CY7C404 [CYPRESS]

64 x 4 Cascadable FIFO / 64 x 5 Cascadable FIFO; 64 ×4级联FIFO / 64 ×5级联FIFO
CY7C404
型号: CY7C404
厂家: CYPRESS    CYPRESS
描述:

64 x 4 Cascadable FIFO / 64 x 5 Cascadable FIFO
64 ×4级联FIFO / 64 ×5级联FIFO

先进先出芯片
文件: 总13页 (文件大小:273K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1CY7C402  
CY7C401/CY7C403  
CY7C402/CY7C404  
64 x 4 Cascadable FIFO  
64 x 5 Cascadable FIFO  
words. Both the CY7C403 and CY7C404 have an output en-  
able (OE) function.  
Features  
• 64 x 4 (CY7C401 and CY7C403)  
64 x 5 (CY7C402 and CY7C404)  
The devices accept 4- or 5-bit words at the data input (DI –  
0
DI ) under the control of the shift in (SI) input. The stored  
n
High-speed first-in first-out memory (FIFO)  
words stack up at the output (DO – DO ) in the order they  
0
n
• Processed with high-speed CMOS for optimum  
speed/power  
• 25-MHz data rates  
• 50-ns bubble-through time—25 MHz  
• Expandable in word width and/or length  
• 5-volt power supply ± 10% tolerance, both commercial  
and military  
• Independent asynchronous inputs and outputs  
• TTL-compatible interface  
• Output enable function available on CY7C403 and  
CY7C404  
were entered. A read command on the shift out (SO) input  
causes the next to last word to move to the output and all data  
shifts down once in the stack. The input ready (IR) signal acts  
as a flag to indicate when the input is ready to accept new data  
(HIGH), to indicate when the FIFO is full (LOW), and to provide  
a signal for a cascading. The output ready (OR) signal is a flag  
to indicate the output contains valid data (HIGH), to indicate  
the FIFO is empty (LOW), and to provide a signal for cascad-  
ing.  
Parallel expansion for wider words is accomplished by logical-  
ly ANDing the IR and OR signals to form composite signals.  
Serial expansion is accomplished by tying the data inputs of  
one device to the data outputs of the previous device. The IR  
pin of the receiving device is connected to the SO pin of the  
sending device, and the OR pin of the sending device is con-  
nected to the SI pin of the receiving device.  
• Capable of withstanding greater than 2001V electro-  
static discharge  
• Pin compatible with MMI 67401A/67402A  
Functional Description  
Reading and writing operations are completely asynchronous,  
allowing the FIFO to be used as a buffer between two digital  
machines of widely differing operating frequencies. The  
25-MHz operation makes these FIFOs ideal for high-speed  
communication and controller applications.  
The CY7C401 and CY7C403 are asynchronous first-in  
first-out (FIFOs) organized as 64 four-bit words. The CY7C402  
and CY7C404 are similar FIFOs organized as 64 five-bit  
Logic Block Diagram  
Pin Configurations  
DIP  
DIP  
(CY7C401) NC  
(CY7C403) OE  
IR  
(CY7C402) NC  
(CY7C404) OE  
IR  
SI  
V
V
CC  
1
2
3
4
5
6
7
8
16  
15  
14  
1
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
CC  
INPUT  
SO  
OR  
DO  
DO  
SO  
OR  
DO  
DO  
DO  
DO  
DO  
MR  
CONTROL  
WRITE POINTER  
SI  
SI  
LOGIC  
IR  
CY7C402  
CY7C404  
CY7C401  
DI  
DI  
13  
CY7C403  
12  
0
0
OUTPUT  
0
1
0
1
OE  
DO  
WRITE MULTIPLEXER  
ENABLE  
DI  
1
DI  
1
DI  
DI  
11 DO  
2
2
2
3
2
3
4
DI  
DI  
DI  
DI  
0
1
2
3
10  
9
DI  
3
GND  
DI  
3
DI  
4
GND  
DO  
MR  
0
DATAIN  
C401–2  
MEMORY  
ARRAY  
DO  
1
C401–4  
DO  
2
DATAIN  
LCC  
LCC  
(DI  
)
4
DO  
3
(DO )  
4
READ MULTIPLEXER  
READ POINTER  
MASTER  
RESET  
3 2 1 2019  
18  
3 2 1 2019  
18  
MR  
OR  
DO  
DO  
DO  
NC  
4
4
SI  
SI  
0
1
SO  
OR  
5
17 OR  
16 DO  
15 DO  
5
6
7
8
17  
16  
15  
14  
0
1
2
DI  
DI  
DI  
DI  
DI  
DI  
DI  
OUTPUT  
CONTROL  
LOGIC  
0
1
2
CY7C401  
CY7C403  
CY7C402  
CY7C404  
6
7
8
0
1
2
2
3
NC  
14  
DO  
DO  
3
910111213  
910111213  
C401–1  
C401–3  
C401–5  
Selection Guide  
7C401/2–5  
7C40X–10  
7C40X–15  
7C40X–25  
Operating Frequency (MHz)  
5
10  
75  
90  
15  
75  
90  
25  
75  
90  
Maximum Operating  
Current (mA)  
Commercial  
Military  
75  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
March 1986 – Revised April 1995  
408-943-2600  
CY7C401/CY7C403  
CY7C402/CY7C404  
Output Current, into Outputs (LOW)............................ 20 mA  
Maximum Ratings  
Static Discharge Voltage ........................................... >2001V  
(per MIL-STD-883, Method 3015)  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-Up Current..................................................... >200 mA  
Storage Temperature ................................. –65°C to +150°C  
Ambient Temperature with  
Power Applied............................................. –55°C to +125°C  
Operating Range  
Ambient  
Temperature  
Supply Voltage to Ground Potential............... –0.5V to +7.0V  
Range  
V
CC  
DC Voltage Applied to Outputs  
in High Z State ............................................... –0.5V to +7.0V  
Commercial  
0°C to +70°C  
5V ±10%  
5V ±10%  
[1]  
Military  
–55°C to +125°C  
DC Input Voltage............................................ –3.0V to +7.0V  
Power Dissipation..........................................................1.0W  
[2]  
Electrical Characteristics Over the Operating Range (Unless Otherwise Noted)  
7C40X–10, 15, 25  
Parameter  
Description  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Test Conditions  
= Min., I = –4.0 mA  
OH  
Min.  
Max.  
Unit  
V
V
V
V
V
V
2.4  
V
V
OH  
OL  
IH  
CC  
CC  
= Min., I = 8.0 mA  
0.4  
6.0  
0.8  
+10  
OL  
2.0  
–3.0  
10  
V
Input LOW Voltage  
V
IL  
I
Input Leakage Current  
Input Diode Clamp Voltage  
Output Leakage Current  
GND V V  
CC  
µA  
IX  
[3]  
CD  
I
[3]  
V
I
GND V  
V , V = 5.5V  
50  
+50  
µA  
OZ  
OUT  
CC  
CC  
Output Disabled (CY7C403 and CY7C404)  
[4]  
I
I
Output Short Circuit Current  
Power Supply Current  
V
V
= Max., V = GND  
OUT  
90  
75  
mA  
mA  
mA  
OS  
CC  
CC  
CC  
= Max., I  
= 0 mA  
Commercial  
Military  
OUT  
90  
Capacitance[5]  
Parameter  
Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
T = 25°C, f = 1 MHz,  
Max.  
Unit  
pF  
C
C
5
7
IN  
A
V
= 4.5V  
CC  
pF  
OUT  
Notes:  
1. A is the “instant on” case temperature.  
2. See the last page of this specification for Group A subgroup testing information.  
T
3. The CMOS process does not provide a clamp diode. However, the FIFO is insensitive to –3V dc input levels and –5V undershoot pulses of less than 10 ns  
(measured at 50% output).  
4. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.  
5. Tested initially and after any design or process changes that may affect these parameters.  
2
CY7C401/CY7C403  
CY7C402/CY7C404  
AC Test Loads and Waveforms  
ALL INPUT PULSES  
R1 437  
R1 437Ω  
3.0V  
GND  
5V  
5V  
OUTPUT  
90%  
10%  
90%  
10%  
OUTPUT  
R2  
272Ω  
R2  
272Ω  
30 pF  
5 pF  
5 ns  
5 ns  
INCLUDING  
JIG AND  
SCOPE  
INCLUDING  
JIG AND  
SCOPE  
C401–6  
C401–7  
(a)  
(b)  
Equivalent to: THÉVENIN EQUIVALENT  
167Ω  
OUTPUT  
1.73V  
C401–8  
[2, 6]  
Switching Characteristics Over the Operating Range  
7C401–5  
7C402–5  
[7]  
7C40X–10  
7C40X–15 7C40X–25  
Test  
Parameter  
Description  
Operating Frequency  
SI HIGH Time  
Conditions Min. Max. Min. Max. Min. Max. Min. Max. Unit  
f
Note 8  
5
10  
15  
25  
MHz  
ns  
O
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
20  
45  
0
20  
30  
0
20  
25  
0
11  
20  
0
PHSI  
PLSI  
SSI  
SO LOW Time  
ns  
Data Set-Up to SI  
Note 9  
Note 9  
ns  
Data Hold from SI  
60  
40  
30  
20  
ns  
HSI  
Delay, SI HIGH to IR LOW  
Delay, SI LOW to IR HIGH  
SO HIGH Time  
75  
75  
40  
45  
35  
40  
21/22 ns  
DLIR  
DHIR  
PHSO  
PLSO  
DLOR  
DHOR  
SOR  
HSO  
BT  
28/30 ns  
20  
45  
20  
25  
20  
25  
11  
20  
ns  
SO LOW Time  
ns  
Delay, SO HIGH to OR LOW  
Delay, SO LOW to OR HIGH  
Data Set-Up to OR HIGH  
Data Hold from SO LOW  
Bubble-Through Time  
Data Set-Up to IR  
75  
80  
40  
55  
35  
40  
19/21 ns  
34/37 ns  
0
5
0
0
0
ns  
5
5
5
ns  
200  
10  
5
95  
10  
5
65  
10  
5
50/60 ns  
Note 10  
Note 10  
5
ns  
ns  
ns  
ns  
ns  
ns  
SIR  
Data Hold from IR  
30  
20  
20  
40  
40  
30  
20  
20  
30  
35  
30  
20  
20  
25  
25  
20  
15  
15  
25  
10  
HIR  
Input Ready Pulse HIGH  
Output Ready Pulse HIGH  
MR Pulse Width  
PIR  
POR  
PMR  
DSI  
MR HIGH to SI HIGH  
MR LOW to OR LOW  
MR LOW to IR HIGH  
MR LOW to Output LOW  
Output Valid from OE LOW  
Output High Z from OE HIGH  
85  
85  
50  
40  
40  
40  
35  
30  
35  
35  
35  
30  
25  
35  
35  
25  
20  
15  
ns  
ns  
ns  
ns  
ns  
DOR  
DIR  
Note 11  
Note 12  
LZMR  
OOE  
HZOE  
Notes:  
6. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V and output loading of the specified IOL/IOH and 30-pF load  
capacitance, as in part (a) of AC Test Loads and Waveforms.  
7. Commercial/Military  
8. I/fO > tPHSI + tDHIR, I/fO > tPHSO + tDHOR  
9. tSSI and tHSI apply when memory is not full.  
10.  
tSIR and tHIR apply when memory is full, SI is high and minimum bubble-through (tBT) conditions exist.  
11. All data outputs will be at LOW level after reset goes HIGH until data is entered into the FIFO.  
12. HIGH-Z transitions are referenced to the steady-state VOH –500 mV and VOL +500 mV levels on the output. tHZOE is tested with 5-pF load capacitance as  
in part (b) of AC Test Loads and Waveforms.  
3
CY7C401/CY7C403  
CY7C402/CY7C404  
Application of the 7C403–25/7C404–25 at 25 MHz  
Operational Description  
Application of the CY7C403 or CY7C404 Cypress CMOS  
FIFOs requires knowledge of characteristics that are not easily  
specified in a datasheet, but which are necessary for reliable  
operation under all conditions, so we will specify them here.  
Concept  
Unlike traditional FIFOs, these devices are designed using a  
dual-port memory, read and write pointer, and control logic.  
The read and write pointers are incremented by the SO and SI  
respectively. The availability of an empty space to shift in data  
is indicated by the IR signal, while the presence of data at the  
output is indicated by the OR signal. The conventional concept  
of bubble-through is absent. Instead, the delay for input data  
to appear at the output is the time required to move a pointer  
and propagate an OR signal. The output enable (OE) signal  
provides the capability to OR tie multiple FIFOs together on  
a common bus.  
When an empty FIFO is filled with initial information at maxi-  
mum “shift in” SI frequency, followed by immediate shifting out  
of the data also at maximum “shift out” SO frequency, the de-  
signer must be aware of a window of time which follows the  
initial rising edge of the OR signal, during which time the SO  
signal is not recognized. This condition exists only at  
high-speed operation where more than one SO may be gen-  
erated inside the prohibited window. This condition does not  
inhibit the operation of the FIFO at full-frequency operation,  
but rather delays the full 25-MHz operation until after the win-  
dow has passed.  
Resetting the FIFO  
Upon power-up, the FIFO must be reset with a master reset  
(MR) signal. This causes the FIFO to enter an empty condition  
signified by the OR signal being LOW at the same time the IR  
There are several implementation techniques for managing  
the window so that all SO signals are recognized:  
signal is HIGH. In this condition, the data outputs (DO – DO )  
will be in a LOW state.  
1. The first involves delaying SO operation such that it does  
not occur in the critical window. This can be accomplished  
by causing a fixed delay of 40 ns “initiated by the SI signal  
only when the FIFO is empty” to inhibit or gate the SO ac-  
tivity. However, this requires that the SO operation be at  
least temporarily synchronized with the input SI operation.  
In synchronous applications this may well be possible and  
a valid solution.  
0
n
Shifting Data In  
Data is shifted in on the rising edge of the SI signal. This loads  
input data into the first word location of the FIFO. On the falling  
edge of the SI signal, the write pointer is moved to the next  
word position and the IR signal goes HIGH, indicating the  
readiness to accept new data. If the FIFO is full, the IR will  
remain LOW until a word of data is shifted out.  
2. Another solution not uncommon in synchronous applica-  
tions is to only begin shifting data out of the FIFO when it is  
more than half full. This is a common method of FIFO ap-  
plication, as earlier FIFOs could not be operated at maxi-  
mum frequency when near full or empty. Although Cypress  
FIFOs do not have this limitation, any system designed in  
this manner will not encounter the window condition de-  
scribed above.  
Shifting Data Out  
Data is shifted out of the FIFO on the falling edge of the SO  
signal. This causes the internal read pointer to be advanced to  
the next word location. If data is present, valid data will appear  
on the outputs and the OR signal will go HIGH. If data is not  
present, the OR signal will stay LOW indicating the FIFO is  
empty. Upon the rising edge of SO, the OR signal goes LOW.  
The data outputs of the FIFO should be sampled with  
edge-sensitive type D flip-flops (or equivalent), using the SO  
signal as the clock input to the flip-flop.  
3. The window may also be managed by not allowing the first  
SO signal to occur until the window in question has passed.  
This can be accomplished by delaying the SO 40 ns from  
the rising edge of the initial OR signal. This however in-  
volves the requirement that this only occurs on the first oc-  
currence of data being loaded into the FIFO from an empty  
condition and therefore requires the knowledge of IR and  
SI conditions as well as SO.  
Bubble-Through  
Two bubble-through conditions exist. The first is when the de-  
vice is empty. After a word is shifted into an empty device, the  
data propagates to the output. After a delay, the OR flag goes  
HIGH, indicating valid data at the output.  
4. Handshaking with the OR signal is a third method of avoid-  
ing the window in question. With this technique the rising  
edge of SO, or the fact that SO signal is HIGH, will cause  
the OR signal to go LOW. The SO signal is not taken LOW  
again, advancing the internal pointer to the next data, until  
the OR signal goes LOW. This ensures that the SO pulse  
that is initiated in the window will be automatically extended  
long enough to be recognized.  
The second bubble-through condition occurs when the device  
is full. Shifting data out creates an empty location that propa-  
gates to the input. After a delay, the IR flag goes HIGH. If the  
SI signal is HIGH at this time, data on the input will be shifted  
in.  
5. There remains the decision as to what signal will be used  
to latch the data from the output of the FIFO into the receiv-  
ing source. The leading edge of the SO signal is most ap-  
propriate because data is guaranteed to be stable prior to  
and after the SO leading edge for each FIFO. This is a  
solution for any number of FIFOs in parallel.  
Possible Minimum Pulse Width Violation at the Boundary  
Conditions  
If the handshaking signals IR and OR are not properly used to  
generate the SI and SO signals, it is possible to violate the  
minimum (effective) SI and SO positive pulse widths at the full  
and empty boundaries.  
Any of the above solutions will ensure the correct operation of  
a Cypress FIFO at 25 MHz. The specific implementation is left  
to the designer and is dependent on the specific application  
needs.  
When this violation occurs, the operation of the FIFO is unpre-  
dictable. It must then be reset, and all data is lost.  
4
CY7C401/CY7C403  
CY7C402/CY7C404  
Switching Waveforms  
Data In Timing Diagram  
I/f  
I/f  
O
O
SHIFT IN  
t
t
t
DHIR  
PHSI  
PLSI  
INPUT READY  
DATA IN  
t
t
DLIR  
HSI  
t
SSI  
C401–9  
Data Out Timing Diagram  
I/f  
I/f  
O
O
SHIFT OUT  
t
t
t
DHOR  
PHSO  
PLSO  
OUTPUT READY  
DATA OUT  
t
t
t
DLOR  
HSO  
SOR  
C401–10  
Bubble Through, Data Out To Data In Diagram  
SHIFT OUT  
SHIFT IN  
t
BT  
INPUT READY  
t
PIR  
DATA IN  
t
t
HIR  
SIR  
C401–11  
5
CY7C401/CY7C403  
CY7C402/CY7C404  
Switching Waveforms (continued)  
Bubble Through, Data In To Data Out Diagram  
SHIFTIN  
SHIFT OUT  
t
BT  
t
POR  
OUTPUT READY  
t
SOR  
DATA OUT  
C401–12  
Master Reset Timing Diagram  
t
PMR  
MASTER RESET  
INPUT READY  
t
DIR  
t
DOR  
OUTPUT READY  
SHIFT IN  
t
DSI  
t
LZMR  
DATA OUT  
C401–13  
Output Enable Timing Diagram  
OUTPUT ENABLE  
t
t
OOE  
HZOE  
DATA OUT  
NOTE 10  
C401–14  
6
CY7C401/CY7C403  
CY7C402/CY7C404  
Typical DC and AC Characteristics  
NORMALIZED SUPPLY CURRENT  
vs. AMBIENT TEMPERATURE  
OUTPUT SOURCE CURRENT  
vs. OUTPUT VOLTAGE  
NORMALIZED SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
60  
50  
40  
30  
20  
1.4  
1.2  
1.0  
1.2  
0.8  
1.0  
0.8  
0.6  
0.4  
V
IN  
=5.0V  
V
V
IN  
=5.5V  
=5.0V  
CC  
V
CC  
=5.0V  
T =25°C  
A
10  
0
T =25°C  
A
0.0  
4.0  
4.5  
5.0  
5.5  
6.0  
–55  
25  
125  
0.0  
1.0  
2.0  
3.0  
4.0  
AMBIENTTEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
OUTPUT SINK CURRENT  
vs. OUTPUT VOLTAGE  
NORMALIZED FREQUENCY  
vs. AMBIENT TEMPERATURE  
NORMALIZED FREQUENCY  
vs. SUPPLY VOLTAGE  
1.6  
1.4  
1.3  
140  
120  
100  
80  
1.2  
1.1  
1.2  
1.0  
1.0  
0.9  
60  
40  
0.8  
V
=5.0V  
CC  
0.8  
0.7  
20  
0
0.0  
T =25°C  
A
0.6  
–55  
4.0  
4.5  
5.0  
5.5  
6.0  
25  
125  
1.0  
2.0  
3.0  
4.0  
AMBIENT TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
TYPICAL FREQUENCY CHANGE  
vs. OUTPUT LOADING  
NORMALIZED I  
vs. FREQUENCY  
CC  
1.6  
1.5  
1.4  
1.3  
1.1  
1.0  
0.9  
0.8  
1.2  
1.1  
1.0  
0.7  
0.0  
0
200 400  
600 800 1000  
0
5
10 15 20 25 30 35  
FREQUENCY (MHz)  
C401–15  
CAPACITANCE (pF)  
7
CY7C401/CY7C403  
CY7C402/CY7C404  
FIFO Expansion[13, 14, 15, 16, 17]  
[18]  
128 x 4 Application  
SHIFT IN  
SI  
IR  
OR  
SO  
SI  
IR  
OR  
SO  
OUTPUT READY  
SHIFT OUT  
INPUT READY  
DI  
0
DO  
DI  
0
DO  
0
0
DI  
DO  
DI  
DO  
1
1
1
1
DATA OUT  
DATA IN  
DO  
DO  
2
DI  
2
DI  
2
2
DI  
3
MR DO  
DI  
3
MR DO  
3
3
MR  
C401–16  
[19]  
192 x 12 Application  
SHIFT OUT  
IR  
SI  
SO  
OR  
IR  
SI  
SO  
OR  
IR  
SI  
DI  
SO  
OR  
DO  
DI  
0
DO  
DI  
0
DO  
0
0
0
0
DI  
1
DO  
DI  
1
DO  
DI  
1
DO  
1
1
1
DO  
DO  
DO  
2
DI  
2
DI  
2
DI  
2
2
2
DI MR DO  
DI MR DO  
DI MR DO  
3 3  
3
3
3
3
COMPOSITE  
INPUT READY  
COMPOSITE  
OUTPUT READY  
IR  
SI  
DI  
SO  
OR  
IR  
SI  
DI  
SO  
OR  
IR  
SI  
DI  
SO  
OR  
DO  
DO  
DO  
0
0
0
0
0
0
DI  
1
DO  
DI  
1
DO  
DI  
1
DO  
1
1
1
DO  
DO  
DO  
2
DI  
2
DI  
2
DI  
2
2
2
DI MR DO  
DI MR DO  
DI MR DO  
3 3  
3
3
3
3
SHIFT IN  
IR  
SI  
DI  
SO  
OR  
IR  
SI  
DI  
SO  
OR  
IR  
SI  
DI  
SO  
OR  
DO  
DO  
DO  
0
0
0
0
0
0
DI  
1
DO  
DI  
1
DO  
DI  
1
DO  
1
1
1
DO  
DO  
DO  
2
DI  
2
DI  
2
DI  
2
2
2
DI MR DO  
DI MR DO  
DI MR DO  
3 3  
3
3
3
3
MR  
C401–17  
Notes:  
13. When the memory is empty, the last word read will remain on the outputs until the master reset is strobed or a new data word bubbles through to the output.  
However, OR will remain LOW, indicating data at the output is not valid.  
14. When the output data changes as a result of a pulse on SO, the OR signal always goes LOW before there is any change in output data, and stays LOW  
until the new data has appeared on the outputs. Anytime OR is HIGH, there is valid, stable data on the outputs.  
15. If SO is held HIGH while the memory is empty and a word is written into the input, that word will ripple through the memory to the output. OR will go HIGH  
for one internal cycle (at least tORL) and then go back LOW again. The stored word will remain on the outputs. If more words are written into the FIFO,  
they will line up behind the first word and will not appear on the outputs until SO has been brought LOW.  
16. When the master reset is brought LOW, the outputs are cleared to LOW, IR goes HIGH and OR goes LOW. If SI is HIGH when the master reset goes HIGH,  
then the data on the inputs will be written into the memory and IR will return to the LOW state until SI is brought LOW. If SI is LOW when the master reset  
is ended, then IR will go HIGH, but the data on the inputs will not enter the memory until SI goes HIGH.  
17. All Cypress FIFOs will cascade with other Cypress FIFOs. However, hey may not cascade with pin-compatible FIFOs from other manufacturers.  
18. FIFOs can be easily cascaded to any desired depth. The handshaking and associated timing between the FIFOs are handled by the inherent timing of the  
devices.  
19. FIFOs are expandable in depth and width. However, in forming wider words two external gates are required to generate composite input and output ready  
flags. This need is due to the variation of delays of the FIFOs.  
8
CY7C401/CY7C403  
CY7C402/CY7C404  
Ordering Information  
Speed  
Package  
Name  
Operating  
(MHz)  
Ordering Code  
CY7C401–5PC  
Package Type  
Range  
5
P1  
D2  
P1  
16-Lead (300-Mil) Molded DIP  
16-Lead (300-Mil) CerDIP  
Commercial  
Commercial  
10  
CY7C401–10DC  
CY7C401–10PC  
CY7C401–10DMB  
CY7C401–10LMB  
CY7C401–15DC  
CY7C401–15PC  
CY7C401–15DMB  
CY7C401–15LMB  
CY7C401–25DC  
CY7C401–25PC  
CY7C401–25DMB  
CY7C401–25LMB  
16-Lead (300-Mil) Molded DIP  
16-Lead (300-Mil) CerDIP  
D2  
L61  
D2  
P1  
Military  
20-Pin Square Leadless Chip Carrier  
16-Lead (300-Mil) CerDIP  
15  
25  
Commercial  
Military  
16-Lead (300-Mil) Molded DIP  
16-Lead (300-Mil) CerDIP  
D2  
L61  
D2  
P1  
20-Pin Square Leadless Chip Carrier  
16-Lead (300-Mil) CerDIP  
Commercial  
Military  
16-Lead (300-Mil) Molded DIP  
16-Lead (300-Mil) CerDIP  
D2  
L61  
20-Pin Square Leadless Chip Carrier  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
CY7C402–5PC  
Package Type  
5
P3  
D4  
P3  
18-Lead (300-Mil) Molded DIP  
18-Lead (300-Mil) CerDIP  
Commercial  
Commercial  
10  
CY7C402–10DC  
CY7C402–10PC  
CY7C402–10DMB  
CY7C402–10LMB  
CY7C402–15DC  
CY7C402–15PC  
CY7C402–15DMB  
CY7C402–15LMB  
CY7C402–25DC  
CY7C402–25PC  
CY7C402–25DMB  
CY7C402–25LMB  
20-Pin Square Leadless Chip Carrier  
18-Lead (300-Mil) CerDIP  
D4  
L61  
D4  
P3  
Military  
20-Pin Square Leadless Chip Carrier  
18-Lead (300-Mil) CerDIP  
15  
25  
Commercial  
Military  
18-Lead (300-Mil) Molded DIP  
18-Lead (300-Mil) CerDIP  
D4  
L61  
D4  
P3  
20-Pin Square Leadless Chip Carrier  
18-Lead (300-Mil) CerDIP  
Commercial  
Military  
18-Lead (300-Mil) Molded DIP  
18-Lead (300-Mil) CerDIP  
D4  
L61  
20-Pin Square Leadless Chip Carrier  
9
CY7C401/CY7C403  
CY7C402/CY7C404  
Ordering Information (continued)  
Speed  
(MHz)  
Package  
Operating  
Ordering Code  
CY7C403–10DC  
CY7C403–10PC  
CY7C403–10DMB  
CY7C403–10LMB  
CY7C403–15DC  
CY7C403–15PC  
CY7C403–15DMB  
CY7C403–15LMB  
CY7C403–25DC  
CY7C403–25PC  
CY7C403–25DMB  
CY7C403–25LMB  
Name  
Package Type  
16-Lead (300-Mil) CerDIP  
Range  
10  
15  
25  
D2  
Commercial  
P1  
16-Lead (300-Mil) Molded DIP  
16-Lead (300-Mil) CerDIP  
D2  
Military  
L61  
D2  
20-Pin Square Leadless Chip Carrier  
16-Lead (300-Mil) CerDIP  
Commercial  
Military  
P1  
16-Lead (300-Mil) Molded DIP  
16-Lead (300-Mil) CerDIP  
D2  
L61  
D2  
20-Pin Square Leadless Chip Carrier  
16-Lead (300-Mil) CerDIP  
Commercial  
Military  
P1  
16-Lead (300-Mil) Molded DIP  
16-Lead (300-Mil) CerDIP  
D2  
L61  
20-Pin Square Leadless Chip Carrier  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
CY7C404–10DC  
CY7C404–10PC  
CY7C404–10DMB  
CY7C404–10LMB  
CY7C404–15DC  
CY7C404–15PC  
CY7C404–15DMB  
CY7C404–15LMB  
CY7C404–25DC  
CY7C404–25PC  
CY7C404–25DMB  
CY7C404–25LMB  
Package Type  
18-Lead (300-Mil) CerDIP  
10  
15  
25  
D4  
P3  
Commercial  
18-Lead (300-Mil) Molded DIP  
18-Lead (300-Mil) CerDIP  
D4  
L61  
D4  
P3  
Military  
20-Pin Square Leadless Chip Carrier  
18-Lead (300-Mil) CerDIP  
Commercial  
Military  
18-Lead (300-Mil) Molded DIP  
18-Lead (300-Mil) CerDIP  
D4  
L61  
D4  
P3  
20-Pin Square Leadless Chip Carrier  
18-Lead (300-Mil) CerDIP  
Commercial  
Military  
18-Lead (300-Mil) Molded DIP  
18-Lead (300-Mil) CerDIP  
D4  
L61  
20-Pin Square Leadless Chip Carrier  
10  
CY7C401/CY7C403  
CY7C402/CY7C404  
MILITARY SPECIFICATIONS  
Group A Subgroup Testing  
DC Characteristics  
Switching Characteristics  
Parameters  
Subgroups  
1, 2, 3  
Parameters  
Subgroups  
V
V
V
V
f
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
OH  
O
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
OL  
IH  
PHSI  
PLSI  
SSI  
Max.  
IL  
I
I
I
I
IX  
HSI  
OZ  
OS  
CC  
DLIR  
DHIR  
PHSO  
PLSO  
DLOR  
DHOR  
SOR  
HSO  
BT  
SIR  
HIR  
PIR  
POR  
PMR  
DSI  
DOR  
DIR  
LZMR  
OOE  
HZOE  
Document #: 38–00040–H  
11  
CY7C401/CY7C403  
CY7C402/CY7C404  
Package Diagrams  
16-Lead (300-Mil) CerDIP D2  
MIL-STD-1835 D-2 Config.A  
18-Lead (300-Mil) CerDIP D4  
MIL-STD-1835 D-8 Config.A  
20-Pin Square Leadless Chip Carrier L61  
MIL-STD-1835 C–2A  
12  
CY7C401/CY7C403  
CY7C402/CY7C404  
Package Diagrams (continued)  
16-Lead (300-Mil) Molded DIP P1  
18-Lead (300-Mil) Molded DIP P3  
© Cypress Semiconductor Corporation, 1995. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of anycircuitry other than circuitry embodied in a CypressSemiconductor product. Nor does it conveyor imply any license under patent or other rights. CypressSemiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

CY7C404-10DC

64 x 4 Cascadable FIFO / 64 x 5 Cascadable FIFO
CYPRESS

CY7C404-10DMB

64 x 4 Cascadable FIFO / 64 x 5 Cascadable FIFO
CYPRESS

CY7C404-10KMB

FIFO, 64X5, 55ns, Asynchronous, CMOS, CDFP18,
CYPRESS

CY7C404-10LC

x5 Asynchronous FIFO
ETC

CY7C404-10LMB

64 x 4 Cascadable FIFO / 64 x 5 Cascadable FIFO
CYPRESS

CY7C404-10LMBR

FIFO, 64X5, 55ns, Asynchronous, CMOS, CQCC20, LCC-20
CYPRESS

CY7C404-10LMBT

暂无描述
CYPRESS

CY7C404-10PC

64 x 4 Cascadable FIFO / 64 x 5 Cascadable FIFO
CYPRESS

CY7C404-15DC

64 x 4 Cascadable FIFO / 64 x 5 Cascadable FIFO
CYPRESS

CY7C404-15DMB

64 x 4 Cascadable FIFO / 64 x 5 Cascadable FIFO
CYPRESS

CY7C404-15KMB

FIFO, 64X5, 40ns, Asynchronous, CMOS, CDFP18,
CYPRESS

CY7C404-15LC

x5 Asynchronous FIFO
ETC