CY7C342B [CYPRESS]

128-Macrocell MAX EPLDs; 128宏单元MAX EPLD中
CY7C342B
型号: CY7C342B
厂家: CYPRESS    CYPRESS
描述:

128-Macrocell MAX EPLDs
128宏单元MAX EPLD中

文件: 总14页 (文件大小:351K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C342B  
128-Macrocell MAX® EPLD  
100% user-configurable, allowing the device to accommodate  
a variety of independent logic functions.  
Features  
• 128 macrocells in eight logic array blocks (LABs)  
• Eight dedicated inputs, 52 bidirectional I/O pins  
• Programmable interconnect array  
The 128 macrocells in the CY7C342B are divided into eight  
LABs, 16 per LAB. There are 256 expander product terms, 32  
per LAB, to be used and shared by the macrocells within each  
LAB.  
• Advanced 0.65-micron CMOS technology to increase  
performance  
Each LAB is interconnected with a programmable interconnect  
array, allowing all signals to be routed throughout the chip.  
• Available in 68-pin HLCC, PLCC, and PGA packages  
The speed and density of the CY7C342B allows it to be used in a  
wide range of applications, from replacement of large amounts of  
7400-series TTL logic, to complex controllers and multifunction  
chips. With greater than 25 times the functionality of 20-pin PLDs,  
the CY7C342B allows the replacement of over 50 TTL devices.  
By replacing large amounts of logic, the CY7C342B reduces board  
space, part count, and increases system reliability.  
Functional Description  
The CY7C342B is an Erasable Programmable Logic Device  
(EPLD) in which CMOS EPROM cells are used to configure  
logic functions within the device. The MAX® architecture is  
LogicBlock Diagram  
1 (B6) INPUT/CLK  
INPUT  
INPUT  
INPUT  
INPUT  
(A7) 68  
(A8) 66  
(L6) 36  
(K6) 35  
2 (A6)  
32 (L4)  
34 (L5)  
INPUT  
INPUT  
INPUT  
SYSTEM CLOCK  
LABA  
LABH  
(B8) 65  
(A9) 64  
(B9) 63  
(A10) 62  
(B10) 61  
(B11) 60  
(C11) 59  
(C10) 58  
MACROCELL 1  
MACROCELL 2  
MACROCELL 3  
MACROCELL 4  
MACROCELL 5  
MACROCELL 6  
MACROCELL 7  
MACROCELL 8  
MACROCELL 120  
MACROCELL 119  
MACROCELL 118  
MACROCELL 117  
MACROCELL 116  
MACROCELL 115  
MACROCELL 114  
MACROCELL 113  
4 (A5)  
5 (B4)  
6 (A4)  
7 (B3)  
8 (A3)  
9 (A2)  
10 (B2)  
11 (B1)  
MACROCELL 9–16  
MACROCELL 121–128  
LAB B  
LABG  
12 (C2)  
13 (C1)  
14 (D2)  
15 (D1)  
17 (E1)  
(D11) 57  
(D10) 56  
(E11) 55  
(F11) 53  
(F10) 52  
MACROCELL 101  
MACROCELL 100  
MACROCELL 99  
MACROCELL 98  
MACROCELL 97  
MACROCELL 17  
MACROCELL 18  
MACROCELL 19  
MACROCELL 20  
MACROCELL 21  
MACROCELL 22–32  
MACROCELL 102–112  
P
I
A
LABC  
LAB F  
18 (F2)  
19 (F1)  
21 (G1)  
22 (H2)  
23 (H1)  
(G11) 51  
(H11) 49  
(H10) 48  
(J11) 47  
(J10) 46  
MACROCELL 33  
MACROCELL 34  
MACROCELL 35  
MACROCELL 36  
MACROCELL 37  
MACROCELL 85  
MACROCELL 84  
MACROCELL 83  
MACROCELL 82  
MACROCELL 81  
MACROCELL 38–48  
MACROCELL 86–96  
LAB D  
LABE  
MACROCELL 49  
MACROCELL 50  
MACROCELL 51  
MACROCELL 52  
MACROCELL 53  
MACROCELL 54  
MACROCELL 55  
MACROCELL 56  
(K11) 45  
(K10) 44  
(L10) 43  
(L9) 42  
(K9) 41  
(L8) 40  
(K8) 39  
(L7) 38  
MACROCELL 72  
MACROCELL 71  
MACROCELL 70  
MACROCELL 69  
MACROCELL 68  
MACROCELL 67  
MACROCELL 66  
MACROCELL 65  
24 (J2)  
25 (J1)  
26 (K1)  
27 (K2)  
28 (L2)  
29 (K3)  
30 (L3)  
31 (K4)  
MACROCELL 7380  
MACROCELL 57–64  
() PERTAIN TO 68-PIN PGA PACKAGE  
3, 20, 37, 54 (B5, G2, K7, E10)  
16, 33, 50, 67 (E2, K5, G10, B7)  
V
CC  
GND  
Cypress Semiconductor Corporation  
Document #: 38-03014 Rev. *B  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Revised April 22, 2004  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C342B  
Selection Guide  
7C342B-15 7C342B-20  
7C342B-25  
7C342B-30  
7C342B-35  
35  
Unit  
Maximum Access Time  
15  
20  
25  
30  
ns  
Pin Configurations  
HLCC, PLCC  
Top View  
PGA  
Bottom View  
L
I/O  
I/O  
INPUT INPUT INPUT I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND INPUT  
V
CC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
K
J
7
6
5
4
3
2
1 66 65 64 63 62 61  
68 67  
9
8
I/O  
I/O  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
60  
I/O  
59  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
58  
57  
56  
55  
54  
53  
H
I/O  
I/O  
GND  
I/O  
I/O  
V
V
CC  
GND  
I/O  
G
F
CC  
I/O  
17  
18  
19  
I/O  
I/O  
I/O  
I/O  
I/O  
52  
7C342B  
51  
50  
V
CC  
GND  
20  
21  
7C342B  
GND  
I/O  
V
CC  
E
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
49  
48  
47  
46  
45  
44  
22  
23  
I/O  
I/O  
I/O  
D
C
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
24  
25  
26  
I/O  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
INPUT/  
CLK  
I/O  
I/O  
I/O  
V
CC  
GND  
I/O  
I/O  
B
A
I/O  
2
I/O  
3
I/O  
4
I/O INPUT INPUT INPUT I/O  
I/O  
10  
1
5
6
7
8
9
11  
Document #: 38-03014 Rev. *B  
Page 2 of 14  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C342B  
placement and routing iterations required for a programmable  
gate array to achieve design timing objectives.  
Logic Array Blocks  
There are eight logic array blocks in the CY7C342B. Each LAB  
consists of a macrocell array containing 16 macrocells, an  
expander product term array containing 32 expanders, and an  
I/O block. The LAB is fed by the programmable interconnect  
array and the dedicated input bus. All macrocell feedbacks go  
to the macrocell array, the expander array, and the program-  
mable interconnect array. Expanders feed themselves and the  
macrocell array. All I/O feedbacks go to the programmable  
interconnect array so that they may be accessed by macro-  
cells in other LABs as well as the macrocells in the LAB in  
which they are situated.  
Timing Delays  
Timing delays within the CY7C342B may be easily determined  
using Warp®, Warp Professional™, or Warp Enterprise™  
software by the model shown in Figure 1. The CY7C342B has  
fixed internal delays, allowing the user to determine the  
worst-case timing delays for any design.  
Design Recommendations  
Operation of the devices described herein with conditions  
above those listed under “Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or any other  
conditions above those indicated in the operational sections of  
this datasheet is not implied. Exposure to absolute maximum  
ratings conditions for extended periods of time may affect  
device reliability. The CY7C342B contains circuitry to protect  
device pins from high static voltages or electric fields, but  
normal precautions should be taken to avoid application of any  
voltage higher than the maximum rated voltages.  
Externally, the CY7C342B provides eight dedicated inputs,  
one of which may be used as a system clock. There are 52 I/O  
pins that may be individually configured for input, output, or  
bidirectional data flow.  
Programmable Interconnect Array  
The Programmable Interconnect Array (PIA) solves inter-  
connect limitations by routing only the signals needed by each  
logic array block. The inputs to the PIA are the outputs of every  
macrocell within the device and the I/O pin feedback of every  
pin on the device.  
For proper operation, input and output pins must be  
constrained to the range GND < (VIN or VOUT) < VCC. Unused  
inputs must always be tied to an appropriate logic level  
(either VCC or GND). Each set of VCC and GND pins must  
be connected together directly at the device. Power supply  
decoupling capacitors of at least 0.2 µF must be connected  
between VCC and GND. For the most effective decoupling,  
each VCC pin should be separately decoupled to GND  
directly at the device. Decoupling capacitors should have  
good frequency response, such as monolithic ceramic types  
have.  
Unlike masked or programmable gate arrays, which induce  
variable delay dependent on routing, the PIA has a fixed delay.  
This eliminates undesired skews among logic signals that may  
cause glitches in internal or external logic. The fixed delay,  
regardless of programmable interconnect array configuration,  
simplifies design by assuring that internal signal skews or  
races are avoided. The result is ease of design implemen-  
tation, often in a signal pass, without the multiple internal logic  
EXPANDER  
DELAY  
t
EXP  
REGISTER  
LOGIC ARRAY  
OUTPUT  
DELAY  
t
t
CONTROLDELAY  
CLR  
INPUT  
t
LAC  
PRE  
OUTPUT  
t
OD  
XZ  
ZX  
INPUT  
DELAY  
t
LOGIC ARRAY  
DELAY  
t
t
RD  
t
RSU  
t
t
COMB  
LATCH  
t
t
IN  
RH  
t
LAD  
SYSTEM CLOCK DELAY t  
ICS  
CLOCK  
DELAY  
PIA  
DELAY  
t
IC  
t
PIA  
FEEDBACK  
DELAY  
t
FD  
I/O DELAY  
t
IO  
Figure 1. CY7C342B Internal Timing Model  
Document #: 38-03014 Rev. *B  
Page 3 of 14  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C342B  
Design Security  
Output Drive Current  
The CY7C342B contains a programmable design security  
feature that controls the access to the data programmed into  
the device. If this programmable feature is used, a proprietary  
design implemented in the device cannot be copied or  
retrieved. This enables a high level of design control to be  
obtained since programmed data within EPROM cells is  
invisible. The bit that controls this function, along with all other  
program data, may be reset simply by erasing the entire  
device.  
250  
I
OL  
200  
150  
V
= 5.0V  
CC  
Room Temp.  
The CY7C342B is fully functionally tested and guaranteed  
through complete testing of each programmable EPROM bit  
and all internal logic elements thus ensuring 100%  
programming yield.  
100  
50  
I
OH  
The erasable nature of these devices allows test programs to  
be used and erased during early stages of the production flow.  
The devices also contain on-board logic test circuitry to allow  
verification of function and AC specification once encapsu-  
lated in non-windowed packages.  
0
1
2
3
4
5
V
O
OUTPUTVOLTAGE (V)  
Typical ICC vs. fMAX  
Timing Considerations  
400  
Unless otherwise stated, propagation delays do not include  
expanders. When using expanders, add the maximum  
expander delay tEXP to the overall delay. Similarly, there is an  
additional tPIA delay for an input from an I/O pin when  
compared to a signal from straight input pin.  
300  
V
CC  
= 5.0V  
Room Temp.  
When calculating synchronous frequencies, use tSU if all  
inputs are on dedicated input pins. When expander logic is  
used in the data path, add the appropriate maximum expander  
200  
100  
0
delay, tEXP to tS1. Determine which of 1/(tWH + tWL), 1/tCO1  
,
or 1/(tEXP + tS1) is the lowest frequency. The lowest of these  
frequencies is the maximum data path frequency for the  
synchronous configuration.  
When calculating external asynchronous frequencies, use  
tAS1 if all inputs are on the dedicated input pins.  
100 Hz 1 kHz 10 kHz 100 kHz 1 MHz 10 MHz 50 MHz  
When expander logic is used in the data path, add the appro-  
priate maximum expander delay, tEXP to tAS1. Determine  
which of 1/(tAWH + tAWL), 1/tACO1, or 1/(tEXP + tAS1) is the  
lowest frequency. The lowest of these frequencies is the  
maximum data path frequency for the asynchronous config-  
uration.  
MAXIMUM FREQUENCY  
The parameter tOH indicates the system compatibility of this  
device when driving other synchronous logic with positive  
input hold times, which is controlled by the same  
synchronous clock. If tOH is greater than the minimum  
required input hold time of the subsequent synchronous  
logic, then the devices are guaranteed to function properly  
with a common synchronous clock under worst-case  
environmental and supply voltage conditions.  
Document #: 38-03014 Rev. *B  
Page 4 of 14  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C342B  
DC Output Current per Pin[1]................... –25 mA to +25 mA  
DC Input Voltage[1] .........................................–2.0V to +7.0V  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Operating Range  
Storage Temperature ................................ –65°C to +135°C  
Ambient Temperature with  
Power Applied............................................ –65°C to +135°C  
Maximum Junction Temperature  
Range  
Commercial  
Industrial  
Ambient Temperature  
VCC  
0°C to +70°C  
–40°C to +85°C  
5V ± 5%  
5V ± 10%  
(under bias)..................................................................150°C  
Supply Voltage to Ground Potential............–2.0V to +7.0V[1]  
Electrical Characteristics Over the Operating Range  
Parameter  
Description  
Supply Voltage  
Test Conditions  
Maximum VCC rise time is 10 ms  
IOH = –4 mA DC[2]  
Min.  
Max.  
Unit  
V
VCC  
VOH  
VOL  
VIH  
VIL  
IIX  
4.75(4.5) 5.25(5.5)  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
2.4  
V
IOL = 8 mA DC[2]  
0.45  
V
2.0  
–0.3  
–10  
–40  
VCC + 0.3  
V
V
Input LOW Voltage  
0.8  
+10  
+40  
100  
100  
Input Current  
VI = VCC or ground  
VO = VCC or ground  
µA  
µA  
ns  
ns  
IOZ  
tR  
Output Leakage Current  
Recommended Input Rise Time  
Recommended Input Fall Time  
tF  
Capacitance  
Parameter  
Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
VIN = 0V, f = 1.0 MHz  
VOUT = 0V, f = 1.0 MHz  
Max.  
Unit  
pF  
CIN  
10  
20  
COUT  
pF  
AC Test Loads and Waveforms  
R1 464  
R1 464Ω  
5V  
5V  
OUTPUT  
ALL INPUT PULSES  
90%  
OUTPUT  
3.0V  
90%  
10%  
10%  
R2  
250Ω  
R2  
250Ω  
50 pF  
5 pF  
GND  
6 ns  
6 ns  
INCLUDING  
JIG AND  
SCOPE  
INCLUDING  
JIG AND  
SCOPE  
(a)  
(b)  
Equivalent to:  
THÉVENIN EQUIVALENT (commercial/military)  
163Ω  
OUTPUT  
1.75V  
Notes:  
1. Minimum DC input is –0.3V. During transactions, input may undershoot to –2.0V or overshoot to 7.0V for input currents less then 100 mA and periods shorter  
than 20 ns.  
2. The I parameter refers to high-level TTL output current; the I parameter refers to low-level TTL output current.  
OH  
OL  
Document #: 38-03014 Rev. *B  
Page 5 of 14  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C342B  
Commercial and Industrial External Synchronous Switching Characteristics Over Operating Range  
7C342B-15  
7C342B-20  
Parameter  
tPD1  
tPD2  
tSU  
Description  
Dedicated Input to Combinatorial Output Delay[3]  
I/O Input to Combinatorial Output Delay[3]  
Global Clock Set-Up Time  
Min.  
Max.  
15  
Min.  
Max.  
20  
Unit  
ns  
25  
33  
ns  
10  
13  
ns  
tCO1  
tH  
Synchronous Clock Input to Output Delay[3]  
Input Hold Time from Synchronous Clock Input  
Synchronous Clock Input HIGH Time  
Synchronous Clock Input LOW Time  
Maximum Register Toggle Frequency[4]  
Minimum Global Clock Period  
8
9
ns  
0
5
0
7
ns  
tWH  
ns  
tWL  
5
7
ns  
fMAX  
tCNT  
fCNT  
100  
71.4  
MHz  
ns  
12  
15  
Maximum Internal Global Clock Frequency[5]  
83.3  
66.7  
MHZ  
Commercial and Industrial External Synchronous Switching Characteristics Over Operating Range  
7C342B-25  
7C342B-30 7C342B-35  
Parameter  
tPD1  
tPD2  
tSU  
Description  
Dedicated Input to Combinatorial Output Delay[3]  
I/O Input to Combinatorial Output Delay[3]  
Global Clock Set-Up Time  
Min. Max. Min. Max. Min. Max. Unit  
25  
40  
30  
45  
35  
55  
ns  
ns  
15  
20  
25  
ns  
tCO1  
tH  
Synchronous Clock Input to Output Delay[3]  
Input Hold Time from Synchronous Clock Input  
Synchronous Clock Input HIGH Time  
Synchronous Clock Input LOW Time  
Maximum Register Toggle Frequency[4]  
Minimum Global Clock Period  
14  
16  
20  
ns  
0
8
0
0
ns  
tWH  
10  
10  
50  
12.5  
12.5  
40  
ns  
tWL  
8
ns  
fMAX  
tCNT  
tODH  
fCNT  
62.5  
MHz  
ns  
20  
25  
30  
Output Data Hold Time After Clock  
Maximum Internal Global Clock Frequency[5]  
2
2
2
ns  
50  
40  
33.3  
MHz  
Commercial and Industrial External Asynchronous Switching CharacteristicsOver Operating Range  
7C342B-15  
7C342B–20  
Parameter  
tACO1  
tAS1  
Description  
Min.  
Max.  
Min.  
Max.  
Unit  
ns  
Asynchronous Clock Input to Output Delay[3]  
Dedicated Input or Feedback Set-Up Time to Asynchronous Clock Input[6]  
Input Hold Time from Asynchronous Clock Input  
Asynchronous Clock Input HIGH Time[6]  
15  
20  
5
5
5
5
6
6
7
7
ns  
tAH  
ns  
tAWH  
tAWL  
ns  
Asynchronous Clock Input LOW Time[6]  
ns  
tACNT  
fACNT  
tACO1  
tAS1  
Minimum Internal Array Clock Frequency  
Maximum Internal Array Clock Frequency[5]  
Asynchronous Clock Input to Output Delay[3]  
Dedicated Input or Feedback Set-Up Time to Asynchronous Clock Input[5]  
Input Hold Time from Asynchronous Clock Input  
12  
25  
15  
30  
ns  
83.3  
66.7  
MHz  
5
6
6
8
10  
10  
tAH  
Notes:  
3. C1 = 35 pF.  
4. The f  
values represent the highest frequency for pipeline data.  
MAX  
5. This parameter is measured with a 16-bit counter programmed into each LAB  
6. This parameter is measured with a positive-edge triggered clock at the register. For negative edge triggering, the t  
and t  
parameters must be swapped.  
AWH  
AWL  
Document #: 38-03014 Rev. *B  
Page 6 of 14  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C342B  
CommercialandIndustrialExternalAsynchronousSwitchingCharacteristicsOverOperatingRange(continued)  
7C342B-15  
7C342B–20  
Parameter  
tAWH  
Description  
Asynchronous Clock Input HIGH Time[5]  
Asynchronous Clock Input LOW Time[5]  
Minimum Internal Array Clock Frequency  
Maximum Internal Array Clock Frequency[5]  
Min.  
11  
Max.  
Min.  
14  
Max.  
Unit  
16  
tAWL  
9
11  
14  
tACNT  
20  
25  
fACNT  
50  
40  
33.3  
Commercial and Industrial Typical Internal Switching Characteristics Over Operating Range  
7C342B-15  
7C342B-20  
Parameter  
tIN  
Description  
Dedicated Input Pad and Buffer Delay  
I/O Input Pad and Buffer Delay  
Expander Array Delay  
Min.  
Max.  
Min.  
Max.  
4
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
3
8
8
5
3
5
5
tIO  
4
tEXP  
tLAD  
tLAC  
tOD  
10  
12  
5
Logic Array Data Delay  
Logic Array Control Delay  
Output Buffer and Pad Delay[3]  
Output Buffer Enable Delay[3]  
Output Buffer Disable Delay[7]  
Register Set-Up Time Relative to Clock Signal at Register  
Register Hold Time Relative to Clock Signal at Register  
Flow Through Latch Delay  
3
[8]  
tZX  
5
tXZ  
5
tRSU  
tRH  
tLATCH  
tRD  
tCOMB  
tIC  
tICS  
tFD  
2
7
1
10  
1
1
1
1
Register Delay  
[9]  
Transparent Mode Delay  
1
1
Asynchronous Clock Logic Delay  
Synchronous Clock Delay  
6
8
0
0
Feedback Delay  
1
1
tPRE  
tCLR  
tPIA  
tIN  
Asynchronous Register Preset Time  
Asynchronous Register Clear Time  
Programmable Interconnect Array Delay Time  
Dedicated Input Pad and Buffer Delay  
I/O Input Pad and Buffer Delay  
Expander Array Delay  
3
3
3
3
10  
5
13  
7
tIO  
6
6
tEXP  
tLAD  
tLAC  
tOD  
12  
12  
10  
5
14  
14  
12  
5
Logic Array Data Delay  
Logic Array Control Delay  
Output Buffer and Pad Delay[3]  
Output Buffer Enable Delay[3]  
Output Buffer Disable Delay[7]  
Register Set-Up Time Relative to Clock Signal at Register  
Register Hold Time Relative to Clock Signal at Register  
Flow Through Latch Delay  
[8]  
tZX  
10  
10  
11  
11  
tXZ  
tRSU  
tRH  
tLATCH  
tRD  
6
4
8
6
10  
8
3
1
4
2
Register Delay  
Notes:  
7. C1 = 5 pF.  
8. Sample tested only for an output change of 500 mV.  
9. This specification guarantees the maximum combinatorial delay associated with the macrocell register bypass when the macrocell is configured for combinatorial  
operation.  
Document #: 38-03014 Rev. *B  
Page 7 of 14  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C342B  
Commercial and Industrial Typical Internal Switching Characteristics Over Operating Range (continued)  
7C342B-25  
7C342B-30  
7C342B-35  
Parameter  
Description  
Transparent Mode Delay  
Min. Max. Min. Max. Min. Max. Unit  
[9]  
tCOMB  
3
14  
3
4
16  
2
4
16  
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tIC  
Asynchronous Clock Logic Delay  
Synchronous Clock Delay  
tICS  
tFD  
Feedback Delay  
1
1
2
tPRE  
tCLR  
tPIA  
Asynchronous Register Preset Time  
Asynchronous Register Clear Time  
Programmable Interconnect Array Delay Time  
5
6
7
5
6
7
14  
16  
20  
Switching Waveforms  
External Combinatorial  
DEDICATED INPUT/  
I/O INPUT  
tPD1/tPD2  
COMBINATORIAL  
OUTPUT  
tWH  
External Synchronous  
tWL  
SYNCHRONOUS  
CLOCK PIN  
SYNCHRONOUS  
CLOCK AT REGISTER  
tH  
tSU  
DATA FROM  
LOGIC ARRAY  
tCO1  
REGISTERED  
OUTPUTS  
External Asynchronous  
DEDICATED INPUTS OR  
REGISTERED FEEDBACK  
t
t
t
AWL  
t
AH  
AWH  
AS1  
ASYNCHRONOUS  
CLOCK INPUT  
Document #: 38-03014 Rev. *B  
Page 8 of 14  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C342B  
Switching Waveforms (continued)  
Internal Combinatorial  
t
IN  
INPUT PIN  
t
IO  
I/O PIN  
t
EXP  
EXPANDER  
ARRAY DELAY  
t
, t  
LAC LAD  
LOGIC ARRAY  
INPUT  
LOGIC ARRAY  
OUTPUT  
tCOMB  
tOD  
OUTPUT  
PIN  
Internal Synchronous  
CLOCK FROM  
LOGIC ARRAY  
t
t
OD  
RD  
DATA FROM  
LOGIC ARRAY  
t
XZ  
t
ZX  
HIGH IMPEDANCE  
STATE  
OUTPUT PIN  
Internal Asynchronous  
t
t
AWL  
AWH  
t  
R  
t
F
CLOCK PIN  
t
IN  
CLOCK INTO  
LOGIC ARRAY  
t
IC  
CLOCK FROM  
LOGIC ARRAY  
t
t
RH  
RSU  
DATA FROM  
LOGIC ARRAY  
t
,t  
t
FD  
t
,t  
t
FD  
RD LATCH  
CLR PRE  
REGISTER OUTPUT  
TO LOCAL LAB  
LOGIC ARRAY  
t
PIA  
REGISTER OUTPUT  
TO ANOTHER LAB  
Document #: 38-03014 Rev. *B  
Page 9 of 14  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C342B  
Switching Waveforms (continued)  
Internal Synchronous  
SYSTEM CLOCK PIN  
t
t
ICS  
IN  
SYSTEM CLOCK  
AT REGISTER  
t
t
RH  
RSU  
DATA FROM  
LOGIC ARRAY  
Ordering Information  
Speed (ns)  
Ordering Code  
Package Name  
Package Type  
Operating Range  
15  
CY7C342B-15JC/JI  
J81  
68-lead Plastic Leaded Chip Carrier  
Commercial/  
Industrial  
20  
25  
CY7C342B-20JC/JI  
J81  
68-lead Plastic Leaded Chip Carrier  
Commercial/  
Industrial  
CY7C342B-25HC/HI  
CY7C342B-25JC/JI  
CY7C342B-25RC/RI  
CY7C342B-30JC/JI  
H81  
J81  
R68  
J81  
68-pin Windowed Leaded Chip Carrier  
68-lead Plastic Leaded Chip Carrier  
68-pin Windowed Ceramic Pin Grid Array  
68-lead Plastic Leaded Chip Carrier  
Commercial/  
Industrial  
30  
35  
Commercial/  
Industrial  
CY7C342B-35JC/JI  
CY7C342B-35RJ/RI  
J81  
68-lead Plastic Leaded Chip Carrier  
Commercial/  
Industrial  
R68  
68-pin Windowed Ceramic Pin Grid Array  
Document #: 38-03014 Rev. *B  
Page 10 of 14  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C342B  
Package Diagrams  
68-pin Windowed Leaded Chip Carrier H81  
51-80080-**  
Document #: 38-03014 Rev. *B  
Page 11 of 14  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C342B  
Package Diagrams (continued)  
68-lead Plastic Leaded Chip Carrier J81  
51-85005-*A  
Document #: 38-03014 Rev. *B  
Page 12 of 14  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C342B  
Package Diagrams (continued)  
68-Pin Windowed PGA Ceramic R68  
51-80099-*A  
MAX and Warp are registered trademarks and Ultra37000, Warp Professional and Warp Enterprise are trademarks of Cypress  
Semiconductor Corporation. All product and company ames mentioned in this document are the trademarks of their respective  
holders.  
Document #: 38-03014 Rev. *B  
Page 13 of 14  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
Cypressproductsarenotwarrantednorintendedtobeusedformedical, life-support, life-saving, criticalcontrolorsafetyapplications, unlesspursuanttoanexpresswrittenagreementwithCypress.  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C342B  
Document History Page  
Document Title: CY7C342B 128-Macrocell MAX® EPLD  
Document Number: 38-03014  
Orig. of  
REV.  
**  
ECN NO. Issue Date Change  
Description of Change  
Change from Spec number: 38-00119 to 38-03014  
PGA package diagram dimensions were updated  
106314  
113612  
213375  
04/25/01  
04/11/02  
See ECN  
SZV  
OOR  
FSG  
*A  
*B  
Added note to title page: “Use Ultra37000 For All New Designs”  
Document #: 38-03014 Rev. *B  
Page 14 of 14  

相关型号:

CY7C342B-12JCR

OT PLD, 26ns, CMOS, PQCC68, PLASTIC, LCC-68
CYPRESS

CY7C342B-15HI

UV PLD, 33ns, 128-Cell, CMOS, CQCC68, WINDOWED, LCC-68
CYPRESS

CY7C342B-15JC

128-Macrocell MAX EPLDs
CYPRESS

CY7C342B-15JCR

OT PLD, 33ns, CMOS, PQCC68, PLASTIC, LCC-68
CYPRESS

CY7C342B-15JI

128-Macrocell MAX EPLDs
CYPRESS

CY7C342B-15JIR

OT PLD, 33ns, CMOS, PQCC68, PLASTIC, LCC-68
CYPRESS

CY7C342B-15RC

UV-Erasable/OTP Complex PLD
ETC

CY7C342B-20HI

UV PLD, 42ns, 128-Cell, CMOS, CQCC68, WINDOWED, LCC-68
CYPRESS

CY7C342B-20HMB

UV PLD, 42ns, 128-Cell, CMOS, CQCC68, WINDOWED, LCC-68
CYPRESS

CY7C342B-20JC

128-Macrocell MAX EPLDs
CYPRESS

CY7C342B-20JCR

OT PLD, 42ns, CMOS, PQCC68, PLASTIC, LCC-68
CYPRESS

CY7C342B-20JI

128-Macrocell MAX EPLDs
CYPRESS