CY7C1486BV25-167BGC [CYPRESS]

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM; 72兆位( 2M ×36 / 4M ×18 / 1M X 72 ),流水线同步SRAM
CY7C1486BV25-167BGC
型号: CY7C1486BV25-167BGC
厂家: CYPRESS    CYPRESS
描述:

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
72兆位( 2M ×36 / 4M ×18 / 1M X 72 ),流水线同步SRAM

存储 内存集成电路 静态存储器 时钟
文件: 总31页 (文件大小:933K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
72-Mbit (2M x 36/4M x 18/1M x 72)  
Pipelined Sync SRAM  
Features  
Functional Description  
Supports bus operation up to 250 MHz  
Available speed grades are 250, 200, and 167 MHz  
Registered inputs and outputs for pipelined operation  
2.5V core power supply  
The  
CY7C1480BV25/CY7C1482BV25/CY7C1486BV25[1]  
SRAM integrates 2M x 36/4M x 18/1M × 72 SRAM cells with  
advanced synchronous peripheral circuitry and a two-bit counter  
for internal burst operation. All synchronous inputs are gated by  
registers controlled by a positive-edge-triggered Clock Input  
(CLK). The synchronous inputs include all addresses, all data  
inputs, address-pipelining Chip Enable (CE1), depth-expansion  
Chip Enables (CE2 and CE3), Burst Control inputs (ADSC,  
ADSP, and ADV), Write Enables (BWX, and BWE), and Global  
Write (GW). Asynchronous inputs include the Output Enable  
(OE) and the ZZ pin.  
2.5V IO operation  
Fast clock-to-output time  
3.0 ns (for 250 MHz device)  
Provide high performance 3-1-1-1 access rate  
Addresses and chip enables are registered at rising edge of  
clock when either Address Strobe Processor (ADSP) or Address  
Strobe Controller (ADSC) is active. Subsequent burst addresses  
can be internally generated as controlled by the Advance pin  
(ADV).  
User selectable burst counter supporting Intel® Pentium®  
interleaved or linear burst sequences  
Separate processor and controller address strobes  
Synchronous self timed writes  
Address, data inputs, and write controls are registered on-chip  
to initiate a self timed Write cycle. This part supports Byte Write  
operations (see “Pin Definitions” on page 7 and “Truth Table” on  
page 10 for further details). Write cycles can be one to two or four  
bytes wide, as controlled by the byte write control inputs. When  
it is active LOW, GW writes all bytes.  
Asynchronous output enable  
Single cycle chip deselect  
CY7C1480BV25, CY7C1482BV25 available in  
JEDEC-standard Pb-free 100-pin TQFP, Pb-free and  
non-Pb-free 165-ball FBGA package. CY7C1486BV25  
available in Pb-free and non-Pb-free 209-ball FBGA package  
IEEE 1149.1 JTAG-Compatible Boundary Scan  
“ZZ” Sleep Mode option  
Selection Guide  
Description  
Maximum Access Time  
250 MHz  
3.0  
200 MHz  
3.0  
167 MHz  
3.4  
Unit  
ns  
Maximum Operating Current  
Maximum CMOS Standby Current  
450  
450  
400  
mA  
mA  
120  
120  
120  
Note  
1. For best practices recommendations, refer to the Cypress application note AN1064, SRAM System Guidelines.  
Cypress Semiconductor Corporation  
Document #: 001-15143 Rev. *D  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised February 29, 2008  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
Logic Block Diagram – CY7C1480BV25 (2M x 36)  
A0, A1,  
A
ADDRESS  
REGISTER  
2
A
[1:0]  
MODE  
Q1  
Q0  
ADV  
CLK  
BURST  
COUNTER  
AND  
CLR  
LOGIC  
ADSC  
ADSP  
DQ D ,DQP D  
BYTE  
WRITE REGISTER  
DQ D ,DQP  
BYTE  
WRITE DRIVER  
D
BW  
BW  
D
DQ C ,DQP  
BYTE  
C
DQ C ,DQP  
BYTE  
C
C
OUTPUT  
BUFFERS  
WRITE DRIVER  
OUTPUT  
MEMORY  
WRITE REGISTER  
DQs  
SENSE  
AMPS  
ARRAY  
REGISTERS  
DQP  
DQP  
DQP  
DQP  
A
DQ B ,DQP  
BYTE  
WRITE DRIVER  
B
E
DQ B ,DQP  
BYTE  
WRITE REGISTER  
B
B
C
D
BW  
B
A
DQ A ,DQP  
BYTE  
WRITE DRIVER  
A
DQ A ,DQP  
BYTE  
WRITE REGISTER  
A
BW  
BWE  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
PIPELINED  
ENABLE  
CE  
CE  
CE  
1
2
3
OE  
SLEEP  
CONTROL  
ZZ  
Logic Block Diagram – CY7C1482BV25 (4M x 18)  
ADDRESS  
REGISTER  
A0, A1,  
A
A[1:0]  
2
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQ B, DQP  
WRITE DRIVER  
B
DQ B, DQP  
WRITE REGISTER  
B
OUTPUT  
BUFFERS  
BW  
B
DQs  
DQP  
DQP  
OUTPUT  
REGISTERS  
SENSE  
AMPS  
MEMORY  
ARRAY  
A
B
DQ A, DQP  
WRITE DRIVER  
A
E
DQ A, DQP  
WRITE REGISTER  
A
BW  
A
BWE  
GW  
INPUT  
REGISTERS  
ENABLE  
REGISTER  
CE  
1
PIPELINED  
ENABLE  
CE2  
CE3  
OE  
SLEEP  
CONTROL  
ZZ  
Document #: 001-15143 Rev. *D  
Page 2 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
Logic Block Diagram – CY7C1486BV25 (1M x 72)  
ADDRESS  
REGISTER  
A0, A1,A  
A[1:0]  
MODE  
Q1  
Q0  
ADV  
CLK  
BINARY  
COUNTER  
CLR  
ADSC  
ADSP  
DQ  
H
, DQP  
H
DQ  
H, DQPH  
BW  
BW  
H
G
WRITE DRIVER  
WRITE DRIVER  
DQ  
G, DQPG  
DQ  
F, DQPF  
WRITE DRIVER  
WRITE DRIVER  
DQ  
F, DQPF  
DQ  
F, DQPF  
BW  
BW  
BW  
BW  
F
E
WRITE DRIVER  
WRITE DRIVER  
DQ E  
E
,
DQP  
DQ  
E, DQPE  
WRITE DRIVER  
WRITE DRIVER  
MEMORY  
ARRAY  
DQ  
D, DQPD  
DQ  
D, DQPD  
D
WRITE DRIVER  
WRITE DRIVER  
DQ  
C, DQPC  
DQ  
C, DQPC  
C
WRITE DRIVER  
WRITE DRIVER  
OUTPUT  
OUTPUT  
REGISTERS  
SENSE  
AMPS  
DQs  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
BUFFERS  
E
A
B
C
D
E
DQ  
B, DQPB  
DQ  
B, DQPB  
WRITE DRIVER  
BW  
BW  
B
WRITE DRIVER  
DQ  
A, DQPA  
DQ  
A
, DQP  
A
F
WRITE DRIVER  
A
WRITE DRIVER  
G
H
BWE  
INPUT  
GW  
CE1  
CE2  
CE3  
OE  
REGISTERS  
ENABLE  
REGISTER  
PIPELINED  
ENABLE  
SLEEP  
CONTROL  
ZZ  
Document #: 001-15143 Rev. *D  
Page 3 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
Pin Configurations  
Figure 1. 100-Pin TQFP Pinout  
DQPC  
1
DQPB  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
NC  
VDDQ  
VSSQ  
NC  
A
NC  
NC  
VDDQ  
VSSQ  
NC  
DQPA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
VSS  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
2
DQc  
VDDQ  
VSSQ  
DQC  
3
4
5
6
DQC  
7
NC  
DQC  
8
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
NC  
VDD  
NC  
VSS  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQPB  
NC  
DQC  
9
10  
11  
9
VSSQ  
VDDQ  
DQC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
12  
DQC  
13  
NC  
14  
VDD  
NC  
VSS  
NC  
VDD  
ZZ  
15  
CY7C1482BV25  
(4M x 18)  
CY7C1480BV25  
(2M x 36)  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDD  
ZZ  
DQD  
DQD  
VDDQ  
VSSQ  
DQD  
DQD  
DQD  
DQD  
VSSQ  
VDDQ  
DQD  
DQD  
DQPD  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
DQPA  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
NC  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
Document #: 001-15143 Rev. *D  
Page 4 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
Pin Configurations (continued)  
165-Ball FBGA (15 x 17 x 1.4 mm) Pinout  
CY7C1480BV25 (2M x 36)  
1
2
3
4
5
6
7
8
9
10  
A
11  
NC  
NC/288M  
NC/144M  
DQPC  
A
B
C
D
CE1  
BWC  
BWD  
VSS  
VDD  
BWB  
BWA  
VSS  
VSS  
CE3  
CLK  
VSS  
VSS  
A
BWE  
GW  
VSS  
ADSC  
OE  
ADV  
ADSP  
VDDQ  
VDDQ  
A
CE2  
VDDQ  
VDDQ  
A
NC/576M  
DQPB  
DQB  
NC  
VSS  
NC/1G  
DQB  
DQC  
DQC  
VSS  
VDD  
DQC  
DQC  
DQC  
DQC  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQB  
DQB  
DQB  
NC  
DQB  
E
F
DQC  
DQC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQB  
DQB  
ZZ  
G
H
J
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
K
L
DQD  
DQPD  
NC  
DQD  
NC  
A
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
A
M
N
P
TDI  
A1  
TDO  
A0  
MODE  
A
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1482BV25 (4M x 18)  
1
2
A
3
4
5
NC  
6
7
8
9
10  
A
11  
A
NC/288M  
NC/144M  
NC  
A
B
C
D
BWB  
NC  
CE3  
CLK  
VSS  
VSS  
CE1  
CE2  
BWE  
GW  
VSS  
VSS  
ADSC  
OE  
ADV  
ADSP  
VDDQ  
VDDQ  
A
BWA  
VSS  
VSS  
A
NC/576M  
DQPA  
DQA  
NC  
VDDQ  
VDDQ  
VSS  
VDD  
VSS  
NC/1G  
NC  
NC  
DQB  
VDD  
NC  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
DQA  
DQA  
ZZ  
E
F
NC  
NC  
G
H
J
NC  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
NC  
NC  
NC  
K
L
NC  
NC  
DQB  
DQPB  
NC  
NC  
NC  
A
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
A
M
N
P
TDI  
A1  
TDO  
MODE  
A
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 001-15143 Rev. *D  
Page 5 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
Pin Configurations (continued)  
209-Ball FBGA (14 x 22 x 1.76 mm) Pinout  
CY7C1486BV25 (1M × 72)  
1
2
3
4
5
6
7
8
9
10  
11  
DQG  
DQG  
DQG  
A
B
C
D
E
F
DQG  
DQG  
A
DQB  
DQB  
CE2  
ADSP ADSC  
ADV  
A
A
CE3  
DQB  
DQB  
NC/288M  
NC/144M  
BWE  
CE1  
BWSF  
BWSG  
BWSD  
BWSB  
BWSE  
NC  
BWSC  
BWSH  
VSS  
DQG  
DQG  
NC/576M  
GW  
BWSA DQB  
DQB  
DQB  
DQG  
NC/1G OE  
VSS  
NC  
DQB  
DQPG DQPC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VDD  
VDD  
VSS  
VDD  
DQPF DQPB  
DQC  
DQC  
VSS  
DQF  
DQF  
VSS  
VDDQ  
VSS  
NC  
NC  
NC  
NC  
VSS  
NC  
NC  
VSS  
G
H
J
DQC  
DQC  
DQC  
VDDQ  
VSS  
VDDQ  
VSS  
DQF  
DQF  
DQF  
DQ  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
NC  
A
DQC  
DQC  
NC  
F
VDDQ  
DQC  
NC  
VDDQ  
VDDQ  
CLK  
VDDQ  
NC  
DQF  
NC  
DQF  
NC  
K
L
NC  
NC  
DQH  
DQH  
DQH  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
DQA  
DQA  
DQ  
A
M
N
P
R
T
VSS  
VDDQ  
VSS  
VDDQ  
NC  
DQH  
DQH  
DQH  
VSS  
VDD  
VSS  
DQA  
DQA  
DQA  
VDDQ  
DQH  
DQH  
DQPD  
DQD  
DQD  
NC  
ZZ  
DQA  
DQA  
DQPA  
DQE  
DQE  
VSS  
VDDQ  
VSS  
A
VDDQ  
VDD  
NC  
A
DQPH  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDD  
DQPE  
DQE  
DQE  
DQE  
DQE  
VSS  
NC  
A
MODE  
A
U
V
W
A
A
A
A
A1  
A
DQD  
DQD  
A
A
A
A
DQE  
DQE  
TDI  
TDO  
TCK  
A0  
A
TMS  
Document #: 001-15143 Rev. *D  
Page 6 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
Table 1. Pin Definitions  
Pin Name  
IO  
Description  
A0, A1, A  
Input-  
Synchronous  
Address Inputs Used to Select One of the Address Locations. Sampled at the rising edge  
of the CLK if ADSP or ADSC is active LOW, and CE1, CE2, and CE3 are sampled active. A1:  
A0 are fed to the two-bit counter.  
Input-  
Synchronous  
Byte Write Select Inputs, Active LOW. Qualified with BWE to conduct byte writes to the  
SRAM. Sampled on the rising edge of CLK.  
BWA, BWB, BWC,  
BWD, BWE, BWF,  
BWG, BWH  
GW  
Input-  
Synchronous  
Global Write Enable Input, Active LOW. When asserted LOW on the rising edge of CLK, a  
global write is conducted (ALL bytes are written, regardless of the values on BWX and BWE).  
BWE  
CLK  
CE1  
Input-  
Synchronous  
Byte Write Enable Input, Active LOW. Sampled on the rising edge of CLK. This signal must  
be asserted LOW to conduct a byte write.  
Input-  
Clock  
Clock Input. Captures all synchronous inputs to the device. Also increments the burst counter  
when ADV is asserted LOW during a burst operation.  
Input-  
Synchronous  
Chip Enable 1 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction  
with CE2 and CE3 to select or deselect the device. ADSP is ignored if CE1 is HIGH. CE1 is  
sampled only when a new external address is loaded.  
CE2  
CE3  
OE  
Input-  
Synchronous  
Chip Enable 2 Input, Active HIGH. Sampled on the rising edge of CLK. Used in conjunction  
with CE1 and CE3 to select or deselect the device. CE2 is sampled only when a new external  
address is loaded.  
Input-  
Synchronous  
Chip Enable 3 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction  
with CE1 and CE2 to select or deselect the device. CE3 is sampled only when a new external  
address is loaded.  
Input-  
Output Enable, Asynchronous Input, Active LOW. Controls the direction of the IO pins.  
Asynchronous When LOW, the IO pins behave as outputs. When deasserted HIGH, IO pins are tri-stated,  
and act as input data pins. OE is masked during the first clock of a read cycle when emerging  
from a deselected state.  
ADV  
Input-  
Synchronous  
Advance Input Signal, Sampled on the Rising Edge of CLK, Active LOW. When asserted,  
it automatically increments the address in a burst cycle.  
ADSP  
Input-  
Synchronous  
Address Strobe from Processor, Sampled on the Rising Edge of CLK, Active LOW.  
When asserted LOW, addresses presented to the device are captured in the address  
registers. A1: A0 are also loaded into the burst counter. When ADSP and ADSC are both  
asserted, only ADSP is recognized. ASDP is ignored when CE1 is deasserted HIGH.  
ADSC  
Input-  
Synchronous  
Address Strobe from Controller, Sampled on the Rising Edge of CLK, Active LOW.  
When asserted LOW, addresses presented to the device are captured in the address  
registers. A1: A0 are also loaded into the burst counter. When ADSP and ADSC are both  
asserted, only ADSP is recognized.  
ZZ  
Input-  
ZZ “Sleep” Input, Active HIGH. When asserted HIGH places the device in a non-time-critical  
Asynchronous “sleep” condition with data integrity preserved. For normal operation, this pin must be LOW  
or left floating. ZZ pin has an internal pull down.  
IO-  
Bidirectional Data IO Lines. As inputs, they feed into an on-chip data register that is triggered  
by the rising edge of CLK. As outputs, they deliver the data contained in the memory location  
specified by the addresses presented during the previous clock rise of the read cycle. The  
direction of the pins is controlled by OE. When OE is asserted LOW, the pins behave as  
outputs. When HIGH, DQs and DQPX are placed in a tri-state condition.  
DQs, DQPs  
Synchronous  
VDD  
VSS  
Power Supply Power Supply Inputs to the Core of the Device.  
Ground  
Ground for the Core of the Device.  
Ground for the IO Circuitry.  
[2]  
VSSQ  
IO Ground  
VDDQ  
IO Power Supply Power Supply for the IO Circuitry.  
Note  
2. Applicable for TQFP package. For BGA package V serves as ground for the core and the IO circuitry.  
SS  
Document #: 001-15143 Rev. *D  
Page 7 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
Table 1. Pin Definitions (continued)  
Pin Name  
IO  
Description  
MODE  
Input Static  
Selects Burst Order. When tied to GND selects linear burst sequence. When tied to VDD or  
left floating selects interleaved burst sequence. This is a strap pin and must remain static  
during device operation. Mode pin has an internal pull up.  
TDO  
TDI  
JTAG Serial  
Output  
Synchronous  
Serial Data Out to the JTAG Circuit. Delivers data on the negative edge of TCK. If the JTAG  
feature is not used, this pin must be disconnected. This pin is not available on TQFP packages.  
JTAG Serial Input Serial Data In to the JTAG Circuit. Sampled on the rising edge of TCK. If the JTAG feature  
Synchronous  
is not used, this pin can be disconnected or connected to VDD. This pin is not available on  
TQFP packages.  
TMS  
JTAG Serial Input Serial Data In to the JTAG Circuit. Sampled on the rising edge of TCK. If the JTAG feature  
Synchronous  
JTAG Clock  
-
is not used, this pin can be disconnected or connected to VDD. This pin is not available on  
TQFP packages.  
TCK  
NC  
Clock Input to the JTAG Circuitry. If the JTAG feature is not used, this pin must be connected  
to VSS. This pin is not available on TQFP packages.  
No Connects. Not internally connected to the die. 144M, 288M, 576M, and 1G are address  
expansion pins and are not internally connected to the die.  
propagate through the output register and onto the data bus  
within 3.0 ns (250-MHz device) if OE is active LOW. The only  
Functional Overview  
exception occurs when the SRAM is emerging from a deselected  
state to a selected state; its outputs are always tri-stated during  
the first cycle of the access. After the first cycle of the access,  
the outputs are controlled by the OE signal. Consecutive single  
read cycles are supported. After the SRAM is deselected at clock  
rise by the chip select and either ADSP or ADSC signals, its  
output tri-states immediately.  
All synchronous inputs pass through input registers controlled by  
the rising edge of the clock. All data outputs pass through output  
registers controlled by the rising edge of the clock. Maximum  
access delay from the clock rise (tCO) is 3.0 ns (250 MHz device).  
The  
CY7C1480BV25/CY7C1482BV25/CY7C1486BV25  
supports secondary cache in systems using either a linear or  
interleaved burst sequence. The interleaved burst order  
supports Pentium and i486processors. The linear burst  
sequence is suited for processors that use a linear burst  
sequence. The burst order is user selectable, and is determined  
by sampling the MODE input. Accesses can be initiated with  
either the Processor Address Strobe (ADSP) or the Controller  
Address Strobe (ADSC). Address advancement through the  
burst sequence is controlled by the ADV input. A two-bit on-chip  
wraparound burst counter captures the first address in a burst  
sequence and automatically increments the address for the rest  
of the burst access.  
Single Write Accesses Initiated by ADSP  
This access is initiated when both of the following conditions are  
satisfied at clock rise: (1) ADSP is asserted LOW, and (2) CE1,  
CE2, CE3 are all asserted active. The address presented to A is  
loaded into the address register and the address advancement  
logic while being delivered to the memory array. The write signals  
(GW, BWE, and BWX) and ADV inputs are ignored during this  
first cycle.  
ADSP-triggered write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQs inputs is written into the corre-  
sponding address location in the memory array. If GW is HIGH,  
then the BWE and BWX signals control the write operation.  
Byte write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BWX) inputs. A Global Write  
Enable (GW) overrides all byte write inputs and writes data to all  
four bytes. All writes are simplified with on-chip synchronous  
self-timed write circuitry.  
The  
CY7C1480BV25/CY7C1482BV25/CY7C1486BV25  
provides Byte Write capability that is described in the “Truth  
Table for Read/Write” on page 11. Asserting the Byte Write  
Enable input (BWE) with the selected Byte Write (BWX) input,  
selectively writes to only the desired bytes. Bytes not selected  
during a byte write operation remain unaltered. A synchronous  
self-timed write mechanism is provided to simplify the write  
operations.  
Three synchronous Chip Selects (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide easy bank selection  
and output tri-state control. ADSP is ignored if CE1 is HIGH.  
Single Read Accesses  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)  
CE1, CE2, CE3 are all asserted active, and (3) the write signals  
(GW, BWE) are all deasserted HIGH. ADSP is ignored if CE1 is  
HIGH. The address presented to the address inputs (A) is stored  
into the address advancement logic and the Address Register  
while being presented to the memory array. The corresponding  
data is allowed to propagate to the input of the Output Registers.  
At the rising edge of the next clock the data is allowed to  
Because CY7C1480BV25/CY7C1482BV25/CY7C1486BV25 is  
a common IO device, the Output Enable (OE) must be  
deasserted HIGH before presenting data to the DQs inputs.  
Doing so tri-states the output drivers. As a safety precaution,  
DQs are automatically tri-stated whenever a write cycle is  
detected, regardless of the state of OE.  
Document #: 001-15143 Rev. *D  
Page 8 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
Single Write Accesses Initiated by ADSC  
Sleep Mode  
ADSC write accesses are initiated when the following conditions  
are satisfied: (1) ADSC is asserted LOW, (2) ADSP is deasserted  
HIGH, (3) CE1, CE2, CE3 are all asserted active, and (4) the  
appropriate combination of the write inputs (GW, BWE, and  
BWX) are asserted active to conduct a write to the desired  
byte(s). ADSC-triggered write accesses need a single clock  
cycle to complete. The address presented to A is loaded into the  
address register and the address advancement logic while being  
delivered to the memory array. The ADV input is ignored during  
this cycle. If a global write is conducted, the data presented to  
the DQs is written into the corresponding address location in the  
memory core. If a byte write is conducted, only the selected bytes  
are written. Bytes not selected during a byte write operation  
remain unaltered. A synchronous self-timed write mechanism  
has been provided to simplify the write operations.  
The ZZ input pin is asynchronous. Asserting ZZ places the  
SRAM in a power conservation “sleep” mode. Two clock cycles  
are required to enter into or exit from this “sleep” mode. While in  
this mode, data integrity is guaranteed. Accesses pending when  
entering the “sleep” mode are not considered valid nor is the  
completion of the operation guaranteed. The device must be  
deselected prior to entering the “sleep” mode. CE1, CE2, CE3,  
ADSP, and ADSC must remain inactive for the duration of tZZREC  
after the ZZ input returns LOW.  
Table 2. Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Because CY7C1480BV25/CY7C1482BV25/CY7C1486BV25 is  
a common IO device, the Output Enable (OE) must be  
deasserted HIGH before presenting data to the DQs inputs.  
Doing so tri-states the output drivers. As a safety precaution,  
DQs are automatically tri-stated whenever a write cycle is  
detected, regardless of the state of OE.  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Burst Sequences  
Table 3. Linear Burst Address Table  
(MODE = GND)  
The  
CY7C1480BV25/CY7C1482BV25/CY7C1486BV25  
provides a two-bit wraparound counter, fed by A1: A0, that imple-  
ments either an interleaved or linear burst sequence. The inter-  
leaved burst sequence is designed specifically to support Intel  
Pentium applications. The linear burst sequence is designed to  
support processors that follow a linear burst sequence. The burst  
sequence is user selectable through the MODE input.  
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
Asserting ADV LOW at clock rise automatically increments the  
burst counter to the next address in the burst sequence. Both  
read and write burst operations are supported.  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep Mode Standby Current  
Device Operation to ZZ  
Test Conditions  
ZZ > VDD – 0.2V  
Min  
Max  
Unit  
mA  
ns  
120  
tZZS  
ZZ > VDD – 0.2V  
2tCYC  
tZZREC  
tZZI  
ZZ Recovery Time  
ZZ < 0.2V  
2tCYC  
ns  
ZZ Active to Sleep Current  
ZZ Inactive to Exit Sleep Current  
This parameter is sampled  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
0
ns  
Document #: 001-15143 Rev. *D  
Page 9 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
Table 4. Truth Table  
The truth table for CY7C1480BV25, CY7C1482BV25, and CY7C1486BV25 follows.[3, 4, 5, 6, 7]  
Operation  
Add. Used CE1 CE2 CE3 ZZ ADSP ADSC ADV WRITE OE CLK  
DQ  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Sleep Mode, Power Down  
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
Write Cycle, Begin Burst  
None  
None  
H
L
X
L
X
X
H
X
H
X
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
L
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
None  
L
X
L
L
None  
L
H
H
X
L
None  
L
X
X
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
L
None  
X
L
X
X
X
L
X
Tri-State  
Q
External  
External  
External  
External  
External  
Next  
L-H  
L
L
L
H
X
L
L-H Tri-State  
L
L
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
L-H  
L-H  
D
Q
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
L
L
L
H
H
H
H
H
H
L
L
L
L
H
L
L-H Tri-State  
L-H  
L-H Tri-State  
L-H  
L-H Tri-State  
X
X
H
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
Q
Next  
L
H
L
Next  
L
Q
Next  
L
H
X
X
L
Next  
L
L-H  
L-H  
L-H  
D
D
Q
Next  
L
L
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
H
L
L-H Tri-State  
L-H  
L-H Tri-State  
Q
H
X
X
L-H  
L-H  
D
D
L
Notes  
3. X = Do Not Care, H = Logic HIGH, L = Logic LOW.  
4. WRITE = L when any one or more Byte Write Enable signals and BWE = L or GW = L. WRITE = H when all Byte Write Enable signals, BWE, GW = H.  
5. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
6. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks after the  
X
ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH before the start of the write cycle to enable the outputs to tri-state. OE is a do not care for  
the remainder of the write cycle  
7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tri-state when OE is inactive  
or when the device is deselected, and all data bits behave as outputs when OE is active (LOW).  
Document #: 001-15143 Rev. *D  
Page 10 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
Table 5. Truth Table for Read/Write  
The read-write truth table for the CY7C1480BV25 follows.[5]  
Function (CY7C1480BV25)  
GW  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
BWE  
H
L
BWD  
X
H
H
H
H
H
H
H
H
L
BWC  
X
H
H
H
H
L
BWB  
X
H
H
L
BWA  
X
H
L
Read  
Read  
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Bytes B, A  
L
L
H
L
L
L
Write Byte C – (DQC and DQPC)  
Write Bytes C, A  
L
H
H
L
H
L
L
L
Write Bytes C, B  
L
L
H
L
Write Bytes C, B, A  
Write Byte D – (DQD and DQPD)  
Write Bytes D, A  
L
L
L
L
H
H
H
H
L
H
H
L
H
L
L
L
Write Bytes D, B  
L
L
H
L
Write Bytes D, B, A  
Write Bytes D, C  
L
L
L
L
L
H
H
L
H
L
Write Bytes D, C, A  
Write Bytes D, C, B  
Write All Bytes  
L
L
L
L
L
L
H
L
L
L
L
L
Write All Bytes  
X
X
X
X
X
Table 6. Truth Table for Read/Write  
The read-write truth table for the CY7C1482BV25 follows.[5]  
Function (CY7C1482BV25)  
GW  
H
BWE  
BWB  
X
BWA  
Read  
H
L
L
L
L
L
X
X
H
L
Read  
H
H
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Bytes B, A  
Write All Bytes  
H
H
H
L
H
L
H
L
H
L
L
Write All Bytes  
L
X
X
Table 7. Truth Table for Read/Write  
The read-write truth table for the CY7C1486BV25 follows.[8]  
Function (CY7C1486BV25)  
GW  
H
BWE  
BWX  
Read  
H
L
L
L
X
X
Read  
H
All BW = H  
Write Byte x – (DQx and DQPx)  
Write All Bytes  
H
L
All BW = L  
X
H
Write All Bytes  
L
Note  
8. BWx represents any byte write signal BW[0..7]. To enable any byte write BWx, a Logic LOW signal must be applied at clock rise. Any number of byte writes can be  
enabled at the same time for a supplied write.  
Document #: 001-15143 Rev. *D  
Page 11 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
Test Mode Select (TMS)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TMS input gives commands to the TAP controller and is  
sampled on the rising edge of TCK. You can leave this ball  
unconnected if the TAP is not used. The ball is pulled up inter-  
nally, resulting in a logic HIGH level.  
The CY7C1480BV25/CY7C1482BV25/CY7C1486BV25 incor-  
porates a serial boundary scan test access port (TAP). This port  
operates in accordance with IEEE Standard 1149.1-1990 but  
does not have the set of functions required for full 1149.1  
compliance. These functions from the IEEE specification are  
excluded because their inclusion places an added delay in the  
critical speed path of the SRAM. Note that the TAP controller  
functions in a manner that does not conflict with the operation of  
other devices using 1149.1 fully compliant TAPs. The TAP  
operates using JEDEC-standard 2.5V IO logic levels.  
Test Data-In (TDI)  
The TDI ball serially inputs information into the registers and can  
be connected to the input of any of the registers. The register  
between TDI and TDO is chosen by the instruction that is loaded  
into the TAP instruction register. For information about loading  
the instruction register, see the TAP Controller State Diagram.  
TDI is internally pulled up and can be unconnected if the TAP is  
unused in an application. TDI is connected to the most significant  
bit (MSB) of any register. (See TAP Controller Block Diagram.)  
The  
CY7C1480BV25/CY7C1482BV25/CY7C1486BV25  
contains a TAP controller, instruction register, boundary scan  
register, bypass register, and ID register.  
Disabling the JTAG Feature  
Test Data-Out (TDO)  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, tie TCK LOW (VSS) to  
prevent device clocking. TDI and TMS are internally pulled up  
and may be unconnected. They may alternatively be connected  
to VDD through a pull up resistor. TDO must be left unconnected.  
At power up, the device comes up in a reset state, which does  
not interfere with the operation of the device.  
The TDO output ball is used to serially clock data-out from the  
registers. Whether the output is active depends on the current  
state of the TAP state machine. The output changes on the falling  
edge of TCK. TDO is connected to the least significant bit (LSB)  
of any register. (See TAP Controller State Diagram.)  
Figure 3. TAP Controller Block Diagram  
Figure 2. TAP Controller State Diagram  
0
TEST-LOGIC  
1
Bypass Register  
RESET  
0
2
1
0
0
0
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
Selection  
Circuitry  
Selection  
Circuitry  
Instruction Register  
31 30 29  
Identification Register  
TDI  
TDO  
0
0
.
.
. 2 1  
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
x
.
.
.
.
. 2 1  
SHIFT-DR  
0
SHIFT-IR  
0
Boundary Scan Register  
1
1
1
1
EXIT1-DR  
EXIT1-IR  
0
0
TCK  
PAUSE-DR  
0
PAUSE-IR  
1
0
TAP CONTROLLER  
TM S  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
Performing a TAP Reset  
UPDATE-DR  
UPDATE-IR  
Perform a RESET by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This RESET does not affect the operation of the  
SRAM and may be performed while the SRAM is operating.  
1
0
1
0
At power up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
TAP Registers  
Test Access Port (TAP)  
Registers are connected between the TDI and TDO balls to scan  
the data in and out of the SRAM test circuitry. Only one register  
can be selected at a time through the instruction register. Data is  
serially loaded into the TDI ball on the rising edge of TCK. Data  
is output on the TDO ball on the falling edge of TCK.  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs are  
captured on the rising edge of TCK. All outputs are driven from  
the falling edge of TCK.  
Document #: 001-15143 Rev. *D  
Page 12 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
Instruction Register  
rather, it performs a capture of the IO ring when these instruc-  
tions are executed.  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the TDI  
and TDO balls as shown in the “TAP Controller Block Diagram”  
on page 12. At power up, the instruction register is loaded with  
the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state, as described  
in the previous section.  
Instructions are loaded into the TAP controller during the Shift-IR  
state when the instruction register is placed between TDI and  
TDO. During this state, instructions are shifted through the  
instruction register through the TDI and TDO balls. To execute  
the instruction after it is shifted in, the TAP controller must be  
moved into the Update-IR state.  
When the TAP controller is in the Capture-IR state, the two least  
significant bits are loaded with a binary “01” pattern to enable  
fault isolation of the board-level serial test data path.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction that is executed  
whenever the instruction register is loaded with all zeros.  
EXTEST is not implemented in this SRAM TAP controller, and  
therefore this device is not compliant to 1149.1. The TAP  
controller does recognize an all-zero instruction.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This shifts data through the SRAM with  
minimal delay. The bypass register is set LOW (VSS) when the  
BYPASS instruction is executed.  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between the  
two instructions. Unlike the SAMPLE/PRELOAD instruction,  
EXTEST places the SRAM outputs in a High-Z state.  
Boundary Scan Register  
IDCODE  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM. The x36 configuration has a  
73-bit-long register, and the x18 configuration has a 54-bit-long  
register.  
The IDCODE instruction loads a vendor-specific, 32-bit code into  
the instruction register. It also places the instruction register  
between the TDI and TDO balls and shifts the IDCODE out of the  
device when the TAP controller enters the Shift-DR state.  
The boundary scan register is loaded with the contents of the  
RAM IO ring when the TAP controller is in the Capture-DR state  
and is then placed between the TDI and TDO balls when the  
controller moves to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD, and SAMPLE Z instructions can be used  
to capture the contents of the IO ring.  
The IDCODE instruction is loaded into the instruction register at  
power up or whenever the TAP controller is in a test logic reset  
state.  
SAMPLE Z  
The SAMPLE Z instruction connects the boundary scan register  
between the TDI and TDO balls when the TAP controller is in a  
Shift-DR state. It also places all SRAM outputs into a High-Z  
state.  
The Boundary Scan Order tables show the order in which the bits  
are connected. Each bit corresponds to one of the bumps on the  
SRAM package. The MSB of the register is connected to TDI and  
the LSB is connected to TDO.  
SAMPLE/PRELOAD  
Identification (ID) Register  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so the  
device TAP controller is not fully 1149.1 compliant.  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired into  
the SRAM and can be shifted out when the TAP controller is in  
the Shift-DR state. The ID register has a vendor code and other  
information described in “Identification Register Definitions” on  
page 15.  
When the SAMPLE/PRELOAD instruction is loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and bidirectional balls is  
captured in the boundary scan register.  
Be aware that the TAP controller clock can only operate at a  
frequency up to 10 MHz, while the SRAM clock operates more  
than an order of magnitude faster. Because there is a large  
difference in the clock frequencies, it is possible that during the  
Capture-DR state, an input or output may undergo a transition.  
The TAP may then try to capture a signal while in transition  
(metastable state). This does not harm the device, but there is  
no guarantee as to the value that may be captured. Repeatable  
results may not be possible.  
TAP Instruction Set  
Overview  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in “Identification  
Codes” on page 16. Three of these instructions are listed as  
RESERVED and must not be used. The other five instructions  
are described in detail below.  
The TAP controller used in this SRAM is not fully compliant to the  
1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
To guarantee that the boundary scan register captures the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller’s capture setup plus hold  
time (tCS plus tCH).  
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the IO buffers.  
The SRAM does not implement the 1149.1 commands EXTEST  
or INTEST or the PRELOAD portion of SAMPLE/PRELOAD;  
The SRAM clock input might not be captured correctly if there is  
no way in a design to stop (or slow) the clock during a  
Document #: 001-15143 Rev. *D  
Page 13 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
SAMPLE/PRELOAD instruction. If this is an issue, it is still  
possible to capture all other signals and simply ignore the value  
of the CLK captured in the boundary scan register.  
BYPASS  
When the BYPASS instruction is loaded in the instruction register  
and the TAP is placed in a Shift-DR state, the bypass register is  
placed between the TDI and TDO balls. The advantage of the  
BYPASS instruction is that it shortens the boundary scan path  
when multiple devices are connected together on a board.  
After the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the boundary  
scan register between the TDI and TDO balls.  
Note that because the PRELOAD part of the command is not  
implemented, putting the TAP to the Update-DR state while  
performing a SAMPLE/PRELOAD instruction has the same  
effect as the Pause-DR command.  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
Figure 4. TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics  
Over the Operating Range[9, 10]  
Parameter  
Clock  
tTCYC  
tTF  
Description  
Min  
Max  
Unit  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH Time  
TCK Clock LOW Time  
50  
ns  
MHz  
ns  
20  
tTH  
20  
20  
tTL  
ns  
Output Times  
tTDOV  
TCK Clock LOW to TDO Valid  
10  
ns  
ns  
tTDOX  
TCK Clock LOW to TDO Invalid  
0
Setup Times  
tTMSS  
TMS Setup to TCK Clock Rise  
TDI Setup to TCK Clock Rise  
Capture Setup to TCK Rise  
5
5
5
ns  
ns  
ns  
tTDIS  
tCS  
Hold Times  
tTMSH  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tTDIH  
tCH  
Capture Hold after Clock Rise  
Notes  
9.  
t
and t refer to the setup and hold time requirements of latching data from the boundary scan register.  
CS CH  
10. Test conditions are specified using the load in TAP AC Test Conditions. t /t = 1 ns.  
R
F
Document #: 001-15143 Rev. *D  
Page 14 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
Figure 5. 2.5V TAP AC Output Load Equivalent  
2.5V TAP AC Test Conditions  
1.25V  
Input pulse levels.................................................VSS to 2.5V  
Input rise and fall time .....................................................1 ns  
Input timing reference levels......................................... 1.25V  
Output reference levels ................................................ 1.25V  
Test load termination supply voltage ............................ 1.25V  
50Ω  
TDO  
ZO= 50Ω  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; VDD = 2.5V ±0.125V unless otherwise noted)[11]  
Parameter  
VOH1  
Description  
Test Conditions  
Min  
1.7  
2.1  
Max  
Unit  
V
Output HIGH Voltage IOH = –1.0 mA, VDDQ = 2.5V  
VOH2  
VOL1  
VOL2  
VIH  
Output HIGH Voltage IOH = –100 μA, VDDQ = 2.5V  
V
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
IOL = 1.0 mA, VDDQ = 2.5V  
IOL = 100 μA, VDDQ = 2.5V  
VDDQ = 2.5V  
0.4  
0.2  
V
V
1.7  
–0.3  
–5  
VDD + 0.3  
V
VIL  
VDDQ = 2.5V  
0.7  
5
V
IX  
GND VI VDDQ  
μA  
Table 8. Identification Register Definitions  
CY7C1480BV25  
(2M x36)  
CY7C1482BV25  
(4M x 18)  
CY7C1486BV25  
Instruction Field  
Description  
(1M x72)  
Revision Number (31:29)  
Device Depth (28:24)  
000  
000  
000  
Describes the version number  
Reserved for internal use  
01011  
000000  
01011  
000000  
01011  
000000  
Architecture/Memory  
Type(23:18)  
Defines memory type and  
architecture  
Bus Width/Density(17:12)  
100100  
010100  
110100  
Defines width and density  
Cypress JEDEC ID Code  
(11:1)  
00000110100  
00000110100  
00000110100  
Enablesunique identification of  
SRAM vendor  
ID Register Presence  
Indicator (0)  
1
1
1
Indicates the presence of an ID  
register  
Table 9. Scan Register Sizes  
Register Name  
Bit Size (x36)  
Bit Size (x18)  
Bit Size (x72)  
Instruction  
Bypass  
ID  
3
1
3
1
3
1
32  
73  
-
32  
54  
-
32  
-
Boundary Scan Order – 165FBGA  
Boundary Scan Order – 209BGA  
112  
Note  
11. All voltages refer to V (GND).  
SS  
Document #: 001-15143 Rev. *D  
Page 15 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
Table 10. Identification Codes  
Instruction Code  
EXTEST  
Description  
000  
001  
Captures the IO ring contents.  
IDCODE  
Loads the ID register with the vendor ID code and places the register between TDI and TDO.  
This operation does not affect SRAM operations.  
SAMPLE Z  
010  
Captures the IO ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures the IO ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
Table 11. Boundary Scan Exit Order (2M x 36)  
Bit #  
1
165-Ball ID  
C1  
Bit #  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
165-Ball ID  
R3  
Bit #  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
165-Ball ID  
L10  
K11  
J11  
Bit #  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
165-Ball ID  
B8  
A7  
B7  
B6  
A6  
B5  
A5  
A4  
B4  
B3  
A3  
A2  
B2  
2
D1  
P2  
3
E1  
R4  
4
D2  
P6  
K10  
J10  
5
E2  
R6  
6
F1  
N6  
H11  
G11  
F11  
7
G1  
F2  
P11  
R8  
8
9
G2  
J1  
P3  
E11  
D10  
D11  
C11  
G10  
F10  
E10  
A10  
B10  
A9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P4  
K1  
P8  
L1  
P9  
J2  
P10  
R9  
M1  
N1  
R10  
R11  
N11  
M11  
L11  
M10  
K2  
L2  
M2  
R1  
B9  
R2  
A8  
Document #: 001-15143 Rev. *D  
Page 16 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
Boundary Scan Exit Order (4M x 18)  
Bit #  
1
165-Ball ID  
D2  
Bit #  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
165-Ball ID  
R8  
Bit #  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
165-Ball ID  
C11  
A11  
A10  
B10  
A9  
2
E2  
P3  
3
F2  
P4  
4
G2  
P8  
5
J1  
P9  
6
K1  
P10  
R9  
B9  
7
L1  
A8  
8
M1  
N1  
R10  
R11  
M10  
L10  
K10  
J10  
H11  
G11  
F11  
E11  
D11  
B8  
9
A7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
R1  
B7  
R2  
B6  
R3  
A6  
P2  
B5  
R4  
A4  
P6  
B3  
R6  
A3  
N6  
A2  
P11  
B2  
Document #: 001-15143 Rev. *D  
Page 17 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
Boundary Scan Exit Order (1M x 72)  
Bit #  
1
209-Ball ID  
A1  
Bit #  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
209-Ball ID  
T1  
Bit #  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
209-Ball ID  
V10  
U11  
U10  
T11  
Bit #  
85  
209-Ball ID  
C11  
C10  
B11  
B10  
A11  
A10  
A9  
2
A2  
T2  
86  
3
B1  
U1  
87  
4
B2  
U2  
88  
5
C1  
C2  
D1  
D2  
E1  
V1  
T10  
R11  
R10  
P11  
P10  
N11  
N10  
M11  
M10  
L11  
89  
6
V2  
90  
7
W1  
W2  
T6  
91  
8
92  
U8  
9
93  
A7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
E2  
V3  
94  
A5  
F1  
V4  
95  
A6  
F2  
U4  
96  
D6  
G1  
G2  
H1  
H2  
J1  
W5  
V6  
97  
B6  
98  
D7  
W6  
U3  
L10  
99  
K3  
P6  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
A8  
U9  
J11  
B4  
J2  
V5  
J10  
B3  
L1  
U5  
H11  
H10  
G11  
G10  
F11  
C3  
L2  
U6  
C4  
M1  
M2  
N1  
N2  
P1  
W7  
V7  
C8  
C9  
U7  
B9  
V8  
F10  
E10  
E11  
D11  
D10  
B8  
V9  
A4  
P2  
W11  
W10  
V11  
C6  
R2  
R1  
B7  
A3  
Document #: 001-15143 Rev. *D  
Page 18 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
DC Input Voltage ................................... –0.5V to VDD + 0.5V  
Current into Outputs (LOW) ........................................ 20 mA  
Maximum Ratings  
Exceeding the maximum ratings may impair the useful life of the  
device. These user guidelines are not tested.  
Static Discharge Voltage........................................... >2001V  
(MIL-STD-883, Method 3015)  
Storage Temperature ................................. –65°C to +150°C  
Latch Up Current.................................................... >200 mA  
Ambient Temperature with  
Power Applied ............................................ –55°C to +125°C  
Operating Range  
Supply Voltage on VDD Relative to GND........–0.3V to +3.6V  
Supply Voltage on VDDQ Relative to GND.......–0.3V to +VDD  
Ambient  
Range  
VDD  
VDDQ  
Temperature  
0°C to +70°C  
–40°C to +85°C  
DC Voltage Applied to Outputs  
in Tri-State ...........................................0.5V to VDDQ + 0.5V  
Commercial  
Industrial  
2.5V –5%/+5% 2.5V–5%to  
VDD  
Electrical Characteristics  
Over the Operating Range[12, 13]  
Parameter  
VDD  
Description  
Test Conditions  
Min  
2.375  
2.375  
2.0  
Max  
2.625  
VDD  
Unit  
V
Power Supply Voltage  
IO Supply Voltage  
VDDQ  
VOH  
For 2.5V IO  
V
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage[12]  
Input LOW Voltage[12]  
For 2.5V IO, IOH = –1.0 mA  
For 2.5V IO, IOL = 1.0 mA  
For 2.5V IO  
V
VOL  
0.4  
V
VIH  
1.7  
–0.3  
–5  
VDD + 0.3V  
V
VIL  
For 2.5V IO  
0.7  
5
V
IX  
Input Leakage Current  
except ZZ and MODE  
GND VI VDDQ  
μA  
Input Current of MODE Input = VSS  
Input = VDD  
–30  
–5  
μA  
μA  
5
Input Current of ZZ  
Input = VSS  
Input = VDD  
μA  
30  
5
μA  
IOZ  
Output Leakage Current GND VI VDDQ, Output Disabled  
–5  
μA  
[14]  
IDD  
VDD Operating Supply  
Current  
VDD = Max, IOUT = 0 mA,  
f = fMAX = 1/tCYC  
4.0-ns cycle, 250 MHz  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
4.0-ns cycle, 250 MHz  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
All speeds  
450  
450  
400  
200  
200  
200  
120  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
ISB1  
Automatic CE  
Power Down  
Current—TTL Inputs  
VDD = Max, Device Deselected,  
VIN VIH or VIN VIL  
f = fMAX = 1/tCYC  
ISB2  
Automatic CE  
Power Down  
Current—CMOS Inputs f = 0  
VDD = Max, Device Deselected,  
VIN 0.3V or VIN > VDDQ – 0.3V,  
ISB3  
Automatic CE  
Power Down  
Current—CMOS Inputs f = fMAX = 1/tCYC  
VDD = Max, Device Deselected, or 4.0-ns cycle, 250 MHz  
200  
200  
200  
135  
mA  
mA  
mA  
mA  
VIN 0.3V or VIN > VDDQ – 0.3V  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
All speeds  
ISB4  
Automatic CE  
Power Down  
Current—TTL Inputs  
VDD = Max, Device Deselected,  
VIN VIH or VIN VIL, f = 0  
Notes  
12. Overshoot: V (AC) < V +1.5V (pulse width less than t  
/2).Undershoot: V (AC) > –2V (pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
.
13. Power up: assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V  
< V  
DD  
IH  
DD  
DDQ  
DD  
14. The operation current is calculated with 50% read cycle and 50% write cycle.  
Document #: 001-15143 Rev. *D  
Page 19 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
Capacitance  
Tested initially and after any design or process change that may affect these parameters.  
100 TQFP  
165 FBGA 209 FBGA  
Parameter  
CADDRESS  
Description  
Test Conditions  
Unit  
Package  
Package  
Package  
Address Input Capacitance  
Data Input Capacitance  
Control Input Capacitance  
Clock Input Capacitance  
Input/Output Capacitance  
TA = 25°C, f = 1 MHz,  
6
5
8
6
5
6
5
8
6
5
6
5
8
6
5
pF  
pF  
pF  
pF  
pF  
VDD = 2.5V  
CDATA  
CCTRL  
CCLK  
CIO  
VDDQ = 2.5V  
Thermal Resistance  
Tested initially and after any design or process change that may affect these parameters.  
100 TQFP  
165 FBGA  
Max  
209 FBGA  
Max  
Parameter  
Description  
Test Conditions  
Unit  
Max  
ΘJA  
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow  
standard test methods and  
procedures for measuring  
thermal impedance, per  
EIA/JESD51.  
24.63  
16.3  
15.2  
°C/W  
ΘJC  
Thermal Resistance  
(Junction to Case)  
2.28  
2.1  
1.7  
°C/W  
AC Test Loads and Waveforms  
2.5V IO Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50Ω  
0
10%  
L
5 pF  
R = 1583Ω  
1 ns  
1 ns  
V = 1.25V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Document #: 001-15143 Rev. *D  
Page 20 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
Switching Characteristics  
Over the Operating Range. Timing reference level is 1.25V when VDDQ = 2.5V. Test conditions shown in (a) of “AC Test Loads and  
Waveforms” on page 20 unless otherwise noted.  
250 MHz  
200 MHz  
167 MHz  
Parameter  
tPOWER  
Description  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
VDD(Typical) to the first access[15]  
1
1
1
ms  
Clock  
tCYC  
Clock Cycle Time  
Clock HIGH  
4.0  
2.0  
2.0  
5.0  
2.0  
2.0  
6.0  
2.4  
2.4  
ns  
ns  
ns  
tCH  
tCL  
Clock LOW  
Output Times  
tCO  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z[16, 17, 18]  
3.0  
3.0  
3.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
1.3  
1.3  
1.3  
1.3  
1.5  
1.5  
tCLZ  
tCHZ  
Clock to High-Z[16, 17, 18]  
3.0  
3.0  
3.0  
3.0  
3.4  
3.4  
tOEV  
OE LOW to Output Valid  
tOELZ  
tOEHZ  
Setup Times  
tAS  
OE LOW to Output Low-Z[16, 17, 18]  
OE HIGH to Output High-Z[16, 17, 18]  
0
0
0
3.0  
3.0  
3.4  
Address Setup Before CLK Rise  
ADSC, ADSP Setup Before CLK Rise  
ADV Setup Before CLK Rise  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADS  
tADVS  
tWES  
GW, BWE, BWX Setup Before CLK Rise  
Data Input Setup Before CLK Rise  
Chip Enable Setup Before CLK Rise  
tDS  
tCES  
Hold Times  
tAH  
Address Hold After CLK Rise  
ADSP, ADSC Hold After CLK Rise  
ADV Hold After CLK Rise  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADH  
tADVH  
tWEH  
GW, BWE, BWX Hold After CLK Rise  
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
tDH  
tCEH  
Notes  
15. This part has an internal voltage regulator; t  
is the time that the power is supplied above V (minimum) initially before a read or write operation can be initiated.  
DD  
POWER  
16. t  
, t  
, t  
, and t  
are specified with AC test conditions shown in part (b) of “AC Test Loads and Waveforms” on page 20. Transition is measured ±200 mV  
CHZ CLZ OELZ  
OEHZ  
from steady-state voltage.  
17. At any possible voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same data  
OEHZ  
OELZ  
CHZ  
CLZ  
bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve  
High-Z before Low-Z under the same system conditions.  
18. This parameter is sampled and not 100% tested.  
Document #: 001-15143 Rev. *D  
Page 21 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
Switching Waveforms  
Timing for the read cycle is shown in Figure 6.[19]  
Figure 6. Read Cycle Timing  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Burst continued with  
new base address  
t
t
WEH  
WES  
GW, BWE,  
BWx  
Deselect  
cycle  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV  
suspends  
burst.  
t
t
OEV  
CO  
t
t
OEHZ  
t
OELZ  
t
CHZ  
DOH  
t
CLZ  
t
Q(A2)  
Q(A2  
+
1)  
Q(A2  
+
2)  
Q(A2  
+
3)  
Q(A2)  
Q(A2 + 1)  
Q(A1)  
Data Out (Q)  
High-Z  
CO  
Burst wraps around  
to its initial state  
Single READ  
BURST READ  
DON’T CARE  
UNDEFINED  
Note  
19. On this diagram, when CE is LOW: CE is LOW, CE is HIGH, and CE is LOW. When CE is HIGH: CE is HIGH, CE is LOW, or CE is HIGH.  
1
2
3
1
2
3
Document #: 001-15143 Rev. *D  
Page 22 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
Switching Waveforms (continued)  
Timing for the write cycle is shown in Figure 7.[19, 20]  
Figure 7. Write Cycle Timing  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
ADDRESS  
BWE,  
t
t
AH  
AS  
A1  
A2  
A3  
Byte write signals are  
ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BW  
X
t
t
WEH  
WES  
GW  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
DH  
DS  
Data In (D)  
D(A2)  
D(A2  
+
1)  
D(A2  
+
1)  
D(A2  
+
2)  
D(A2  
+
3)  
D(A3)  
D(A3  
+
1)  
D(A3 + 2)  
D(A1)  
High-Z  
t
OEHZ  
Data Out (Q)  
BURST READ  
Single WRITE  
BURST WRITE  
Extended BURST WRITE  
DON’T CARE  
UNDEFINED  
Note  
20. Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW, and BW LOW.  
X
Document #: 001-15143 Rev. *D  
Page 23 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
Switching Waveforms (continued)  
Timing for the read-write cycle is shown in Figure 8.[19, 21, 22]  
Figure 8. Read/Write Cycle Timing  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
BWE, BW  
t
t
WEH  
WES  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
t
CO  
DS  
t
OELZ  
Data In (D)  
High-Z  
High-Z  
D(A3)  
D(A5)  
D(A6)  
t
t
CLZ  
OEHZ  
Data Out (Q)  
Q(A1)  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
Back-to-Back READs  
Single WRITE  
BURST READ  
Back-to-Back  
WRITEs  
DON’T CARE  
UNDEFINED  
Notes  
21. The data bus (Q) remains in high-Z following a write cycle, unless a new read access is initiated by ADSP or ADSC.  
22. GW is HIGH.  
Document #: 001-15143 Rev. *D  
Page 24 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
Switching Waveforms (continued)  
Timing for ZZ mode is shown in Figure 9.[23, 24]  
Figure 9. ZZ Mode Timing  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes  
23. Device must be deselected when entering ZZ mode. See “Truth Table” on page 10 for all possible signal conditions to deselect the device.  
24. DQs are in high-Z when exiting ZZ sleep mode.  
Document #: 001-15143 Rev. *D  
Page 25 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
Ordering Information  
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or visit  
www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Part and Package Type  
Ordering Code  
167 CY7C1480BV25-167AXC  
CY7C1482BV25-167AXC  
CY7C1480BV25-167BZC  
CY7C1482BV25-167BZC  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
Commercial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1480BV25-167BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
CY7C1482BV25-167BZXC  
CY7C1486BV25-167BGC  
CY7C1486BV25-167BGXC  
CY7C1480BV25-167AXI  
CY7C1482BV25-167AXI  
CY7C1480BV25-167BZI  
CY7C1482BV25-167BZI  
CY7C1480BV25-167BZXI  
CY7C1482BV25-167BZXI  
CY7C1486BV25-167BGI  
CY7C1486BV25-167BGXI  
200 CY7C1480BV25-200AXC  
CY7C1482BV25-200AXC  
CY7C1480BV25-200BZC  
CY7C1482BV25-200BZC  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
lndustrial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
Commercial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1480BV25-200BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
CY7C1482BV25-200BZXC  
CY7C1486BV25-200BGC  
CY7C1486BV25-200BGXC  
CY7C1480BV25-200AXI  
CY7C1482BV25-200AXI  
CY7C1480BV25-200BZI  
CY7C1482BV25-200BZI  
CY7C1480BV25-200BZXI  
CY7C1482BV25-200BZXI  
CY7C1486BV25-200BGI  
CY7C1486BV25-200BGXI  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
lndustrial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free  
Document #: 001-15143 Rev. *D  
Page 26 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
Ordering Information (continued)  
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or visit  
www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Part and Package Type  
Ordering Code  
250 CY7C1480BV25-250AXC  
CY7C1482BV25-250AXC  
CY7C1480BV25-250BZC  
CY7C1482BV25-250BZC  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
Commercial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1480BV25-250BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free  
CY7C1482BV25-250BZXC  
CY7C1486BV25-250BGC  
CY7C1486BV25-250BGXC  
CY7C1480BV25-250AXI  
CY7C1482BV25-250AXI  
CY7C1480BV25-250BZI  
CY7C1482BV25-250BZI  
CY7C1480BV25-250BZXI  
CY7C1482BV25-250BZXI  
CY7C1486BV25-250BGI  
CY7C1486BV25-250BGXI  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
Industrial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free  
Document #: 001-15143 Rev. *D  
Page 27 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
Package Diagrams  
Figure 10. 100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm), 51-85050  
16.00 0.20  
14.00 0.10  
1.40 0.05  
100  
81  
80  
1
0.30 0.08  
0.65  
TYP.  
12° 1°  
(8X)  
SEE DETAIL  
A
30  
51  
31  
50  
0.20 MAX.  
1.60 MAX.  
R 0.08 MIN.  
0.20 MAX.  
0° MIN.  
SEATING PLANE  
STAND-OFF  
0.05 MIN.  
0.15 MAX.  
NOTE:  
1. JEDEC STD REF MS-026  
0.25  
GAUGE PLANE  
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH  
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE  
R 0.08 MIN.  
0.20 MAX.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH  
3. DIMENSIONS IN MILLIMETERS  
0°-7°  
0.60 0.15  
0.20 MIN.  
1.00 REF.  
51-85050-*B  
DETAIL  
A
Document #: 001-15143 Rev. *D  
Page 28 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
Package Diagrams (continued)  
Figure 11. 165-Ball FBGA (15 x 17 x 1.4 mm), 51-85165  
PIN 1 CORNER  
BOTTOM VIEW  
TOP VIEW  
Ø0.05 M C  
PIN 1 CORNER  
Ø0.25 M C A B  
Ø0.45 0.05(165X)  
1
2
3
4
5
6
7
8
9
10  
11  
11 10  
9
8
7
6
5
4
3
2
1
A
B
A
B
C
D
C
D
E
E
F
F
G
G
H
J
H
J
K
K
L
L
M
M
N
P
R
N
P
R
A
1.00  
5.00  
10.00  
B
15.00 0.10  
0.15(4X)  
SEATING PLANE  
C
51-85165-*A  
Document #: 001-15143 Rev. *D  
Page 29 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
Package Diagrams (continued)  
Figure 12. 209-Ball FBGA (14 x 22 x 1.76 mm), 51-85167  
51-85167-**  
Document #: 001-15143 Rev. *D  
Page 30 of 31  
[+] Feedback  
CY7C1480BV25  
CY7C1482BV25, CY7C1486BV25  
Document History Page  
Document Title: CY7C1480BV25/CY7C1482BV25/CY7C1486BV25, 72-Mbit (2M x 36/4M x 18/1M x 72)  
Pipelined Sync SRAM  
Document Number: 001-15143  
Orig. of  
Change  
REV.  
ECN NO. Issue Date  
Description of Change  
**  
1024385 See ECN VKN/KKVTMP New Data Sheet  
*A  
*B  
*C  
*D  
1562944 See ECN  
1897447 See ECN  
2082487 See ECN  
2159486 See ECN  
VKN/AESA Removed 1.8V IO offering from the data sheet  
VKN/AESA Added footnote 14 related to IDD  
VKN  
Converted from preliminary to final  
VKN/PYRS Minor Change-Moved to the external web  
© Cypress Semiconductor Corporation, 2007-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used  
for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use  
as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support  
systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document #: 001-15143 Rev. *D  
Revised February 29, 2008  
Page 31 of 31  
NoBL and No Bus Latency are trademarks of Cypress Semiconductor Corporation. ZBT is a trademark of Integrated Device Technology, Inc. All products and company names mentioned in this  
document may be the trademarks of their respective holders.  
[+] Feedback  

相关型号:

CY7C1486BV25-167BGI

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1486BV25-167BGXC

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1486BV25-167BGXI

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1486BV25-200BGC

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1486BV25-200BGI

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1486BV25-200BGXC

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1486BV25-200BGXI

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1486BV25-250BGC

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1486BV25-250BGI

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1486BV25-250BGXC

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1486BV25-250BGXI

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1486BV33

72-Mbit (2 M x 36/4 M x 18/1 M x 72) Pipelined Sync SRAM
CYPRESS