CY7C346-25HI [CYPRESS]

USE ULTRA37000TM FOR ALL NEW DESIGNS(128-Macrocell MAX EPLD); 使用ULTRA37000TM所有新设计( 128个宏单元的MAX EPLD )
CY7C346-25HI
型号: CY7C346-25HI
厂家: CYPRESS    CYPRESS
描述:

USE ULTRA37000TM FOR ALL NEW DESIGNS(128-Macrocell MAX EPLD)
使用ULTRA37000TM所有新设计( 128个宏单元的MAX EPLD )

文件: 总21页 (文件大小:470K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C346  
128-Macrocell MAX® EPLD  
The 128 macrocells in the CY7C346 are divided into eight  
LABs, 16 per LAB. There are 256 expander product terms, 32  
per LAB, to be used and shared by the macrocells within each  
LAB.  
Features  
• 128 macrocells in eight logic array blocks (LABs)  
• 20 dedicated inputs, up to 64 bidirectional I/O pins  
• Programmable interconnect array  
Each LAB is interconnected through the programmable inter-  
connect array, allowing all signals to be routed throughout the  
chip.  
• 0.8-micron double-metal CMOS EPROM technology  
• Available in 84-pin CLCC, PLCC, and 100-pin PGA,  
PQFP  
The speed and density of the CY7C346 allow it to be used in  
a wide range of applications, from replacement of large  
amounts of 7400-series TTL logic, to complex controllers and  
multifunction chips. With greater than 25 times the functionality  
of 20-pin PLDs, the CY7C346 allows the replacement of over  
50 TTL devices. By replacing large amounts of logic, the  
CY7C346 reduces board space, part count, and increases  
system reliability.  
Functional Description  
The CY7C346 is an Erasable Programmable Logic Device  
(EPLD) in which CMOS EPROM cells are used to configure  
logic functions within the device. The MAX® architecture is  
100% user-configurable, allowing the device to accommodate  
a variety of independent logic functions.  
Logic Block Diagram  
INPUT [59] (N4) . 36  
INPUT [60] (M5) . 37  
INPUT [61] (N5) . 38  
INPUT [64] (N6) . 41  
INPUT [65] (M7) . 42  
INPUT [66] (L7) . 43  
INPUT [67] (N7) . 44  
INPUT [70] (L8) . 47  
INPUT [71] (N9) . 48  
INPUT [72] (M9) . 49  
.
1 (C7) [16] INPUT/CLK  
..  
. 78 (A10) [9] .....  
. 79 (B9) [10] .....  
80 (A9) [11] .....  
. 83 (A8) [14] .....  
. 84 (B7) [15] .....  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
..  
..  
..  
..  
2
5
6
7
(A7) [17] .....  
(C6) [20] .....  
(A5) [21] .....  
(B5) [22] .....  
SYSTEM CLOCK  
LAB A  
LAB H  
MACROCELL 120  
MACROCELL 119  
MACROCELL 118  
MACROCELL 117  
MACROCELL 116  
MACROCELL 115  
MACROCELL 114  
MACROCELL 113  
MACROCELL  
MACROCELL  
MACROCELL  
MACROCELL  
MACROCELL  
MACROCELL  
MACROCELL  
MACROCELL  
1
2
3
4
5
6
7
8
[100] (C13) NC  
[99] (D12) NC  
[98] (D13) 77  
[97] (E12) 76  
[96] (E13) 75  
[95] (F11) 74  
[92] (G13) 73  
[91] (G11) 72  
8 (B13) [1]  
9 (C12) [2]  
10 (A13) [3]  
11 (B12) [4]  
12 (A12) [5]  
13 (11) [6]  
NC (A11) [7]  
NC (B10) [8]  
MACROCELL 121–128  
MACROCELL 9–16  
LAB B  
LAB G  
MACROCELL 104  
MACROCELL 103  
MACROCELL 102  
MACROCELL 101  
MACROCELL 100  
MACROCELL 99  
MACROCELL 98  
MACROCELL 97  
MACROCELL 17  
MACROCELL 18  
MACROCELL 19  
MACROCELL 20  
MACROCELL 21  
MACROCELL 22  
MACROCELL 23  
MACROCELL 24  
14 (A4) [23]  
15 (B4) [24]  
16 (A3) [25]  
17 (A2) [26]  
18 (B3) [27]  
21 (A1) [28]  
NC (B2) [29]  
NC (B1) [30]  
[90] (G12) NC  
[89] (H13) NC  
[86] (J13) 71  
[85] (J12) 70  
[84] (K13) 69  
[83] (K12) 68  
[82] (L13) 67  
[81] (L12) 64  
MACROCELL 105–112  
MACROCELL 25–32  
P
I
LAB C  
A
LAB F  
MACROCELL 33  
MACROCELL 34  
MACROCELL 35  
MACROCELL 36  
MACROCELL 37  
MACROCELL 38  
MACROCELL 39  
MACROCELL 40  
22 (C2) [31]  
25 (C1) [32]  
26 (D2) [33]  
27 (D1) [34]  
28 (E2) [35]  
29 (E1) [36]  
NC (F1) [39]  
NC (G2)[40]  
[80] (M13) NC  
[79] (M12) NC  
[78] (N13) 63  
[77] (M11) 60  
[76] (N12) 59  
[75] (N11) 58  
[74] (M10) 57  
[73] (N10) 56  
MACROCELL 88  
MACROCELL 87  
MACROCELL 86  
MACROCELL 85  
MACROCELL 84  
MACROCELL 83  
MACROCELL 82  
MACROCELL 81  
MACROCELL 41–48  
MACROCELL 86–96  
LAB D  
LAB E  
MACROCELL 49  
MACROCELL 50  
MACROCELL 51  
MACROCELL 52  
MACROCELL 53  
MACROCELL 54  
MACROCELL 55  
MACROCELL 56  
[58] (M4) NC  
[57] (N3) NC  
[56] (M3) 55  
[55] (N2) 54  
[54] (M2) 53  
[53] (N1) 52  
[52] (L2) 51  
[51] (M1) 50  
MACROCELL 72  
MACROCELL 71  
MACROCELL 70  
MACROCELL 69  
MACROCELL 68  
MACROCELL 67  
MACROCELL 66  
MACROCELL 65  
30 (G3) [41]  
31 (G1) [42]  
32 (H3) [45]  
33 (J1) [46]  
34 (J2) [47]  
35 (K1) [48]  
NC (K2) [49]  
NC (L1) [50]  
MACROCELL 7380  
MACROCELL 57– 64  
() – PERTAIN TO 100-PIN PGA PACKAGE  
[ ] PERTAIN TO 100-PIN PQFP PACKAGE  
3, 20, 37, 54 (A6,B6,F12,F13,H1,H2,M8,N8) [18, 19, 43, 44, 68, 69, 93, 94]  
16, 33, 50, 67 (B8,C8,F2,F3,H11,H12,L6,M6) [12, 13, 37, 38, 62, 63, 87, 88]  
V
CC  
GND  
Cypress Semiconductor Corporation  
Document #: 38-03005 Rev. *B  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Revised April 19, 2004  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C346  
Selection Guide  
7C346-25  
25  
7C346-30  
7C346-35  
35  
Unit  
ns  
Maximum Access Time  
30  
Maximum Operating Current  
Commercial  
Military  
250  
250  
320  
320  
225  
275  
275  
250  
mA  
325  
320  
Industrial  
Commercial  
Military  
320  
320  
Maximum Standby Current  
225  
225  
mA  
275  
275  
Industrial  
275  
275  
Pin Configurations  
PLCC/CLCC  
Top View  
PGA  
Bottom View  
79 78 77 76  
5 4 3 2 1 84 83 82 81 80  
7
8
6
10  
75  
74  
9
11  
I/O I/O I/O INP INP INP INP  
I/O I/O I/O I/O INP GND INP  
V
INP I/O I/O I/O  
I/O  
I/O  
N
CC  
I/O  
I/O  
12  
13  
14  
15  
I/O  
I/O  
V
CC  
INP I/O I/O I/O  
M
73  
72  
71  
70  
69  
68  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O I/O  
I/O I/O  
I/O I/O  
GND INP INP  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L
K
J
16  
I/O  
I/O  
17  
18  
19  
20  
21  
I/O  
I/O  
GND  
GND  
I/O  
67  
I/O  
V
V
V
CC  
I/O  
GND GND I/O  
I/O I/O I/O  
I/O  
H
G
F
E
CC  
66  
65  
CC  
V
CY7C346  
CC  
I/O I/O I/O  
I/O GND GND  
I/O  
22  
23  
I/O  
64  
63  
62  
61  
60  
59  
V
CC  
I/O  
V
CC  
V
CC  
CY7C346  
V
24  
25  
26  
CC  
GND  
GND  
I/O  
I/O  
I/O  
I/O I/O  
I/O I/O  
I/O  
I/O  
I/O  
I/O  
D
I/O  
I/O  
I/O  
27  
28  
29  
30  
31  
32  
I/O  
58  
57  
56  
55  
54  
I/O  
I/O  
I/O  
INP  
/CLK  
I/O I/O  
INP  
GND  
I/O  
I/O  
I/O  
C
B
I/O  
I/O  
I/O  
I/O I/O I/O I/O INP  
V
CC  
INP GND INP I/O I/O I/O  
INP INP INP INP I/O I/O  
I/O  
I/O  
I/O I/O I/O I/O INP  
V
CC  
I/O  
13  
A
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53  
1
2
3
4
5
6
7
9
10 11  
12  
8
Document #: 38-03005 Rev. *B  
Page 2 of 21  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C346  
Pin Configurations (continued)  
PQFP  
Top View  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
I/O  
1
2
I/O  
80  
79  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
78  
3
4
77  
76  
I/O  
5
6
7
8
9
I/O  
75  
74  
73  
I/O  
I/O  
I/O  
I/O  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
72  
71  
70  
10  
11  
12  
13  
V
CC  
GND  
GND  
69  
68  
V
CC  
INPUT  
INPUT  
INPUT  
67  
66  
65  
14  
15  
16  
17  
18  
19  
20  
21  
INPUT  
INPUT/CLK  
INPUT  
INPUT  
INPUT  
CY7C346  
64  
63  
62  
V
CC  
GND  
V
CC  
GND  
INPUT  
INPUT  
INPUT  
61  
60  
INPUT  
INPUT  
INPUT  
59  
58  
22  
23  
24  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
57  
56  
55  
54  
I/O  
25  
26  
27  
28  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
53  
52  
29  
30  
I/O  
I/O  
51  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Document #: 38-03005 Rev. *B  
Page 3 of 21  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C346  
that may be individually configured for input, output, or bidirec-  
tional data flow.  
Logic Array Blocks  
There are eight logic array blocks in the CY7C346. Each LAB  
consists of a macrocell array containing 16 macrocells, an  
expander product term array containing 32 expanders, and an  
I/O block. The LAB is fed by the programmable interconnect  
array and the dedicated input bus. All macrocell feedbacks go  
to the macrocell array, the expander array, and the program-  
mable interconnect array. Expanders feed themselves and the  
macrocell array. All I/O feedbacks go to the programmable  
interconnect array so that they may be accessed by macro-  
cells in other LABs as well as the macrocells in the LAB in  
which they are situated.  
Programmable Interconnect Array  
The Programmable Interconnect Array (PIA) solves inter-  
connect limitations by routing only the signals needed by each  
logic array block. The inputs to the PIA are the outputs of every  
macrocell within the device and the I/O pin feedback of every  
pin on the device.  
Timing Delays  
Timing delays within the CY7C346 may be easily determined  
using Warp®, Warp Professional™, or Warp Enterprise™  
software. The CY7C346 has fixed internal delays, allowing the  
user to determine the worst case timing delays for any design.  
Externally, the CY7C346 provides 20 dedicated inputs, one of  
which may be used as a system clock. There are 64 I/O pins  
EXPANDER  
DELAY  
t
EXP  
REGISTER  
LOGIC ARRAY  
OUTPUT  
DELAY  
t
CONTROL DELAY  
CLR  
INPUT  
t
LAC  
t
PRE  
OUTPUT  
t
OD  
XZ  
ZX  
INPUT  
DELAY  
IN  
t
LOGIC ARRAY  
DELAY  
t
RSU  
RD  
t
t
t
COMB  
LATCH  
t
t
t
RH  
t
LAD  
SYSTEM CLOCK DELAY t  
ICS  
CLOCK  
DELAY  
PIA  
DELAY  
t
IC  
t
PIA  
FEEDBACK  
DELAY  
t
FD  
I/O DELAY  
t
IO  
Figure 1. CY7C346 Internal Timing Model  
(either VCC or GND). Each set of VCC and GND pins must  
be connected together directly at the device. Power supply  
decoupling capacitors of at least 0.2 µF must be connected  
between VCC and GND. For the most effective decoupling,  
each VCC pin should be separately decoupled to GND  
directly at the device. Decoupling capacitors should have  
good frequency response, such as monolithic ceramic types  
have.  
Design Recommendations  
Operation of the devices described herein with conditions  
above those listed under “Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or any other  
conditions above those indicated in the operational sections of  
this data sheet is not implied. Exposure to absolute maximum  
ratings conditions for extended periods of time may affect  
device reliability. The CY7C346 contains circuitry to protect  
device pins from high static voltages or electric fields, but  
normal precautions should be taken to avoid application of any  
voltage higher than the maximum rated voltages.  
Design Security  
The CY7C346 contains a programmable design security  
feature that controls the access to the data programmed into  
the device. If this programmable feature is used, a proprietary  
design implemented in the device cannot be copied or  
retrieved. This enables a high level of design control to be  
For proper operation, input and output pins must be  
constrained to the range GND (VIN or VOUT) VCC. Unused  
inputs must always be tied to an appropriate logic level  
Document #: 38-03005 Rev. *B  
Page 4 of 21  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C346  
obtained since programmed data within EPROM cells is  
Timing Considerations  
invisible. The bit that controls this function, along with all other  
program data, may be reset simply by erasing the entire  
device.  
Unless otherwise stated, propagation delays do not include  
expanders. When using expanders, add the maximum  
expander delay tEXP to the overall delay. Similarly, there is an  
additional tPIA delay for an input from an I/O pin when  
compared to a signal from straight input pin.  
The CY7C346 is fully functionally tested and guaranteed  
through complete testing of each programmable EPROM bit  
and all internal logic elements thus ensuring 100%  
programming yield.  
When calculating synchronous frequencies, use tS1 if all  
inputs are on dedicated input pins. The parameter tS2 should  
be used if data is applied at an I/O pin. If tS2 is greater than  
tCO1, 1/tS2 becomes the limiting frequency in the data path  
The erasable nature of these devices allows test programs to  
be used and erased during early stages of the production flow.  
The devices also contain on-board logic test circuitry to allow  
verification of function and AC specification once encapsu-  
lated in non-windowed packages.  
mode unless 1/(tWH + tWL) is less than 1/tS2  
.
When expander logic is used in the data path, add the appro-  
priate maximum expander delay, tEXP to tS1. Determine which  
of 1/(tWH + tWL), 1/tCO1, or 1/(tEXP + tS1) is the lowest  
frequency. The lowest of these frequencies is the maximum  
data path frequency for the synchronous configuration.  
Typical ICC vs. fMAX  
400  
When calculating external asynchronous frequencies, use  
t
AS1 if all inputs are on the dedicated input pins. If any data  
is applied to an I/O pin, tAS2 must be used as the required  
set-up time. If (tAS2 + tAH) is greater than tACO1, 1/(tAS2 + tAH  
300  
)
V
= 5.0V  
CC  
becomes the limiting frequency in the data path mode unless  
1/(tAWH + tAWL) is less than 1/(tAS2 + tAH).  
Room Temp.  
200  
100  
0
When expander logic is used in the data path, add the appro-  
priate maximum expander delay, tEXP to tAS1. Determine  
which of 1/(tAWH + tAWL), 1/tACO1, or 1/(tEXP + tAS1) is the  
lowest frequency. The lowest of these frequencies is the  
maximum data path frequency for the asynchronous config-  
uration.  
The parameter tOH indicates the system compatibility of this  
device when driving other synchronous logic with positive  
input hold times, which is controlled by the same  
synchronous clock. If tOH is greater than the minimum  
required input hold time of the subsequent synchronous  
logic, then the devices are guaranteed to function properly  
with a common synchronous clock under worst-case  
environmental and supply voltage conditions.  
100 Hz 1 kHz 10 kHz 100 kHz 1 MHz 10 MHz 50 MHz  
MAXIMUM FREQUENCY  
Output Drive Current  
The parameter tAOH indicates the system compatibility of this  
device when driving subsequent registered logic with a  
positive hold time and using the same asynchronous clock  
as the CY7C346.  
100  
80  
I
OL  
In general, if tAOH is greater than the minimum required input  
hold time of the subsequent logic (synchronous or  
asynchronous) then the devices are guaranteed to function  
properly under worst-case environmental and supply voltage  
conditions, provided the clock signal source is the same.  
This also applies if expander logic is used in the clock signal  
path of the driving device, but not for the driven device. This  
is due to the expander logic in the second device’s clock  
signal path adding an additional delay (tEXP) causing the  
output data from the preceding device to change prior to the  
arrival of the clock signal at the following device’s register.  
V
= 5.0V  
CC  
60  
Room Temp.  
40  
20  
I
OH  
0.45  
0
1
2
3
4
5
V
O
OUTPUTVOLTAGE (V)  
Document #: 38-03005 Rev. *B  
Page 5 of 21  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C346  
DC Output Current per Pin ...................... –25 mA to +25 mA  
DC Input Voltage[1] .........................................–3.0V to +7.0V  
DC Program Voltage..................................................... 13.0V  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Static Discharge Voltage...........................................> 1100V  
(per MIL-STD-883, Method 3015)  
Storage Temperature ................................. –65°C to+150°C  
Ambient Temperature with  
Power Applied............................................. –55°C to+125°C  
Operating Range  
Maximum Junction Temperature  
(under bias)..................................................................150°C  
Supply Voltage to Ground Potential...............2.0V to +7.0V  
Maximum Power Dissipation...................................2500 mW  
DC VCC or GND Current............................................500 mA  
Range  
Commercial  
Industrial  
Military  
Ambient Temperature  
0°C to +70°C  
VCC  
5V ± 5%  
5V ± 10%  
5V ± 10%  
–40°C to +85°C  
–55°C to +125°C (Case)  
Electrical Characteristics Over the Operating Range[2]  
Parameter  
VOH  
VOL  
VIH  
Description  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Test Conditions  
Min.  
Max.  
0.45  
Unit  
V
VCC = Min., IOH = –4.0 mA  
2.4  
VCC = Min., IOL = 8.0 mA  
V
2.2  
–0.3  
–10  
–40  
–30  
VCC + 0.3  
0.8  
V
VIL  
V
IIX  
Input Current  
GND < VIN < VCC  
+10  
µA  
µA  
mA  
mA  
IOZ  
Output Leakage Current  
Output Short Circuit Current  
VO = VCC or GND  
VCC = Max., VOUT = 0.5V[3, 4]  
+40  
IOS  
–90  
ICC1  
Power Supply Current (Standby) VI = GND (No Load)  
Commercial  
225  
Military/Industrial  
275  
ICC2  
Power Supply Current[5]  
VI = VCC or GND (No Load) Commercial  
250  
mA  
f = 1.0 MHz[4]  
Military/Industrial  
320  
tR  
tF  
Recommended Input Rise Time  
Recommended Input Fall Time  
100  
ns  
ns  
100  
Capacitance[6]  
Parameter  
Description  
Test Conditions  
Max.  
Unit  
CIN  
Input Capacitance  
Output Capacitance  
VIN = 2V, f = 1.0 MHz  
VOUT = 2V, f = 1.0 MHz  
10  
20  
pF  
pF  
COUT  
AC Test Loads and Waveforms[6]  
R1 464  
R1 464Ω  
5V  
5V  
ALL INPUT PULSES  
90%  
OUTPUT  
OUTPUT  
3.0V  
GND  
90%  
10%  
10%  
R2  
250Ω  
R2  
250Ω  
50 pF  
5 pF  
6 ns  
6 ns  
INCLUDING  
JIG AND  
SCOPE  
INCLUDING  
JIG AND  
SCOPE  
(a)  
(b)  
Equivalent to:  
THÉVENIN EQUIVALENT (Commercial/Military)  
163Ω  
OUTPUT  
1.75V  
Notes:  
1. Minimum DC input is –0.3V. During transitions, the inputs may undershoot to –3.0V for periods less than 20 ns.  
2. Typical values are for T = 25°C and V = 5V.  
A
CC  
3. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. V  
test problems caused by tester ground degradation.  
= 0.5V has been chosen to avoid  
OUT  
4. Guaranteed by design but not 100% tested.  
5. This parameter is measured with device programmed as a 16-bit counter in each LAB.  
6. Part (a) in AC Test Load and Waveforms is used for all parameters except t and t , which is used for part (b) in AC Test Load and Waveforms. All external  
ER  
XZ  
timing parameters are measured referenced to external pins of the device.  
Document #: 38-03005 Rev. *B  
Page 6 of 21  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C346  
Commercial and Industrial External Synchronous Switching Characteristics[6] Over Operating Range  
7C346-25  
7C346-30  
7C346-35  
Parameter  
tPD1  
Description  
Min. Max. Min. Max. Min. Max. Unit  
Dedicated Input to Combinatorial Output Delay[7]  
I/O Input to Combinatorial Output Delay[10]  
25  
40  
37  
30  
45  
44  
35  
55  
55  
ns  
ns  
ns  
tPD2  
tPD3  
Dedicated Input to Combinatorial Output Delay with Expander  
Delay[11]  
tPD4  
I/O Input to Combinatorial Output Delay with Expander  
52  
59  
75  
ns  
Delay[4, 12]  
tEA  
Input to Output Enable Delay[4, 7]  
Input to Output Disable Delay[4, 7]  
Synchronous Clock Input to Output Delay  
25  
25  
14  
30  
30  
30  
16  
35  
35  
35  
20  
42  
ns  
ns  
ns  
ns  
tER  
tCO1  
tCO2  
Synchronous Clock to Local Feedback to Combinatorial  
Output[4, 13]  
tS1  
Dedicated Input or Feedback Set-Up Time to Synchronous  
15  
20  
25  
ns  
Clock Input[7, 14]  
tS2  
I/O Input Set-Up Time to Synchronous Clock Input[7]  
Input Hold Time from Synchronous Clock Input[7]  
Synchronous Clock Input HIGH Time  
30  
0
36  
0
45  
0
ns  
ns  
tH  
tWH  
tWL  
tRW  
tRR  
tRO  
tPW  
tPR  
tPO  
tCF  
8
10  
10  
30  
30  
12.5  
12.5  
35  
ns  
Synchronous Clock Input LOW Time  
Asynchronous Clear Width[4, 7]  
Asynchronous Clear Recovery Time[4, 7]  
Asynchronous Clear to Registered Output Delay[7]  
Asynchronous Preset Width[4, 7]  
Asynchronous Preset Recovery Time[4, 7]  
Asynchronous Preset to Registered Output Delay[7]  
Synchronous Clock to Local Feedback Input[4, 15]  
8
ns  
25  
25  
ns  
35  
ns  
25  
30  
35  
ns  
25  
25  
30  
30  
35  
35  
ns  
ns  
25  
3
30  
3
35  
6
ns  
ns  
[4]  
tP  
External Synchronous Clock Period (1/(fMAX3  
)
16  
20  
25  
ns  
fMAX1  
fMAX2  
External Feedback Maximum Frequency (1/(tCO1 + tS1))[4, 16] 34.5  
27.7  
43.4  
22.2  
32.2  
MHz  
MHz  
Internal Local Feedback Maximum Frequency, lesser of  
55.5  
[4, 17]  
(1/(tS1 + tCF)) or (1/tCO1  
)
fMAX3  
fMAX4  
Data Path Maximum Frequency, lesser of (1/(tWL + tWH)),  
62.5  
50  
40  
MHz  
[4, 18]  
(1/(tS1 + tH)) or (1/tCO1  
Maximum Register Toggle Frequency (1/(tWL + tWH  
Output Data Stable Time from Synchronous Clock Input[4, 20]  
)
[4, 19]  
)
62.5  
3
50  
3
40  
3
MHz  
ns  
tOH  
Notes:  
7. This specification is a measure of the delay from input signal applied to a dedicated input (68-pin PLCC input pin 1, 2, 32, 34, 35, 66, or 68) to combinatorial  
output on any output pin. This delay assumes no expander terms are used to form the logic function.  
8. When this note is applied to any parameter specification it indicates that the signal (data, asynchronous clock, asynchronous clear, and/or asynchronous preset)  
is applied to a dedicated input only and no signal path (either clock or data) employs expander logic.  
9. If an input signal is applied to an I/O pin an additional delay equal to tPIA should be added to the comparable delay for a dedicated input. If expanders are used,  
add the maximum expander delay tEXP to the overall delay for the comparable delay without expanders.  
10. This specification is a measure of the delay from input signal applied to an I/O macrocell pin to any output. This delay assumes no expander terms are used to  
form the logic function.  
11. This specification is a measure of the delay from an input signal applied to a dedicated input (68-pin PLCC input pin 1, 2, 32, 34, 35, 36, 66, or 68) to combinatorial  
output on any output pin. This delay assumes expander terms are used to form the logic function and includes the worst-case expander logic delay for one pass  
through the expander logic.  
12. This specification is a measure of the delay from an input signal applied to an I/O macrocell pin to any output. This delay assumes expander terms are used to  
form the logic function and includes the worst-case expander logic delay for one pass through the expander logic. This parameter is tested periodically by  
sampling production material.  
13. This specification is a measure of the delay from synchronous register clock to internal feedback of the register output signal to the input of the LAB logic array  
and then to a combinatorial output. This delay assumes no expanders are used, register is synchronously clocked and all feedback is within the same LAB. This  
parameter is tested periodically by sampling production material.  
14. If data is applied to an I/O input for capture by a macrocell register, the I/O pin input set-up time minimums should be observed. These parameters are tS2 for  
synchronous operation and tAS2 for asynchronous operation.  
15. This specification is a measure of the delay associated with the internal register feedback path. This is the delay from synchronous clock to LAB logic array  
input. This delay plus the register set-up time, tS1, is the minimum internal period for an internal synchronous state machine configuration. This delay is for  
feedback within the same LAB. This parameter is tested periodically by sampling production material.  
16. This specification indicates the guaranteed maximum frequency, in synchronous mode, at which a state machine configuration with external feedback can  
operate. It is assumed that all data inputs and external feedback signals are applied to dedicated inputs.  
17. This specification indicates the guaranteed maximum frequency at which a state machine with internal-only feedback can operate. If register output states must  
also control external points, this frequency can still be observed as long as this frequency is less than 1/tCO1. All feedback is assumed to be local originating  
within the same LAB.  
18. This frequency indicates the maximum frequency at which the device may operate in data path mode (dedicated input pin to output pin). This assumes data  
input signals are applied to dedicated input pins and no expander logic is used. If any of the data inputs are I/O pins, tS2 is the appropriate tS for calculation.  
19. This specification indicates the guaranteed maximum frequency, in synchronous mode, at which an individual output or buried register can be cycled by a clock  
signal applied to the dedicated clock input pin.  
20. This parameter indicates the minimum time after a synchronous register clock input that the previous register output data is maintained on the output pin.This  
specification is a measure of the delay from an asynchronous register clock input to internal feedback of the register output signal to the input of the LAB logic  
array and then to a combinatorial output. This delay assumes no expanders are used in the logic of combinatorial output or the asynchronous clock input. The  
clock signal is applied to the dedicated clock input pin and all feedback is within a single LAB. This parameter is tested periodically by sampling production material.  
Document #: 38-03005 Rev. *B  
Page 7 of 21  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C346  
Commercial and Industrial External Asynchronous Switching Characteristics[6] Over Operating Range  
7C346-25  
7C346-30  
7C346-35  
Parameter  
tACO1  
Description  
Asynchronous Clock Input to Output Delay[7]  
Min. Max. Min. Max. Min. Max. Unit  
25  
39  
30  
46  
35  
55  
ns  
ns  
tACO2  
Asynchronous Clock Input to Local Feedback to Combinatorial  
Output[20]  
tAS1  
Dedicated Input or Feedback Set-Up Time to Asynchronous  
Clock Input[7]  
5
6
8
ns  
tAS2  
tAH  
I/O Input Set-Up Time to Asynchronous Clock Input[7]  
Input Hold Time from Asynchronous Clock Input[7]  
Asynchronous Clock Input HIGH Time[7]  
Asynchronous Clock Input LOW Time[7, 21]  
Asynchronous Clock to Local Feedback Input[4, 22]  
External Asynchronous Clock Period (1/(fMAXA4))[4]  
19  
6
22  
8
28  
10  
16  
14  
ns  
ns  
tAWH  
tAWL  
tACF  
tAP  
11  
9
14  
11  
ns  
ns  
15  
18  
22  
ns  
20  
25  
30  
ns  
fMAXA1  
External Feedback Maximum Frequency in Asynchronous  
Mode (1/(tACO1 + tAS1))[4, 23]  
33.3  
27.7  
23.2  
MHz  
fMAXA2  
fMAXA3  
fMAXA4  
Maximum Internal Asynchronous Frequency[4, 24]  
Data Path Maximum Frequency in Asynchronous Mode[4, 25]  
50  
40  
50  
40  
33.3  
40  
33.3  
28.5  
33.3  
MHz  
MHz  
MHz  
Maximum Asynchronous Register Toggle Frequency 1/(tAWH  
[4, 26]  
+ tAWL  
)
tAOH  
Output Data Stable Time from Asynchronous Clock Input[4, 27] 15  
15  
15  
ns  
Notes:  
21. This parameter is measured with a positive-edge triggered clock at the register. For negative edge triggering, the tAWH and tAWL parameters must be swapped.  
If a given input is used to clock multiple registers with both positive and negative polarity, tAWH should be used for both tAWH and tAWL.  
22. This specification is a measure of the delay associated with the internal register feedback path for an asynchronous clock to LAB logic array input. This delay  
plus the asynchronous register set-up time, tAS1, is the minimum internal period for an internal asynchronously clocked state machine configuration. This delay  
is for feedback within the same LAB, assumes no expander logic in the clock path, and assumes that the clock input signal is applied to a dedicated input pin.  
This parameter is tested periodically by sampling production material.  
23. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine configuration with external feedback can  
operate. It is assumed that all data inputs, clock inputs, and feedback signals are applied to dedicated inputs and that no expander logic is employed in the clock  
signal path or data path.  
24. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine with internal-only feedback can operate.  
This parameter is determined by the lesser of (1/(t  
+ t  
)) or (1/(t  
ACO1  
+ t  
)). If register output states must also control external points, this frequency can  
ACF  
AS1  
AWH  
AWL  
still be observed as long as this frequency is less than 1/t  
.
This specification assumes no expander logic is utilized, all data inputs and clock inputs are applied to dedicated inputs, and all state feedback is within a single  
LAB. This parameter is tested periodically by sampling production material.  
25. This frequency is the maximum frequency at which the device may operate in the asynchronously clocked data path mode. This specification is determined by  
the lesser of 1/(t  
+ t  
), 1/(t  
+ t ) or 1/t  
. It assumes data and clock input signals are applied to dedicated input pins and no expander logic is used.  
AWH  
AWL  
AS1  
AH  
ACO1  
26. This specification indicates the guaranteed maximum frequency at which an individual output or buried register can be cycled in asynchronously clocked mode  
by a clock signal applied to an external dedicated input pin.  
27. This parameter indicates the minimum time that the previous register output data is maintained on the output after an asynchronous register clock input applied  
to an external dedicated input pin.  
Document #: 38-03005 Rev. *B  
Page 8 of 21  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C346  
Commercial and Industrial Internal Switching Characteristics Over Operating Range  
7C346-25  
7C346-30  
7C346-35  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tIN  
tIO  
Dedicated Input Pad and Buffer Delay  
I/O Input Pad and Buffer Delay  
Expander Array Delay  
5
7
9
6
6
9
tEXP  
tLAD  
tLAC  
tOD  
12  
12  
10  
5
14  
14  
12  
5
20  
16  
13  
6
Logic Array Data Delay  
Logic Array Control Delay  
Output Buffer and Pad Delay  
Output Buffer Enable Delay[28]  
Output Buffer Disable Delay  
tZX  
10  
10  
11  
11  
13  
13  
tXZ  
tRSU  
Register Set-Up Time Relative to  
Clock Signal at Register  
6
6
8
8
10  
10  
tRH  
Register Hold Time Relative to Clock  
Signal at Register  
ns  
tLATCH  
tRD  
tCOMB  
tCH  
Flow Through Latch Delay  
3
1
3
4
2
4
4
2
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Register Delay  
Transparent Mode Delay[29]  
Clock HIGH Time  
8
8
10  
10  
12.5  
12.5  
tCL  
Clock LOW Time  
tIC  
Asynchronous Clock Logic Delay  
Synchronous Clock Delay  
Feedback Delay  
14  
1
16  
1
18  
1
tICS  
tFD  
1
1
2
tPRE  
tCLR  
tPCW  
Asynchronous Register Preset Time  
Asynchronous Register Clear Time  
5
6
7
5
6
7
Asynchronous Preset and Clear Pulse  
Width  
5
5
6
6
7
7
tPCR  
Asynchronous Preset and Clear  
Recovery Time  
ns  
ns  
tPIA  
Programmable Interconnect Array  
Delay Time  
14  
16  
20  
Notes:  
28. Sample tested only for an output change of 500 mV.  
29. This specification guarantees the maximum combinatorial delay associated with the macrocell register bypass when the macrocell is configured for combinatorial  
operation.  
Document #: 38-03005 Rev. *B  
Page 9 of 21  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C346  
Military External Synchronous Switching Characteristics[6] Over Operating Range  
7C346-30  
7C346-35  
Parameter  
tPD1  
tPD2  
tPD3  
Description  
Min.  
Max.  
Min.  
Max.  
Unit  
ns  
Dedicated Input to Combinatorial Output Delay[7]  
I/O Input to Combinatorial Output Delay[10]  
30  
45  
44  
35  
55  
55  
ns  
Dedicated Input to Combinatorial Output Delay with  
Expander Delay[11]  
ns  
tPD4  
I/O Input to Combinatorial Output Delay with  
Expander Delay[4, 12]  
59  
75  
ns  
tEA  
Input to Output Enable Delay[4, 7]  
Input to Output Disable Delay[4, 7]  
Synchronous Clock Input to Output Delay  
30  
30  
16  
35  
35  
35  
20  
42  
ns  
ns  
ns  
ns  
tER  
tCO1  
tCO2  
Synchronous Clock to Local Feedback to  
Combinatorial Output[4, 13]  
tS1  
tS2  
Dedicated Input or Feedback Set-Up Time to  
Synchronous Clock Input[7, 14]  
20  
36  
25  
45  
ns  
ns  
I/O Input Set-Up Time to Synchronous Clock  
Input[7]  
tH  
Input Hold Time from Synchronous Clock Input[7]  
0
0
ns  
ns  
tWH  
tWL  
tRW  
tRR  
tRO  
tPW  
tPR  
tPO  
tCF  
tP  
Synchronous Clock Input HIGH Time  
10  
10  
30  
30  
12.5  
12.5  
35  
Synchronous Clock Input LOW Time  
Asynchronous Clear Width[4, 7]  
ns  
ns  
Asynchronous Clear Recovery Time[4, 7]  
Asynchronous Clear to Registered Output Delay[7]  
Asynchronous Preset Width[4, 7]  
Asynchronous Preset Recovery Time[4, 7]  
Asynchronous Preset to Registered Output Delay[7]  
Synchronous Clock to Local Feedback Input[4, 15]  
External Synchronous Clock Period (1/(fMAX3))[4]  
35  
ns  
30  
35  
ns  
30  
30  
35  
35  
ns  
ns  
30  
3
35  
6
ns  
ns  
20  
25  
ns  
fMAX1  
External Feedback Maximum Frequency  
(1/(tCO1 + tS1))[4, 16]  
27.7  
22.2  
MHz  
fMAX2  
fMAX3  
fMAX4  
tOH  
Internal Local Feedback Maximum Frequency,  
43.4  
50  
50  
3
32.2  
40  
40  
3
MHz  
MHz  
MHz  
ns  
[4, 17]  
lesser of (1/(tS1 + tCF)) or (1/tCO1  
)
Data Path Maximum Frequency, lesser of (1/(tWL  
+
[4, 18]  
t
WH)), (1/(tS1 + tH)) or (1/tCO1)  
Maximum Register Toggle Frequency  
(1/(tWL + tWH))[4, 19]  
Output Data Stable Time from Synchronous Clock  
Input[4, 20]  
Document #: 38-03005 Rev. *B  
Page 10 of 21  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C346  
Military External Asynchronous Switching Characteristics[6] Over Operating Range  
7C346-30  
7C346-35  
Parameter  
tACO1  
tACO2  
Description  
Asynchronous Clock Input to Output Delay[7]  
Min.  
Max.  
Min.  
Max.  
Unit  
ns  
30  
46  
35  
55  
Asynchronous Clock Input to Local Feedback to  
Combinatorial Output[20]  
ns  
tAS1  
Dedicated Input or Feedback Set-Up Time to  
Asynchronous Clock Input[7]  
6
8
ns  
ns  
tAS2  
I/O Input Set-Up Time to Asynchronous Clock  
Input[7]  
22  
28  
tAH  
Input Hold Time from Asynchronous Clock Input[7]  
Asynchronous Clock Input HIGH Time[7]  
Asynchronous Clock Input LOW Time[7, 21]  
Asynchronous Clock to Local Feedback Input[4, 22]  
External Asynchronous Clock Period (1/(fMAXA4))[4]  
8
10  
16  
14  
ns  
ns  
tAWH  
tAWL  
tACF  
tAP  
14  
11  
ns  
18  
22  
ns  
25  
30  
ns  
fMAXA1  
External Feedback Maximum Frequency in  
Asynchronous Mode (1/(tACO1 + tAS1))[4, 23]  
27.7  
23.2  
MHz  
fMAXA2  
fMAXA3  
Maximum Internal Asynchronous Frequency[4, 24]  
40  
33.3  
28.5  
MHz  
MHz  
Data Path Maximum Frequency in Asynchronous  
Mode[4, 25]  
33.3  
fMAXA4  
tAOH  
Maximum Asynchronous Register Toggle  
40  
15  
33.3  
15  
MHz  
ns  
[4, 26]  
Frequency 1/(tAWH + tAWL  
)
Output Data Stable Time from Asynchronous Clock  
Input[4, 27]  
Document #: 38-03005 Rev. *B  
Page 11 of 21  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C346  
Military Typical Internal Switching Characteristics Over Operating Range  
7C346-30  
7C346-35  
Parameter  
Description  
Dedicated Input Pad and Buffer Delay  
I/O Input Pad and Buffer Delay  
Expander Array Delay  
Min.  
Max.  
7
Min.  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tIN  
tIO  
9
6
9
tEXP  
tLAD  
tLAC  
tOD  
14  
14  
12  
5
20  
16  
13  
6
Logic Array Data Delay  
Logic Array Control Delay  
Output Buffer and Pad Delay  
Output Buffer Enable Delay[28]  
Output Buffer Disable Delay  
tZX  
11  
11  
13  
13  
tXZ  
tRSU  
Register Set-Up Time Relative to Clock Signal at  
Register  
8
8
10  
10  
tRH  
Register Hold Time Relative to Clock Signal at  
Register  
ns  
tLATCH  
tRD  
tCOMB  
tCH  
Flow Through Latch Delay  
4
2
4
4
2
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Register Delay  
Transparent Mode Delay[29]  
Clock HIGH Time  
10  
10  
12.5  
12.5  
tCL  
Clock LOW Time  
tIC  
Asynchronous Clock Logic Delay  
Synchronous Clock Delay  
16  
2
18  
3
tICS  
tFD  
Feedback Delay  
1
2
tPRE  
tCLR  
tPCW  
tPCR  
tPIA  
Asynchronous Register Preset Time  
Asynchronous Register Clear Time  
Asynchronous Preset and Clear Pulse Width  
Asynchronous Preset and Clear Recovery Time  
Programmable Interconnect Array Delay Time  
6
7
6
7
6
6
7
7
16  
20  
Document #: 38-03005 Rev. *B  
Page 12 of 21  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C346  
Switching Waveforms  
External Combinatorial  
DEDICATED INPUT/  
I/O INPUT  
[7]  
PD1  
[10]  
t
/t  
PD2  
COMBINATORIAL  
OUTPUT  
[7]  
ER  
t
t
HIGH-IMPEDANCE  
THREE-STATE  
COMBINATORIAL OR  
REGISTERED OUTPUT  
[7]  
EA  
HIGH-IMPEDANCE  
THREE-STATE  
VALID OUTPUT  
External Synchronous  
DEDICATED INPUTS OR  
REGISTERED  
[7]  
FEEDBACK  
t
t
t
t
WL  
S1  
H
WH  
SYNCHRONOUS  
CLOCK  
t
t
/t  
t
/t  
CO1  
RW PW  
RR PR  
ASYNCHRONOUS  
CLEAR/PRESET  
t
OH  
[7]  
t
/t  
RO PO  
REGISTERED  
OUTPUTS  
t
CO2  
COMBINATORIAL OUTPUT FROM  
[7]  
REGISTERED FEEDBACK  
External Asynchronous  
DEDICATED INPUTS OR  
REGISTERED FEEDBACK  
t
t
t
t
AH  
AWH  
AWL  
AS1  
ASYNCHRONOUS  
CLOCK INPUT  
t
ACO1  
t
/t  
t
/t  
RW PW  
RR PR  
ASYNCHRONOUS  
CLEAR/PRESET  
t
AOH  
t
/t  
RO PO  
ASYNCHRONOUS REGISTERED  
OUTPUTS  
t
ACO2  
COMBINATORIAL OUTPUT FROM  
ASYNCHRONOUS REGISTERED  
FEEDBACK  
Document #: 38-03005 Rev. *B  
Page 13 of 21  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C346  
Switching Waveforms (continued)  
Internal Combinatorial  
t
IN  
INPUT PIN  
I/O PIN  
t
PIA  
t
IO  
t
EXP  
EXPANDER  
ARRAY DELAY  
t
, t  
LAC LAD  
LOGIC ARRAY  
INPUT  
LOGIC ARRAY  
OUTPUT  
Internal Asynchronous  
t
t
AWL  
AWH  
t  
R  
t
F
CLOCK PIN  
t
IN  
CLOCK INTO  
LOGIC ARRAY  
t
IC  
CLOCK FROM  
LOGIC ARRAY  
t
t
RH  
RSU  
DATA FROM  
LOGIC ARRAY  
t
,t  
t
FD  
t
,t  
t
FD  
RD LATCH  
CLR PRE  
REGISTER OUTPUT  
TO LOCAL LAB  
LOGIC ARRAY  
t
PIA  
REGISTER OUTPUT  
TO ANOTHER LAB  
Internal Synchronous  
t
t
CL  
CH  
SYSTEM CLOCK PIN  
t
IN  
t
ICS  
SYSTEM CLOCK  
AT REGISTER  
t
t
RH  
RSU  
DATA FROM  
LOGIC ARRAY  
Document #: 38-03005 Rev. *B  
Page 14 of 21  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C346  
Switching Waveforms (continued)  
Internal Synchronous  
CLOCK FROM  
LOGIC ARRAY  
t
t
OD  
RD  
DATA FROM  
LOGIC ARRAY  
t
XZ  
t
ZX  
HIGH IMPEDANCE  
STATE  
OUTPUT PIN  
Document #: 38-03005 Rev. *B  
Page 15 of 21  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C346  
MILITARY SPECIFICATIONS  
Group A Subgroup Testing  
DC Characteristics  
Parameter  
Subgroups  
VOH  
VOL  
VIH  
VIL  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
IIX  
IOZ  
ICC1  
Switching Characteristics  
Parameter  
Subgroups  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
tPD1  
tPD2  
tPD3  
tCO1  
tS1  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
tS2  
tH  
tWH  
tWL  
tRO  
tPO  
tACO1  
tACO2  
tAS1  
tAH  
tAWH  
tAWL  
Ordering Information  
Speed  
Package  
(ns)  
Ordering Code  
CY7C346-25HC/HI  
CY7C346-25JC/JI  
CY7C346-25NC/NI  
CY7C346-25RC/RI  
CY7C346-30HC/HI  
CY7C346-30JC/JI  
CY7C346-30NC/NI  
CY7C346-30HMB  
CY7C346-30RMB  
Name  
Package Type  
Operating Range  
25  
H84  
84-pin Windowed Leaded Chip Carrier  
84-lead Plastic Leaded Chip Carrier  
100-lead Plastic Quad Flatpack  
Commercial/Industrial  
J83  
N100  
R100  
H84  
100-pin Windowed Ceramic Pin Grid Array  
84-pin Windowed Leaded Chip Carrier  
84-lead Plastic Leaded Chip Carrier  
100-lead Plastic Quad Flatpack  
30  
Commercial/Industrial  
Military  
J83  
N100  
H84  
84-pin Windowed Leaded Chip Carrier  
100-pin Windowed Ceramic Pin Grid Array  
R100  
Document #: 38-03005 Rev. *B  
Page 16 of 21  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C346  
Ordering Information (continued)  
Speed  
(ns)  
Package  
Name  
Ordering Code  
CY7C346-35JC/JI  
CY7C346-35NC/NI  
CY7C346-35RC/RI  
CY7C346-35HMB  
CY7C346-35RMB  
Package Type  
Operating Range  
35  
J83  
N100  
R100  
H84  
84-lead Plastic Leaded Chip Carrier  
100-lead Plastic Quad Flatpack  
Commercial/Industrial  
100-pin Windowed Ceramic Pin Grid Array  
84-pin Windowed Leaded Chip Carrier  
100-pin Windowed Ceramic Pin Grid Array  
Military  
R100  
Package Diagrams  
84-Leaded Windowed Leaded Chip Carrier H84  
51-80081-**  
Document #: 38-03005 Rev. *B  
Page 17 of 21  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C346  
Package Diagrams (continued)  
84-Lead Plastic Leaded Chip Carrier J83  
51-85006-*A  
Document #: 38-03005 Rev. *B  
Page 18 of 21  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C346  
Package Diagrams (continued)  
100-Lead Plastic Quad Flatpack N100  
51-85052-*A  
Document #: 38-03005 Rev. *B  
Page 19 of 21  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C346  
Package Diagrams (continued)  
100-Pin Windowed Ceramic Pin Grid Array R100  
51-80010-*C  
MAX and Warp are registered trademarks and Ultra37000, Warp Professional and Warp Enterprise are trademarks of Cypress  
Semiconductor Corporation. All product and company names mentioned in this document are the trademarks of their respective  
holders.  
Document #: 38-03005 Rev. *B  
Page 20 of 21  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C346  
Document History Page  
Document Title: CY7C346 128-Macrocell MAX® EPLD  
Document Number: 38-03005  
Orig. of  
REV.  
**  
ECN NO. Issue Date Change  
Description of Change  
Change from Spec number 38-00244 to 38-03005  
PGA package diagram dimensions updated  
106270  
113614  
213375  
04/23/01  
04/11/02  
See ECN  
SZV  
OOR  
FSG  
*A  
*B  
Added note to title page: “Use Ultra37000 For All New Designs”  
Document #: 38-03005 Rev. *B  
Page 21 of 21  

相关型号:

CY7C346-25JC

USE ULTRA37000TM FOR ALL NEW DESIGNS(128-Macrocell MAX EPLD)
CYPRESS

CY7C346-25JCR

OT PLD, 52ns, CMOS, PQCC84, PLASTIC, LCC-84
CYPRESS

CY7C346-25JI

USE ULTRA37000TM FOR ALL NEW DESIGNS(128-Macrocell MAX EPLD)
CYPRESS

CY7C346-25NC

USE ULTRA37000TM FOR ALL NEW DESIGNS(128-Macrocell MAX EPLD)
CYPRESS

CY7C346-25NI

USE ULTRA37000TM FOR ALL NEW DESIGNS(128-Macrocell MAX EPLD)
CYPRESS

CY7C346-25RC

USE ULTRA37000TM FOR ALL NEW DESIGNS(128-Macrocell MAX EPLD)
CYPRESS

CY7C346-25RI

USE ULTRA37000TM FOR ALL NEW DESIGNS(128-Macrocell MAX EPLD)
CYPRESS

CY7C346-30

USE ULTRA37000TM FOR ALL NEW DESIGNS(128-Macrocell MAX EPLD)
CYPRESS

CY7C346-30HC

USE ULTRA37000TM FOR ALL NEW DESIGNS(128-Macrocell MAX EPLD)
CYPRESS

CY7C346-30HI

USE ULTRA37000TM FOR ALL NEW DESIGNS(128-Macrocell MAX EPLD)
CYPRESS

CY7C346-30HMB

USE ULTRA37000TM FOR ALL NEW DESIGNS(128-Macrocell MAX EPLD)
CYPRESS

CY7C346-30JC

USE ULTRA37000TM FOR ALL NEW DESIGNS(128-Macrocell MAX EPLD)
CYPRESS