
V
For 2.5V IO  
V
Input Leakage Current  
except ZZ and MODE  
GND VI VDDQ  
μA  
Input Current of MODE  
Input = VSS  
–30  
–5  
μA  
μA  
Input = VDD  
5
Input Current of ZZ  
Input = VSS  
μA  
Input = VDD  
30  
5
μA  
IOZ  
Output Leakage Current  
GND VI VDDQ, Output Disabled  
–5  
μA  
[13]  
IDD  
VDD Operating Supply  
Current  
VDD = Max., IOUT = 0 mA,  
f = fMAX = 1/tCYC  
4.0 ns cycle, 250 MHz  
5.0 ns cycle, 200 MHz  
6.0 ns cycle, 167 MHz  
4.0 ns cycle, 250 MHz  
5.0 ns cycle, 200 MHz  
6.0 ns cycle, 167 MHz  
500  
500  
450  
245  
245  
245  
mA  
mA  
mA  
mA  
mA  
mA  
ISB1  
Automatic CE  
Power Down  
VDD = Max, Device Deselected,  
VIN VIH or VIN VIL  
f = fMAX = 1/tCYC  
Current—TTL Inputs  
Notes  
11. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2). Undershoot: V (AC) > –2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
12. Power up: Assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V  
< V  
.
DD  
IH  
DD  
DDQ  
DD  
13. The operation current is calculated with 50% read cycle and 50% write cycle.  
Document #: 001-15145 Rev. *A  
Page 21 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
Electrical Characteristics  
Over the Operating Range[11, 12] (continued)  
Parameter  
Description  
Automatic CE  
Test Conditions  
DD = Max, Device Deselected, All speeds  
Min  
Max  
Unit  
ISB2  
V
120  
mA  
Power Down  
Current—CMOS Inputs  
VIN 0.3V or VIN > VDDQ – 0.3V, f = 0  
ISB3  
Automatic CE  
Power Down  
Current—CMOS Inputs  
VDD = Max, Device Deselected, or  
VIN 0.3V or VIN > VDDQ – 0.3V  
f = fMAX = 1/tCYC  
4.0 ns cycle, 250 MHz  
5.0 ns cycle, 200 MHz  
6.0 ns cycle, 167 MHz  
All speeds  
245  
245  
245  
135  
mA  
mA  
mA  
mA  
ISB4  
Automatic CE  
VDD = Max, Device Deselected,  
Power Down  
Current—TTL Inputs  
VIN VIH or VIN VIL, f = 0  
Capacitance  
Tested initially and after any design or process change that may affect these parameters.  
100 TQFP  
Max  
165 FBGA 209 FBGA  
Parameter  
Description  
Test Conditions  
Unit  
Max  
Max  
CADDRESS Address Input Capacitance  
TA = 25°C, f = 1 MHz,  
6
5
8
6
5
6
5
8
6
5
6
5
8
6
5
pF  
pF  
pF  
pF  
pF  
V
DD = 3.3V  
CDATA  
CCTRL  
CCLK  
CIO  
Data Input Capacitance  
Control Input Capacitance  
Clock Input Capacitance  
Input/Output Capacitance  
VDDQ = 2.5V  
Thermal Resistance  
Tested initially and after any design or process change that may affect these parameters.  
100 TQFP  
Package  
165 FBGA 209 FBGA  
Parameter  
Description  
Test Conditions  
Unit  
Package  
Package  
ΘJA  
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow standard test  
methods and procedures for  
measuring thermal impedance,  
according to EIA/JESD51.  
24.63  
16.3  
15.2  
°C/W  
ΘJC  
Thermal Resistance  
(Junction to Case)  
2.28  
2.1  
1.7  
°C/W  
Document #: 001-15145 Rev. *A  
Page 22 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
Figure 4. AC Test Loads and Waveforms  
3.3V IO Test Load  
R = 317Ω  
3.3V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
OUTPUT  
90%  
10%  
Z = 50Ω  
0
10%  
R = 50Ω  
L
5 pF  
R = 351Ω  
1 ns  
1 ns  
V = 1.5V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
2.5V IO Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50Ω  
0
10%  
L
5 pF  
R = 1538Ω  
1 ns  
1 ns  
V = 1.25V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Document #: 001-15145 Rev. *A  
Page 23 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
Switching Characteristics  
Over the Operating Range. Timing reference level is 1.5V when VDDQ = 3.3V and is 1.25V when VDDQ = 2.5V. Test conditions shown  
in (a) of AC Test Loads and Waveforms on page 23 unless otherwise noted.  
250 MHz  
200 MHz  
167 MHz  
Min Max  
Parameter  
tPOWER  
Description  
Unit  
Min  
Max  
Min  
Max  
VDD(Typical) to the First Access[14]  
1
1
1
ms  
Clock  
tCYC  
Clock Cycle Time  
Clock HIGH  
4.0  
2.0  
2.0  
5.0  
2.0  
2.0  
6.0  
2.4  
2.4  
ns  
ns  
ns  
tCH  
tCL  
Clock LOW  
Output Times  
tCO  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z[15, 16, 17]  
3.0  
3.0  
3.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
1.3  
1.3  
1.3  
1.3  
1.5  
1.5  
tCLZ  
tCHZ  
Clock to High-Z[15, 16, 17]  
3.0  
3.0  
3.0  
3.0  
3.4  
3.4  
tOEV  
OE LOW to Output Valid  
tOELZ  
tOEHZ  
Setup Times  
tAS  
OE LOW to Output Low-Z[15, 16, 17]  
OE HIGH to Output High-Z[15, 16, 17]  
0
0
0
3.0  
3.0  
3.4  
Address Setup Before CLK Rise  
ADSC, ADSP Setup Before CLK Rise  
ADV Setup Before CLK Rise  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADS  
tADVS  
tWES  
GW, BWE, BWX Setup Before CLK Rise  
Data Input Setup Before CLK Rise  
Chip Enable Setup Before CLK Rise  
tDS  
tCES  
Hold Times  
tAH  
Address Hold After CLK Rise  
ADSP, ADSC Hold After CLK Rise  
ADV Hold After CLK Rise  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADH  
tADVH  
tWEH  
GW, BWE, BWX Hold After CLK Rise  
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
tDH  
tCEH  
Notes  
14. This part has an internal voltage regulator; t  
is the time that the power needs to be supplied above V (minimum) initially before a read or write operation can  
DD  
POWER  
be initiated.  
15. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads and Waveforms on page 23. Transition is measured ±200 mV  
CHZ CLZ OELZ  
OEHZ  
from steady-state voltage.  
16. At any supplied voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same data  
CLZ  
OEHZ  
OELZ  
CHZ  
bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve  
High-Z before Low-Z under the same system conditions.  
17. This parameter is sampled and not 100% tested.  
Document #: 001-15145 Rev. *A  
Page 24 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
Switching Waveforms  
Figure 3 shows read cycle timing.[18]  
Figure 3. Read Cycle Timing  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Burst continued with  
new base address  
t
t
WEH  
WES  
GW, BWE,  
BWx  
Deselect  
cycle  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV  
suspends  
burst.  
t
t
OEV  
CO  
t
t
OEHZ  
t
OELZ  
t
CHZ  
DOH  
t
CLZ  
t
Q(A2)  
Q(A2  
+
1)  
Q(A2  
+
2)  
Q(A2  
+
3)  
Q(A2)  
Q(A2 + 1)  
Q(A1)  
Data Out (Q)  
High-Z  
CO  
Burst wraps around  
to its initial state  
Single READ  
BURST READ  
DON’T CARE  
UNDEFINED  
Note  
18. On this diagram, when CE is LOW: CE is LOW, CE is HIGH, and CE is LOW. When CE is HIGH: CE is HIGH, CE is LOW, or CE is HIGH.  
1
2
3
1
2
3
Document #: 001-15145 Rev. *A  
Page 25 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
Switching Waveforms (continued)  
Figure 4 shows write cycle timing.[18, 19]  
Figure 4. Write Cycle Timing  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
ADDRESS  
BWE,  
t
t
AH  
AS  
A1  
A2  
A3  
Byte write signals are  
ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BW  
X
t
t
WEH  
WES  
GW  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
DH  
DS  
Data In (D)  
D(A2)  
D(A2  
+
1)  
D(A2  
+
1)  
D(A2  
+
2)  
D(A2  
+
3)  
D(A3)  
D(A3  
+
1)  
D(A3 + 2)  
D(A1)  
High-Z  
t
OEHZ  
Data Out (Q)  
BURST READ  
Single WRITE  
BURST WRITE  
Extended BURST WRITE  
DON’T CARE  
UNDEFINED  
Note  
19.  
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW, and BW LOW.  
X
Document #: 001-15145 Rev. *A  
Page 26 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
Switching Waveforms (continued)  
Figure 5 shows read-write cycle timing.[18, 20, 21]  
Figure 5. Read/Write Cycle Timing  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
BWE,  
t
t
WEH  
WES  
BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
t
CO  
DS  
t
OELZ  
Data In (D)  
High-Z  
High-Z  
D(A3)  
D(A5)  
D(A6)  
t
t
CLZ  
OEHZ  
Data Out (Q)  
Q(A1)  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
Back-to-Back READs  
Single WRITE  
BURST READ  
Back-to-Back  
WRITEs  
DON’T CARE  
UNDEFINED  
Notes  
20. The data bus (Q) remains in high-Z following a write cycle, unless a new read access is initiated by ADSP or ADSC.  
21. GW is HIGH.  
Document #: 001-15145 Rev. *A  
Page 27 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
Switching Waveforms (continued)  
Figure 6 shows ZZ mode timing.[22, 23]  
Figure 6. ZZ Mode Timing  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes  
22. Device must be deselected when entering ZZ mode. See the section Truth Table on page 10 for all possible signal conditions to deselect the device.  
23. DQs are in High-Z when exiting ZZ sleep mode.  
Document #: 001-15145 Rev. *A  
Page 28 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
Ordering Information  
Not all of the speed, package, and temperature ranges are available. Please contact your local sales representative or  
visit www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Part and Package Type  
Ordering Code  
167 CY7C1480BV33-167AXC 51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
CY7C1482BV33-167AXC  
Commercial  
CY7C1480BV33-167BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1482BV33-167BZC  
CY7C1480BV33-167BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
CY7C1482BV33-167BZXC  
CY7C1486BV33-167BGC 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
CY7C1486BV33-167BGXC  
CY7C1480BV33-167AXI  
CY7C1482BV33-167AXI  
CY7C1480BV33-167BZI  
CY7C1482BV33-167BZI  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
lndustrial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1480BV33-167BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
CY7C1482BV33-167BZXI  
CY7C1486BV33-167BGI  
CY7C1486BV33-167BGXI  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free  
200 CY7C1480BV33-200AXC 51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
CY7C1482BV33-200AXC  
Commercial  
CY7C1480BV33-200BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1482BV33-200BZC  
CY7C1480BV33-200BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
CY7C1482BV33-200BZXC  
CY7C1486BV33-200BGC 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
CY7C1486BV33-200BGXC  
CY7C1480BV33-200AXI  
CY7C1482BV33-200AXI  
CY7C1480BV33-200BZI  
CY7C1482BV33-200BZI  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
lndustrial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1480BV33-200BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
CY7C1482BV33-200BZXI  
CY7C1486BV33-200BGI  
CY7C1486BV33-200BGXI  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free  
Document #: 001-15145 Rev. *A  
Page 29 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
Ordering Information (continued)  
Not all of the speed, package, and temperature ranges are available. Please contact your local sales representative or  
visit www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Part and Package Type  
Ordering Code  
250 CY7C1480BV33-250AXC 51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
CY7C1482BV33-250AXC  
Commercial  
CY7C1480BV33-250BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1482BV33-250BZC  
CY7C1480BV33-250BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
CY7C1482BV33-250BZXC  
CY7C1486BV33-250BGC 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
CY7C1486BV33-250BGXC  
CY7C1480BV33-250AXI  
CY7C1482BV33-250AXI  
CY7C1480BV33-250BZI  
CY7C1482BV33-250BZI  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
Industrial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1480BV33-250BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
CY7C1482BV33-250BZXI  
CY7C1486BV33-250BGI  
CY7C1486BV33-250BGXI  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free  
Document #: 001-15145 Rev. *A  
Page 30 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
Package Diagrams  
Figure 7. 100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm)  
16.00 0.20  
14.00 0.10  
1.40 0.05  
100  
81  
80  
1
0.30 0.08  
0.65  
TYP.  
12° 1°  
(8X)  
SEE DETAIL  
A
30  
51  
31  
50  
0.20 MAX.  
1.60 MAX.  
R 0.08 MIN.  
0.20 MAX.  
0° MIN.  
SEATING PLANE  
STAND-OFF  
0.05 MIN.  
0.15 MAX.  
NOTE:  
1. JEDEC STD REF MS-026  
0.25  
GAUGE PLANE  
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH  
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE  
R 0.08 MIN.  
0.20 MAX.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH  
3. DIMENSIONS IN MILLIMETERS  
0°-7°  
0.60 0.15  
0.20 MIN.  
1.00 REF.  
51-85050-*B  
DETAIL  
A
Document #: 001-15145 Rev. *A  
Page 31 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
Package Diagrams (continued)  
Figure 8. 165-Ball FBGA (15 x 17 x 1.4 mm)  
PIN 1 CORNER  
BOTTOM VIEW  
TOP VIEW  
Ø0.05 M C  
PIN 1 CORNER  
Ø0.25 M C A B  
Ø0.45 0.05(165X)  
1
2
3
4
5
6
7
8
9
10  
11  
11 10  
9
8
7
6
5
4
3
2
1
A
B
A
B
C
D
C
D
E
E
F
F
G
G
H
J
H
J
K
K
L
L
M
M
N
P
R
N
P
R
A
1.00  
5.00  
10.00  
B
15.00 0.10  
0.15(4X)  
SEATING PLANE  
C
51-85165-*A  
Document #: 001-15145 Rev. *A  
Page 32 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
Package Diagrams (continued)  
Figure 9. 209-Ball FBGA (14 x 22 x 1.76 mm)  
51-85167-**  
Document #: 001-15145 Rev. *A  
Page 33 of 34  
[+] Feedback  
CY7C1480BV33  
CY7C1482BV33, CY7C1486BV33  
Document History Page  
Document Title: CY7C1480BV33/CY7C1482BV33/CY7C1486BV33, 72-Mbit (2M x 36/4M x 18/1M x 72)  
Pipelined Sync SRAM  
Document Number: 001-15145  
Orig. of  
Change  
REV.  
ECN NO. Issue Date  
Description of Change  
**  
1024385 See ECN VKN/KKVTMP New Data Sheet  
2183566 See ECN VKN/PYRS Converted from preliminary to final  
Added footnote 14 related to IDD  
*A  
© Cypress Semiconductor Corporation, 2007-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document #: 001-15145 Rev. *A  
Revised March 05, 2008  
Page 34 of 34  
i486 is a trademark and Intel and Pentium are registered trademarks of Intel Corporation. All products and company names mentioned in this document may be the trademarks of their respective holders  
[+] Feedback  

相关型号:

CY7C1480BV33-200BZI

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1480BV33-200BZXC

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1480BV33-200BZXI

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1480BV33-250AXC

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1480BV33-250AXI

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1480BV33-250BZC

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1480BV33-250BZI

72-Mbit (2 M x 36/4 M x 18/1 M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1480BV33-250BZXC

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1480BV33-250BZXI

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1480BV33_11

72-Mbit (2 M x 36/4 M x 18/1 M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1480BV33_12

72-Mbit (2 M × 36/4 M × 18) Pipelined Sync SRAM
CYPRESS

CY7C1480V25

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
CYPRESS