CY7C346B-25JC/JI [CYPRESS]

128-Macrocell MAX㈢ EPLD; 128宏单元MAX® EPLD
CY7C346B-25JC/JI
型号: CY7C346B-25JC/JI
厂家: CYPRESS    CYPRESS
描述:

128-Macrocell MAX㈢ EPLD
128宏单元MAX® EPLD

文件: 总15页 (文件大小:426K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
USEULTRA37000FOR  
ALL NEW DESIGNS  
CY7C346B  
128-Macrocell MAX® EPLD  
The 128 macrocells in the CY7C346B are divided into eight  
LABs, 16 per LAB. There are 256 expander product terms, 32  
per LAB, to be used and shared by the macrocells within each  
LAB.  
Features  
• 128 macrocells in eight logic array blocks (LABs)  
• 20 dedicated inputs, up to 64 bidirectional I/O pins  
• Programmable interconnect array  
Each LAB is interconnected through the programmable inter-  
connect array, allowing all signals to be routed throughout the  
chip.  
• Advanced 0.65-micron CMOS technology to increase  
performance  
The speed and density of the CY7C346B allow it to be used in  
a wide range of applications, from replacement of large  
amounts of 7400-series TTL logic, to complex controllers and  
multifunction chips. With greater than 25 times the functionality  
of 20-pin PLDs, the CY7C346B allows the replacement of over  
50 TTL CY7C346B. By replacing large amounts of logic, the  
CY7C346B reduces board space, part count, and increases  
system reliability.  
• Available in 84-pin CLCC, PLCC, and 100-pin PGA,  
PQFP  
Functional Description  
The CY7C346B is an Erasable Programmable Logic Device  
(EPLD) in which CMOS EPROM cells are used to configure  
logic functions within the device. The MAX® architecture is  
100% user-configurable, allowing the device to accommodate  
a variety of independent logic functions.  
Logic Block Diagram  
INPUT [59] (N4) . 36  
INPUT [60] (M5) . 37  
INPUT [61] (N5) . 38  
INPUT [64] (N6) . 41  
INPUT [65] (M7) . 42  
INPUT [66] (L7) . 43  
INPUT [67] (N7) . 44  
INPUT [70] (L8) . 47  
INPUT [71] (N9) . 48  
INPUT [72] (M9) . 49  
.
1 (C7) [16] INPUT/CLK  
.
. 78 (A10) [9] .....  
. 79 (B9) [10] .....  
80 (A9) [11] .....  
. 83 (A8) [14] .....  
. 84 (B7) [15] .....  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
.
.
.
.
2
5
6
7
(A7) [17] .....  
(C6) [20] .....  
(A5) [21] .....  
(B5) [22] .....  
SYSTEM CLOCK  
LAB A  
LAB H  
MACROCELL 120  
MACROCELL 119  
MACROCELL 118  
MACROCELL 117  
MACROCELL 116  
MACROCELL 115  
MACROCELL 114  
MACROCELL 113  
MACROCELL  
MACROCELL  
MACROCELL  
MACROCELL  
MACROCELL  
MACROCELL  
MACROCELL  
MACROCELL  
1
2
3
4
5
6
7
8
[100] (C13) NC  
[99] (D12) NC  
[98] (D13) 77  
[97] (E12) 76  
[96] (E13) 75  
[95] (F11) 74  
[92] (G13) 73  
[91] (G11) 72  
8 (B13) [1]  
9 (C12) [2]  
10 (A13) [3]  
11 (B12) [4]  
12 (A12) [5]  
13 (11) [6]  
NC (A11) [7]  
NC (B10) [8]  
MACROCELL 121–128  
MACROCELL 9–16  
LAB B  
LAB G  
MACROCELL 104  
MACROCELL 103  
MACROCELL 102  
MACROCELL 101  
MACROCELL 100  
MACROCELL 99  
MACROCELL 98  
MACROCELL 97  
MACROCELL 17  
MACROCELL 18  
MACROCELL 19  
MACROCELL 20  
MACROCELL 21  
MACROCELL 22  
MACROCELL 23  
MACROCELL 24  
14 (A4) [23]  
15 (B4) [24]  
16 (A3) [25]  
17 (A2) [26]  
18 (B3) [27]  
21 (A1) [28]  
NC (B2) [29]  
NC (B1) [30]  
[90] (G12) NC  
[89] (H13) NC  
[86] (J13) 71  
[85] (J12) 70  
[84] (K13) 69  
[83] (K12) 68  
[82] (L13) 67  
[81] (L12) 64  
MACROCELL 105–112  
MACROCELL 25–32  
P
I
LAB C  
A
LAB F  
MACROCELL 33  
MACROCELL 34  
MACROCELL 35  
MACROCELL 36  
MACROCELL 37  
MACROCELL 38  
MACROCELL 39  
MACROCELL 40  
22 (C2) [31]  
25 (C1) [32]  
26 (D2) [33]  
27 (D1) [34]  
28 (E2) [35]  
29 (E1) [36]  
NC (F1) [39]  
NC (G2)[40]  
[80] (M13) NC  
[79] (M12) NC  
[78] (N13) 63  
[77] (M11) 60  
[76] (N12) 59  
[75] (N11) 58  
[74] (M10) 57  
[73] (N10) 56  
MACROCELL 88  
MACROCELL 87  
MACROCELL 86  
MACROCELL 85  
MACROCELL 84  
MACROCELL 83  
MACROCELL 82  
MACROCELL 81  
MACROCELL 41–48  
MACROCELL 86–96  
LAB D  
LAB E  
MACROCELL 49  
MACROCELL 50  
MACROCELL 51  
MACROCELL 52  
MACROCELL 53  
MACROCELL 54  
MACROCELL 55  
MACROCELL 56  
[58] (M4) NC  
[57] (N3) NC  
[56] (M3) 55  
[55] (N2) 54  
[54] (M2) 53  
[53] (N1) 52  
[52] (L2) 51  
[51] (M1) 50  
MACROCELL 72  
MACROCELL 71  
MACROCELL 70  
MACROCELL 69  
MACROCELL 68  
MACROCELL 67  
MACROCELL 66  
MACROCELL 65  
30 (G3) [41]  
31 (G1) [42]  
32 (H3) [45]  
33 (J1) [46]  
34 (J2) [47]  
35 (K1) [48]  
NC (K2) [49]  
NC (L1) [50]  
MACROCELL 7380  
MACROCELL 57– 64  
() – PERTAIN TO 100-PIN PGA PACKAGE  
[ ] PERTAIN TO 100-PIN PQFP PACKAGE  
3, 20, 37, 54 (A6,B6,F12,F13,H1,H2,M8,N8) [18, 19, 43, 44, 68, 69, 93, 94]  
16, 33, 50, 67 (B8,C8,F2,F3,H11,H12,L6,M6) [12, 13, 37, 38, 62, 63, 87, 88]  
V
CC  
GND  
Cypress Semiconductor Corporation  
Document #: 38-03037 Rev. *C  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Revised April 9, 2004  
USE ULTRA37000™ FOR  
ALL NEW DESIGNS  
CY7C346B  
Selection Guide  
Maximum Access Time  
Pin Configurations  
7C346B-25  
7C346B-35  
35  
Unit  
25  
ns  
PLCC/CLCC  
Top View  
PGA  
Bottom View  
79 78 77 76  
5 4 3 2 1 84 83 82 81 80  
7
8
6
10  
75  
9
11  
I/O I/O I/O INP INP INP INP  
I/O I/O I/O I/O INP GND INP  
V
INP I/O I/O I/O  
INP I/O I/O I/O  
I/O  
I/O  
N
CC  
I/O  
I/O  
12  
13  
14  
15  
I/O  
I/O  
74  
73  
72  
71  
70  
69  
68  
V
CC  
M
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O I/O  
I/O I/O  
I/O I/O  
GND INP INP  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L
K
J
16  
I/O  
I/O  
17  
18  
19  
20  
21  
I/O  
I/O  
GND  
GND  
I/O  
67  
I/O  
V
V
V
CC  
I/O  
GND GND I/O  
I/O I/O I/O  
I/O  
H
G
F
E
CC  
66  
65  
CC  
V
CC  
I/O I/O I/O  
I/O GND GND  
I/O  
22  
23  
7C346B  
I/O  
64  
63  
62  
61  
60  
59  
V
CC  
I/O  
V
CC  
V
CC  
V
24  
25  
26  
CC  
GND  
GND  
I/O  
7C346B  
I/O  
I/O  
I/O I/O  
I/O I/O  
I/O  
I/O  
I/O  
I/O  
D
I/O  
I/O  
I/O  
27  
28  
29  
30  
31  
32  
I/O  
58  
57  
56  
55  
54  
I/O  
I/O  
I/O  
INP  
/CLK  
I/O I/O  
INP  
GND  
I/O  
I/O  
I/O  
C
B
I/O  
I/O  
I/O  
I/O I/O I/O I/O INP  
V
CC  
INP GND INP I/O I/O I/O  
INP INP INP INP I/O I/O  
I/O  
I/O  
I/O I/O I/O I/O INP  
V
CC  
I/O  
13  
A
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53  
1
2
3
4
5
6
7
9
10 11  
12  
8
Document #: 38-03037 Rev. *C  
Page 2 of 15  
USE ULTRA37000™ FOR  
ALL NEW DESIGNS  
CY7C346B  
Pin Configurations (continued)  
PQFP  
Top View  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
I/O  
1
2
I/O  
80  
79  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
78  
3
4
77  
76  
I/O  
5
6
7
8
9
I/O  
75  
74  
73  
I/O  
I/O  
I/O  
I/O  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
72  
71  
70  
10  
11  
12  
13  
V
CC  
GND  
GND  
69  
68  
V
CC  
CY7C346B  
INPUT  
INPUT  
INPUT  
67  
66  
65  
14  
15  
16  
17  
18  
19  
20  
21  
INPUT  
INPUT/CLK  
INPUT  
INPUT  
INPUT  
64  
63  
62  
V
CC  
GND  
V
CC  
GND  
INPUT  
INPUT  
INPUT  
61  
60  
INPUT  
INPUT  
INPUT  
59  
58  
22  
23  
24  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
57  
56  
55  
54  
I/O  
25  
26  
27  
28  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
53  
52  
29  
30  
I/O  
I/O  
51  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Document #: 38-03037 Rev. *C  
Page 3 of 15  
USE ULTRA37000™ FOR  
ALL NEW DESIGNS  
CY7C346B  
Externally, the CY7C346B provides 20 dedicated inputs, one  
of which may be used as a system clock. There are 64 I/O pins  
that may be individually configured for input, output, or bidirec-  
tional data flow.  
Logic Array Blocks  
There are eight logic array blocks in the CY7C346B. Each LAB  
consists of a macrocell array containing 16 macrocells, an  
expander product term array containing 32 expanders, and an  
I/O block. The LAB is fed by the programmable interconnect  
array and the dedicated input bus. All macrocell feedbacks go  
to the macrocell array, the expander array, and the program-  
mable interconnect array. Expanders feed themselves and the  
macrocell array. All I/O feedbacks go to the programmable  
interconnect array so that they may be accessed by macro-  
cells in other LABs as well as the macrocells in the LAB in  
which they are situated.  
Programmable Interconnect Array  
The Programmable Interconnect Array (PIA) solves inter-  
connect limitations by routing only the signals needed by each  
logic array block. The inputs to the PIA are the outputs of every  
macrocell within the device and the I/O pin feedback of every  
pin on the device.  
EXPANDER  
DELAY  
t
EXP  
REGISTER  
LOGIC ARRAY  
OUTPUT  
DELAY  
t
t
CONTROL DELAY  
CLR  
INPUT  
t
LAC  
PRE  
OUTPUT  
t
OD  
XZ  
ZX  
INPUT  
DELAY  
t
LOGIC ARRAY  
DELAY  
t
t
RD  
t
RSU  
t
t
COMB  
LATCH  
t
t
IN  
RH  
t
LAD  
SYSTEM CLOCK DELAY t  
ICS  
CLOCK  
DELAY  
PIA  
DELAY  
t
IC  
t
PIA  
FEEDBACK  
DELAY  
t
FD  
I/O DELAY  
t
IO  
C346B–9  
Figure 1. CY7C346B Internal Timing Model  
be connected directly at the device. Power supply  
decoupling capacitors of at least 0.2 µF must be connected  
between VCC and GND. For the most effective decoupling,  
each VCC pin should be separately decoupled to GND  
directly at the device. Decoupling capacitors should have  
good frequency response, such as monolithic ceramic types  
have.  
Design Recommendations  
Operation of the devices described herein with conditions  
above those listed in the “Maximum Ratings” section of this  
datasheet may cause permanent damage to the device. This  
is a stress rating only and functional operation of the device at  
these or any other conditions above those indicated in the  
operational sections of this data sheet is not implied. Exposure  
to absolute maximum ratings conditions for extended periods  
of time may affect device reliability. The CY7C346B contains  
circuitry to protect device pins from high static voltages or  
electric fields, but normal precautions should be taken to avoid  
application of any voltage higher than the maximum rated  
voltages.  
Design Security  
The CY7C346B contains a programmable design security  
feature that controls the access to the data programmed into  
the device. If this programmable feature is used, a proprietary  
design implemented in the device cannot be copied or  
retrieved. This enables a high level of design control to be  
obtained since programmed data within EPROM cells is  
invisible. The bit that controls this function, along with all other  
For proper operation, input and output pins must be  
constrained to the range GND (VIN or VOUT) VCC. Unused  
inputs must always be tied to an appropriate logic level  
(either VCC or GND). Each set of VCC and GND pins must  
Document #: 38-03037 Rev. *C  
Page 4 of 15  
USE ULTRA37000™ FOR  
ALL NEW DESIGNS  
CY7C346B  
program data, may be reset simply by erasing the entire  
device.  
Timing Considerations  
Unless otherwise stated, propagation delays do not include  
expanders. When using expanders, add the maximum  
expander delay tEXP to the overall delay. Similarly, there is an  
additional tPIA delay for an input from an I/O pin when  
compared to a signal from straight input pin.  
The CY7C346B is fully functionally tested and guaranteed  
through complete testing of each programmable EPROM bit  
and all internal logic elements thus ensuring 100%  
programming yield.  
The erasable nature of these devices allows test programs to  
be used and erased during early stages of the production flow.  
The devices also contain on-board logic test circuitry to allow  
verification of function and AC specification once encapsu-  
lated in non-windowed packages.  
When calculating synchronous frequencies, use tSU if all  
inputs are on dedicated input pins. When expander logic is  
used in the data path, add the appropriate maximum expander  
delay, tEXP to tSU. Determine which of 1/(tWH + tWL), 1/tCO1  
,
or 1/(tEXP + tSU) is the lowest frequency. The lowest of these  
frequencies is the maximum data path frequency for the  
synchronous configuration.  
Typical ICC vs. fMAX  
When calculating external asynchronous frequencies, use  
tAS1 if all inputs are on the dedicated input pins.  
400  
When expander logic is used in the data path, add the  
appropriate maximum expander delay, tEXP to tAS1  
Determine which of 1/(tAWH + tAWL), 1/tACO1, or 1/(tEXP  
tAS1 is the lowest frequency. The lowest of these  
frequencies is the maximum data path frequency for the  
asynchronous configuration.  
.
+
300  
V
= 5.0V  
CC  
)
Room Temp.  
200  
100  
0
The parameter tOH indicates the system compatibility of this  
device when driving other synchronous logic with positive  
input hold times, which is controlled by the same  
synchronous clock. If tOH is greater than the minimum  
required input hold time of the subsequent synchronous  
logic, then the devices are guaranteed to function properly  
with a common synchronous clock under worst-case  
environmental and supply voltage conditions.  
100 Hz 1 kHz 10 kHz 100 kHz 1 MHz 10 MHz 50 MHz  
MAXIMUM FREQUENCY  
Output Drive Current  
250  
200  
150  
I
OL  
V
= 5.0V  
CC  
Room Temp.  
100  
50  
I
OH  
0
1
2
3
4
5
V
O
OUTPUTVOLTAGE (V)  
Document #: 38-03037 Rev. *C  
Page 5 of 15  
USE ULTRA37000™ FOR  
ALL NEW DESIGNS  
CY7C346B  
DC Output Current per Pin[1].................... –25 mA to+25 mA  
DC Input Voltage[1] ........................................–2.0V to + 7.0V  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Operating Range[2]  
Storage Temperature ................................. –65°C to+135°C  
Ambient Temperature with  
Power Applied............................................. –65°C to+135°C  
Maximum Junction Temperature  
(under bias)..................................................................150°C  
Supply Voltage to Ground Potential[1].............2.0V to+7.0V  
Range  
Commercial  
Industrial  
Ambient Temperature  
0°C to +70°C  
VCC  
5V ± 5%  
5V ± 10%  
–40°C to +85°C  
Electrical Characteristics Over the Operating Range  
Parameter  
Description  
Supply Voltage  
Test Conditions  
Maximum VCC rise time is 10 ms  
IOH = –4 mA DC[3]  
Min.  
Max.  
Unit  
VCC  
VOH  
VOL  
VIH  
VIL  
IIX  
4.75(4.5) 5.25(5.5)  
V
V
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
2.4  
IOL = 8 mA DC[3]  
0.45  
V
2.0  
–0.3  
–10  
–40  
VCC +0.3  
0.8  
V
Input LOW Voltage  
V
Input Current  
VI = VCC or ground  
VO = VCC or ground  
+10  
µA  
µA  
ns  
ns  
IOZ  
tR  
Output Leakage Current  
Recommended Input Rise Time  
Recommended Input Fall Time  
+40  
100  
tF  
100  
Capacitance  
Parameter  
Description  
Test Conditions  
VIN = 0V, f = 1.0 MHz  
VOUT = 0V, f = 1.0 MHz  
Max.  
Unit  
pF  
CIN  
Input Capacitance  
Output Capacitance  
10  
20  
COUT  
pF  
AC Test Loads and Waveforms  
R1 464  
R1 464Ω  
5V  
5V  
OUTPUT  
ALL INPUT PULSES  
90%  
OUTPUT  
3.0V  
GND  
90%  
10%  
10%  
R2  
250Ω  
R2  
250Ω  
50 pF  
5 pF  
6 ns  
6 ns  
INCLUDING  
JIG AND  
SCOPE  
INCLUDING  
JIG AND  
SCOPE  
(a)  
(b)  
Equivalent to:  
THÉVENIN EQUIVALENT (commercial/military)  
163Ω  
OUTPUT  
1.75V  
Notes:  
1. Minimum DC input is –0.3V. During transactions, the inputs may undershoot to –2.0V or overshoot to 7.0V for input currents less then 100 mA and periods shorter  
than 20 ns.  
2. The Voltage on any input or I/O pin cannot exceed the power pin during power-up.  
3. The I parameter refers to high-level TTL output current; the I parameter refers to low-level TTL output current.  
OH  
OL  
Document #: 38-03037 Rev. *C  
Page 6 of 15  
USE ULTRA37000™ FOR  
ALL NEW DESIGNS  
CY7C346B  
Commercial and Industrial External Synchronous Switching Characteristics Over Operating Range  
7C346B-25  
7C346B-35  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Unit  
ns  
tPD1  
tPD2  
tSU  
Dedicated Input to Combinatorial Output Delay[4]  
I/O Input to Combinatorial Output Delay[4]  
Global Clock Set-Up Time  
25  
40  
35  
55  
ns  
15  
25  
ns  
tCO1  
tH  
tWH  
tWL  
Synchronous Clock Input to Output Delay[4]  
Input Hold Time from Synchronous Clock Input  
Synchronous Clock Input HIGH Time  
Synchronous Clock Input LOW Time  
Maximum Register Toggle Frequency[5]  
Minimum Global Clock Period  
14  
20  
20  
30  
ns  
0
8
0
ns  
12.5  
12.5  
40  
ns  
8
ns  
fMAX  
tCNT  
tODH  
fCNT  
62.5  
MHz  
ns  
Output Data Hold Time After Clock  
Maximum Internal Global Clock Frequency[6]  
2
2
ns  
50  
33.3  
MHz  
Commercial and Industrial External Asynchronous Switching Characteristics Over Operating Range  
7C346B-25  
7C346B-35  
Parameter  
tACO1  
Description  
Asynchronous Clock Input to Output Delay[4]  
Min.  
Max.  
Min.  
Max.  
Unit  
ns  
25  
35  
tAS1  
Dedicated Input or Feedback Set-Up Time to  
Asynchronous Clock Input  
5
10  
ns  
tAH  
Input Hold Time from Asynchronous Clock Input  
Asynchronous Clock Input HIGH Time[7]  
Asynchronous Clock Input LOW Time[7]  
Minimum Internal Array Clock Frequency  
Maximum Internal Array Clock Frequency[6]  
6
11  
9
10  
16  
14  
ns  
ns  
tAWH  
tAWL  
tACNT  
fACNT  
ns  
20  
30  
ns  
50  
33.3  
MHz  
Commercial and Industrial Internal Switching Characteristics Over Operating Range  
7C346B-25  
7C346B-35  
Parameter  
Description  
Dedicated Input Pad and Buffer Delay  
I/O Input Pad and Buffer Delay  
Expander Array Delay  
Min.  
Max.  
Min.  
Max.  
11  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tIN  
5
tIO  
6
11  
tEXP  
tLAD  
tLAC  
tOD  
tZX  
12  
12  
10  
5
20  
14  
13  
6
Logic Array Data Delay  
Logic Array Control Delay  
Output Buffer and Pad Delay[4]  
Output Buffer Enable Delay[4]  
Output Buffer Disable Delay[8]  
10  
10  
13  
13  
tXZ  
tRSU  
Register Set-Up Time Relative to Clock Signal  
at Register  
6
4
12  
8
tRH  
Register Hold Time Relative to Clock Signal at  
Register  
ns  
tLATCH  
tRD  
Flow Through Latch Delay  
Register Delay  
3
1
4
2
ns  
ns  
Notes:  
4. C1 = 35 pF.  
5. The f  
values represent the highest frequency for pipeline data.  
MAX  
6. This parameter is measured with a 16-bit counter programmed into each LAB.  
7. This parameter is measured with a positive-edge-triggered clock at the register. For negative-edge clocking, the t  
8. C1 = 5 pF.  
and t  
parameter must be swapped.  
ACH  
ACL  
Document #: 38-03037 Rev. *C  
Page 7 of 15  
USE ULTRA37000™ FOR  
ALL NEW DESIGNS  
CY7C346B  
Commercial and Industrial Internal Switching Characteristics Over Operating Range (continued)  
7C346B-25  
Min. Max.  
7C346B-35  
Min. Max.  
Parameter  
tCOMB  
Description  
Transparent Mode Delay  
Unit  
ns  
3
14  
3
4
16  
1
tIC  
Asynchronous Clock Logic Delay  
Synchronous Clock Delay  
ns  
tICS  
tFD  
ns  
Feedback Delay  
1
2
ns  
tPRE  
tCLR  
tPIA  
Asynchronous Register Preset Time  
Asynchronous Register Clear Time  
Programmable Interconnect Array Delay Time  
5
7
ns  
5
7
ns  
14  
20  
ns  
Switching Waveforms  
External Combinatorial  
DEDICATED INPUT/  
I/O INPUT  
tPD1/tPD2  
COMBINATORIAL  
OUTPUT  
tWH  
External Synchronous  
tWL  
SYNCHRONOUS  
CLOCK PIN  
SYNCHRONOUS  
CLOCK AT REGISTER  
tH  
tSU  
DATA FROM  
LOGIC ARRAY  
tCO1  
REGISTERED  
OUTPUTS  
External Asynchronous  
DEDICATED INPUTS OR  
REGISTERED FEEDBACK  
t
t
t
AWL  
t
AH  
AWH  
AS1  
ASYNCHRONOUS  
CLOCK INPUT  
Document #: 38-03037 Rev. *C  
Page 8 of 15  
USE ULTRA37000™ FOR  
ALL NEW DESIGNS  
CY7C346B  
Switching Waveforms (continued)  
Internal Combinatorial  
t
IN  
INPUT PIN  
I/O PIN  
t
IO  
t
EXP  
EXPANDER  
ARRAY DELAY  
t
, t  
LAC LAD  
LOGIC ARRAY  
INPUT  
LOGIC ARRAY  
OUTPUT  
tCOMB  
tOD  
OUTPUT  
PIN  
Internal Asynchronous  
t
t
AWL  
AWH  
t  
R  
t
F
CLOCK PIN  
t
IN  
CLOCK INTO  
LOGIC ARRAY  
t
IC  
CLOCK FROM  
LOGIC ARRAY  
t
t
RH  
RSU  
DATA FROM  
LOGIC ARRAY  
t
,t  
t
FD  
t
,t  
t
FD  
RD LATCH  
CLR PRE  
REGISTER OUTPUT  
TO LOCAL LAB  
LOGIC ARRAY  
t
PIA  
REGISTER OUTPUT  
TO ANOTHER LAB  
Document #: 38-03037 Rev. *C  
Page 9 of 15  
USE ULTRA37000™ FOR  
ALL NEW DESIGNS  
CY7C346B  
Switching Waveforms (continued)  
Internal Synchronous  
SYSTEM CLOCK PIN  
t
t
ICS  
IN  
SYSTEM CLOCK  
AT REGISTER  
t
t
RH  
RSU  
DATA FROM  
LOGIC ARRAY  
Internal Synchronous  
CLOCK FROM  
LOGIC ARRAY  
t
OD  
t
RD  
DATA FROM  
LOGIC ARRAY  
t
XZ  
t
ZX  
HIGH IMPEDANCE  
STATE  
OUTPUT PIN  
Ordering Information  
Speed (ns)  
Ordering Code  
CY7C346B-25HC/HI  
CY7C346B-25JC/JI  
CY7C346B-25NC/NI  
CY7C346B-25RC/RI  
CY7C346B-35HC/HI  
CY7C346B-35JC/JI  
CY7C346B-35NC/NI  
CY7C346B-35RC/RI  
Package Name  
H84  
Package Type  
Operating Range  
25  
84-pin Windowed Leaded Chip Carrier  
84-lead Plastic Leaded Chip Carrier  
100-lead Plastic Quad Flatpack  
Commercial/Industrial  
J83  
N100  
R100  
H84  
100-pin Windowed Ceramic Pin Grid Array  
84-pin Windowed Leaded Chip Carrier  
84-lead Plastic Leaded Chip Carrier  
100-lead Plastic Quad Flatpack  
35  
Commercial/Industrial  
J83  
N100  
R100  
100-pin Windowed Ceramic Pin Grid Array  
Document #: 38-03037 Rev. *C  
Page 10 of 15  
USE ULTRA37000™ FOR  
ALL NEW DESIGNS  
CY7C346B  
Package Diagrams  
84-leaded Windowed Leaded Chip Carrier H84  
51-80081-**  
Document #: 38-03037 Rev. *C  
Page 11 of 15  
USE ULTRA37000™ FOR  
ALL NEW DESIGNS  
CY7C346B  
Package Diagrams (continued)  
84-lead Plastic Leaded Chip Carrier J83  
51-85006-*A  
Document #: 38-03037 Rev. *C  
Page 12 of 15  
USE ULTRA37000™ FOR  
ALL NEW DESIGNS  
CY7C346B  
Package Diagrams (continued)  
100-Lead Plastic Quad Flatpack N100  
51-85052-*A  
Document #: 38-03037 Rev. *C  
Page 13 of 15  
USE ULTRA37000™ FOR  
ALL NEW DESIGNS  
CY7C346B  
Package Diagrams (continued)  
110000--ppiinn Windowed Ceramic Pin Grid Array R100  
51-80010-*C  
MAX is a registered trademark and Ultra37000 is a trademark of Cypress Semiconductor Corporation. All products and company  
names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-03037 Rev. *C  
Page 14 of 15  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
USE ULTRA37000™ FOR  
ALL NEW DESIGNS  
CY7C346B  
Document History Page  
Document Title: CY7C346B 128-Macrocell Max® EPLD  
Document Number: 38-03037  
Orig. of  
REV.  
**  
ECN NO. Issue Date Change Description of Change  
106460  
113615  
122236  
213375  
07/11/01  
04/11/02  
12/28/02  
See ECN  
SZV  
OOR  
RBI  
Change from Spec Number: 38-00861 to 38-03037  
PGA diagram dimensions were updated  
*A  
*B  
Power up requirements added to Operating Range Information  
Added note to title page: “Use Ultra37000 For All New Designs”  
*C  
FSG  
Document #: 38-03037 Rev. *C  
Page 15 of 15  

相关型号:

CY7C346B-25JCJI

128-Macrocell MAX EPLD
CYPRESS

CY7C346B-25JCR

暂无描述
CYPRESS

CY7C346B-25JCT

OT PLD, 40ns, CMOS, PQCC84, PLASTIC, LCC-84
CYPRESS

CY7C346B-25JIR

暂无描述
CYPRESS

CY7C346B-25JIT

OT PLD, 40ns, CMOS, PQCC84, PLASTIC, LCC-84
CYPRESS

CY7C346B-25NC

UV-Erasable/OTP Complex PLD
ETC

CY7C346B-25NC/NI

128-Macrocell MAX㈢ EPLD
CYPRESS

CY7C346B-25NCNI

128-Macrocell MAX EPLD
CYPRESS

CY7C346B-25RC/RI

128-Macrocell MAX㈢ EPLD
CYPRESS

CY7C346B-25RCRI

128-Macrocell MAX EPLD
CYPRESS