CY7C470-25JI [CYPRESS]

8K x 9 FIFO, 16K x 9 FIFO 32K x 9 FIFO with Programmable Flags; 8K ×9先进先出, 16K ×9先进先出32K ×9 FIFO ,具有可编程标志
CY7C470-25JI
型号: CY7C470-25JI
厂家: CYPRESS    CYPRESS
描述:

8K x 9 FIFO, 16K x 9 FIFO 32K x 9 FIFO with Programmable Flags
8K ×9先进先出, 16K ×9先进先出32K ×9 FIFO ,具有可编程标志

先进先出芯片
文件: 总15页 (文件大小:272K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1CY7C474  
CY7C470  
CY7C472  
CY7C474  
8K x 9 FIFO, 16K x 9 FIFO  
32K x 9 FIFO with Programmable Flags  
offered in 600-mil DIP, PLCC, and LCC packages. Each FIFO  
memory is organized such that the data is read in the same  
Features  
• 8K x 9, 16K x 9, and 32K x 9 FIFO buffer memory  
• Asynchronous read/write  
• High-speed 33.3-MHz read/write independent of  
depth/width  
sequential order that it was written. Three status pins—Emp-  
ty/Full (E/F), Programmable Almost Full/Empty (PAFE), and  
Half Full (HF)—are provided to the user. These pins are de-  
coded to determine one of six states: Empty, Almost Empty,  
Less than Half Full, Greater than Half Full, Almost Full, and  
Full.  
• Low operating power  
— I (max.) = 70 mA  
CC  
The read and write operations may be asynchronous; each  
can occur at a rate of 33.3 MHz. The write operation occurs  
when the write (W) signal goes LOW. Read occurs when read  
(R) goes LOW. The nine data outputs go into a high-imped-  
ance state when R is HIGH.  
• Programmable Almost Full/Empty flag  
• Empty, Almost Empty, Half Full, Almost Full, and Full  
status flags  
• Programmable retransmit  
• Expandable in width  
5V ± 10% supply  
The user can store the value of the read pointer for retransmit  
by using the MARK pin. A LOW on the retransmit (RT) input  
causes the FIFO to resend data by resetting the read pointer  
to the value stored in the mark pointer.  
• TTL compatible  
• Three-state outputs  
In the standalone and width expansion configurations, a LOW  
on the retransmit (RT) input causes the FIFO to resend the  
data. With the mark feature, retransmit can start from any word  
in the FIFO.  
• Proprietary 0.8-micron CMOS technology  
Functional Description  
The CYC47X FIFO series consists of high-speed, low-power,  
first-in first-out (FIFO) memories with programmable flags and  
retransmit mark. The CY7C470, CY7C472, and CY7C474 are  
8K, 16K, and 32K words by 9 bits wide, respectively. They are  
The CYC47X series is fabricated using a proprietary 0.8-mi-  
cron N-well CMOS technology. Input ESD protection is greater  
than 2001V and latch-up is prevented by the use of reliable  
layout techniques, guard rings, and a substrate bias generator.  
Logic Block Diagram  
Pin Configurations  
DATAINPUTS  
(D –D )  
DIP  
PLCC/LCC  
Top View  
0
8
Top View  
V
cc  
W
1
28  
D
D
D
D
2
3
4
27  
26  
8
3
2
4
5
6
4
3
2
1
32 31 30  
29  
D
D
D
D
5
6
7
6
D
2
PROGRAMMABLE  
FLAG REGISTER  
28  
27  
7
25  
24  
23  
22  
21  
D
1
NC  
D
D
D
7
5
1
D
0
RT  
8
9
26  
25  
24  
23  
0
6
RT  
7C470  
7C472  
7C474  
7C470  
7C472  
7C474  
MARK  
PAFE  
MR  
E/F  
MARK  
PAFE  
MR  
E/F  
HF  
7
FLAG  
LOGIC  
10  
11  
E/F  
PAFE  
8
Q
0
Q
0
9
HF  
HF  
Q
20  
19  
18  
17  
16  
15  
Q
1
7
Q
1
12  
13  
22  
21  
Q
7
10  
11  
12  
13  
NC  
RAM ARRAY  
8K x 9  
16K x 9  
R
Q
WRITE  
POINTER  
6
Q
6
READ  
POINTER  
Q
2
Q
2
W
RT  
14 15 16 17 18 19 20  
Q
Q
3
8
5
4
MARK  
32K x 9  
Q
Q
R
GND  
14  
7C470–2  
MARK  
POINTER  
7C470–3  
THREE–  
STATE  
BUFFERS  
DATAOUTPUTS  
(Q –Q )  
0
8
MR  
RESET  
LOGIC  
7C470–1  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
December 1990 – Revised April 1995  
CY7C470  
CY7C472  
CY7C474  
Selection Guide  
7C470–15  
7C472–15  
7C474–15  
7C470–20  
7C472–20  
7C474–20  
7C470–25  
7C472–25  
7C474–25  
7C470–40  
7C472–40  
7C474–40  
Frequency (MHz)  
33.3  
15  
33.3  
20  
28.5  
25  
20  
40  
Maximum Access Time (ns)  
Maximum Operating Current (mA) Commercial  
105  
Military/Industrial  
Static Discharge Voltage ........................................... >2001V  
(per MIL-STD-883, Method 3015)  
Maximum Ratings  
Storage Temperature ................................. –65°C to +150°C  
Latch-Up Current..................................................... >200 mA  
Ambient Temperature with  
Power Applied............................................. –55°C to +125°C  
Operating Range  
Supply Voltage to Ground Potential............... –0.5V to +7.0V  
Ambient  
Range  
Commercial  
Industrial  
Temperature  
V
CC  
DC Voltage Applied to Outputs  
in High Z State ............................................... –0.5V to +7.0V  
0°C to +70°C  
5V ± 10%  
5V ± 10%  
5V ± 10%  
DC Input Voltage............................................ –3.0V to +7.0V  
Power Dissipation..........................................................1.0W  
Output Current, into Outputs (LOW) ............................20 mA  
–40°C to +85°C  
–55°C to +125°C  
[1]  
Military  
[2]  
Electrical Characteristics Over the Operating Range  
7C470–15  
7C472–15  
7C474–15  
7C470–20  
7C472–20  
7C474–20  
7C470–25  
7C472–25  
7C474–25  
Parame-  
ter  
Description  
Output HIGH Voltage  
Output LOW Voltage  
Test Conditions  
= Min., I = –2.0 mA  
Min. Max. Min. Max. Min. Max. Unit  
V
V
V
V
V
2.4  
2.4  
2.4  
V
V
V
OH  
CC  
CC  
OH  
= Min., I = 8.0 mA  
0.4  
0.8  
0.4  
0.4  
0.8  
OL  
IH  
OL  
Com’l  
Mil/Ind  
2.2  
2.2  
2.2  
2.2  
V
Input LOW Voltage  
0.8  
V
IL  
I
I
I
Input Leakage Current  
Output Leakage Current  
Operating Current  
GND V V  
CC  
–10 +10 –10 +10 –10 +10  
–10 +10 –10 +10 –10 +10  
µA  
µA  
mA  
IX  
I
R V , GND V V  
OZ  
CC  
IH  
O
CC  
V
= Max.,  
= 0 mA  
Com’l  
105  
90  
95  
CC  
I
OUT  
Mil/Ind  
Com’l  
Mil/Ind  
Com’l  
Mil/Ind  
110  
30  
I
I
I
Standby Current  
All Inputs =  
Min.  
25  
25  
mA  
mA  
mA  
SB1  
SB2  
V
IH  
30  
Power-Down Current  
Output Short Circuit Current  
All Inputs =  
20  
20  
V
–0.2V  
CC  
25  
25  
[3]  
OS  
V
= Max., V  
= GND  
–90  
–90  
–90  
CC  
OUT  
Notes:  
1. TA is the “instant on” case temperature.  
2. See the last page of this specification for Group A subgroup testing information.  
3. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second.  
2
CY7C470  
CY7C472  
CY7C474  
[2]  
Electrical Characteristics Over the Operating Range (continued)  
7C470–40  
7C472–40  
7C474–40  
Parameter  
Description  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Test Conditions  
= Min., I = –2.0 mA  
Min. Max.  
Unit  
V
V
V
V
2.4  
0.4  
2.2  
2.2  
0.8  
OH  
OL  
IH  
CC  
CC  
OH  
V
V
= Min., I = 8.0 mA  
V
OL  
Com’l  
V
Mil/Ind  
V
Input LOW Voltage  
V
IL  
I
I
I
Input Leakage Current  
Output Leakage Current  
Operating Current  
GND V V  
CC  
–10  
–10  
+10  
+10  
70  
µA  
µA  
mA  
IX  
I
R V , GND V V  
OZ  
CC  
IH  
O
CC  
V
= Max., I  
= 0 mA  
Com’l  
Mil/Ind  
Com’l  
Mil/Ind  
Com’l  
Mil/Ind  
CC  
OUT  
75  
I
I
I
Standby Current  
All Inputs = V Min.  
25  
mA  
mA  
mA  
SB1  
SB2  
IH  
30  
Power-Down Current  
Output Short Circuit Current  
All Inputs = V –0.2V  
20  
CC  
25  
[3]  
OS  
V
= Max., V  
= GND  
–90  
CC  
OUT  
Capacitance[4]  
Parameter  
Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
T = 25°C, f = 1 MHz,  
Max.  
10  
Unit  
C
C
pF  
pF  
IN  
A
V
= 4.5V  
CC  
12  
OUT  
AC Test Loads and Waveforms  
R1 500  
R1 500Ω  
ALL INPUT PULSES  
90%  
5V  
5V  
OUTPUT  
3.0V  
GND  
90%  
10%  
OUTPUT  
10%  
5 ns  
R2  
333Ω  
R2  
333Ω  
30 pF  
5 pF  
5 ns  
INCLUDING  
JIGAND  
INCLUDING  
JIG AND  
SCOPE  
7C470–6  
7C470–4  
7C470–5  
SCOPE  
(a)  
(b)  
Equivalent to:  
THÉVENIN EQUIVALENT  
200Ω  
OUTPUT  
2V  
Note:  
4. Tested initially and after any design or process changes that may affect these parameters.  
3
CY7C470  
CY7C472  
CY7C474  
[5, 6]  
Switching Characteristics Over the Operating Range  
7C470–15  
7C472–15  
7C474–15  
7C470–20  
7C472–20  
7C474–20  
7C470–25  
7C472–25  
7C474–25  
7C470–40  
7C472–40  
7C474–40  
Parameter  
Description  
Cycle Time  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCY  
30  
30  
35  
50  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Access Time  
15  
20  
25  
40  
25  
A
Recovery Time  
Pulse Width  
15  
15  
3
10  
20  
3
10  
25  
3
10  
40  
3
RV  
PW  
LZR  
Read LOW to Low Z  
Valid Data from Read HIGH  
Read HIGH to High Z  
Write HIGH to Low Z  
Data Set-Up Time  
Data Hold Time  
E/F Delay  
[7]  
DV  
3
3
3
3
[7]  
15  
15  
18  
HZ  
5
11  
0
5
12  
0
5
15  
0
5
20  
0
HWZ  
SD  
HD  
15  
25  
25  
25  
20  
30  
30  
30  
25  
35  
35  
35  
40  
50  
50  
50  
EFD  
EFL  
HFD  
AFED  
RAE  
MR to E/F LOW  
HF Delay  
PAFE Delay  
Effective Read from  
Write HIGH  
15  
15  
20  
20  
25  
25  
40  
40  
t
Effective Write from  
Read HIGH  
ns  
WAF  
Notes:  
5. Test conditions assume signal transmission time of 5 ns or less, timing reference levels of 1.5V and output loading of the specified IOL/IOH and 30-pF load  
capacitance, as in part (a) of AC Test Load and Waveforms, unless otherwise specified.  
6. See the last page of this specification for Group A subgroup testing information.  
7.  
tHZR and tDVR use capacitance loading as in part (b) of AC Test Loads. tHZR transition is measured at +500 mV from VOL and –500 mV from VOH. tDVR transition is measured  
at the 1.5V level. tHWZ and tLZR transition is measured at ±100 mV from the steady state.  
4
CY7C470  
CY7C472  
CY7C474  
Switching Waveforms  
Asynchronous Read and Write  
t
t
PW  
CY  
t
A
t
RV  
t
A
R
t
t
t
HZR  
LZR  
DVR  
DATA VALID  
DATA VALID  
Q –Q  
0
8
t
CY  
t
t
t
PW  
PW  
RV  
W
t
t
t
t
HD  
SD  
HD  
SD  
DATA VALID  
DATA VALID  
D –D  
0
8
7C470–7  
MasterReset (No Write to Programmable Flag Register)  
t
CY  
t
t
RV  
PW  
MR  
t
RV  
R, W  
t
HFD  
HF  
E/F  
t
EFL  
PAFE  
t
AFED  
7C470–8  
[8,9]  
Master Reset (Write to Programmable Flag Register)  
t
t
CY  
CY  
t
RV  
t
t
RV  
PW  
MR  
t
t
t
t
PW  
RV  
RV  
W(R)  
t
CY  
HD  
VALID  
D –D  
0
8
(Q –Q )  
0
8
7C470–9  
Notes:  
8. Waveform labels in parentheses pertain to writing the programmable flag register from the output port (Q0 – Q8).  
9. Master Reset (MR) must be pulsed LOW once prior to programming.  
5
CY7C470  
CY7C472  
CY7C474  
Switching Waveforms (Continued)  
E/FFlag (Last Write to First Read Full Flag)  
FULL  
FULL–1  
FULL–1  
W
R
t
t
EFD  
EFD  
E/F  
HF  
LOW  
7C470–10  
E/F Flag (Last Read to First Write Empty Flag)  
EMPTY+1  
R
EMPTY  
EMPTY+1  
W
t
t
EFD  
EFD  
E/F  
HF  
HIGH  
7C470–11  
Half Full Flag  
HALF–FULL  
HALF–FULL +1  
HALF–FULL  
W
R
t
t
HFD  
HFD  
HF  
7C470–12  
6
CY7C470  
CY7C472  
CY7C474  
Switching Waveforms (Continued)  
PAFE Flag (Almost Full)  
W
R
t
t
AFED  
AFED  
PAFE  
HF  
LOW  
7C470–13  
PAFE Flag (Almost Empty)  
R
W
t
t
AFED  
AFED  
PAFE  
HF  
HIGH  
7C470–14  
[10]  
Retransmit  
t
t
CY  
CY  
W,R  
RT  
t
A
t
t
t
RV  
t
RV  
PW  
LZR  
t
CY  
Q –Q  
0
DATA VALID  
8
FLAGS[10]  
FLAGS VALID  
7C470–15  
Note:  
10. The flags may change state during retransmit, but they will be valid a tCY later, except for the CY7C47X–20 (Military), whose flags will be valid after tCY + 10 ns.  
7
CY7C470  
CY7C472  
CY7C474  
Switching Waveforms (Continued)  
Mark  
t
t
CY  
CY  
W,R  
MARK  
t
t
t
RV  
RV  
PW  
7C470–16  
Empty Flag and Read Data Flow-Through Mode  
DATA IN  
W
t
RAE  
R
t
PW  
t
EFD  
E/F  
t
A
t
EFD  
t
HWZ  
DATA OUT  
DATA VALID  
7C470–17  
8
CY7C470  
CY7C472  
CY7C474  
Switching Waveforms (Continued)  
Full Flag and Write Data Flow-Through Mode  
R
t
t
PW  
WAF  
W
t
EFD  
t
EFD  
E/F  
t
t
HD  
SD  
DATA IN  
DATA VALID  
t
A
DATA OUT  
DATA VALID  
7C470–18  
Retransmit  
Architecture  
The retransmit feature is beneficial when transferring packets  
of data. It enables the receipt of data to be acknowledged by  
the receiver and resent if necessary. Retransmission can start  
from anywhere in the FIFO and be repeated without limitation.  
The CY7C470, CY7C472, and CY7C474 FIFOs consist of an  
array of 8,192, 16,384, and 32,768 words of 9 bits each, re-  
spectively. The control consists of a read pointer, a write point-  
er, a retransmit pointer, control signals (i.e., write, read, mark,  
retransmit, and master reset), and flags (i.e., Empty/Full, Half  
Full, and Programmable Almost Full/Empty).  
The retransmit methodology is as follows: mark the current  
value of the read pointer, after an error in subsequent read  
operations return to that location and resume reading. This  
effectively resends all of the data from the mark point. When  
MARK is LOW, the current value of the read pointer is stored. This  
operation marks the beginning of the packet to be resent. When RT  
is LOW, the read pointer is updated with the mark location. During  
each subsequent read cycle, data is read and the read pointer incre-  
mented.  
Resetting the FIFO  
Upon power-up, the FIFO must be reset with a Master Reset  
(MR) cycle. This causes the FIFO to enter the empty condition signi-  
fied by the Empty flag (E/F) and Almost Full/Empty flag (PAFE) being  
LOW, and Half Full flag (HF) being HIGH. The read pointer, write  
pointer, and retransmit pointer are reset to zero. For a valid reset,  
Read (R) and Write (W) must be HIGH t  
/t  
before the falling  
Care must be taken when using the retransmit feature. Use the  
mark function such that the write pointer does not pass the  
mark pointer, because further write operations will overwrite  
data.  
RPW WPW  
edge and t  
after the rising edge of MR.  
RMR  
Writing Data to the FIFO  
[11]  
Data can be written to the FIFO when it is not FULL . A falling  
edgeofW initiatesa writecycle. Data appearingat the inputs (D –D )  
Programmable Almost Full/Empty Flag  
0
8
t
before and t after the rising edge of W will be stored sequen-  
The CY7C470/2/4 offer a variable offset for the Almost Empty  
and the Almost Full condition. The offset is loaded into the  
programmable flag register (PFR) during a master reset cycle.  
SD  
HD  
tially in the FIFO.  
Reading Data from the FIFO  
While MR is LOW, the PFR can be loaded from Q –Q by pulsing  
8
0
[12]  
R LOW or from D –D by pulsing W LOW. The offset options are  
Data can be read from the FIFO when it is not empty . A  
falling edge of R initiates a read cycle. Data outputs (Q –Q ) are in a  
high-impedance conditionwhentheFIFO isemptyandbetweenread  
operations (R HIGH). The falling edge of R during the last read cycle  
beforethe emptycondition triggers ahigh-to-low transition of E/F, pro-  
8
0
listed in Table 2. See Table 1 for a description of the six FIFO states.  
If the PFR is not loaded during master reset (R and W HIGH) the  
default offset will be 256 words from Full and Empty.  
0
8
hibiting any further read operations until t  
after a valid write.  
RFF  
Notes:  
11. When the FIFO is less than half full, the flags make a LOW-to-HIGH transition on the rising edge of W and make the HIGH-to-LOW transition on the falling edge  
of R. If the FIFO is more than half full, the flags make the LOW-to-HIGH transition on the rising edge of R and HIGH-to-LOW transition on the falling edge of W.  
12. Full and empty states can be decoded from the Half-Full (HF) and Empty/Full (E/F) flags.  
9
CY7C470  
CY7C472  
CY7C474  
[13]  
Table 1. Flag Truth Table  
CY77C470  
(8K x 9)  
Number of Words  
in FIFO  
CY77C472  
(16K x 9)  
Number of Words in  
FIFO  
CY77C474  
(32K x 9)  
Number of Words in  
FIFO  
HF  
1
E/F PAFE  
State  
0
1
1
1
1
0
0
0
1
1
0
0
Empty  
0
0
0
1
Almost Empty  
Less than Half Full  
Greater than Half Full  
Almost Full  
1
(P – 1)  
1
(P – 1)  
1
P
(P – 1)  
1
P
4096  
P
8192  
16384  
0
4097  
(8192 – P)  
8193  
(16384 – P)  
16385  
(32768 – P)  
0
(8192 – P+1)  
8192  
8191  
(16384 – P+1)  
16384  
16383  
(32768 – P+1)  
32768  
32767  
0
Full  
[14]  
Table 2. Programmable Almost Full/Empty Options  
D3  
0
D2  
0
D1  
0
D0  
0
PAFE Active when:  
P
256 or less locations from Empty/Full (default)  
16 or less locations from Empty/Full  
32 or less locations from Empty/Full  
64 or less locations from Empty/Full  
128 or less locations from Empty/Full  
256 or less locations from Empty/Full (default)  
512 or less locations from Empty/Full  
1024 or less locations from Empty/Full  
2048 or less locations from Empty/Full  
256  
16  
0
0
0
1
0
0
1
0
32  
0
0
1
1
64  
0
1
0
0
128  
256  
512  
1024  
2048  
4098  
8192  
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
[15]  
1
0
0
1
4098 or less locations from Empty/Full  
[16]  
1
0
1
0
8192 or less locations from Empty/Full  
Notes:  
13. See Table 2 for P values.  
14. Almost flags default to 256 locations from Empty/Full.  
15. Only for CY7C472 and CY7C474.  
16. Only for CY7C470.  
10  
CY7C470  
CY7C472  
CY7C474  
Typical AC and DC Characteristics  
NORMALIZED t vs. AMBIENT  
A
TEMPERATURE  
TYPICAL t CHANGE vs.  
OUTPUT LOADING  
A
NORMALIZED t vs.SUPPLY  
A
VOLTAGE  
1.20  
1.60  
20.00  
1.40  
1.20  
1.00  
0.80  
0.60  
1.10  
1.00  
0.90  
0.80  
15.00  
10.00  
5.00  
V
=5.0V  
T =25°C  
V
=5.0V  
5.00  
CC  
A
CC  
T =25°C  
A
0.00  
4.00  
4.50  
5.00  
5.50  
6.00  
–55.00  
65.00  
125.00  
0.00  
500.00  
CAPACITANCE (pF)  
1000.00  
AMBIENT TEMPERATURE (°C)  
SUPPLY VOLTAGE(V)  
NORMALIZED SUPPLY CURRENT  
vs.FREQUENCY  
NORMALIZED SUPPLY CURRENT  
vs.SUPPLY VOLTAGE  
NORMALIZED SUPPLY CURRENT  
vs. AMBIENT TEMPERATURE  
1.40  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
V
CC  
=5.0V  
1.20  
1.00  
0.80  
0.60  
T =25°C  
1.10  
1.00  
0.90  
0.80  
A
V
IN  
=3.0V  
V
=3.0V  
V =3.0V  
IN  
IN  
T =25°C  
T =25°C  
A
A
f = 33 MHz  
f = 33 MHz  
4.00  
4.50  
5.00  
5.50  
6.00  
–55.00  
5.00  
65.00  
125.00  
15.00 20.00 25.00 30.00 35.00  
SUPPLY VOLTAGE (V)  
AMBIENT TEMPERATURE (°C)  
FREQUENCY (MHz)  
OUTPUT SOURCE CURRENT  
vs. OUTPUT VOLTAGE  
OUTPUT SINK CURRENT  
vs. OUTPUT VOLTAGE  
50.00  
100.00  
80.00  
60.00  
40.00  
20.00  
0.00  
40.00  
30.00  
20.00  
10.00  
0.00  
V
CC  
=5.0V  
V
=5.0V  
CC  
T =25°C  
A
T =25°C  
A
0.00  
1.00  
2.00  
3.00  
4.00  
0.00  
1.00  
2.00  
3.00  
4.00  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
11  
CY7C470  
CY7C472  
CY7C474  
Ordering Information  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
CY7C470–15JC  
CY7C470–15PC  
CY7C470–15JI  
Package Type  
15  
J65  
P15  
J65  
D43  
L55  
J65  
P15  
J65  
D43  
L55  
J65  
P15  
J65  
D43  
L55  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Molded DIP  
Commercial  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Sidebraze CerDIP  
32-Pin Rectangular Leadless Chip Carrier  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Molded DIP  
Industrial  
Military  
20  
25  
CY7C470–20DMB  
CY7C470–20LMB  
CY7C470–25JC  
CY7C470–25PC  
CY7C470–25JI  
Commercial  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Sidebraze CerDIP  
32-Pin Rectangular Leadless Chip Carrier  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Molded DIP  
Industrial  
Military  
CY7C470–25DMB  
CY7C470–25LMB  
CY7C470–40JC  
CY7C470–40PC  
CY7C470–40JI  
40  
Commercial  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Sidebraze CerDIP  
32-Pin Rectangular Leadless Chip Carrier  
Industrial  
Military  
CY7C470–40DMB  
CY7C470–40LMB  
Speed  
(ns)  
Package  
Name  
Operating  
Range  
Ordering Code  
CY7C472–15JC  
CY7C472–15PC  
CY7C472–15JI  
Package Type  
15  
J65  
P15  
J65  
D43  
L55  
J65  
P15  
J65  
D43  
L55  
J65  
P15  
J65  
D43  
L55  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Molded DIP  
Commercial  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Sidebraze CerDIP  
32-Pin Rectangular Leadless Chip Carrier  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Molded DIP  
Industrial  
Military  
20  
25  
CY7C472–20DMB  
CY7C472–20LMB  
CY7C472–25JC  
CY7C472–25PC  
CY7C472–25JI  
Commercial  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Sidebraze CerDIP  
32-Pin Rectangular Leadless Chip Carrier  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Molded DIP  
Industrial  
Military  
CY7C472–25DMB  
CY7C472–25LMB  
CY7C472–40JC  
CY7C472–40PC  
CY7C472–40JI  
40  
Commercial  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Sidebraze CerDIP  
32-Pin Rectangular Leadless Chip Carrier  
Industrial  
Military  
CY7C472–40DMB  
CY7C472–40LMB  
12  
CY7C470  
CY7C472  
CY7C474  
Ordering Information (continued)  
Speed  
(ns)  
Package  
Operating  
Range  
Ordering Code  
CY7C474–15JC  
CY7C474–15PC  
CY7C474–15JI  
Name  
Package Type  
15  
J65  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Molded DIP  
Commercial  
P15  
J65  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Sidebraze CerDIP  
32-Pin Rectangular Leadless Chip Carrier  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Molded DIP  
Industrial  
Military  
20  
25  
CY7C474–20DMB  
CY7C474–20LMB  
CY7C474–25JC  
CY7C474–25PC  
CY7C474–25JI  
D43  
L55  
J65  
Commercial  
P15  
J65  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Sidebraze CerDIP  
32-Pin Rectangular Leadless Chip Carrier  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Molded DIP  
Industrial  
Military  
CY7C474–25DMB  
CY7C474–25LMB  
CY7C474–40JC  
CY7C474–40PC  
CY7C474–40JI  
D43  
L55  
J65  
40  
Commercial  
P15  
J65  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Sidebraze CerDIP  
32-Pin Rectangular Leadless Chip Carrier  
Industrial  
Military  
CY7C474–40DMB  
CY7C474–40LMB  
D43  
L55  
MILITARY SPECIFICATIONS  
Group A Subgroup Testing  
DC Characteristics  
Switching Characteristics  
Parameter  
Subgroups  
1, 2, 3  
Parameter  
Subgroups  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
V
t
OH  
CY  
V
1, 2, 3  
t
A
OL  
V
1, 2, 3  
t
IH  
RV  
V Max.  
1, 2, 3  
t
PW  
IL  
I
1, 2, 3  
t
LZR  
IX  
I
I
1, 2, 3  
t
t
OS  
CC  
DVR  
HZR  
HWZ  
1, 2, 3  
t
t
SD  
HD  
t
t
EFD  
HFD  
t
t
AFED  
t
RAE  
WAF  
t
Document #: 38–00142–H  
13  
CY7C470  
CY7C472  
CY7C474  
Package Diagrams  
28-Lead (600-Mil) Sidebraze DIP D43  
32-Pin Rectangular Leadless Chip Carrier L55  
MIL-STD-1835 C-12  
32-Lead Plastic Leaded Chip Carrier  
14  
CY7C470  
CY7C472  
CY7C474  
Package Diagrams  
28-Lead (600-Mil) Molded DIP P15  
© Cypress Semiconductor Corporation, 1995. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of anycircuitry other than circuitry embodied in a CypressSemiconductor product. Nor does it conveyor imply any license under patent or other rights. CypressSemiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

CY7C470-25LC

x9 Asynchronous FIFO
ETC

CY7C470-25LMB

8K x 9 FIFO, 16K x 9 FIFO 32K x 9 FIFO with Programmable Flags
CYPRESS

CY7C470-25PC

8K x 9 FIFO, 16K x 9 FIFO 32K x 9 FIFO with Programmable Flags
CYPRESS

CY7C470-40DC

暂无描述
CYPRESS

CY7C470-40DI

FIFO, 8KX9, 40ns, Asynchronous, CMOS, CDIP28, 0.600 INCH, CERDIP-28
CYPRESS

CY7C470-40DMB

8K x 9 FIFO, 16K x 9 FIFO 32K x 9 FIFO with Programmable Flags
CYPRESS

CY7C470-40JC

8K x 9 FIFO, 16K x 9 FIFO 32K x 9 FIFO with Programmable Flags
CYPRESS

CY7C470-40JCT

FIFO, 8KX9, 40ns, Asynchronous, CMOS, PQCC32, PLASTIC, LCC-32
CYPRESS

CY7C470-40JI

8K x 9 FIFO, 16K x 9 FIFO 32K x 9 FIFO with Programmable Flags
CYPRESS

CY7C470-40LC

x9 Asynchronous FIFO
ETC

CY7C470-40LMB

8K x 9 FIFO, 16K x 9 FIFO 32K x 9 FIFO with Programmable Flags
CYPRESS

CY7C470-40PC

8K x 9 FIFO, 16K x 9 FIFO 32K x 9 FIFO with Programmable Flags
CYPRESS