CY7C1481BV33-133AXI [CYPRESS]

Cache SRAM, 2MX36, 6.5ns, CMOS, PQFP100, TQFP-100;
CY7C1481BV33-133AXI
型号: CY7C1481BV33-133AXI
厂家: CYPRESS    CYPRESS
描述:

Cache SRAM, 2MX36, 6.5ns, CMOS, PQFP100, TQFP-100

时钟 静态存储器 内存集成电路
文件: 总31页 (文件大小:711K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1481BV33  
72-Mbit (2M × 36) Flow-Through SRAM  
72-Mbit (2M  
× 36) Flow-Through SRAM  
Features  
Functional Description  
Supports 133 MHz bus operations  
2M × 36 common I/O  
The CY7C1481BV33 is a 3.3 V, 2M × 36 synchronous flow  
through SRAM designed to interface with high speed  
microprocessors with minimum glue logic. Maximum access  
delay from clock rise is 6.5 ns (133 MHz version). A 2-bit on-chip  
counter captures the first address in a burst and increments the  
address automatically for the rest of the burst access. All  
synchronous inputs are gated by registers controlled by a  
positive edge triggered Clock Input (CLK). The synchronous  
inputs include all addresses, all data inputs, address pipelining  
Chip Enable (CE1), depth expansion Chip Enables (CE2 and  
CE3), Burst Control inputs (ADSC, ADSP, and ADV), Write  
3.3 V core power supply (VDD  
)
2.5 V or 3.3 V I/O supply (VDDQ  
)
Fast clock to output time  
6.5 ns (133 MHz version)  
Provide high performance 2-1-1-1 access rate  
User selectable burst counter supporting Intel® Pentium®  
interleaved or linear burst sequences  
Enables (BWx and BWE), and Global Write (GW). Asynchronous  
inputs include the Output Enable (OE) and the ZZ pin.  
Separate processor and controller address strobes  
Synchronous self timed write  
The CY7C1481BV33 enables either interleaved or linear burst  
sequences, selected by the MODE input pin. A HIGH selects an  
interleaved burst sequence, while a LOW selects a linear burst  
sequence. Burst accesses are initiated with the Processor  
Address Strobe (ADSP) or the cache Controller Address Strobe  
(ADSC) inputs. Address advancement is controlled by the  
Address Advancement (ADV) input.  
Asynchronous output enable  
CY7C1481BV33 available in JEDEC standard Pb-free 100-pin  
TQFP, Pb-free and non Pb-free 165-ball FBGA package.  
IEEE 1149.1 JTAG compatible boundary scan  
ZZ sleep mode option  
Addresses and chip enables are registered at rising edge of  
clock when either Address Strobe Processor (ADSP) or Address  
Strobe Controller  
(
) are active. Subsequent burst  
ADSC  
addresses can be internally generated as controlled by the  
Advance pin (ADV).  
The CY7C1481BV33 operates from a +3.3 V core power supply  
while all outputs may operate with either a +2.5 or +3.3 V supply.  
All inputs and outputs are JEDEC standard JESD8-5 compatible.  
For a complete list of related documentation, click here.  
Selection Guide  
Description  
Maximum Access Time  
133 MHz Unit  
6.5  
335  
150  
ns  
Maximum Operating Current  
mA  
mA  
Maximum CMOS Standby Current  
Cypress Semiconductor Corporation  
Document Number: 001-74857 Rev. *F  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised January 2, 2018  
 
CY7C1481BV33  
Logic Block Diagram – CY7C1481BV33  
ADDRESS  
REGISTER  
A0, A1,  
A
A
[1:0]  
MODE  
ADV  
CLK  
Q1  
Q0  
BURST  
COUNTER  
AND LOGIC  
CLR  
ADSC  
ADSP  
DQ  
BYTE  
WRITE REGISTER  
D, DQP D  
DQ  
BYTE  
WRITE REGISTER  
D, DQP D  
BW  
D
DQ  
BYTE  
WRITE REGISTER  
C, DQP C  
DQ  
BYTE  
WRITE REGISTER  
C, DQP C  
BW  
C
OUTPUT  
BUFFERS  
DQ s  
MEMORY  
ARRAY  
SENSE  
AMPS  
DQP  
DQP  
DQP  
DQP  
A
DQ  
BYTE  
WRITE REGISTER  
B, DQP B  
B
C
D
DQ  
BYTE  
WRITE REGISTER  
B, DQP B  
BW  
B
DQ  
BYTE  
WRITE REGISTER  
A, DQP A  
DQ  
A, DQPA  
BW  
A
BYTE  
BWE  
WRITE REGISTER  
INPUT  
GW  
REGISTERS  
ENABLE  
REGISTER  
CE1  
CE2  
CE3  
OE  
SLEEP  
CONTROL  
ZZ  
Document Number: 001-74857 Rev. *F  
Page 2 of 31  
CY7C1481BV33  
Contents  
Pin Configurations ...........................................................4  
Pin Definitions ..................................................................6  
Functional Overview ........................................................8  
Single Read Accesses ................................................8  
Single Write Accesses Initiated by ADSP ...................8  
Single Write Accesses Initiated by ADSC ...................8  
Burst Sequences .........................................................8  
Sleep Mode .................................................................8  
Interleaved Burst Address Table .................................8  
Linear Burst Address Table .........................................8  
ZZ Mode Electrical Characteristics ..............................9  
Truth Table ........................................................................9  
Truth Table for Read/Write ............................................10  
IEEE 1149.1 Serial Boundary Scan (JTAG) ..................11  
Disabling the JTAG Feature ......................................11  
Test Access Port (TAP) .............................................11  
PERFORMING A TAP RESET ..................................11  
TAP REGISTERS ......................................................11  
TAP Instruction Set ...................................................11  
TAP Controller State Diagram .......................................13  
TAP Controller Block Diagram ......................................14  
TAP Timing ......................................................................15  
TAP AC Switching Characteristics ...............................15  
3.3 V TAP AC Test Conditions .......................................16  
3.3 V TAP AC Output Load Equivalent .........................16  
2.5 V TAP AC Test Conditions .......................................16  
2.5 V TAP AC Output Load Equivalent .........................16  
TAP DC Electrical Characteristics  
and Operating Conditions .............................................16  
Identification Register Definitions ................................17  
Scan Register Sizes .......................................................17  
Identification Codes .......................................................17  
Boundary Scan Exit Order .............................................18  
Maximum Ratings ...........................................................19  
Operating Range .............................................................19  
Electrical Characteristics ...............................................19  
Capacitance ....................................................................20  
Thermal Resistance ........................................................20  
AC Test Loads and Waveforms .....................................20  
Switching Characteristics ..............................................21  
Timing Diagrams ............................................................22  
Ordering Information ......................................................26  
Ordering Code Definitions .........................................26  
Package Diagrams ..........................................................27  
Acronyms ........................................................................29  
Document Conventions .................................................29  
Units of Measure .......................................................29  
Document History Page .................................................30  
Sales, Solutions, and Legal Information ......................31  
Worldwide Sales and Design Support .......................31  
Products ....................................................................31  
PSoC® Solutions ......................................................31  
Cypress Developer Community .................................31  
Technical Support .....................................................31  
Document Number: 001-74857 Rev. *F  
Page 3 of 31  
CY7C1481BV33  
Pin Configurations  
Figure 1. 100-pin TQFP (14 × 20 × 1.4 mm) pinout  
DQPC  
DQC  
DQC  
VDDQ  
VSSQ  
DQC  
DQC  
DQC  
DQC  
VSSQ  
VDDQ  
DQC  
DQC  
NC  
DQPB  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDD  
NC  
VSS  
NC  
VDD  
ZZ  
CY7C1481BV33  
(2M × 36)  
DQD  
DQD  
VDDQ  
VSSQ  
DQD  
DQD  
DQD  
DQD  
VSSQ  
VDDQ  
DQD  
DQD  
DQPD  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
DQPA  
Document Number: 001-74857 Rev. *F  
Page 4 of 31  
CY7C1481BV33  
Pin Configurations (continued)  
Figure 2. 165-ball FBGA (15 × 17 × 1.4 mm) pinout  
CY7C1481BV33 (2M × 36)  
1
2
A
3
4
5
6
CE3  
7
8
9
ADV  
10  
A
11  
NC  
NC/288M  
NC/144M  
DQPC  
CE1  
CE2  
VDDQ  
VDDQ  
BWC  
BWD  
VSS  
VDD  
BWB  
BWA  
VSS  
VSS  
BWE  
GW  
VSS  
VSS  
ADSC  
A
B
C
D
A
CLK  
VSS  
VSS  
OE  
VSS  
VDD  
ADSP  
VDDQ  
VDDQ  
A
NC/576M  
DQPB  
DQB  
NC  
DQC  
NC/1G  
DQB  
DQC  
DQC  
DQC  
DQC  
NC  
DQC  
DQC  
DQC  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQB  
DQB  
DQB  
NC  
DQB  
DQB  
DQB  
ZZ  
E
F
G
H
J
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
K
L
DQD  
DQPD  
NC  
DQD  
NC  
A
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
A
M
N
P
TDI  
A1  
TDO  
A0  
MODE  
A
A
A
TMS  
TCK  
A
A
A
A
R
Document Number: 001-74857 Rev. *F  
Page 5 of 31  
CY7C1481BV33  
Pin Definitions  
Pin Name  
I/O  
Description  
Address Inputs Used to Select One of the Address Locations. Sampled at the rising edge of the CLK  
A0, A1, A  
Input-  
Synchronous if ADSP or ADSC is active LOW, and CE1, CE2, and CE3 are sampled active. A[1:0] feed the 2-bit counter.  
BWA, BWB,  
Input- Byte Write Select Inputs, Active LOW. Qualified with BWE to conduct byte writes to the SRAM.  
BWC, BWD Synchronous Sampled on the rising edge of CLK.  
GW  
CLK  
CE1  
Input-  
Global Write Enable Input, Active LOW. When asserted LOW on the rising edge of CLK, a global write  
Synchronous is conducted (ALL bytes are written, regardless of the values on BWX and BWE).  
Input-  
Clock  
Clock Input. Captures all synchronous inputs to the device. Also used to increment the burst counter  
when ADV is asserted LOW during a burst operation.  
Input-  
Chip Enable 1 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE2  
Synchronous and CE to select or deselect the device. ADSP is ignored  
CE is sampled only when a  
if CE1 is HIGH.  
3
1
new external address is loaded.  
CE2  
CE3  
OE  
Input-  
Chip Enable 2 Input, Active HIGH. Sampled on the rising edge of CLK. Used in conjunction with CE1  
Synchronous and CE3 to select or deselect the device. CE2 is sampled only when a new external address is loaded.  
Input- Chip Enable 3 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE1  
Synchronous and CE2 to select or deselect the device. CE3 is sampled only when a new external address is loaded.  
Input- Output Enable, Asynchronous Input, Active LOW. Controls the direction of the I/O pins. When LOW,  
Asynchronous the I/O pins behave as outputs. When deasserted HIGH, I/O pins are tri-stated, and act as input data  
pins. OE is masked during the first clock of a read cycle when emerging from a deselected state.  
ADV  
Input-  
Advance Input Signal, Sampled on the Rising Edge of CLK. When asserted, it automatically  
Synchronous increments the address in a burst cycle.  
ADSP  
Input-  
Address Strobe from Processor, Sampled on the Rising Edge of CLK, Active LOW. When asserted  
Synchronous LOW, addresses presented to the device are captured in the address registers. A[1:0] are also loaded  
into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. ASDP is  
ignored when CE1 is deasserted HIGH.  
ADSC  
Input-  
Address Strobe from Controller, Sampled on the Rising Edge of CLK, Active LOW. When asserted  
Synchronous LOW, addresses presented to the device are captured in the address registers. A[1:0] are also loaded  
.
into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized  
Byte Write Enable Input, Active LOW. Sampled on the rising edge of CLK. This signal must be asserted  
Synchronous LOW to conduct a byte write.  
BWE  
ZZ  
Input-  
Input-  
ZZ “Sleep” Input, Active HIGH. When asserted HIGH, places the device in a non time-critical “sleep”  
Asynchronous condition with data integrity preserved. For normal operation, this pin must be LOW or left floating. ZZ  
pin has an internal pull down.  
I/O-  
Bidirectional Data I/O Lines. As inputs, they feed into an on-chip data register that is triggered by the  
DQs  
Synchronous rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by the  
addresses presented during the previous clock rise of the read cycle. The direction of the pins is controlled  
by OE. When OE is asserted LOW, the pins behave as outputs. When HIGH, DQs and DQPX are placed  
in a tri-state condition.The outputs are automatically tri-stated during the data portion of a write sequence,  
the first clock when emerging from a deselected state, and when the device is deselected, regardless of  
the state of OE.  
I/O-  
Bidirectional Data Parity I/O Lines. Functionally, these signals are identical to DQs. During write  
DQPX  
Synchronous sequences, DQPx is controlled by BWX correspondingly.  
MODE  
Input-Static Selects Burst Order. When tied to GND, selects linear burst sequence. When tied to VDD or left floating,  
selects interleaved burst sequence. This is a strap pin and must remain static during device operation.  
Mode Pin has an internal pull up.  
Document Number: 001-74857 Rev. *F  
Page 6 of 31  
CY7C1481BV33  
Pin Definitions (continued)  
Pin Name  
VDD  
I/O  
Description  
Power Supply Power Supply Inputs to the Core of the Device.  
VDDQ  
I/O Power Power Supply for the I/O Circuitry.  
Supply  
VSS  
Ground  
I/O Ground Ground for the I/O Circuitry.  
JTAG Serial Serial Data-Out to the JTAG Circuit. Delivers data on the negative edge of TCK. If the JTAG feature  
Ground for the Core of the Device.  
[1]  
VSSQ  
TDO  
Output  
is not used, this pin must be left unconnected. This pin is not available on TQFP packages.  
Synchronous  
TDI  
JTAG Serial Serial Data-In to the JTAG Circuit. Sampled on the rising edge of TCK. If the JTAG feature is not used,  
Input this pin can be left floating or connected to VDD through a pull up resistor. This pin is not available on  
Synchronous TQFP packages.  
TMS  
JTAG Serial Serial Data-In to the JTAG Circuit. Sampled on the rising edge of TCK. If the JTAG feature is not used,  
Input  
this pin can be disconnected or connected to VDD. This pin is not available on TQFP packages.  
Synchronous  
TCK  
NC  
JTAG Clock Clock Input to the JTAG Circuit. If the JTAG feature is not used, this pin must be connected to VSS.  
This pin is not available on TQFP packages.  
No Connects. Not internally connected to the die. 144M, 288M, 576M, and 1G are address expansion  
pins and are not internally connected to the die.  
Note  
1. Applicable for TQFP package. For BGA package V serves as ground for the core and the I/O circuitry.  
SS  
Document Number: 001-74857 Rev. *F  
Page 7 of 31  
 
CY7C1481BV33  
HIGH, and (4) the write input signals (GW, BWE, and BWX)  
indicate a write access. ADSC is ignored if ADSP is active LOW.  
Functional Overview  
All synchronous inputs pass through input registers controlled by  
the rising edge of the clock. Maximum access delay from the  
clock rise (tCDV) is 6.5 ns (133 MHz device).  
The addresses presented are loaded into the address register  
and the burst counter/control logic and delivered to the memory  
core. The information presented to DQs is written into the  
specified address location. The device allows byte writes. All  
I/Os are tri-stated when a write is detected, even a byte write.  
Because this is a common I/O device, the asynchronous OE  
input signal must be deasserted and the I/Os must be tri-stated  
before the data is presented to DQs. As a safety precaution, the  
data lines are tri-stated after a write cycle is detected, regardless  
of the state of OE.  
The CY7C1481BV33 supports secondary cache in systems  
using either a linear or interleaved burst sequence. The  
interleaved burst order supports Pentium and i486™ processors.  
The linear burst sequence is suited for processors that use a  
linear burst sequence. The burst order is user selectable and is  
determined by sampling the MODE input. Accesses are initiated  
with either the Processor Address Strobe (ADSP) or the  
Controller Address Strobe (ADSC). Address advancement  
through the burst sequence is controlled by the ADV input. A  
2-bit on-chip wraparound burst counter captures the first address  
in a burst sequence and automatically increments the address  
for the rest of the burst access.  
Burst Sequences  
The CY7C1481BV33 provides an on-chip 2-bit wraparound burst  
counter inside the SRAM. The burst counter is fed by A[1:0], and  
can follow either a linear or interleaved burst order. The burst  
order is determined by the state of the MODE input. A LOW on  
MODE selects a linear burst sequence. A HIGH on MODE  
selects an interleaved burst order. Leaving MODE unconnected  
causes the device to default to an interleaved burst sequence.  
Byte write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BWX) inputs. A Global Write  
Enable (GW) overrides all byte write inputs and writes data to all  
four bytes. All writes are simplified with on-chip synchronous self  
timed write circuitry.  
Sleep Mode  
Three synchronous Chip Selects (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide easy bank selection  
and output tri-state control. ADSP is ignored if CE1 is HIGH.  
The ZZ input pin is asynchronous. Asserting ZZ places the  
SRAM in a power conservation “sleep” mode. Two clock cycles  
are required to enter into or exit from this “sleep” mode. While in  
this mode, data integrity is guaranteed.  
Single Read Accesses  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed.  
A single read access is initiated when the following conditions  
are satisfied at clock rise: (1) CE1, CE2, and CE3 are all asserted  
active, and (2) ADSP or ADSC is asserted LOW (if the access is  
initiated by ADSC, the write inputs must be deasserted during  
this first cycle). The address presented to the address inputs is  
latched into the address register and the burst counter/control  
logic. It is then presented to the memory core. If the OE input is  
asserted LOW, the requested data is available at the data  
outputs a maximum to tCDV after clock rise. ADSP is ignored if  
CE1 is HIGH.  
The device must be deselected before entering the “sleep”  
mode. CE1, CE2, CE3, ADSP, and ADSC must remain inactive  
for the duration of tZZREC after the ZZ input returns LOW.  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
First  
Address  
A1:A0  
Second  
Third  
Address  
A1:A0  
Fourth  
Address  
A1:A0  
Single Write Accesses Initiated by ADSP  
Address  
A1:A0  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) CE1, CE2, CE3 are all asserted active,  
and (2) ADSP is asserted LOW. The addresses presented are  
loaded into the address register and the burst inputs (GW, BWE,  
and BWX) are ignored during this first clock cycle. If the write  
inputs are asserted active (see Truth Table for Read/Write on  
page 10 for appropriate states that indicate a write) on the next  
clock rise, the appropriate data is latched and written into the  
device. The device allows byte writes. All I/Os are tri-stated  
during a byte write. Because this is a common I/O device, the  
asynchronous OE input signal must be deasserted and the I/Os  
must be tri-stated prior to the presentation of data to DQs. As a  
safety precaution, the data lines are tri-stated after a write cycle  
is detected, regardless of the state of OE.  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Linear Burst Address Table  
(MODE = GND)  
First  
Address  
A1:A0  
Second  
Address  
A1:A0  
Third  
Address  
A1:A0  
Fourth  
Address  
A1:A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
Single Write Accesses Initiated by ADSC  
This write access is initiated when the following conditions are  
satisfied at clock rise: (1) CE1, CE2, and CE3 are all asserted  
active, (2) ADSC is asserted LOW, (3) ADSP is deasserted  
Document Number: 001-74857 Rev. *F  
Page 8 of 31  
CY7C1481BV33  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
ZZ > VDD– 0.2 V  
Min  
Max  
150  
2tCYC  
Unit  
mA  
ns  
tZZS  
ZZ > VDD – 0.2 V  
ZZ < 0.2 V  
2tCYC  
tZZREC  
tZZI  
ns  
ZZ active to sleep current  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
ZZ inactive to exit sleep current This parameter is sampled  
0
ns  
Truth Table  
The truth table for CY7C1481BV33 follows. [2, 3, 4, 5, 6]  
Cycle Description  
Deselected Cycle, Power Down  
Deselected Cycle, Power Down  
Deselected Cycle, Power Down  
Deselected Cycle, Power Down  
Deselected Cycle, Power Down  
Sleep Mode, Power Down  
Read Cycle, Begin Burst  
Address Used CE1 CE2 CE3 ZZ ADSP ADSC ADV WRITE OE CLK  
DQ  
None  
None  
H
L
X
L
X
X
H
X
H
X
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
L
L–H Tri-State  
L–H Tri-State  
L–H Tri-State  
L–H Tri-State  
L–H Tri-State  
None  
L
X
L
L
None  
L
H
H
X
L
None  
X
X
L
X
X
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
L
None  
X
X
X
L
X
Tri-State  
Q
External  
External  
External  
External  
External  
Next  
L–H  
Read Cycle, Begin Burst  
L
L
L
H
X
L
L–H Tri-State  
Write Cycle, Begin Burst  
L
L
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
L–H  
L–H  
D
Q
Read Cycle, Begin Burst  
L
L
L
H
H
H
H
H
H
L
Read Cycle, Begin Burst  
L
L
L
H
L
L–H Tri-State  
L–H  
L–H Tri-State  
L–H  
L–H Tri-State  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
X
X
H
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
Q
Next  
L
H
L
Next  
L
Q
Next  
L
H
X
X
L
Next  
L
L–H  
L–H  
L–H  
D
D
Q
Next  
L
L
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
H
L
L–H Tri-State  
L–H  
L–H Tri-State  
Q
H
X
X
L–H  
L–H  
D
D
L
Notes  
2. X = Do Not Care, H = Logic HIGH, L = Logic LOW.  
3. WRITE = L when any one or more byte write enable signals and BWE = L or GW = L. WRITE = H when all byte write enable signals, BWE, GW = H.  
4. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
5. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks after the  
X
ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to enable the outputs to tri-state. OE is a do not care  
for the remainder of the write cycle.  
6. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tri-state when OE is inactive  
or when the device is deselected, and all data bits behave as outputs when OE is active (LOW).  
Document Number: 001-74857 Rev. *F  
Page 9 of 31  
 
 
 
 
 
CY7C1481BV33  
Truth Table for Read/Write  
The read-write truth table for CY7C1481BV33 follows. [7, 8]  
Function (CY7C1481BV33)  
Read  
GW  
H
BWE  
BWD  
X
BWC  
X
BWB  
X
BWA  
X
H
L
L
L
L
L
L
L
L
Read  
H
H
H
H
H
Write Byte A (DQA, DQPA)  
H
H
H
H
L
Write Byte B(DQB, DQPB)  
H
H
H
L
H
Write Bytes A, B (DQA, DQB, DQPA, DQPB)  
Write Byte C (DQC, DQPC)  
Write Bytes C, A (DQC, DQA, DQPC, DQPA)  
Write Bytes C, B (DQC, DQB, DQPC, DQPB)  
H
H
H
L
L
H
H
L
H
H
H
H
L
H
L
H
H
L
L
H
Write Bytes C, B, A (DQC, DQB, DQA, DQPC, DQPB,  
DQPA)  
H
H
L
L
L
Write Byte D (DQD, DQPD)  
H
H
H
H
L
L
L
L
L
L
L
L
H
H
H
H
H
H
L
H
L
Write Bytes D, A (DQD, DQA, DQPD, DQPA)  
Write Bytes D, B (DQD, DQA, DQPD, DQPA)  
H
L
Write Bytes D, B, A (DQD, DQB, DQA, DQPD, DQPB,  
DQPA)  
L
Write Bytes D, B (DQD, DQB, DQPD, DQPB)  
H
H
L
L
L
L
L
L
H
H
H
L
Write Bytes D, B, A (DQD, DQC, DQA, DQPD, DQPC,  
DQPA)  
Write Bytes D, C, A (DQD, DQB, DQA, DQPD, DQPB,  
DQPA)  
H
L
L
L
L
H
Write All Bytes  
Write All Bytes  
H
L
L
L
L
L
L
X
X
X
X
X
Notes  
7. X = Do Not Care, H = Logic HIGH, L = Logic LOW.  
8. Table only includes a partial listing of the byte write combinations. Any combination of BW is valid. An appropriate write is performed based on which byte write is active.  
X
Document Number: 001-74857 Rev. *F  
Page 10 of 31  
 
 
CY7C1481BV33  
TAP Registers  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
Registers are connected between the TDI and TDO balls to scan  
the data in and out of the SRAM test circuitry. Only one register  
can be selected at a time through the instruction register. Data is  
serially loaded into the TDI ball on the rising edge of TCK. Data  
is output on the TDO ball on the falling edge of TCK.  
The CY7C1481BV33 incorporates a serial boundary scan test  
access port (TAP). This port operates in accordance with IEEE  
Standard 1149.1-1990 but does not have the set of functions  
required for full 1149.1 compliance. These functions from the  
IEEE specification are excluded because their inclusion places  
an added delay in the critical speed path of the SRAM. Note that  
the TAP controller functions in a manner that does not conflict  
with the operation of other devices using 1149.1 fully compliant  
TAPs. The TAP operates using JEDEC standard 3.3 V or 2.5 V  
I/O logic levels.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the TDI  
and TDO balls, as shown in the TAP Controller Block Diagram  
on page 14. At power up, the instruction register is loaded with  
the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state, as described  
in the previous section.  
The CY7C1481BV33 contains a TAP controller, instruction  
register, boundary scan register, bypass register, and ID register.  
Disabling the JTAG Feature  
When the TAP controller is in the Capture-IR state, the two least  
significant bits are loaded with a binary “01” pattern to enable  
fault isolation of the board level serial test data path.  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, tie TCK LOW (VSS) to  
prevent device clocking. TDI and TMS are internally pulled up  
and may be unconnected. They may alternatively be connected  
to VDD through a pull up resistor. TDO must be left unconnected.  
At power up, the device comes up in a reset state, which does  
not interfere with the operation of the device.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that is placed between the TDI and  
TDO balls. This shifts the data through the SRAM with minimal  
delay. The bypass register is set LOW (VSS) when the BYPASS  
instruction is executed.  
Test Access Port (TAP)  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs are  
captured on the rising edge of TCK. All outputs are driven from  
the falling edge of TCK.  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM. The × 36 configuration has a  
73-bit long register.  
Test Mode Select (TMS)  
The boundary scan register is loaded with the contents of the  
RAM IO ring when the TAP controller is in the Capture-DR state  
and is then placed between the TDI and TDO balls when the  
controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions are used to  
capture the contents of the I/O ring.  
The TMS input gives commands to the TAP controller and is  
sampled on the rising edge of TCK. You can leave this ball  
unconnected if the TAP is not used. The ball is pulled up  
internally, resulting in a logic HIGH level.  
Test Data-In (TDI)  
The TDI ball serially inputs information into the registers and can  
be connected to the input of any of the registers. The register  
between TDI and TDO is chosen by the instruction that is loaded  
into the TAP instruction register. For information on loading the  
instruction register, see the TAP Controller State Diagram on  
page 13. TDI is internally pulled up and can be unconnected if  
the TAP is unused in an application. TDI is connected to the most  
significant bit (MSB) of any register.  
The Boundary Scan Exit Order on page 18 show the order in  
which the bits are connected. Each bit corresponds to one of the  
bumps on the SRAM package. The MSB of the register is  
connected to TDI and the LSB is connected to TDO.  
Identification (ID) Register  
The ID register is loaded with a vendor specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired into  
the SRAM and can be shifted out when the TAP controller is in  
the Shift-DR state. The ID register has a vendor code and other  
information described in Identification Register Definitions on  
page 17.  
Test Data-Out (TDO)  
The TDO output ball serially clocks data-out from the registers.  
Whether the output is active depends on the current state of the  
TAP state machine (see Identification Codes on page 17). The  
output changes on the falling edge of TCK. TDO is connected to  
the least significant bit (LSB) of any register.  
TAP Instruction Set  
Overview  
Performing a TAP Reset  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in Identification  
Codes on page 17. Three of these instructions are listed as  
RESERVED and must not be used. The other five instructions  
are described in this section in detail.  
To perform a RESET, force TMS HIGH (VDD) for five rising edges  
of TCK. This RESET does not affect the operation of the SRAM  
and may be performed while the SRAM is operating.  
At power up, the TAP is reset internally to ensure that TDO  
comes up in a High Z state.  
Document Number: 001-74857 Rev. *F  
Page 11 of 31  
CY7C1481BV33  
The TAP controller used in this SRAM is not fully compliant to the  
1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so the  
device TAP controller is not fully 1149.1 compliant.  
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the I/O buffers.  
The SRAM does not implement the 1149.1 commands EXTEST  
or INTEST or the PRELOAD portion of SAMPLE/PRELOAD;  
rather, it performs a capture of the I/O ring when these  
instructions are executed.  
When the SAMPLE/PRELOAD instruction is loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and bidirectional balls is  
captured in the boundary scan register.  
Be aware that the TAP controller clock only operates at a  
frequency up to 10 MHz, while the SRAM clock operates more  
than an order of magnitude faster. Because there is a large  
difference in the clock frequencies, it is possible that during the  
Capture-DR state, an input or output may undergo a transition.  
The TAP may then try to capture a signal while in transition  
(metastable state). This does not harm the device, but there is  
no guarantee as to the value that may be captured. Repeatable  
results may not be possible.  
Instructions are loaded into the TAP controller during the Shift-IR  
state when the instruction register is placed between TDI and  
TDO. During this state, instructions are shifted through the  
instruction register through the TDI and TDO balls. To execute  
the instruction after it is shifted in, the TAP controller must be  
moved into the Update-IR state.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction that is executed  
whenever the instruction register is loaded with all zeros.  
EXTEST is not implemented in this SRAM TAP controller, and  
therefore this device is not compliant to 1149.1. The TAP  
controller does recognize an all-zero instruction.  
To guarantee that the boundary scan register captures the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller’s capture setup plus hold  
time (tCS plus tCH).  
The SRAM clock input might not be captured correctly if there is  
no way in a design to stop (or slow) the clock during a  
SAMPLE/PRELOAD instruction. If this is an issue, it is still  
possible to capture all other signals and simply ignore the value  
of the CLK captured in the boundary scan register.  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction is loaded. There is one difference between the two  
instructions. Unlike the SAMPLE/PRELOAD instruction,  
EXTEST places the SRAM outputs in a High Z state.  
After the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the boundary  
scan register between the TDI and TDO balls.  
IDCODE  
The IDCODE instruction loads a vendor specific, 32-bit code into  
the instruction register. It also places the instruction register  
between the TDI and TDO balls and shifts the IDCODE out of the  
device when the TAP controller enters the Shift-DR state.  
Note that because the PRELOAD part of the command is not  
implemented, putting the TAP to the Update-DR state while  
performing a SAMPLE/PRELOAD instruction has the same  
effect as the Pause-DR command.  
The IDCODE instruction is loaded into the instruction register at  
power up or whenever the TAP controller is in a test logic reset  
state.  
BYPASS  
When the BYPASS instruction is loaded in the instruction register  
and the TAP is placed in a Shift-DR state, the bypass register is  
placed between the TDI and TDO balls. The advantage of the  
BYPASS instruction is that it shortens the boundary scan path  
when multiple devices are connected together on a board.  
SAMPLE Z  
The SAMPLE Z instruction connects the boundary scan register  
between the TDI and TDO balls when the TAP controller is in a  
Shift-DR state. It also places all SRAM outputs into a High Z  
state.  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
Document Number: 001-74857 Rev. *F  
Page 12 of 31  
CY7C1481BV33  
TAP Controller State Diagram  
TEST-LOGIC  
1
RESET  
0
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
1
1
EXIT1-DR  
EXIT1-IR  
0
0
PAUSE-DR  
0
PAUSE-IR  
1
0
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
0
1
0
The 0/1 next to each state represents the value of TMS at the rising edge of TCK.  
Document Number: 001-74857 Rev. *F  
Page 13 of 31  
CY7C1481BV33  
TAP Controller Block Diagram  
0
Bypass Register  
2 1 0  
Selection  
Circuitry  
Selection  
Circuitry  
Instruction Register  
TDI  
TDO  
31 30 29 .  
Identification Register  
2 1 0  
.
. 2 1 0  
x
.
.
.
.
.
Boundary Scan Register  
TCK  
TAP CONTROLLER  
TM S  
Document Number: 001-74857 Rev. *F  
Page 14 of 31  
CY7C1481BV33  
TAP Timing  
Figure 3 shows the TAP timing diagram.  
Figure 3. TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TM SS  
TDIS  
TM SH  
Test M ode Select  
(TM S)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics  
Over the Operating Range  
Parameter [9, 10]  
Clock  
Description  
Min  
Max  
Unit  
tTCYC  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH Time  
TCK Clock LOW Time  
50  
20  
ns  
MHz  
ns  
tTF  
tTH  
20  
20  
tTL  
ns  
Output Times  
tTDOV  
tTDOX  
Setup Times  
tTMSS  
tTDIS  
TCK Clock LOW to TDO Valid  
0
10  
ns  
ns  
TCK Clock LOW to TDO Invalid  
TMS Setup to TCK Clock Rise  
TDI Setup to TCK Clock Rise  
Capture Setup to TCK Rise  
5
5
5
ns  
ns  
ns  
tCS  
Hold Times  
tTMSH  
tTDIH  
TMS hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tCH  
Capture Hold after Clock Rise  
Notes  
9.  
t
and t refer to the setup and hold time requirements of latching data from the boundary scan register.  
CS CH  
10. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1 ns.  
R
F
Document Number: 001-74857 Rev. *F  
Page 15 of 31  
 
 
CY7C1481BV33  
3.3 V TAP AC Test Conditions  
2.5 V TAP AC Test Conditions  
Input pulse levels ...............................................VSS to 3.3 V  
Input rise and fall times ...................................................1 ns  
Input timing reference levels ......................................... 1.5 V  
Output reference levels ................................................ 1.5 V  
Test load termination supply voltage ............................ 1.5 V  
Input pulse levels ...............................................VSS to 2.5 V  
Input rise and fall time ....................................................1 ns  
Input timing reference levels ....................................... 1.25 V  
Output reference levels .............................................. 1.25 V  
Test load termination supply voltage .......................... 1.25 V  
3.3 V TAP AC Output Load Equivalent  
2.5 V TAP AC Output Load Equivalent  
1.25V  
1.5V  
50Ω  
50Ω  
TDO  
TDO  
ZO= 50Ω  
20pF  
ZO= 50Ω  
20pF  
TAP DC Electrical Characteristics and Operating Conditions  
(0 °C < TA < +70 °C; VDD = 3.135 V to 3.6 V unless otherwise noted)  
Parameter [11]  
Description  
IOH = –4.0 mA  
Conditions  
VDDQ = 3.3 V  
Min  
2.4  
2.0  
2.9  
2.1  
Max  
Unit  
V
VOH1  
Output HIGH Voltage  
Output HIGH Voltage  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
IOH = –1.0 mA  
IOH = –100 µA  
VDDQ = 2.5 V  
VDDQ = 3.3 V  
VDDQ = 2.5 V  
VDDQ = 3.3 V  
VDDQ = 2.5 V  
VDDQ = 3.3 V  
VDDQ = 2.5 V  
VDDQ = 3.3 V  
VDDQ = 2.5 V  
VDDQ = 3.3 V  
VDDQ = 2.5 V  
V
VOH2  
VOL1  
VOL2  
VIH  
V
0.4  
V
IOL = 8.0 mA  
IOL = 1.0 mA  
IOL = 100 µA  
V
0.4  
V
0.2  
V
0.2  
V
2.0  
1.7  
–0.3  
–0.3  
–5  
VDD + 0.3  
VDD + 0.3  
0.8  
V
V
VIL  
V
0.7  
V
IX  
GND < VIN < VDDQ  
5
µA  
Note  
11. All voltages refer to V (GND).  
SS  
Document Number: 001-74857 Rev. *F  
Page 16 of 31  
 
CY7C1481BV33  
Identification Register Definitions  
Bit# 24 is “1” in the ID Register definitions for both 2.5 V and 3.3 V versions of the device.  
CY7C1481BV33  
Instruction Field  
(2M × 36)  
Description  
Revision Number (31:29)  
000  
01011  
Describes the version number  
Device Depth (28:24)  
Reserved for internal use  
Architecture/Memory Type (23:18)  
Bus Width/Density (17:12)  
Cypress JEDEC ID Code (11:1)  
ID Register Presence Indicator (0)  
000001  
100100  
00000110100  
1
Defines memory type and architecture  
Defines width and density  
Enables unique identification of SRAM vendor  
Indicates the presence of an ID register  
Scan Register Sizes  
Register Name  
Bit Size (× 36)  
Instruction Bypass  
3
1
Bypass  
ID  
32  
73  
Boundary Scan Order – 165-ball FBGA  
Identification Codes  
Instruction  
EXTEST  
Code  
000  
Description  
Captures I/O ring contents.  
IDCODE  
001  
Loads the ID register with the vendor ID code and places the register between TDI and TDO.  
This operation does not affect SRAM operations.  
SAMPLE Z  
010  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces  
all SRAM output drivers to a High Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Does  
not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
Document Number: 001-74857 Rev. *F  
Page 17 of 31  
CY7C1481BV33  
Boundary Scan Exit Order  
(2M × 36)  
Bit #  
1
165-ball ID  
C1  
Bit #  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
165-ball ID  
R3  
Bit #  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
165-ball ID  
L10  
K11  
J11  
Bit #  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
165-ball ID  
B8  
A7  
B7  
B6  
A6  
B5  
A5  
A4  
B4  
B3  
A3  
A2  
B2  
2
D1  
P2  
3
E1  
R4  
4
D2  
P6  
K10  
J10  
5
E2  
R6  
6
F1  
N6  
H11  
G11  
F11  
7
G1  
F2  
P11  
R8  
8
9
G2  
J1  
P3  
E11  
D10  
D11  
C11  
G10  
F10  
E10  
A10  
B10  
A9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P4  
K1  
P8  
L1  
P9  
J2  
P10  
R9  
M1  
N1  
R10  
R11  
N11  
M11  
L11  
M10  
K2  
L2  
M2  
R1  
B9  
R2  
A8  
Document Number: 001-74857 Rev. *F  
Page 18 of 31  
CY7C1481BV33  
DC Input Voltage ................................ –0.5 V to VDD + 0.5 V  
Current into Outputs (LOW) ........................................ 20 mA  
Maximum Ratings  
Exceeding the maximum ratings may impair the useful life of the  
device. These user guidelines are not tested.  
Static Discharge Voltage  
(MIL-STD-883, Method 3015) ................................. >2001 V  
Storage Temperature ............................... –65 C to +150 C  
Latch Up Current ................................................... >200 mA  
Ambient Temperature  
with Power Applied .................................. –55 C to +125 C  
Operating Range  
Supply Voltage on VDD Relative to GND .....–0.3 V to +4.6 V  
Supply Voltage on VDDQ Relative to GND .... –0.3 V to +VDD  
Ambient  
Range  
VDD  
VDDQ  
Temperature  
0 °C to +70 °C  
–40 °C to +85 °C  
Commercial  
Industrial  
3.3 V– 5% / 2.5 V – 5% to  
DC Voltage Applied to Outputs  
in Tri-State ........................................–0.5 V to VDDQ + 0.5 V  
+ 10% VDD  
Electrical Characteristics  
Over the Operating Range  
Parameter [12, 13]  
Description  
Power Supply Voltage  
IO Supply Voltage  
Test Conditions  
Min  
Max  
3.6  
VDD  
2.625  
Unit  
V
VDD  
3.135  
3.135  
2.375  
2.4  
VDDQ  
For 3.3 V I/O  
For 2.5 V I/O  
V
V
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage[12]  
Input LOW Voltage[12]  
For 3.3 V I/O, IOH = –4.0 mA  
For 2.5 V I/O, IOH = –1.0 mA  
For 3.3 V I/O, IOL = 8.0 mA  
For 2.5 V I/O, IOL = 1.0 mA  
For 3.3 V I/O  
V
2.0  
V
0.4  
0.4  
V
V
2.0  
VDD + 0.3 V  
V
For 2.5 V I/O  
1.7  
VDD + 0.3 V  
V
For 3.3 V I/O  
–0.3  
–0.3  
–5  
0.8  
0.7  
5
V
For 2.5 V I/O  
V
Input Leakage Current Except ZZ GND VI VDDQ  
and MODE  
A  
Input Current of MODE  
Input = VSS  
–30  
5
A  
A  
A  
A  
A  
mA  
Input = VDD  
Input Current of ZZ  
Input = VSS  
–5  
Input = VDD  
30  
5
IOZ  
Output Leakage Current  
GND VI VDD, Output Disabled  
VDD = Max, IOUT = 0 mA,  
f = fMAX = 1/tCYC  
–5  
[14]  
IDD  
VDD Operating Supply Current  
7.5 ns cycle,  
133 MHz  
335  
ISB1  
ISB2  
ISB3  
ISB4  
Notes  
Automatic CE Power Down  
Current – TTL Inputs  
Max VDD, Device Deselected, 7.5 ns cycle,  
VIN VIH or VIN VIL, f = fMAX, 133 MHz  
inputs switching  
200  
150  
200  
165  
mA  
mA  
mA  
mA  
Automatic CE Power Down  
Current – CMOS Inputs  
Max VDD, Device Deselected, 7.5 ns cycle,  
VIN VDD – 0.3 V or VIN 0.3 V, 133 MHz  
f = 0, inputs static  
Automatic CE Power Down  
Current – CMOS Inputs  
Max VDD, Device Deselected, 7.5 ns cycle,  
VIN VDDQ – 0.3 V or VIN 0.3 V, 133 MHz  
f = fMAX, inputs switching  
Automatic CE Power Down  
Current – TTL Inputs  
Max VDD, Device Deselected, 7.5 ns cycle,  
VIN VDD – 0.3 V or VIN 0.3 V, 133 MHz  
f = 0, inputs static  
12. Overshoot: V  
< V +1.5 V (pulse width less than t  
/2). Undershoot: V  
> –2 V (pulse width less than t  
/2).  
IH(AC)  
DD  
CYC  
IL(AC)  
CYC  
13. T  
: assumes a linear ramp from 0 V to V  
within 200 ms. During this time V < V and V  
< V  
.
Power-up  
DD(minimum)  
IH  
DD  
DDQ  
DD  
14. The operation current is calculated with 50% read cycle and 50% write cycle.  
Document Number: 001-74857 Rev. *F  
Page 19 of 31  
 
 
 
CY7C1481BV33  
Capacitance  
100-pin TQFP 165-ball FBGA  
Parameter [15]  
Description  
Test Conditions  
Unit  
Max  
Max  
CADDRESS  
CDATA  
CCTRL  
CCLK  
Address Input Capacitance  
Data Input Capacitance  
Control Input Capacitance  
Clock Input Capacitance  
Input/Output Capacitance  
TA = 25 C, f = 1 MHz,  
VDD = 3.3 V, VDDQ = 2.5 V  
6
5
8
6
5
6
5
8
6
5
pF  
pF  
pF  
pF  
pF  
CIO  
Thermal Resistance  
100-pin TQFP 165-ballFBGA  
Parameter [15]  
Description  
Test Conditions  
Unit  
Package  
Package  
JA  
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow standard test  
methods and procedures for measuring  
thermal impedance, per EIA/JESD51.  
24.63  
16.3  
C/W  
JC  
Thermal Resistance  
(Junction to Case)  
2.28  
2.1  
C/W  
AC Test Loads and Waveforms  
Figure 4. AC Test Loads and Waveforms  
3.3V IO Test Load  
R = 317  
3.3V  
OUTPUT  
R = 50  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
90%  
10%  
Z = 50  
0
10%  
L
GND  
5 pF  
R = 351  
1 ns  
1 ns  
V = 1.5V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
2.5V IO Test Load  
R = 1667  
2.5V  
OUTPUT  
R = 50  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50  
0
10%  
L
5 pF  
R = 1538  
1 ns  
1 ns  
V = 1.25V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Note  
15. Tested initially and after any design or process change that may affect these parameters.  
Document Number: 001-74857 Rev. *F  
Page 20 of 31  
 
 
CY7C1481BV33  
Switching Characteristics  
Over the Operating Range  
133 MHz  
Unit  
Parameter [16, 17]  
Description  
VDD(typical) to the First Access [18]  
Min  
Max  
tPOWER  
Clock  
tCYC  
1
ms  
Clock Cycle Time  
Clock HIGH  
7.5  
2.5  
2.5  
ns  
ns  
ns  
tCH  
tCL  
Clock LOW  
Output Times  
tCDV  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low Z [19, 20, 21]  
2.5  
3.0  
6.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
tCLZ  
tCHZ  
Clock to High Z [19, 20, 21]  
3.8  
3.0  
tOEV  
OE LOW to Output Valid  
tOELZ  
tOEHZ  
Setup Times  
tAS  
OE LOW to Output Low Z [19, 20, 21]  
OE HIGH to Output High Z [19, 20, 21]  
0
3.0  
Address Setup Before CLK Rise  
ADSP, ADSC Setup Before CLK Rise  
ADV Setup Before CLK Rise  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADS  
tADVS  
tWES  
GW, BWE, BWX Setup Before CLK Rise  
Data Input Setup Before CLK Rise  
Chip Enable Setup  
tDS  
tCES  
Hold Times  
tAH  
Address Hold After CLK Rise  
ADSP, ADSC Hold After CLK Rise  
GW, BWE, BWX Hold After CLK Rise  
ADV Hold After CLK Rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADH  
tWEH  
tADVH  
tDH  
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
tCEH  
Notes  
16. Timing reference level is 1.5 V when V  
= 3.3 V and is 1.25 V when V  
= 2.5 V.  
DDQ  
DDQ  
17. Test conditions shown in (a) of Figure 4 on page 20 unless otherwise noted.  
18. This part has an internal voltage regulator; t is the time that the power is supplied above V  
initially, before a read or write operation can be initiated.  
DD(minimum)  
POWER  
19. t  
, t  
, t  
, and t  
are specified with AC test conditions shown in part (b) of Figure 4 on page 20. Transition is measured ±200 mV from steady-state voltage.  
CHZ CLZ OELZ  
OEHZ  
20. At any supplied voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same data  
CLZ  
OEHZ  
OELZ  
CHZ  
bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. The device is designed to  
achieve High Z before Low Z under the same system conditions.  
21. This parameter is sampled and not 100% tested.  
Document Number: 001-74857 Rev. *F  
Page 21 of 31  
 
 
 
 
 
 
CY7C1481BV33  
Timing Diagrams  
Figure 5. Read Cycle Timing [22]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
ADDRESS  
t
t
WES  
WEH  
GW, BWE, BWX  
Deselect Cycle  
t
t
CES  
CEH  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
t
CDV  
OEV  
OELZ  
t
t
OEHZ  
CHZ  
t
DOH  
t
CLZ  
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2  
+
3)  
Q(A2)  
Q(A2  
+
1)  
Q(A2  
+
2)  
Q(A1)  
Data Out (Q)  
High-Z  
t
CDV  
Burst wraps around  
to its initial state  
Single READ  
BURST  
READ  
DON’T CARE  
UNDEFINED  
Note  
22. On this diagram, when CE is LOW: CE is LOW, CE is HIGH, and CE is LOW. When CE is HIGH: CE is HIGH, CE is LOW, or CE is HIGH.  
1
2
3
1
2
3
Document Number: 001-74857 Rev. *F  
Page 22 of 31  
 
CY7C1481BV33  
Timing Diagrams (continued)  
Figure 6. Write Cycle Timing [23, 24]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Byte write signals are ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BWE, BWX  
GW  
t
t
WEH  
WES  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
ADV suspends burst  
OE  
t
t
DH  
DS  
Data in (D)  
High-Z  
D(A2)  
D(A2  
+
1)  
D(A2  
+
1)  
D(A2  
+
2)  
D(A2  
+
3)  
D(A3)  
D(A3  
+
1)  
D(A3 + 2)  
D(A1)  
t
OEHZ  
Data Out (Q)  
BURST READ  
BURST WRITE  
Extended BURST WRITE  
Single WRITE  
DON’T CARE  
UNDEFINED  
Notes  
23. On this diagram, when CE is LOW: CE is LOW, CE is HIGH, and CE is LOW. When CE is HIGH: CE is HIGH, CE is LOW, or CE is HIGH.  
1
2
3
1
2
3
24.  
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW, and BW LOW.  
X
Document Number: 001-74857 Rev. *F  
Page 23 of 31  
 
 
CY7C1481BV33  
Timing Diagrams (continued)  
Figure 7. Read/Write Cycle Timing [25, 26, 27]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE, BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
DS  
t
OELZ  
t
High-Z  
D(A3)  
D(A5)  
D(A6)  
Data In (D)  
t
OEHZ  
CDV  
Data Out (Q)  
Q(A1)  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
Back-to-Back  
WRITEs  
Back-to-Back READs  
Single WRITE  
BURST READ  
DON’T CARE  
UNDEFINED  
Notes  
25. On this diagram, when CE is LOW: CE is LOW, CE is HIGH, and CE is LOW. When CE is HIGH: CE is HIGH, CE is LOW, or CE is HIGH.  
1
2
3
1
2
3
26. The data bus (Q) remains in High Z following a write cycle, unless a new read access is initiated by ADSP or ADSC.  
27. GW is HIGH.  
Document Number: 001-74857 Rev. *F  
Page 24 of 31  
 
 
 
CY7C1481BV33  
Timing Diagrams (continued)  
Figure 8. ZZ Mode Timing [28, 29]  
CLK  
ZZ  
t
t
ZZ  
ZZREC  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes  
28. Device must be deselected when entering ZZ mode. See Truth Table on page 9 for all possible signal conditions to deselect the device.  
29. DQs are in High Z when exiting ZZ sleep mode.  
Document Number: 001-74857 Rev. *F  
Page 25 of 31  
 
 
CY7C1481BV33  
Ordering Information  
Not all of the speed, package, and temperature ranges are available. Please contact your local sales representative or visit  
www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Part and Package Type  
Ordering Code  
133 CY7C1481BV33-133AXI  
51-85050 100-pin TQFP (14 × 20 × 1.4 mm) Pb-free  
lndustrial  
Ordering Code Definitions  
CY  
7
C
1481 B V33 - 133 XX  
X X  
Temperature range: X = C or I  
C = Commercial = 0 °C to +70 °C; I = Industrial = –40 °C to +85 °C  
X = Pb-free  
Package Type: XX = A or BZ  
A = 100-pin TQFP (3 chip enable); BZ = 165-ball FBGA  
Speed Grade: 133 MHz  
V33 = 3.3 V VDD  
Die Revision: B errata fix PCN084636  
Part Identifier: 1481 = SCD, 2Mb × 36 (72Mb)  
Technology Code: C = CMOS  
Marketing Code: 7 = SRAM  
Company ID: CY = Cypress  
Document Number: 001-74857 Rev. *F  
Page 26 of 31  
 
CY7C1481BV33  
Package Diagrams  
Figure 9. 100-pin TQFP (14 × 20 × 1.4 mm) A100RA Package Outline, 51-85050  
ș 2  
ș
1
ș
DIMENSIONS  
MIN. NOM. MAX.  
1.60  
NOTE:  
SYMBOL  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. BODY LENGTH DIMENSION DOES NOT  
INCLUDE MOLD PROTRUSION/END FLASH.  
MOLD PROTRUSION/END FLASH SHALL  
A
0.05  
0.15  
A1  
A2  
D
1.35 1.40 1.45  
15.80 16.00 16.20  
13.90 14.00 14.10  
21.80 22.00 22.20  
19.90 20.00 20.10  
NOT EXCEED 0.0098 in (0.25 mm) PER SIDE.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC  
D1  
E
E1  
BODY SIZE INCLUDING MOLD MISMATCH.  
3. JEDEC SPECIFICATION NO. REF: MS-026.  
0.08  
0.08  
0°  
R
R
ș
0.20  
0.20  
7°  
1
2
ș 1  
ș 2  
c
0°  
11° 12° 13°  
0.20  
0.22 0.30 0.38  
0.45 0.60 0.75  
1.00 REF  
b
L
L1  
L 2  
L 3  
e
0.25 BSC  
0.20  
0.65 TYP  
51-85050 *G  
Document Number: 001-74857 Rev. *F  
Page 27 of 31  
 
CY7C1481BV33  
Package Diagrams (continued)  
Figure 10. 165-ball FBGA (15 × 17 × 1.4 mm (0.45 Ball Diameter)) Package Outline, 51-85165  
51-85165 *E  
Document Number: 001-74857 Rev. *F  
Page 28 of 31  
CY7C1481BV33  
Acronyms  
Document Conventions  
Units of Measure  
Acronym  
Description  
CE  
Chip Enable  
Symbol  
°C  
Unit of Measure  
CMOS  
EIA  
Complementary Metal Oxide Semiconductor  
Electronic Industries Alliance  
Fine-Pitch Ball Grid Array  
Input/Output  
degree Celsius  
megahertz  
microampere  
milliampere  
millimeter  
millisecond  
millivolt  
MHz  
µA  
mA  
mm  
ms  
mV  
ns  
FBGA  
I/O  
JEDEC  
OE  
Joint Electron Devices Engineering Council  
Output Enable  
SRAM  
TQFP  
TTL  
Static Random Access Memory  
Thin Quad Flat Pack  
nanosecond  
ohm  
Transistor-Transistor Logic  
%
percent  
pF  
V
picofarad  
volt  
W
watt  
Document Number: 001-74857 Rev. *F  
Page 29 of 31  
CY7C1481BV33  
Document History Page  
Document Title: CY7C1481BV33, 72-Mbit (2M × 36) Flow-Through SRAM  
Document Number: 001-74857  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN No.  
Description of Change  
**  
3466988  
3508574  
3862706  
GOPA  
GOPA  
PRIT  
01/17/2012 New data sheet.  
*A  
*B  
01/25/2012 Changed status from Preliminary to Final.  
01/09/2013 No technical updates.  
Completing Sunset Review.  
*C  
4575228  
PRIT  
11/20/2014 Updated Functional Description:  
Added “For a complete list of related documentation, click here.” at the end.  
Updated Package Diagrams:  
spec 51-85050 – Changed revision from *D to *E.  
*D  
5071457  
PRIT  
01/04/2016 Updated Package Diagrams:  
spec 51-85165 – Changed revision from *D to *E.  
Updated to new template.  
Completing Sunset Review.  
*E  
*F  
5309766  
6010395  
PRIT  
CNX  
06/15/2016 Updated Truth Table.  
Updated to new template.  
01/02/2018 Updated Ordering Information:  
Updated part numbers.  
Updated Package Diagrams:  
spec 51-85050 – Changed revision from *E to *G.  
Updated to new template.  
Completing Sunset Review.  
Document Number: 001-74857 Rev. *F  
Page 30 of 31  
CY7C1481BV33  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
Arm® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Community | Projects | Video | Blogs | Training | Components  
Technical Support  
Internet of Things  
Memory  
cypress.com/support  
cypress.com/memory  
cypress.com/mcu  
Microcontrollers  
PSoC  
cypress.com/psoc  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
cypress.com/wireless  
© Cypress Semiconductor Corporation, 2012-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,  
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 001-74857 Rev. *F  
Revised January 2, 2018  
Page 31 of 31  
i486 is a trademark and Intel and Pentium are registered trademarks of Intel Corporation.  

相关型号:

CY7C1481BV33-133BZI

Cache SRAM, 2MX36, 6.5ns, CMOS, PBGA165, 15 X 17 MM, 1.40 MM HEIGHT, MO-216, FBGA-165
CYPRESS

CY7C1481V25

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM
CYPRESS

CY7C1481V25-100AXC

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM
CYPRESS

CY7C1481V25-100AXI

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM
CYPRESS

CY7C1481V25-100BZC

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM
CYPRESS

CY7C1481V25-100BZI

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM
CYPRESS

CY7C1481V25-100BZXC

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM
CYPRESS

CY7C1481V25-100BZXI

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM
CYPRESS

CY7C1481V25-133AXC

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM
CYPRESS

CY7C1481V25-133AXI

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM
CYPRESS

CY7C1481V25-133BZC

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM
CYPRESS

CY7C1481V25-133BZI

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM
CYPRESS