CY7C1485V25-167BZI [CYPRESS]

72-Mbit (2M x 36/4M x 18) Pipelined DCD Sync SRAM; 72兆位( 2M ×36 / 4M ×18 )流水线DCD同步SRAM
CY7C1485V25-167BZI
型号: CY7C1485V25-167BZI
厂家: CYPRESS    CYPRESS
描述:

72-Mbit (2M x 36/4M x 18) Pipelined DCD Sync SRAM
72兆位( 2M ×36 / 4M ×18 )流水线DCD同步SRAM

静态存储器 CD
文件: 总26页 (文件大小:1149K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1484V25  
CY7C1485V25  
72-Mbit (2M x 36/4M x 18) Pipelined  
DCD Sync SRAM  
Features  
Functional Description[1]  
• Supports bus operation up to 250 MHz  
The CY7C1484V25/CY7C1485V25 SRAM integrates 2M x  
36/4M x 18 SRAM cells with advanced synchronous  
peripheral circuitry and a two-bit counter for internal burst  
operation. All synchronous inputs are gated by registers  
controlled by a positive-edge-triggered Clock Input (CLK). The  
synchronous inputs include all addresses, all data inputs,  
address-pipelining Chip Enable (CE1), depth-expansion Chip  
Enables (CE2 and CE3), Burst Control inputs (ADSC, ADSP,  
and ADV), Write Enables (BWX and BWE), and Global Write  
(GW). Asynchronous inputs include the Output Enable (OE)  
and the ZZ pin.  
• Available speed grades are 250, 200, and 167 MHz  
• Registered inputs and outputs for pipelined operation  
• Optimal for performance (double cycle deselect)  
• Depth expansion without wait state  
• 2.5V core power supply (VDD  
)
• 2.5V/1.8V IO supply (VDDQ  
)
• Fast clock-to-output times  
— 3.0 ns (for 250-MHz device)  
Addresses and chip enables are registered at the rising edge  
of clock when either Address Strobe Processor (ADSP) or  
Address Strobe Controller (ADSC) are active. Subsequent  
burst addresses can be internally generated as controlled by  
the Advance pin (ADV).  
• Provide high performance 3-1-1-1 access rate  
• User selectable burst counter supporting Intel®  
Pentium® interleaved or linear burst sequences  
• Separate processor and controller address strobes  
• Synchronous self timed writes  
Address, data inputs, and write controls are registered on-chip  
to initiate a self timed write cycle. This part supports byte write  
operations (see “Pin Definitions” on page 5 and “Truth Table”  
on page 8 for further details). Write cycles can be one to four  
bytes wide, as controlled by the byte write control inputs. GW  
active LOW causes all bytes to be written. This device incor-  
porates an additional pipelined enable register, which delays  
turning off the output buffers an additional cycle when a  
deselect is executed. This feature allows depth expansion  
without penalizing system performance.  
• Asynchronous output enable  
• CY7C1484V25, CY7C1485V25 available in JEDEC-  
standard Pb-free 100-pin TQFP, Pb-free and non-Pb-free  
165-ball FBGA package  
• IEEE 1149.1 JTAG-Compatible Boundary Scan  
• “ZZ” Sleep Mode option  
The CY7C1484V25/CY7C1485V25 operates from a +2.5V  
core power supply while all outputs operate with a +2.5V or a  
+1.8V supply. All inputs and outputs are JEDEC-standard  
JESD8-5-compatible.  
Selection Guide  
250 MHz  
200 MHz  
3.0  
167 MHz  
3.4  
Unit  
ns  
Maximum Access Time  
3.0  
450  
120  
Maximum Operating Current  
Maximum CMOS Standby Current  
450  
400  
mA  
mA  
120  
120  
Note  
1. For best practices recommendations, please refer to the Cypress application note AN1064, SRAM System Guidelines.  
Cypress Semiconductor Corporation  
Document #: 38-05286 Rev. *H  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised April 24, 2007  
[+] Feedback  
CY7C1484V25  
CY7C1485V25  
Logic Block Diagram – CY7C1484V25 (2M x 36)  
ADDRESS  
REGISTER  
A0,A1,A  
2
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQ D, DQP  
BYTE  
WRITE REGISTER  
D
DQ D, DQP  
BYTE  
WRITE DRIVER  
D
BW  
BW  
D
DQ ,DQP  
c
C
DQ  
BYTE  
WRITE REGISTER  
c,DQP C  
MEMORY  
ARRAY  
BYTE  
WRITE DRIVER  
C
OUTPUT  
BUFFERS  
OUTPUT  
REGISTERS  
SENSE  
AMPS  
DQs  
DQP  
DQP  
DQP  
A
B
C
DQ  
BYTE  
WRITE DRIVER  
B,DQP B  
E
DQ  
BYTE  
WRITE REGISTER  
B,DQP B  
BW  
BW  
B
DQP  
D
DQ A, DQP  
BYTE  
A
DQ A, DQP  
BYTE  
A
A
WRITE DRIVER  
WRITE REGISTER  
BWE  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
PIPELINED  
ENABLE  
CE  
CE  
CE  
1
2
3
OE  
SLEEP  
ZZ  
CONTROL  
Logic Block Diagram – CY7C1485V25 (4M x 18)  
ADDRESS  
REGISTER  
A0, A1,  
A
2
A[1:0]  
MODE  
ADV  
Q1  
BURST  
CLK  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQ  
BYTE  
WRITE DRIVER  
B , DQP B  
DQ B, DQP  
BYTE  
WRITE REGISTER  
B
OUTPUT  
BUFFERS  
BW  
B
OUTPUT  
REGISTERS  
DQ s,  
DQP  
DQP  
SENSE  
AMPS  
MEMORY  
ARRAY  
A
B
DQ A, DQP  
BYTE  
A
E
DQ  
A , DQP A  
BYTE  
WRITE REGISTER  
BW  
A
WRITE DRIVER  
BWE  
GW  
INPUT  
REGISTERS  
ENABLE  
REGISTER  
CE  
CE  
1
PIPELINED  
ENABLE  
2
3
CE  
OE  
SLEEP  
CONTROL  
ZZ  
Document #: 38-05286 Rev. *H  
Page 2 of 26  
[+] Feedback  
CY7C1484V25  
CY7C1485V25  
Pin Configurations  
100-Pin TQFP Pinout  
DQPC  
1
DQPB  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
NC  
VDDQ  
VSSQ  
NC  
A
NC  
NC  
VDDQ  
VSSQ  
NC  
DQPA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
VSS  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
2
DQC  
VDDQ  
VSSQ  
DQC  
3
4
5
6
DQC  
7
NC  
DQC  
8
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
NC  
VDD  
NC  
VSS  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQPB  
NC  
DQC  
9
10  
11  
9
VSSQ  
VDDQ  
DQC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
12  
DQC  
13  
NC  
14  
VDD  
15  
NC  
VDD  
ZZ  
CY7C1485V25  
(4M x 18)  
CY7C1484V25  
(2M X 36)  
NC  
16  
VDD  
ZZ  
VSS  
17  
DQD  
18  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
DQPA  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
NC  
DQD  
19  
20  
21  
VDDQ  
VSSQ  
DQD  
22  
DQD  
23  
DQD  
24  
DQD  
25  
26  
27  
NC  
VSSQ  
VDDQ  
DQD  
DQD  
29  
VSSQ  
VDDQ  
NC  
NC  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
28  
DQPD  
30  
Document #: 38-05286 Rev. *H  
Page 3 of 26  
[+] Feedback  
CY7C1484V25  
CY7C1485V25  
Pin Configurations (continued)  
165-Ball FBGA (15 x 17 x 1.4 mm) Pinout  
CY7C1484V25 (2M x 36)  
1
2
A
3
4
5
6
7
8
9
10  
A
11  
NC  
NC/288M  
NC/144M  
DQPC  
A
B
C
D
CE1  
BWC  
BWD  
VSS  
VDD  
BWB  
BWA  
VSS  
VSS  
CE  
ADSC  
BWE  
GW  
VSS  
VSS  
ADV  
ADSP  
VDDQ  
VDDQ  
3
A
CE2  
CLK  
VSS  
VSS  
A
NC/576M  
DQPB  
DQB  
OE  
VSS  
VDD  
NC  
DQC  
VDDQ  
VDDQ  
NC/1G  
DQB  
DQC  
DQC  
DQC  
DQC  
NC  
DQC  
DQC  
DQC  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQB  
DQB  
DQB  
NC  
DQB  
DQB  
DQB  
ZZ  
E
F
G
H
J
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
K
L
DQD  
DQPD  
NC  
DQD  
NC  
A
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
A
M
N
P
TDI  
A1  
TDO  
A0  
MODE  
A
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1485V25 (4M x 18)  
1
2
A
3
4
5
NC  
6
7
8
9
10  
A
11  
A
NC/288M  
NC/144M  
NC  
A
B
C
D
BWB  
NC  
CE  
CE1  
CE2  
BWE  
GW  
VSS  
VSS  
ADSC  
OE  
ADV  
ADSP  
VDDQ  
VDDQ  
3
A
BWA  
VSS  
VSS  
CLK  
VSS  
VSS  
A
NC/576M  
DQPA  
DQA  
NC  
VDDQ  
VDDQ  
VSS  
VDD  
VSS  
NC/1G  
NC  
NC  
DQB  
VDD  
NC  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
‘VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
DQA  
DQA  
ZZ  
E
F
NC  
NC  
G
H
J
NC  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
NC  
NC  
NC  
K
L
NC  
NC  
DQB  
DQPB  
NC  
NC  
NC  
A
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
A
M
N
P
TDI  
A1  
A0  
TDO  
MODE  
A
A
A
TMS  
TCK  
A
A
A
A
R
Document #: 38-05286 Rev. *H  
Page 4 of 26  
[+] Feedback  
CY7C1484V25  
CY7C1485V25  
Pin Definitions  
Pin Name  
IO  
Description  
A0, A1, A  
Input-  
Synchronous  
Address Inputs used to select one of the address locations. Sampled at the rising edge  
of the CLK if ADSP or ADSC is active LOW, and CE1, CE2, and CE3 are sampled active. A1:  
A0 are fed to the two-bit counter.  
BWA,BWB  
BWC,BWD  
Input-  
Synchronous  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes to the  
SRAM. Sampled on the rising edge of CLK.  
GW  
Input-  
Synchronous  
Global Write Enable Input, active LOW. When asserted LOW on the rising edge of CLK, a  
global write is conducted (ALL bytes are written, regardless of the values on BWX and BWE).  
BWE  
CLK  
CE1  
Input-  
Synchronous  
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal must  
be asserted LOW to conduct a byte write.  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. Also used to increment  
the burst counter when ADV is asserted LOW during a burst operation.  
Input-  
Synchronous  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction  
with CE2 and CE3 to select or deselect the device. ADSP is ignored if CE1 is HIGH. CE1 is  
sampled only when a new external address is loaded.  
CE2  
CE3  
OE  
Input-  
Synchronous  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction  
with CE1 and CE3 to select or deselect the device. CE2 is sampled only when a new external  
address is loaded.  
Input-  
Synchronous  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction  
with CE1 and CE2 to select or deselect the device. CE3 is sampled only when a new external  
address is loaded.  
Input-  
Asynchronous  
Output Enable, asynchronous input, active LOW. Controls the direction of the IO pins.  
When LOW, the IO pins behave as outputs. When deasserted HIGH, DQ pins are tri-stated,  
and act as input data pins. OE is masked during the first clock of a read cycle when emerging  
from a deselected state.  
ADV  
Input-  
Synchronous  
Advance Input signal, sampled on the rising edge of CLK, active LOW. When asserted,  
it automatically increments the address in a burst cycle.  
ADSP  
Input-  
Synchronous  
Address Strobe from Processor, sampled on the rising edge of CLK, active LOW. When  
asserted LOW, addresses presented to the device are captured in the address registers. A1:  
A0 are also loaded into the burst counter. When ADSP and ADSC are both asserted, only  
ADSP is recognized. ASDP is ignored when CE1 is deasserted HIGH.  
ADSC  
Input-  
Synchronous  
Address Strobe from Controller, sampled on the rising edge of CLK, active LOW. When  
asserted LOW, addresses presented to the device are captured in the address registers. A1:  
A0 are also loaded into the burst counter. When ADSP and ADSC are both asserted, only  
ADSP is recognized.  
ZZ  
Input-  
Asynchronous  
ZZ “sleep” Input, active HIGH. When asserted HIGH, places the device in a non-time-critical  
“sleep” condition with data integrity preserved. For normal operation, this pin has to be LOW  
or left floating. ZZ pin has an internal pull down.  
IO-  
Bidirectional Data IO lines. As inputs, they feed into an on-chip data register that is triggered  
by the rising edge of CLK. As outputs, they deliver the data contained in the memory location  
specified by the addresses presented during the previous clock rise of the read cycle. The  
direction of the pins is controlled by OE. When OE is asserted LOW, the pins behave as  
outputs. When HIGH, DQs and DQPX are placed in a tri-state condition.  
DQs, DQPs  
Synchronous  
VDD  
VSS  
Power Supply  
Ground  
Power supply inputs to the core of the device.  
Ground for the core of the device.  
Ground for the IO circuitry.  
[2]  
VSSQ  
IO Ground  
VDDQ  
IO Power Supply Power supply for the IO circuitry.  
Note  
2. Applicable for TQFP package. For BGA package V serves as ground for the core and the IO circuitry.  
SS  
Document #: 38-05286 Rev. *H  
Page 5 of 26  
[+] Feedback  
CY7C1484V25  
CY7C1485V25  
Pin Definitions (continued)  
Pin Name  
IO  
Description  
MODE  
Input-  
Static  
Selects Burst Order. When tied to GND selects linear burst sequence. When tied to VDD or  
left floating selects interleaved burst sequence. This is a strap pin and must remain static  
during device operation. Mode Pin has an internal pull up.  
TDO  
TDI  
JTAG Serial Output Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If the JTAG  
Synchronous  
feature is not used, this pin should be disconnected. This pin is not available on TQFP  
packages.  
JTAG Serial  
Input  
Synchronous  
Serial data-in to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature  
is not used, this pin can be disconnected or connected to VDD. This pin is not available on  
TQFP packages.  
TMS  
JTAG Serial  
Input  
Synchronous  
Serial data-in to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature  
is not used, this pin can be disconnected or connected to VDD. This pin is not available on  
TQFP packages.  
TCK  
NC  
JTAG Clock  
Clock input to the JTAG circuitry. If the JTAG feature is not used, this pin must be connected  
to VSS. This pin is not available on TQFP packages.  
No Connects. Not internally connected to the die  
NC(144M,  
288M,  
These pins are not connected. They will be used for expansion to the 144M, 288M, 576M  
and 1G densities.  
576M, 1G)  
is allowed to propagate through the output register and onto  
the data bus within tco if OE is active LOW. The only exception  
occurs when the SRAM is emerging from a deselected state  
to a selected state; its outputs are always tri-stated during the  
first cycle of the access. After the first cycle of the access, the  
OE signal controls the outputs. Consecutive single read cycles  
are supported.  
Functional Overview  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock.  
The CY7C1484V25/CY7C1485V25 supports secondary  
cache in systems using either a linear or interleaved burst  
sequence. The interleaved burst order supports Pentium and  
i486™ processors. The linear burst sequence is suited for  
processors that use a linear burst sequence. The burst order  
is user selectable, and is determined by sampling the MODE  
The CY7C1484V25/CY7C1485V25 is a double cycle deselect  
part. After the SRAM is deselected at clock rise by the chip  
select and either ADSP or ADSC signals, its output tri-states  
immediately after the next clock rise.  
input. Accesses can  
be initiated with either the ADSP  
or  
Single Write Accesses Initiated by ADSP  
ADSC. The ADV input controls address advancement through  
the burst sequence. A two-bit on-chip wraparound burst  
counter captures the first address in a burst sequence and  
automatically increments the address for the rest of the burst  
access.  
Byte write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BWX) inputs. GW overrides all  
byte write inputs and writes data to all four bytes. All writes are  
simplified with on-chip synchronous self timed write circuitry.  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and (2)  
chip select is asserted active. The address presented is  
loaded into the address register and the address  
advancement logic while being delivered to the memory core.  
The write signals (GW, BWE, and BWX) and ADV inputs are  
ignored during this first cycle.  
ADSP triggered write accesses need two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQx inputs is written into the corre-  
sponding address location in the memory core. If GW is HIGH,  
Synchronous Chip Selects CE1, CE2, CE3 and an  
asynchronous Output Enable (OE) provide easy bank  
output tri-state control.  
is ignored if  
CE1  
selection and  
ADSP  
then the BWE and  
signals control the write operation.  
BWX  
is HIGH.  
The CY7C1484V25/CY7C1485V25 provides byte write  
capability that is described in the “Truth Table for Read/Write”  
on page 9. Asserting BWE with the selected Byte Write input  
will selectively write to only the desired bytes. Bytes not  
selected during a byte write operation remain unaltered. A  
synchronous self timed write mechanism is provided to  
simplify the write operations.  
Single Read Accesses  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)  
chip selects are all asserted active, and (3) the write signals  
(GW, BWE) are all deasserted HIGH. ADSP is ignored if CE1  
is HIGH. The address presented to the address inputs is  
stored into the address advancement logic and the Address  
Register while being presented to the memory core. The corre-  
sponding data is allowed to propagate to the input of the  
Output Registers. At the rising edge of the next clock the data  
Because the CY7C1484V25/CY7C1485V25 is a common IO  
device, the Output Enable (OE) must be deasserted HIGH  
before presenting data to the DQ inputs. Doing so tri-states the  
output drivers. As a safety precaution, DQ are automatically  
Document #: 38-05286 Rev. *H  
Page 6 of 26  
[+] Feedback  
CY7C1484V25  
CY7C1485V25  
tri-stated whenever a write cycle is detected, regardless of the  
state of OE.  
Sleep Mode  
The ZZ input pin is asynchronous. Asserting ZZ places the  
SRAM in a power conservation “sleep” mode. Two clock  
cycles are required to enter into or exit from this “sleep” mode.  
While in this mode, data integrity is guaranteed. Accesses  
pending when entering the “sleep” mode are not considered  
valid nor is the completion of the operation guaranteed. The  
device must be deselected before entering the “sleep” mode.  
CEs, ADSP, and ADSC must remain inactive for the duration  
Single Write Accesses Initiated by ADSC  
ADSC write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deasserted HIGH, (3) chip select is asserted active, and (4)  
the appropriate combination of the write inputs (GW, BWE,  
and  
) are asserted active to conduct a write to the desired  
BWX  
byte(s). ADSC triggered write accesses need a single clock  
cycle to complete. The address presented is loaded into the  
address register and the address advancement logic while  
being delivered to the memory core. The ADV input is ignored  
during this cycle. If a global write is conducted, the data  
presented to the DQX is written into the corresponding address  
location in the memory core. If a byte write is conducted, only  
the selected bytes are written. Bytes not selected during a byte  
write operation remain unaltered. A synchronous self-timed  
write mechanism is provided to simplify the write operations.  
of tZZREC after the ZZ input returns LOW  
.
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Because the CY7C1484V25/CY7C1485V25 is a common IO  
device, the Output Enable (OE) must be deasserted HIGH  
before presenting data to the DQX inputs. Doing so tri-states  
the output drivers. As a safety precaution, DQX are automati-  
cally tri-stated whenever a write cycle is detected, regardless  
of the state of OE.  
Linear Burst Address Table  
(MODE = GND)  
Burst Sequences  
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
The CY7C1484V25/CY7C1485V25 provides  
a
two-bit  
Address  
A1: A0  
wraparound counter, fed by A[1:0], that implements either an  
interleaved or linear burst sequence. The interleaved burst  
sequence is designed specifically to support Intel Pentium  
applications. The linear burst sequence is designed to support  
processors that follow a linear burst sequence. The burst  
sequence is user selectable through the MODE input. Both  
read and write burst operations are supported.  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both read and write burst operations are supported.  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
Test Conditions  
ZZ > VDD – 0.2V  
Min  
Max  
Unit  
mA  
ns  
120  
tZZS  
ZZ > VDD – 0.2V  
2tCYC  
tZZREC  
tZZI  
ZZ recovery time  
ZZ < 0.2V  
2tCYC  
ns  
ZZ Active to sleep current  
ZZ Inactive to exit sleep current  
This parameter is sampled  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
0
ns  
Document #: 38-05286 Rev. *H  
Page 7 of 26  
[+] Feedback  
CY7C1484V25  
CY7C1485V25  
Truth Table  
The truth table for CY7C1484V25/CY7C1485V25 follows.[3, 4, 5, 6, 7]  
Operation  
Add. Used CE1 CE2 CE3 ZZ ADSP ADSC ADV WRITE OE CLK  
DQ  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Sleep Mode, Power Down  
Read Cycle, Begin Burst  
None  
None  
H
L
X
L
X
X
H
X
H
X
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
L
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
None  
L
X
L
L
None  
L
H
H
X
L
None  
L
X
X
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
L
None  
X
L
X
X
X
L
X
Tri-State  
Q
External  
External  
External  
External  
External  
Next  
L-H  
Read Cycle, Begin Burst  
L
L
L
H
X
L
L-H Tri-State  
Write Cycle, Begin Burst  
L
L
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
L-H  
L-H  
D
Q
Read Cycle, Begin Burst  
L
L
L
H
H
H
H
H
H
L
Read Cycle, Begin Burst  
L
L
L
H
L
L-H Tri-State  
L-H  
L-H Tri-State  
L-H  
L-H Tri-State  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
X
X
H
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
Q
Next  
L
H
L
Next  
L
Q
Next  
L
H
X
X
L
Next  
L
L-H  
L-H  
L-H  
D
D
Q
Next  
L
L
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
H
L
L-H Tri-State  
L-H  
L-H Tri-State  
Q
H
X
X
L-H  
L-H  
D
D
L
Notes  
3. X = “Don't Care.” H = Logic HIGH, L = Logic LOW.  
4. WRITE = L when any one or more Byte Write Enable signals and BWE = L or GW = L. WRITE = H when all Byte Write Enable signals, BWE, GW = H.  
5. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
6. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks after  
X
the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state. OE is a don't  
care for the remainder of the write cycle.  
7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tri-state when OE is  
inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).  
Document #: 38-05286 Rev. *H  
Page 8 of 26  
[+] Feedback  
CY7C1484V25  
CY7C1485V25  
Truth Table for Read/Write  
The read/write truth table for CY7C1484V25 follows.[5, 8]  
Function (CY7C1484V25)  
GW  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
BWE  
H
L
BWD  
X
H
H
H
H
H
H
H
H
L
BWC  
X
H
H
H
H
L
BWB  
X
H
H
L
BWA  
X
H
L
Read  
Read  
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Bytes B, A  
L
L
H
L
L
L
Write Byte C – (DQC and DQPC)  
Write Bytes C, A  
L
H
H
L
H
L
L
L
Write Bytes C, B  
L
L
H
L
Write Bytes C, B, A  
Write Byte D – (DQD and DQPD)  
Write Bytes D, A  
L
L
L
L
H
H
H
H
L
H
H
L
H
L
L
L
Write Bytes D, B  
L
L
H
L
Write Bytes D, B, A  
Write Bytes D, C  
L
L
L
L
L
H
H
L
H
L
Write Bytes D, C, A  
Write Bytes D, C, B  
Write All Bytes  
L
L
L
L
L
L
H
L
L
L
L
L
Write All Bytes  
X
X
X
X
X
Truth Table for Read/Write  
The read/write truth table for CY7C1485V25 follows.[5]  
Function (CY7C1485V25)  
GW  
H
BWE  
BWB  
BWA  
Read  
H
L
L
L
L
X
H
H
L
X
H
L
Read  
H
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write All Bytes  
H
H
H
L
H
L
Note  
8. Table contains only a partial listing of the byte write combinations. Any combination of BW is valid. Appropriate write is based on which byte write is active.  
X
Document #: 38-05286 Rev. *H  
Page 9 of 26  
[+] Feedback  
CY7C1484V25  
CY7C1485V25  
Test Mode Select (TMS)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TMS input gives commands to the TAP controller and is  
sampled on the rising edge of TCK. It is allowable to leave this  
ball unconnected if the TAP is not used. The ball is pulled up  
internally, resulting in a logic HIGH level.  
The CY7C1484V25/CY7C1485V25 incorporates a serial  
boundary scan test access port (TAP). This port operates in  
accordance with IEEE Standard 1149.1-1990 but does not  
have the set of functions required for full 1149.1 compliance.  
These functions from the IEEE specification are excluded  
because their inclusion places an added delay in the critical  
speed path of the SRAM. Note that the TAP controller  
functions in a manner that does not conflict with the operation  
of other devices using 1149.1 fully compliant TAPs. The TAP  
operates using JEDEC-standard 2.5V or 1.8V I/O logic levels.  
Test Data-In (TDI)  
The TDI ball serially inputs information into the registers and  
can be connected to the input of any of the registers. The  
register between TDI and TDO is chosen by the instruction  
that is loaded into the TAP instruction register. For information  
about loading the instruction register, see the TAP Controller  
State Diagram. TDI is internally pulled up and can be uncon-  
nected if the TAP is unused in an application. TDI is connected  
to the most significant bit (MSB) of any register. (See TAP  
Controller Block Diagram.)  
The CY7C1484V25/CY7C1485V25 contains a TAP controller,  
instruction register, boundary scan register, bypass register,  
and ID register.  
Disabling the JTAG Feature  
Test Data-Out (TDO)  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, tie TCK LOW (VSS) to  
prevent device clocking. TDI and TMS are internally pulled up  
and may be unconnected. They may alternatively be  
connected to VDD through a pull up resistor. TDO must be left  
unconnected. During power up, the device comes up in a reset  
state, which does not interfere with the operation of the device.  
The TDO output ball serially clocks data-out from the registers.  
Whether the output is active depends on the current state of  
the TAP state machine. The output changes on the falling edge  
of TCK. TDO is connected to the least significant bit (LSB) of  
any register. (See TAP Controller State Diagram.)  
TAP Controller Block Diagram  
TAP Controller State Diagram  
0
TEST-LOGIC  
1
RESET  
0
Bypass Register  
2
1
0
0
0
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
Selection  
Circuitry  
Selection  
Circuitry  
Instruction Register  
31 30 29  
Identification Register  
0
0
TDI  
TDO  
1
1
.
.
. 2 1  
CAPTURE-DR  
CAPTURE-IR  
0
0
x
.
.
.
.
. 2 1  
SHIFT-DR  
0
SHIFT-IR  
0
Boundary Scan Register  
1
1
1
1
EXIT1-DR  
EXIT1-IR  
0
0
PAUSE-DR  
0
PAUSE-IR  
1
0
TCK  
TAP CONTROLLER  
TM S  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
Performing a TAP Reset  
UPDATE-DR  
UPDATE-IR  
A RESET is performed by forcing TMS HIGH (VDD) for five  
rising edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is  
operating.  
1
0
1
0
At power up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
TAP Registers  
Test Access Port (TAP)  
Registers are connected between the TDI and TDO balls and  
enable data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Document #: 38-05286 Rev. *H  
Page 10 of 26  
[+] Feedback  
CY7C1484V25  
CY7C1485V25  
Instruction Register  
SAMPLE/PRELOAD; rather, it performs a capture of the IO  
ring when these instructions are executed.  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO balls as shown in the “TAP Controller Block  
Diagram” on page 10. During power up, the instruction register  
is loaded with the IDCODE instruction. It is also loaded with  
the IDCODE instruction if the controller is placed in a reset  
state, as described in the previous section.  
Instructions are loaded into the TAP controller during the Shift-  
IR state when the instruction register is placed between TDI  
and TDO. During this state, instructions are shifted through the  
instruction register through the TDI and TDO balls. To execute  
the instruction once it is shifted in, the TAP controller must be  
moved into the Update-IR state.  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary ‘01’ pattern to  
enable fault isolation of the board-level serial test data path.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction, which is to be  
executed whenever the instruction register is loaded with all  
zeros. EXTEST is not implemented in this SRAM TAP  
controller, and therefore this device is not compliant to 1149.1.  
The TAP controller does recognize an all-zero instruction.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between  
the two instructions. Unlike the SAMPLE/PRELOAD  
instruction, EXTEST places the SRAM outputs in a High-Z  
state.  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM. The x36 configuration has a  
73-bit-long register and the x18 configuration has a 54-bit-long  
register.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and  
enables the IDCODE to be shifted out of the device when the  
TAP controller enters the Shift-DR state.  
The boundary scan register is loaded with the contents of the  
RAM IO ring when the TAP controller is in the Capture-DR  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used  
to capture the contents of the IO ring.  
The IDCODE instruction is loaded into the instruction register  
at power up or whenever the TAP controller is in a test logic  
reset state.  
The Boundary Scan Order tables on page 14 show the order  
in which the bits are connected. Each bit corresponds to one  
of the bumps on the SRAM package. The MSB of the register  
is connected to TDI and the LSB is connected to TDO.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in “Identification Register Defini-  
tions” on page 13.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so  
the device TAP controller is not fully 1149.1 compliant.  
When the SAMPLE/PRELOAD instruction is loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and bidirectional balls  
is captured in the boundary scan register.  
TAP Instruction Set  
Overview  
Be aware that the TAP controller clock can only operate at a  
frequency up to 10 MHz, but the SRAM clock operates more  
than an order of magnitude faster. Because there is a large  
difference in the clock frequencies, it is possible that during the  
Capture-DR state, an input or output may undergo a transition.  
The TAP may then try to capture a signal while in transition  
(metastable state). This does not harm the device, but there is  
no guarantee as to the value that may be captured.  
Repeatable results may not be possible.  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in “Identification  
Codes” on page 14. Three of these instructions are listed as  
RESERVED and must not be used. The other five instructions  
are described in this section in detail.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller’s capture setup plus  
hold time (tCS plus tCH).  
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the IO  
buffers. The SRAM does not implement the 1149.1 commands  
EXTEST or INTEST or the PRELOAD portion of  
Document #: 38-05286 Rev. *H  
Page 11 of 26  
[+] Feedback  
CY7C1484V25  
CY7C1485V25  
The SRAM clock input might not be captured correctly if there  
is no way in a design to stop (or slow) the clock during a  
SAMPLE/PRELOAD instruction. If this is an issue, it is still  
possible to capture all other signals and simply ignore the  
value of the CLK captured in the boundary scan register.  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO balls. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
After the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO balls.  
Reserved  
Note that because the PRELOAD part of the command is not  
implemented, putting the TAP to the Update-DR state while  
performing a SAMPLE/PRELOAD instruction has the same  
effect as the Pause-DR command.  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TM SS  
TDIS  
TM SH  
Test M ode Select  
(TM S)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics  
Over the Operating Range[9, 10]  
Parameter  
Clock  
tTCYC  
tTF  
Description  
Min  
Max  
Unit  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
50  
ns  
MHz  
ns  
20  
tTH  
20  
20  
tTL  
ns  
Output Times  
tTDOV  
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
10  
ns  
ns  
tTDOX  
0
Setup Times  
tTMSS  
TMS Setup to TCK Clock Rise  
TDI Setup to TCK Clock Rise  
Capture Setup to TCK Rise  
5
5
5
ns  
ns  
tTDIS  
tCS  
Hold Times  
tTMSH  
TMS hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tTDIH  
tCH  
Capture Hold after Clock Rise  
Notes  
9.  
t
and t refer to the setup and hold time requirements of latching data from the boundary scan register.  
CS CH  
10. Test conditions are specified using the load in TAP AC Test Conditions. t /t = 1 ns.  
R
F
Document #: 38-05286 Rev. *H  
Page 12 of 26  
[+] Feedback  
CY7C1484V25  
CY7C1485V25  
2.5V TAP AC Test Conditions  
1.8V TAP AC Test Conditions  
Input pulse levels .................................................VSS to 2.5V  
Input rise and fall time..................................................... 1 ns  
Input timing reference levels.........................................1.25V  
Output reference levels.................................................1.25V  
Test load termination supply voltage.............................1.25V  
Input pulse levels..................................... 0.2V to VDDQ – 0.2  
Input rise and fall time .....................................................1 ns  
Input timing reference levels............................................. .9V  
Output reference levels .................................................. 0.9V  
Test load termination supply voltage .............................. 0.9V  
2.5V TAP AC Output Load Equivalent  
1.8V TAP AC Output Load Equivalent  
1.25V  
0.9V  
50  
50  
TDO  
TDO  
ZO= 50Ω  
ZO= 50Ω  
20pF  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; VDD = 2.5V ±0.125V unless otherwise noted)[11]  
Parameter  
VOH1  
Description  
Test Conditions  
VDDQ = 2.5V  
Min.  
1.7  
Max.  
Unit  
V
Output HIGH Voltage IOH = –1.0 mA  
Output HIGH Voltage IOH = –100 µA  
VOH2  
VDDQ = 2.5V  
VDDQ = 1.8V  
VDDQ = 2.5V  
VDDQ = 2.5V  
VDDQ = 1.8V  
VDDQ = 2.5V  
VDDQ = 1.8V  
VDDQ = 2.5V  
VDDQ = 1.8V  
2.1  
V
1.6  
V
VOL1  
VOL2  
Output LOW Voltage IOL = 1.0 mA  
0.4  
0.2  
0.2  
V
Output LOW Voltage IOL = 100 µA  
V
V
VIH  
VIL  
IX  
Input HIGH Voltage  
Input LOW Voltage  
1.7  
1.26  
–0.3  
–0.3  
–5  
VDD + 0.3  
VDD + 0.3  
0.7  
V
V
V
0.36  
V
Input Load Current  
GND VI VDDQ  
5
µA  
Identification Register Definitions  
CY7C1484V25  
(2M x 36)  
CY7C1485V25  
Instruction Field  
Description  
(4M x 18)  
Revision Number (31:29)  
000  
01011  
000  
Describes the version number  
Reserved for internal use  
Device Depth (28:24)  
01011  
Architecture/Memory Type(23:18)  
Bus Width/Density (17:12)  
Cypress JEDEC ID Code (11:1)  
ID Register Presence Indicator (0)  
000110  
100100  
00000110100  
1
000110  
010100  
00000110100  
1
Defines memory type and architecture  
Defines width and density  
Enables unique identification of SRAM vendor  
Indicates the presence of an ID register  
Note  
11. All voltages refer to V (GND).  
SS  
Document #: 38-05286 Rev. *H  
Page 13 of 26  
[+] Feedback  
CY7C1484V25  
CY7C1485V25  
Scan Register Sizes  
Register Name  
Bit Size (x36)  
Bit Size(x18)  
Instruction  
3
1
3
1
Bypass  
ID  
32  
73  
32  
54  
Boundary Scan Order -165BGA  
Identification Codes  
Instruction  
EXTEST  
Code  
Description  
000 Captures IO ring contents.  
IDCODE  
001 Loads the ID register with the vendor ID code and places the register between TDI and TDO. This  
operation does not affect SRAM operations.  
SAMPLE Z  
010 Captures IO ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011 Do Not Use: This instruction is reserved for future use.  
SAMPLE/  
PRELOAD  
100 Captures IO ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101 Do Not Use: This instruction is reserved for future use.  
110 Do Not Use: This instruction is reserved for future use.  
111 Places the bypass register between TDI and TDO. This operation does not affect SRAM operations.  
Boundary Scan Exit Order (2M x 36)  
Bit #  
1
165-Ball ID  
C1  
Bit #  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
165-Ball ID  
R3  
Bit #  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
165-Ball ID  
L10  
K11  
J11  
Bit #  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
165-Ball ID  
B8  
A7  
B7  
B6  
A6  
B5  
A5  
A4  
B4  
B3  
A3  
A2  
B2  
2
D1  
P2  
3
E1  
R4  
4
D2  
P6  
K10  
J10  
5
E2  
R6  
6
F1  
N6  
H11  
G11  
F11  
7
G1  
F2  
P11  
R8  
8
9
G2  
J1  
P3  
E11  
D10  
D11  
C11  
G10  
F10  
E10  
A10  
B10  
A9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P4  
K1  
P8  
L1  
P9  
J2  
P10  
R9  
M1  
N1  
R10  
R11  
N11  
M11  
L11  
M10  
K2  
L2  
M2  
R1  
B9  
R2  
A8  
Document #: 38-05286 Rev. *H  
Page 14 of 26  
[+] Feedback  
CY7C1484V25  
CY7C1485V25  
Boundary Scan Exit Order (4M x 18)  
Bit #  
1
165-Ball ID  
D2  
Bit #  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
165-Ball ID  
R8  
Bit #  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
165-Ball ID  
C11  
A11  
A10  
B10  
A9  
2
E2  
P3  
3
F2  
P4  
4
G2  
P8  
5
J1  
P9  
6
K1  
P10  
R9  
B9  
7
L1  
A8  
8
M1  
N1  
R10  
R11  
M10  
L10  
K10  
J10  
H11  
G11  
F11  
E11  
D11  
B8  
9
A7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
R1  
B7  
R2  
B6  
R3  
A6  
P2  
B5  
R4  
A4  
P6  
B3  
R6  
A3  
N6  
A2  
P11  
B2  
Document #: 38-05286 Rev. *H  
Page 15 of 26  
[+] Feedback  
CY7C1484V25  
CY7C1485V25  
DC Input Voltage ................................... –0.5V to VDD + 0.5V  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Exceeding the maximum ratings may impair the useful life of  
the device. These user guidelines are not tested.  
Static Discharge Voltage........................................... >2001V  
(MIL-STD-883, Method 3015)  
Storage Temperature .................................65°C to +150°C  
Latch Up Current .................................................... >200 mA  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Operating Range  
Supply Voltage on VDD Relative to GND........ –0.5V to +3.6V  
Supply Voltage on VDDQ Relative to GND ......0.5V to +VDD  
Ambient  
Temperature  
Range  
VDD  
VDDQ  
Commercial 0°C to +70°C 2.5V –5%/+5% 1.7V to VDD  
DC Voltage Applied to Outputs  
in Tri-State........................................... –0.5V to VDDQ + 0.5V  
Industrial  
–40°Cto+85°C  
Electrical Characteristics  
Over the Operating Range[12, 13]  
Parameter  
VDD  
Description  
Power Supply Voltage  
IO Supply Voltage  
Test Conditions  
Min.  
2.375  
2.375  
1.7  
Max.  
2.625  
VDD  
Unit  
V
VDDQ  
For 2.5V IO  
For 1.8V IO  
V
1.9  
V
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH Voltage  
Output LOW Voltage  
For 2.5V IO, IOH = –1.0 mA  
For 1.8V IO, IOH = –100 µA  
For 2.5V IO, IOL = 1.0 mA  
For 1.8V IO, IOL = 100 µA  
2.0  
V
1.6  
V
0.4  
0.2  
V
V
Input HIGH Voltage[12] For 2.5V IO  
1.7  
1.26  
–0.3  
–0.3  
–5  
VDD + 0.3V  
V
For 1.8V IO  
V
DD + 0.3V  
V
Input LOW Voltage[12]  
For 2.5V IO  
For 1.8V IO  
0.7  
V
0.36  
5
V
Input Leakage Current GND VI VDDQ  
except ZZ and MODE  
µA  
Input Current of MODE Input = VSS  
Input = VDD  
–30  
–5  
µA  
µA  
5
Input Current of ZZ  
Input = VSS  
Input = VDD  
µA  
30  
5
µA  
IOZ  
IDD  
Output Leakage Current GND VI VDDQ, Output Disabled  
–5  
µA  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
4.0-ns cycle, 250 MHz  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
450  
450  
400  
200  
200  
200  
120  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Current  
f = fMAX = 1/tCYC  
ISB1  
Automatic CE  
Power Down  
Current—TTL Inputs  
VDD = Max, Device Deselected, 4.0-ns cycle, 250 MHz  
VIN VIH or VIN VIL  
f = fMAX = 1/tCYC  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
ISB2  
Automatic CE  
Power Down  
Current—CMOS Inputs f = 0  
VDD = Max, Device Deselected, All speeds  
VIN 0.3V or VIN > VDDQ – 0.3V,  
ISB3  
Automatic CE  
Power Down  
Current—CMOS Inputs f = fMAX = 1/tCYC  
VDD = Max, Device Deselected, 4.0-ns cycle, 250 MHz  
200  
200  
200  
135  
mA  
mA  
mA  
mA  
or VIN 0.3V or VIN > VDDQ – 0.3V  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
ISB4  
Automatic CE  
VDD = Max, Device Deselected, All Speeds  
Power Down  
Current—TTL Inputs  
VIN VIH or VIN VIL, f = 0  
Notes  
12. Overshoot: V (AC) < V +1.5V (pulse width less than t  
/2). Undershoot: V (AC) >–2V (pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
< V  
DD.  
13. Power up: assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V  
DD  
IH  
DD  
DDQ  
Document #: 38-05286 Rev. *H  
Page 16 of 26  
[+] Feedback  
CY7C1484V25  
CY7C1485V25  
Capacitance  
Tested initially and after any design or process change that may affect these parameters.  
100 TQFP  
Package  
165 FBGA  
Unit  
Parameter  
Description  
Test Conditions  
Package  
CADDRESS  
CDATA  
CCTRL  
CCLK  
Address Input Capacitance  
Data Input Capacitance  
Control Input Capacitance  
Clock Input Capacitance  
Input/Output Capacitance  
TA = 25°C, f = 1 MHz,  
6
5
8
6
5
6
5
8
6
5
pF  
pF  
pF  
pF  
pF  
V
DD = 2.5V  
VDDQ = 2.5V  
CI/O  
Thermal Resistance  
Tested initially and after any design or process change that may affect these parameters.  
100 TQFP  
Package  
165 FBGA  
Package  
Parameter  
Description  
Test Conditions  
Unit  
ΘJA  
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow standard test  
methods and procedures for  
measuring thermal impedance, per  
EIA/JESD51.  
24.63  
16.3  
°C/W  
ΘJC  
Thermal Resistance  
(Junction to Case)  
2.28  
2.1  
°C/W  
AC Test Loads and Waveforms  
2.5V IO Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
L
GND  
5 pF  
R = 1583Ω  
1 ns  
1 ns  
V = 1.25V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
1.8V IO Test Load  
R = 14KΩ  
1.8V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ – 0.2  
0.2  
90%  
10%  
Z = 50Ω  
0
10%  
L
5 pF  
R = 14 KΩ  
1 ns  
1 ns  
V = 0.9V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Document #: 38-05286 Rev. *H  
Page 17 of 26  
[+] Feedback  
CY7C1484V25  
CY7C1485V25  
Switching Characteristics  
Over the Operating Range. Timing reference level is 1.25V when VDDQ = 2.5V and is 0.9V when VDDQ = 1.8V. Test conditions  
shown in (a) of “AC Test Loads and Waveforms” on page 17 unless otherwise noted.  
250 MHz  
200 MHz  
167 MHz  
Parameter  
tPOWER  
Description  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
VDD(Typical) to the First Access[14]  
1
1
1
ms  
Clock  
tCYC  
Clock Cycle Time  
Clock HIGH  
4.0  
2.0  
2.0  
5
6
ns  
ns  
ns  
tCH  
2.0  
2.0  
2.2  
2.2  
tCL  
Clock LOW  
Output Times  
tCO  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z[15, 16, 17]  
3.0  
3.0  
3.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
1.3  
1.3  
1.3  
1.3  
1.5  
1.5  
tCLZ  
tCHZ  
Clock to High-Z[15, 16, 17]  
3.0  
3.0  
3.0  
3.0  
3.4  
3.4  
tOEV  
OE LOW to Output Valid  
tOELZ  
tOEHZ  
Setup Times  
tAS  
OE LOW to Output Low-Z[15, 16, 17]  
OE HIGH to Output High-Z[15, 16, 17]  
0
0
0
3.0  
3.0  
3.4  
Address Setup Before CLK Rise  
ADSC, ADSP Setup Before CLK Rise  
ADV Setup Before CLK Rise  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADS  
tADVS  
tWES  
GW, BWE, BWX Setup Before CLK Rise  
Data Input Setup Before CLK Rise  
Chip Enable Setup Before CLK Rise  
tDS  
tCES  
Hold Times  
tAH  
Address Hold After CLK Rise  
ADSP, ADSC Hold After CLK Rise  
ADV Hold After CLK Rise  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADH  
tADVH  
tWEH  
GW, BWE, BWX Hold After CLK Rise  
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
tDH  
tCEH  
Notes  
14. This part has an internal voltage regulator; t  
is the time that the power needs to be supplied above V (minimum) initially before a read or write operation  
DD  
POWER  
can be initiated.  
15. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of “AC Test Loads and Waveforms” on page 17. Transition is measured ±200 mV  
CHZ CLZ OELZ  
OEHZ  
from steady-state voltage.  
16. At any supplied voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
OEHZ  
OELZ  
CHZ  
CLZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z before Low-Z under the same system conditions.  
17. This parameter is sampled and not 100% tested.  
Document #: 38-05286 Rev. *H  
Page 18 of 26  
[+] Feedback  
CY7C1484V25  
CY7C1485V25  
Switching Waveforms  
Figure 1 shows read cycle timing waveforms.[18]  
Figure 1. Read Cycle Timing  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Burst continued with  
new base address  
t
t
WEH  
WES  
GW, BWE,BW  
X
Deselect  
cycle  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
OEV  
CO  
t
t
CHZ  
t
t
t
OELZ  
OEHZ  
DOH  
CLZ  
t
Q(A2)  
Q(A2  
+
1)  
Q(A2 + 2)  
Q(A2  
+
3)  
Q(A2)  
Q(A2  
+
1)  
Q(A3)  
Q(A1)  
Data Out (DQ)  
High-Z  
CO  
Burst wraps around  
to its initial state  
Single READ  
BURST READ  
DON’T CARE  
UNDEFINED  
Note  
18. On this diagram, when CE is LOW: CE is LOW, CE is HIGH, and CE is LOW. When CE is HIGH: CE is HIGH, CE is LOW, or CE is HIGH.  
1
2
3
1
2
3
Document #: 38-05286 Rev. *H  
Page 19 of 26  
[+] Feedback  
CY7C1484V25  
CY7C1485V25  
Switching Waveforms (continued)  
Figure 2 shows write cycle timing waveforms.[18, 19]  
Figure 2. Write Cycle Timing  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
BWE,  
Byte write signals are ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BW  
X
t
t
WEH  
WES  
GW  
CE  
t
t
CEH  
CES  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
DH  
DS  
D(A2)  
D(A2  
+
1)  
D(A2  
+
1)  
D(A2  
+
2)  
D(A2  
+
3)  
D(A3)  
D(A3  
+
1)  
D(A3  
+
2)  
D(A1)  
High-Z  
Data in (D)  
t
OEHZ  
Data Out (Q)  
BURST READ  
BURST WRITE  
Single WRITE  
Extended BURST WRITE  
DON’T CARE  
UNDEFINED  
Note  
19.  
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW, and BW LOW.  
X
Document #: 38-05286 Rev. *H  
Page 20 of 26  
[+] Feedback  
CY7C1484V25  
CY7C1485V25  
Switching Waveforms (continued)  
Figure 3 shows read/write cycle timing waveforms.[18, 20, 21]  
Figure 3. Read/Write Cycle Timing  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE, BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
t
CO  
DS  
t
OELZ  
Data In (D)  
High-Z  
D(A3)  
D(A5)  
D(A6)  
t
t
CLZ  
OEHZ  
Data Out (Q)  
Q(A1)  
Back-to-Back READs  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
High-Z  
BURST READ  
Back-to-Back  
WRITEs  
Single WRITE  
DON’T CARE  
UNDEFINED  
Notes  
20. The data bus (Q) remains in high-Z following a write cycle, unless a new read access is initiated by ADSP or ADSC.  
21. GW is HIGH.  
Document #: 38-05286 Rev. *H  
Page 21 of 26  
[+] Feedback  
CY7C1484V25  
CY7C1485V25  
Switching Waveforms (continued)  
Figure 4 shows ZZ mode timing waveforms.[22, 23]  
Figure 4. ZZ Mode Timing  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes  
22. Device must be deselected when entering ZZ mode. See “Truth Table” on page 8 for all possible signal conditions to deselect the device.  
23. DQs are in high-Z when exiting ZZ sleep mode  
Document #: 38-05286 Rev. *H  
Page 22 of 26  
[+] Feedback  
CY7C1484V25  
CY7C1485V25  
Ordering Information  
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or visit  
www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Part and Package Type  
Ordering Code  
167 CY7C1484V25-167AXC  
CY7C1485V25-167AXC  
CY7C1484V25-167BZC  
CY7C1485V25-167BZC  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
Commercial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1484V25-167BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
CY7C1485V25-167BZXC  
CY7C1484V25-167AXI  
CY7C1485V25-167AXI  
CY7C1484V25-167BZI  
CY7C1485V25-167BZI  
CY7C1484V25-167BZXI  
CY7C1485V25-167BZXI  
200 CY7C1484V25-200AXC  
CY7C1485V25-200AXC  
CY7C1484V25-200BZC  
CY7C1485V25-200BZC  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
lndustrial  
Commercial  
CY7C1484V25-200BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
CY7C1485V25-200BZXC  
CY7C1484V25-200AXI  
CY7C1485V25-200AXI  
CY7C1484V25-200BZI  
CY7C1485V25-200BZI  
CY7C1484V25-200BZXI  
CY7C1485V25-200BZXI  
250 CY7C1484V25-250AXC  
CY7C1485V25-250AXC  
CY7C1484V25-250BZC  
CY7C1485V25-250BZC  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
lndustrial  
Commercial  
CY7C1484V25-250BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
CY7C1485V25-250BZXC  
CY7C1484V25-250AXI  
CY7C1485V25-250AXI  
CY7C1484V25-250BZI  
CY7C1485V25-250BZI  
CY7C1484V25-250BZXI  
CY7C1485V25-250BZXI  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
Industrial  
Document #: 38-05286 Rev. *H  
Page 23 of 26  
[+] Feedback  
CY7C1484V25  
CY7C1485V25  
Package Diagrams  
Figure 5. 100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm), 51-85050  
16.00 0.20  
14.00 0.10  
1.40 0.05  
100  
81  
80  
1
0.30 0.08  
0.65  
TYP.  
12° 1°  
(8X)  
SEE DETAIL  
A
30  
51  
31  
50  
0.20 MAX.  
1.60 MAX.  
R 0.08 MIN.  
0.20 MAX.  
0° MIN.  
SEATING PLANE  
STAND-OFF  
0.05 MIN.  
0.15 MAX.  
NOTE:  
1. JEDEC STD REF MS-026  
0.25  
GAUGE PLANE  
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH  
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE  
R 0.08 MIN.  
0.20 MAX.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH  
3. DIMENSIONS IN MILLIMETERS  
0°-7°  
0.60 0.15  
0.20 MIN.  
1.00 REF.  
51-85050-*B  
DETAIL  
A
Document #: 38-05286 Rev. *H  
Page 24 of 26  
[+] Feedback  
CY7C1484V25  
CY7C1485V25  
Package Diagrams (continued)  
Figure 6. 165-Ball FBGA (15 x 17 x 1.4 mm), 51-85165  
PIN 1 CORNER  
BOTTOM VIEW  
TOP VIEW  
Ø0.05 M C  
PIN 1 CORNER  
1
Ø0.25 M C A B  
Ø0.45 0.05(165X)  
2
3
4
5
6
7
8
9
10  
11  
11 10  
9
8
7
6
5
4
3
2
1
A
B
A
B
C
D
C
D
E
E
F
F
G
G
H
J
H
J
K
K
L
L
M
M
N
P
R
N
P
R
A
1.00  
5.00  
10.00  
B
15.00 0.10  
0.15(4X)  
SEATING PLANE  
C
51-85165-*A  
i486 is a trademark, and Intel and Pentium are registered trademarks of Intel Corporation. All product and company names  
mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05286 Rev. *H  
Page 25 of 26  
© Cypress Semiconductor Corporation, 2002-2007. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the  
use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to  
be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
[+] Feedback  
CY7C1484V25  
CY7C1485V25  
Document History Page  
Document Title: CY7C1484V25/CY7C1485V25 72-Mbit (2M x 36/4M x 18) Pipelined DCD Sync SRAM  
Document Number: 38-05286  
Issue  
Date  
Orig. of  
Change  
REV.  
ECN NO.  
Description of Change  
**  
114672 08/21/02  
118285 01/20/03  
PKS  
HGK  
New Data Sheet  
*A  
Changed tCO from 2.4 to 2.6 ns for 250 MHz  
Updated Features on package offering  
Updated Ordering information  
Changed Advanced Information to Preliminary  
*B  
233368 See ECN  
NJY  
Changed timing diagrams  
Changed logic block diagrams  
Modified Functional Description  
Modified “Functional Overview” section  
Added boundary scan order for all packages  
Included thermal numbers and capacitance values for all packages  
Included IDD and ISB values  
Removed 250-MHz offering and included 225-MHz speed bin  
Changed package outline for 165FBGA package  
Removed 119-BGA package offering  
*C  
299511 See ECN  
SYT  
Removed 225-MHz offering and included 250-MHz speed bin  
Changed tCYC from 4.4 ns to 4.0 ns for 250-MHz Speed Bin  
Changed ΘJA from 16.8 to 24.63 °C/W and ΘJC from 3.3 to 2.28 °C/W for 100  
TQFP Package on Page # 16  
Added lead-free information for 100-Pin TQFP and 165 FBGA Packages  
Added comment of ‘Lead-free BG packages availability’ below the Ordering  
Information  
*D  
*E  
320197 See ECN  
331513 See ECN  
PCI  
PCI  
Changed typo in the part number from CY7C1484V33 and CY7C1485V33 to  
CY7C1484V25 and CY7C1485V25 respectively on page numbers 2, 3, 4 and  
21  
Unshaded 200 and 167 MHz speed bins in the AC/DC Table and Selection  
Guide  
Address expansion pins/balls in the pinouts for all packages are modified as  
per JEDEC standard  
Added Address Expansion pins in the Pin Definitions Table  
Added Industrial Operating Range  
Modified VOL, VOH Test Conditions  
Updated Ordering Information Table  
*F  
416221 See ECN  
RXU  
Converted from Preliminary to Final  
Changed address of Cypress Semiconductor Corporation on Page# 1 from  
“3901 North First Street” to “198 Champion Court”  
Changed the description of IX from Input Load Current to Input Leakage  
Current on page# 16  
Changed the IX current values of MODE on page # 16 from -5 µA and 30 µA  
to -30 µA and 5 µA  
Changed the IX current values of ZZ on page # 16 from -30 µA and 5 µA  
to -5 µA and 30 µA  
Changed VIH < VDD to VIH < VDD on page # 16  
Replaced Package Name column with Package Diagram in the Ordering  
Information table  
*G  
*H  
472335 See ECN  
VKN  
Added the Maximum Rating for Supply Voltage on VDDQ Relative to GND  
Changed tTH, tTL from 25 ns to 20 ns and tTDOV from 5 ns to 10 ns in TAP AC  
Switching Characteristics table  
Updated the Ordering Information table.  
1062042 See ECN VKN/KKVTMP Added footnote #2 related to VSSQ  
Document #: 38-05286 Rev. *H  
Page 26 of 26  
[+] Feedback  

相关型号:

CY7C1485V25-167BZXC

72-Mbit (2M x 36/4M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1485V25-167BZXI

72-Mbit (2M x 36/4M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1485V25-200AXC

72-Mbit (2M x 36/4M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1485V25-200AXI

72-Mbit (2M x 36/4M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1485V25-200BZC

72-Mbit (2M x 36/4M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1485V25-200BZI

72-Mbit (2M x 36/4M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1485V25-200BZXC

72-Mbit (2M x 36/4M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1485V25-200BZXI

72-Mbit (2M x 36/4M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1485V25-250AXC

72-Mbit (2M x 36/4M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1485V25-250AXI

72-Mbit (2M x 36/4M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1485V25-250BZC

72-Mbit (2M x 36/4M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1485V25-250BZI

72-Mbit (2M x 36/4M x 18) Pipelined DCD Sync SRAM
CYPRESS