CY7C69356-48LTXC [CYPRESS]

USB Bus Controller, CMOS, QFN-48;
CY7C69356-48LTXC
型号: CY7C69356-48LTXC
厂家: CYPRESS    CYPRESS
描述:

USB Bus Controller, CMOS, QFN-48

时钟 数据传输 外围集成电路
文件: 总31页 (文件大小:2872K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C69356  
TrueTouch® Multi-Touch Gesture  
Full Speed USB Controller  
TrueTouch® Multi-Touch Gesture Full Speed USB Controller  
Full speed emulation  
Complex breakpoint structure  
128-K trace memory  
Features  
Powerful Harvard-architecture processor  
M8C processor speeds running up to 24 MHz  
Low power at high processing speeds  
Interrupt controller  
1.71 V to 5.5 V operating voltage without USB  
Commercial temperature range: 0 °C to +70 °C  
Precision, programmable clocking  
Internal ± 5.0 percent 6, 12, or 24 MHz main oscillator  
Internal low-speed oscillator at 32 kHz for Watchdog and  
Sleep  
Optional external 32-kHz crystal  
TrueTouch™ capacitive touchscreen controller  
Supports single-touch and multi-touch applications  
Supports up to 33 X/Y sensor inputs  
Supports screen sizes 5.6 inch and below (typical)  
Fast scan rates: Typical 400 µs per sensor  
0.25 percent accuracy for USB with no external components  
Programmable pin configurations  
25 mA sink current on all GPIO  
Pull up, High Z, open drain CMOS drive modes on all GPIO  
CMOS drive mode on ports 0 and 1  
Up to 36 analog inputs on GPIO  
Includes gesture detection library  
Configurable inputs on all GPIO  
Allows development of customized gestures  
Selectable, regulated digital I/O on port 1  
Configurable input threshold for port 1  
3.0 V, 20 mA total port 1 source current  
5 mA source current mode on ports 0 and 1  
Hot-swap capable on all Port1GPIO  
Low-power TrueTouch block  
2.5 mA average supply current at 8-ms report rate  
1.25 mA average supply current at 16-ms report rate  
Flexible on-chip memory  
Program and data storage options:  
• 32-KB flash  
50,000 erase and write cycles  
2048 bytes SRAM data storage  
Partial flash updates  
Versatile analog mux  
Common internal analog bus  
Simultaneous connection of I/O combinations  
High PSRR comparator  
Low dropout voltage regulator for the analog array  
Flexible protection modes  
In-system serial programming (ISSP)  
Additional system resources  
I2C slave  
Full-speed USB (12 Mbps)  
Eight uni-directional endpoints  
One bi-directional control endpoint  
USB 2.0 compliant  
Dedicated 512 byte buffer  
• Selectable to 50 kHz, 100 kHz, or 400 kHz  
• Implementation requires no clock stretching  
• Implementation during sleep modes with less than 100 A  
• Hardware address detection  
SPI master and SPI slave  
• Configurable between 46.9 kHz and 12 MHz  
Three 16-bit timers  
Watchdog and sleep timers  
Internal voltage reference  
Integrated supervisory circuit  
Internal 3.3-V output regulator  
Available on 48-pin QFN packages only  
Operating voltage with USB enabled:  
• 3.15 V to 3.45 V when supply voltage is around 3.3 V  
• 4.35 V to 5.25 V when supply voltage is around 5.0 V  
Complete development tools  
Free development tool (PSoC Designer™)  
Full-featured, in-circuit emulator, and programmer  
8- to 10-bit Incremental analog-to-digital converter (ADC)  
Package options  
48-pin 7 × 7 × 1.0 mm QFN  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Cypress Semiconductor Corporation  
Document Number: 001-86334 Rev. *B  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised April 15, 2016  
CY7C69356  
Logic Block Diagram  
1.8/2.5/3V  
LDO  
PWRSYS  
(Regulator)  
Port 4 Port 3  
Port 2  
Port 1  
Port 0  
PSoC CORE  
SYSTEM BUS  
Global Analog Interconnect  
32K Flash  
2K SRAM  
Supervisory ROM (SROM)  
Nonvolatile Memory  
Interrupt  
Controller  
Sleep and  
Watchdog  
CPU Core (M8C)  
6/12/24 MHz Internal Main Oscillator  
(IMO)  
Internal Low Speed Oscillator (ILO)  
Multiple Clock Sources  
TrueTouch  
SYSTEM  
Analog  
Reference  
TrueTouch  
Module  
Two  
Analog  
Mux  
Comparators  
SYSTEM BUS  
Internal  
I2C  
POR  
and  
LVD  
SPI  
Master/  
Slave  
Three 16-Bit  
Programmable  
Timers  
System  
Resets  
Digital  
Clocks  
USB  
Voltage  
Slave  
References  
SYSTEM RESOURCES  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 2 of 31  
CY7C69356  
Contents  
Functional Overview ........................................................4  
The Encore-VI Core ....................................................4  
The TrueTouch Analog System ...................................4  
Full-Speed USB ...........................................................5  
10-bit ADC ...................................................................5  
SPI ...............................................................................6  
I2C Slave .....................................................................6  
Additional System Resources .....................................7  
Development Tools ..........................................................8  
PSoC Designer Software Subsystems ........................8  
Designing with PSoC Designer .......................................9  
Select Components .....................................................9  
Configure Components ...............................................9  
Organize and Connect ................................................9  
Generate, Verify, and Debug .......................................9  
Pin Information ...............................................................10  
Electrical Specifications ................................................11  
Absolute Maximum Ratings .......................................11  
Operating Temperature .............................................11  
DC Chip-Level Specifications ....................................12  
DC General Purpose I/O Specifications ....................13  
DC Analog Mux Bus Specifications ...........................14  
Comparator User Module Electrical Specifications ...14  
ADC Electrical Specifications ....................................15  
DC Low Power Comparator Specifications ...............15  
DC POR and LVD Specifications ..............................16  
DC Programming Specifications ...............................17  
AC Chip-Level Specifications ....................................18  
AC General Purpose I/O Specifications ....................18  
AC Comparator Specifications ..................................19  
AC External Clock Specifications ..............................20  
AC Programming Specifications ................................20  
AC SPI Specifications ...............................................21  
AC I2C Specifications ................................................24  
Packaging Information ...................................................25  
Thermal Impedances .................................................26  
Capacitance on Crystal Pins .....................................26  
Solder Reflow Peak Temperature .............................26  
Development Tool Selection .........................................27  
Software ....................................................................27  
Development Kits ......................................................27  
Device Programmers .................................................27  
Ordering Information ......................................................28  
Ordering Code Definitions .........................................28  
Acronyms ........................................................................29  
Document Conventions .................................................29  
Units of Measure .......................................................29  
Numeric Naming ........................................................29  
Document History Page .................................................30  
Sales, Solutions, and Legal Information ......................31  
Worldwide Sales and Design Support .......................31  
Products ....................................................................31  
PSoC®Solutions .......................................................31  
Cypress Developer Community .................................31  
Technical Support .....................................................31  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 3 of 31  
CY7C69356  
each GPIO pin. Scanning of enabled TrueTouch capacitive  
sensing pins are completed easily across multiple ports.  
Functional Overview  
The Encore-VI from the Encore family of devices is a single-chip  
solution which provides the fastest and most efficient way to  
develop and tune a capacitive touchsensing HID application.  
These devices are designed to replace multiple traditional  
full-speed USB MCU based components with one, low cost  
single-chip programmable component. An Encore device  
includes configurable analog and digital blocks and  
programmable interconnect. This architecture enables the user  
to create customized peripheral configurations, to match the  
requirements of each individual application. Additionally, a fast  
CPU, flash program memory, SRAM data memory, and  
configurable I/O are included in a range of convenient pinouts.  
Figure 1. Analog System Block Diagram  
CS1  
IDAC  
CS2  
CSN  
The architecture for this device family, as illustrated in the Logic  
Block Diagram on page 2, contains three main areas: the Core,  
the TrueTouch Analog System, and the System Resources  
(including a full-speed USB port). A common, versatile bus  
enables connection between I/O and the analog system. Each  
Encore-VI device includes a dedicated TrueTouch block that  
provides sensing and scanning control circuitry for capacitive  
sensing applications. Encore-VI supports 36 general purpose I/O  
(GPIO) out of which 33 GPIOs can be used for capacitive  
sensing. The GPIO provides access to the MCU and analog  
mux.  
Vr  
Reference  
Buffer  
Cinternal  
Cexternal (P0[1]  
or P0[3])  
Comparator  
Mux  
Mux  
Refs  
Refer to the user module data sheet for performance  
requirements and detailed design process explanations.  
Counters  
The Encore-VI Core  
CSCLK  
The Encore-VI core encompasses SRAM for data storage, an  
interrupt controller, sleep and watchdog timers, and internal main  
oscillator (IMO) and internal low speed oscillator (ILO). The CPU  
core, called the M8C, is a powerful processor with speeds up to  
24 MHz. The M8C is a 4-MIPS, 8-bit Harvard architecture  
microprocessor.  
IMO  
Oscillator  
Clock Select  
The Analog Multiplexer System  
System resources provide additional capability, such as  
The analog mux bus can connect to every GPIO pin, individually  
or in any combination. The bus also connects to the analog  
system for analysis with the TrueTouch block comparator.  
2
configurable USB and I C slave and SPI master-slave  
communication interface, three 16-bit programmable timers, and  
various system resets supported by the M8C.  
Switch control logic enables selected pins to precharge  
continuously under hardware control. This enables capacitive  
measurement for applications such as touch sensing. Other  
multiplexer applications include:  
®
The analog system contains the TrueTouch PSoC block and an  
internal 1.2-V analog reference, which together support  
capacitive sensing of up to 36 inputs.  
The TrueTouch Analog System  
Complex capacitive sensing interfaces, such as sliders and  
touchpads.  
The analog system contains the capacitive sensing hardware  
that supports several hardware algorithms. This hardware  
performs capacitive sensing and scanning without requiring  
external components. Capacitive sensing is configurable on  
Chip-wide mux that enables analog input from any I/O pin.  
Crosspoint connection between any I/O pin combinations.  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 4 of 31  
CY7C69356  
Identifies Start-of-Frame (SOF) and saves the frame count.  
Full-Speed USB  
The Encore-VI USB system resource adheres to the USB 2.0  
Specification for full speed devices operating at 12 Mb/second  
with one upstream port and one USB address. Encore-VI USB  
consists of these components:  
Sends data to or retrieves data from the USB SRAM, by way  
of the PSoC Memory Arbiter (PMA).  
Firmware is required to handle various parts of the USB  
interface. The SIE issues interrupts after key USB events to  
direct firmware to appropriate tasks:  
Serial interface engine (SIE) block.  
PSoC memory arbiter (PMA) block.  
512 bytes of dedicated SRAM.  
Fill and empty the USB data buffers in USB SRAM.  
Enable PMA channels appropriately.  
Coordinate enumeration by decoding USB device requests.  
Suspend and resume coordination.  
A full-speed USB Transceiver with internal regulator and two  
dedicated USB pins.  
Figure 2. USB Transceiver Regulator  
Verify and select data toggle values.  
10-bit ADC  
PS2 Pull Up  
VOLTAGE  
REGULATOR  
5V 3.3V  
The ADC on Encore-VI device is an independent block with a  
state machine interface to control accesses to the block. The  
ADC is housed together with the temperature sensor core and  
can be connected to this or the Analog mux bus. As a default  
operation, the ADC is connected to the temperature sensor  
diodes to give digital values of the temperature.  
1.5K  
5K  
TEN  
TD  
DP  
Figure 3. ADC System Performance Block Diagram  
VIN  
DM  
TRANSMITTER  
RECEIVERS  
PDN  
RD  
TEMP SENSOR/ ADC  
DPO  
RSE0  
DMO  
TEMP  
DIODES  
ADC  
At the Encore-VI system level, the full-speed USB system  
resource interfaces to the rest of the Encore-VI by way of the  
M8C’s register access instructions and to the outside world by  
way of the two USB pins. The SIE supports nine endpoints  
including a bidirectional control endpoint (endpoint 0) and eight  
SYSTEM BUS  
unidirectional data endpoints (endpoints  
1 to 8). The  
unidirectional data endpoints are individually configurable as  
either IN or OUT.  
The USB Serial Interface Engine (SIE) allows the Encore-VI  
device to communicate with the USB host at full speed data rates  
(12 Mb/s). The SIE simplifies the interface to USB traffic by  
automatically handling the following USB processing tasks  
without firmware intervention:  
INTERFACE BLOCK  
COMMAND/ STATUS  
Translates the encoded received data and formats the data to  
be transmitted on the bus.  
Generates and checks cyclical redundancy checks (CRCs).  
Incoming packets failing checksum verification are ignored.  
Interface to the M8 C  
( Processor) Core  
Checks addresses. Ignores all transactions not addressed to  
the device.  
Sends appropriate ACK/NAK/Stall handshakes.  
The ADC User Module contains an integrator block and one  
comparator with positive and negative input set by the MUXes.  
Identifies token type (SETUP, IN, OUT) and sets the  
appropriate token bit once a valid token in received.  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 5 of 31  
CY7C69356  
The input to the integrator stage comes from the analog global  
input mux or the temperature sensor with an input voltage range  
SPI configuration register (SPI_CFG) sets master/slave  
functionality, clock speed, and interrupt select. SPI control  
register (SPI_CR) provides four control bits and four status bits  
for device interfacing and synchronization.  
of 0 V to V  
.
REFADC  
In the ADC only configuration (the ADC MUX selects the Analog  
mux bus, not the default temperature sensor connection), an  
external voltage can be connected to the input of the modulator  
for voltage conversion. The ADC is run for a number of cycles  
set by the timer, depending upon the desired resolution of the  
ADC. A counter counts the number of trips by the comparator,  
which is proportional to the input voltage. The Temp Sensor block  
clock speed is 36 MHz and is divided down to 1 to 12 MHz for  
ADC operation.  
The SPIM hardware has no support for driving the Slave Select  
(SS_) signal. The behavior and use of this signal is dependent  
on the application and Encore-VI device and, if required, must  
be implemented in firmware.  
There is an additional data input in the SPIS, Slave Select (SS_),  
which is an active low signal. SS_ must be asserted to enable  
the SPIS to receive and transmit. SS_ has two high level  
functions:  
SPI  
To allow for the selection of a given slave in a multi-slave  
environment.  
The serial peripheral interconnect (SPI) 3-wire protocol uses  
both edges of the clock to enable synchronous communication  
without the need for stringent setup and hold requirements.  
ToprovideadditionalclockingforTXdataqueuinginSPImodes  
0 and 1.  
Figure 4. Basic SPI Configuration  
2
I C Slave  
SPI Master  
Data is output by  
both the Master  
and Slave on  
one edge of the  
clock.  
SPI Slave  
2
The I C slave enhanced communications block is  
serial-to-parallel processor, designed to interface the Encore-VI  
device to a two-wire I C serial communications bus. To eliminate  
the need for excessive CPU intervention and overhead, the block  
provides I C-specific support for status detection and generation  
of framing bits. By default, the I C slave enhanced module is  
firmware compatible with the previous generation of I C slave  
a
Data is registered at the  
input of both devices on the  
opposite edge of the clock.  
2
2
2
SCLK  
2
functionality. However, this module provides new features that  
are configurable to implement significant flexibility for both  
internal and external interfacing. The basic I C features include:  
MOSI  
MISO  
2
Slave, transmitter, and receiver operation.  
Byte processing for low CPU overhead.  
Interrupt or polling CPU interface.  
A device can be a master or slave. A master outputs clock and  
data to the slave device and inputs slave data. A slave device  
inputs clock and data from the master device and outputs data  
for input to the master. Together, the master and slave are  
essentially a circular Shift register, where the master generates  
the clocking and initiates data transfers.  
Support for clock rates of up to 400 kHz.  
7- or 10-bit addressing (through firmware support).  
SMBus operation (through firmware support).  
A basic data transfer occurs when the master sends eight bits of  
data, along with eight clocks. In any transfer, both master and  
slave transmit and receive simultaneously. If the master only  
sends data, the received data from the slave is ignored. If the  
master wishes to receive data from the slave, the master must  
send dummy bytes to generate the clocking for the slave to send  
data back.  
2
Enhanced features of the I C Slave Enhanced Module include:  
Support for 7-bit hardware address compare.  
Flexible data buffering schemes.  
A “no bus stalling” operating mode.  
A low power bus monitoring mode.  
Figure 5. SPI Block Diagram  
SPI Block  
2
MOSI,  
MISO  
MOSI,  
MISO  
The I C block controls the data (SDA) and the clock (SCL) to the  
2
external I C interface through direct connections to two  
DATA_IN DATA_OUT  
2
SCLK  
dedicated GPIO pins. When I C is enabled, these GPIO pins are  
SCLK  
CLK_IN  
SYSCLK  
SS_  
CLK_OUT  
INT  
not available for general purpose use. The Encore-VI CPU  
firmware interacts with the block through I/O register reads and  
writes, and firmware synchronization is implemented through  
polling and/or interrupts.  
In the default operating mode, which is firmware compatible with  
2
2
Registers  
previous versions of I C slave modules, the I C bus is stalled  
upon every received address or byte, and the CPU is required to  
CONFIGURATION[7:0] CONTROL[7:0]  
TRANSMIT[7:0] RECEIVE[7:0]  
2
read the data or supply data as required before the I C bus  
2
continues. However, this I C Slave Enhanced module provides  
new data buffering capability as an enhanced feature. In the  
2
2
EZI C buffering mode, the I C slave interface appears as a  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 6 of 31  
CY7C69356  
2
32-byte RAM buffer to the external I C master. Using a simple  
never stalls the bus. In this protocol, the data available in the  
RAM (this is managed by the CPU) is valid.  
predefined protocol, the master controls the read and write  
pointers into the RAM. When this method is enabled, the slave  
Figure 6. I2C Block Diagram  
I2C Plus  
Slave  
I2C Core  
Buffer Module  
CPU Port  
SDA_IN  
SCL_IN  
I2C Basic  
Configuration  
I2C_BUF  
To/From  
I2C_CFG  
I2C_SCR  
I2C_DR  
GPIO  
Pins  
SDA_OUT  
SCL_OUT  
I2C_EN  
32 Byte RAM  
HW Addr Cmp  
Buffer Ctl  
I2C_ADDR  
I2C_BP  
SYSCLK  
I2C_CP  
MCU_BP  
MCU_CP  
Plus Features  
I2C_XCFG  
STANDBY  
I2C_XSTAT  
(power on reset) circuit eliminates the need for a system  
supervisor.  
Additional System Resources  
System resources, some of which have been previously listed,  
provide additional capability useful to complete systems.  
Additional resources include low voltage detection and power on  
reset. The following statements describe the merits of each  
system resource.  
The 5 V maximum input, 1.8, 2.5, or 3 V selectable output, LDO  
regulator provides regulation for I/Os. A register controlled  
bypass mode enables the user to disable the LDO.  
Standard Cypress PSoC IDE tools are available for debugging  
the Encore-VI family of parts.  
Low voltage detection (LVD) interrupts can signal the  
application of falling voltage levels, while the advanced POR  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 7 of 31  
CY7C69356  
time. In essence, this allows you to use more than 100 percent  
of PSoC's resources for an application.  
Development Tools  
PSoC Designer™ is the revolutionary integrated design  
environment (IDE) that you can use to customize PSoC to meet  
your specific application requirements. PSoC Designer software  
accelerates system design and time to market. Develop your  
applications using a library of precharacterized analog and digital  
peripherals (called user modules) in a drag-and-drop design  
environment. Then, customize your design by leveraging the  
dynamically generated application programming interface (API)  
libraries of code. Finally, debug and test your designs with the  
integrated debug environment, including in-circuit emulation and  
standard software debug features. PSoC Designer includes:  
Code Generation Tools  
The code generation tools work seamlessly within the  
PSoC Designer interface and have been tested with a full range  
of debugging tools. You can develop your design in C, assembly,  
or a combination of the two.  
Assemblers. The assemblers allow you to merge assembly  
code seamlessly with C code. Link libraries automatically use  
absolute addressing or are compiled in relative mode, and are  
linked with other software modules to get absolute addressing.  
C Language Compilers. C language compilers are available  
that support the PSoC family of devices. The products allow you  
to create complete C programs for the PSoC family devices. The  
optimizing C compilers provide all of the features of C, tailored  
to the PSoC architecture. They come complete with embedded  
libraries providing port and bus operations, standard keypad and  
display support, and extended math functionality.  
Application editor graphical user interface (GUI) for device and  
user module configuration and dynamic reconfiguration  
Extensive user module catalog  
Integrated source-code editor (C and assembly)  
Free C compiler with no size restrictions or time limits  
Built-in debugger  
Debugger  
PSoC Designer has a debug environment that provides  
hardware in-circuit emulation, allowing you to test the program in  
a physical system while providing an internal view of the PSoC  
device. Debugger commands allow you to read and program and  
read and write data memory, and read and write I/O registers.  
You can read and write CPU registers, set and clear breakpoints,  
and provide program run, halt, and step control. The debugger  
also allows you to create a trace buffer of registers and memory  
locations of interest.  
In-circuit emulation  
Built-in support for communication interfaces:  
Hardware and software I C slaves and masters  
Full-speed USB 2.0  
2
Up  
to  
four  
full-duplex  
universal  
asynchronous  
receiver/transmitters (UARTs), SPI master and slave, and  
wireless  
PSoC Designer supports the entire library of PSoC 1 devices and  
runs on Windows XP, Windows Vista, and Windows 7.  
Online Help System  
The online help system displays online, context-sensitive help.  
Designed for procedural and quick reference, each functional  
subsystem has its own context-sensitive help. This system also  
provides tutorials and links to FAQs and an online support Forum  
to aid the designer.  
PSoC Designer Software Subsystems  
Design Entry  
In the chip-level view, choose a base device to work with. Then  
select different onboard analog and digital components that use  
the PSoC blocks, which are called user modules. Examples of  
user modules are ADCs, DACs, amplifiers, and filters. Configure  
the user modules for your chosen application and connect them  
to each other and to the proper pins. Then generate your project.  
This prepopulates your project with APIs and libraries that you  
can use to program your application.  
In-Circuit Emulator  
A
low-cost, high-functionality in-circuit emulator (ICE) is  
available for development support. This hardware can program  
single devices.  
The emulator consists of a base unit that connects to the PC  
using a USB port. The base unit is universal and operates with  
all PSoC devices. Emulation pods for each device family are  
available separately. The emulation pod takes the place of the  
PSoC device in the target board and performs full-speed  
(24 MHz) operation.  
The tool also supports easy development of multiple  
configurations and dynamic reconfiguration. Dynamic  
reconfiguration makes it possible to change configurations at run  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 8 of 31  
CY7C69356  
datasheets explain the internal operation of the User Module and  
provide performance specifications. Each datasheet describes  
the use of each user module parameter, and other information  
you may need to successfully implement your design.  
Designing with PSoC Designer  
The development process for the PSoC device differs from that  
of a traditional fixed function microprocessor. The configurable  
analog and digital hardware blocks give the PSoC architecture a  
unique flexibility that pays dividends in managing specification  
change during development and by lowering inventory costs.  
These configurable resources, called PSoC Blocks, have the  
ability to implement a wide variety of user-selectable functions.  
Organize and Connect  
You build signal chains at the chip level by interconnecting user  
modules to each other and the I/O pins. You perform the  
selection, configuration, and routing so that you have complete  
control over all on-chip resources.  
The PSoC development process can be summarized in the  
following four steps:  
Generate, Verify, and Debug  
1. Select User Modules  
When you are ready to test the hardware configuration or move  
on to developing code for the project, you perform the “Generate  
Configuration Files” step. This causes PSoC Designer to  
generate source code that automatically configures the device to  
your specification and provides the software for the system. The  
generated code provides application programming interfaces  
(APIs) with high-level functions to control and respond to  
hardware events at run time and interrupt service routines that  
you can adapt as needed.  
2. Configure User Modules  
3. Organize and Connect  
4. Generate, Verify, and Debug  
Select Components  
PSoC Designer provides a library of pre-built, pre-tested  
hardware peripheral components called “user modules.” User  
modules make selecting and implementing peripheral devices,  
both analog and digital, simple.  
A complete code development environment allows you to  
develop and customize your applications in C, assembly  
language, or both.  
Configure Components  
Each of the User Modules you select establishes the basic  
register settings that implement the selected function. They also  
provide parameters and properties that allow you to tailor their  
precise configuration to your particular application. For example,  
a PWM User Module configures one or more  
The last step in the development process takes place inside  
PSoC Designer's Debugger (access by clicking the Connect  
icon). PSoC Designer downloads the HEX image to the ICE  
where it runs at full speed. PSoC Designer debugging capabil-  
ities rival those of systems costing many times more. In addition  
digital PSoC blocks, one for each 8 bits of resolution. The user  
module parameters permit you to establish the pulse width and  
duty cycle. Configure the parameters and properties to  
correspond to your chosen application. Enter values directly or  
by selecting values from drop-down menus. All the user modules  
are documented in datasheets that may be viewed directly in  
PSoC Designer or on the Cypress website. These user module  
to traditional single-step, run-to-breakpoint and watch-variable  
features, the debug interface provides a large trace buffer and  
allows you to define complex breakpoint events that include  
monitoring address and data bus values, memory locations and  
external signals.  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 9 of 31  
CY7C69356  
Pin Information  
This section describes, lists, and illustrates the CY7C69356 PSoC device pins and pinout configuration.  
The CY7C69356 PSoC device is available in a 48-pin QFN package. Every port pin (labeled with a “P”) is capable of digital I/O and  
connection to the common analog bus. However, Vss, Vdd, and XRES are not capable of digital I/O.  
[1, 2]  
Table 1. 48-pin QFN Part Pinout  
CY7C69356 48-pin PSoC Device  
Pin  
No.  
Name  
Description  
1
OCDOE  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P4[3]  
P4[1]  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P1[7]  
P1[5]  
CCLK  
HCLK  
P1[3]  
P1[1]  
Vss  
OCD mode direction pin.  
2
I/O  
I/O  
I
I
I
I
I
I
I
I
I
I
I
I
OCDO  
E
P2[6], AI  
P2[4], AI  
36  
35  
34  
33  
32  
31  
1
2
3
Crystal output (XOut).  
Crystal input (XIn).  
A
, P2[7]  
I
4
I/O  
AI, XOut, P2[5]  
3
4
5
6
P2[2], AI  
P2[0], AI  
P4[2], AI  
P4[0], AI  
AI, XIn , P2[3]  
AI, P2[1]  
5
I/O  
6
I/O  
AI, P4[3]  
QFN  
(Top View)  
7
I/O  
AI, P4[1]  
AI, P3[7]  
30  
29  
28  
27  
P3[6], AI  
P3[4], AI  
7
8
9
10  
8
I/O  
AI, P3[5]  
AI, P3[3]  
P3[2], AI  
P3[0], AI  
9
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
I/O  
AI, P3[1]  
XRES  
26  
25  
11  
12  
I/O  
AI, I2C SCL, SPI SS, P1[7]  
P1[6], AI  
I/OHR  
I/OHR  
I2C SCL, SPI SS.  
I2C SDA, SPI MISO.  
OCD CPU clock output.  
OCD high speed clock output.  
SPI CLK.  
I/OHR  
I/OHR  
I
I
ISSP CLK[3], I2C SCL, SPI MOSI.  
Power  
Ground connection.  
I/O  
I/O  
D+  
D-  
Power  
Vdd  
Supply voltage.  
ISSP DATA[3], I2C SDA, SPI CLK.  
I/OHR  
I/OHR  
I
I
P1[0]  
P1[2]  
Pin  
No.  
Name  
Description  
24  
I/OHR  
I/OHR  
I
I
P1[4]  
Optional external clock input  
(EXTCLK).  
37  
I/OH  
I
P0[0]  
25  
26  
P1[6]  
38  
39  
I/OH  
I/OH  
I
I
P0[2]  
P0[4]  
Input  
XRES  
Active high external reset with  
internal pull down.  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I
I
I
I
I
I
I
I
I
P3[0]  
P3[2]  
P3[4]  
P3[6]  
P4[0]  
P4[2]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
40  
41  
42  
43  
44  
45  
46  
47  
48  
CP  
I/OH  
I
P0[6]  
Vdd  
Power  
Supply voltage.  
OCDO OCD even data I/O.  
OCDE OCD odd data output.  
I/OH  
I/OH  
I/OH  
I
I
I
P0[7]  
P0[5]  
P0[3]  
Vss  
Integrating input.  
Power  
I/OH  
Power  
Ground connection.  
I
P0[1]  
Vss  
Center pad must be connected to ground.  
LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.  
Notes  
1. During power up or reset event, device P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter any issues.  
2. The center pad (CP) on the QFN package must be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it  
must be electrically floated and not connected to any other signal.  
3. These are the ISSP pins, which are not High Z at POR.  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 10 of 31  
CY7C69356  
Electrical Specifications  
This section presents the DC and AC electrical specifications of the CY7C69356 PSoC devices.  
Figure 7. Voltage versus CPU Frequency  
5.5 V  
1.71 V  
5.7 MHz  
24 MHz  
CPU Frequency  
Absolute Maximum Ratings  
Table 2. Absolute Maximum Ratings  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
T
Storage temperature  
Higher storage temperatures  
reduces data retention time.  
Recommended Storage  
–55  
+25  
+125  
°C  
STG  
Temperature is +25 °C ± 25 °C.  
Extended duration storage  
temperatures above 85 °C  
degrades reliability.  
Vdd  
Supply voltage relative to Vss  
DC input voltage  
–0.5  
Vss – 0.5  
Vss – 0.5  
–25  
+6.0  
Vdd + 0.5  
Vdd + 0.5  
+50  
V
V
V
V
IO  
IOZ  
MIO  
DC voltage applied to tristate  
V
I
Maximum current into any port  
pin  
mA  
ESD  
LU  
Electro static discharge voltage Human Body Model ESD.  
2000  
V
Latch-up current  
In accordance with JESD78  
standard.  
200  
mA  
Operating Temperature  
Table 3. Operating Temperature  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
T
Ambient temperature  
0
+70  
°C  
A
T
Operational die temperature  
The temperature rise from ambient  
to junction is package specific. See  
Table 23 on page 26. The user must  
limit the power consumption to  
comply with this requirement.  
J
0
+85  
°C  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 11 of 31  
CY7C69356  
DC Chip-Level Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 4. DC Chip-Level Specifications  
Symbol  
Description  
Supply voltage  
Conditions  
Min  
Typ  
Max  
Units  
[4, 5, 6]  
V
Refer the table DC POR and LVD  
Specifications on page 16  
1.71  
5.50  
V
DD  
I
I
I
Supply current, IMO = 24 MHz  
Supply current, IMO = 12 MHz  
Supply current, IMO = 6 MHz  
Deep sleep current  
Conditions are V = 3.0 V,  
2.90  
1.70  
1.20  
4.00  
2.60  
1.80  
mA  
mA  
mA  
DD24  
DD12  
DD6  
DD  
T = 25 °C, CPU = 24 MHz.  
A
No USB/I2C/SPI  
Conditions are V = 3.0 V,  
DD  
T = 25 °C, CPU = 24 MHz.  
A
No USB/I2C/SPI  
Conditions are V = 3.0 V,  
DD  
T = 25 °C, CPU = 24 MHz.  
A
No USB/I2C/SPI  
I
I
V
=3.0 V, T = 25 °C,  
0.10  
1.1  
0.50  
1.50  
A  
A  
SB0  
DD  
A
I/O regulator turned off  
Standby current with POR, LVD  
and sleep timer  
V
DD  
= 3.0 V, T = 25 °C,  
SB1  
A
I/O regulator turned off  
Notes  
4. When V remains in the range from 1.71 V to 1.9 V for more than 50 µsec, the slew rate when moving from the 1.71 V to 1.9 V range to greater than 2 V must be  
DD  
slower than 1 V/500 usec to avoid triggering POR. The only other restriction on slew rates for any other voltage range or transition is the SR  
parameter.  
POWER_UP  
5. If powering down in standby sleep mode, to properly detect and recover from a V brown out condition any of the following actions must be taken:  
DD  
a.Bring the device out of sleep before powering down.  
b.Assure that V falls below 100 mV before powering back up.  
DD  
c.Set the No Buzz bit in the OSC_CR0 register to keep the voltage monitoring circuit powered during sleep.  
d.Increase the buzz rate to assure that the falling edge of V is captured. The rate is configured through the PSSDC bits in the SLP_CFG register.  
DD  
6. For USB mode, the V supply for bus-powered application should be limited to 4.35 V–5.35 V. For self-powered application, V should be 3.15 V–3.45 V.  
DD  
DD  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 12 of 31  
CY7C69356  
DC General Purpose I/O Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and  
0 °C T 70 °C, Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.  
A
Table 5. 3.0 V to 5.5 V DC GPIO Specifications  
Symbol  
Description  
Pull-up resistor  
Conditions  
Min  
4
Typ  
5.6  
Max  
8
Units  
k  
R
V
PU  
High output voltage  
Port 2 or 3 pins  
I
< 10 A, maximum of 10 mA  
OH  
source current in all I/Os.  
Vdd – 0.2  
V
OH1  
OH2  
OH3  
V
V
High output voltage  
Port 2 or 3 pins  
I
= 1 mA, maximum of 20 mA  
Vdd – 0.9  
Vdd – 0.2  
V
V
OH  
source current in all I/Os.  
I < 10 A, maximum of 10 mA  
OH  
source current in all I/Os.  
High output voltage  
Port 0 or 1 pins with LDO  
regulator Disabled for Port 1  
V
V
V
V
V
V
V
V
High output voltage  
Port 0 or 1 pins with LDO  
regulator Disabled for Port 1  
I
= 5 mA, maximum of 20 mA  
Vdd – 0.9  
2.85  
2.20  
2.35  
1.90  
1.60  
1.20  
3.00  
3.3  
V
V
V
V
V
V
V
V
OH4  
OH5  
OH6  
OH7  
OH8  
OH9  
OH10  
OL  
OH  
source current in all I/Os.  
I < 10 A, Vdd > 3.1 V, maximum  
OH  
of 4 I/Os all sourcing 5 mA.  
I = 5 mA, Vdd > 3.1 V, maximum  
OH  
High output voltage  
Port 1 pins with LDO regulator  
Enabled for 3 V Out  
High output voltage  
Port 1 pins with LDO regulator  
Enabled for 3 V Out  
of 20 mA source current in all I/Os.  
High output voltage  
Port 1 pins with LDO enabled for of 20 mA source current in all I/Os.  
2.5 V Out  
I
< 10 A, Vdd > 2.7 V, maximum  
2.50  
2.75  
OH  
High output voltage  
Port 1 pins with LDO enabled for of 20 mA source current in all I/Os.  
2.5 V Out  
I
= 2 mA, Vdd > 2.7 V, maximum  
OH  
High output voltage  
Port 1 pins with LDO enabled for of 20 mA source current in all I/Os.  
1.8 V Out  
I
< 10 A, Vdd > 2.7 V, maximum  
1.80  
2.1  
OH  
High output voltage  
Port 1 pins with LDO enabled for of 20 mA source current in all I/Os.  
1.8 V Out  
I
= 1 mA, Vdd > 2.7 V, maximum  
OH  
Low output voltage  
I
= 25 mA, Vdd > 3.3 V, maximum  
0.75  
OL  
of 60 mA sink current on even port  
pins (for example, P0[2] and P1[4])  
and 60 mA sink current on odd port  
pins (for example, P0[3] and P1[5]).  
V
V
V
I
Input low voltage  
2.00  
0.80  
V
V
IL  
IH  
H
Input high voltage  
Input hysteresis voltage  
Input leakage (absolute value)  
Pin capacitance  
80  
1
mV  
n  
pF  
1000  
5
IL  
C
Package and pin dependent.  
Temp = 25 °C.  
0.5  
1.7  
PIN  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 13 of 31  
CY7C69356  
Table 6. DC Characteristics – USB Interface  
Symbol  
Rusbi  
Description  
USB D+ pull-up resistance  
USB D+ pull-up resistance  
Static output high  
Conditions  
With idle bus  
Min  
0.900  
1.425  
2.8  
Typ  
Max  
1.575  
3.090  
3.6  
Units  
k  
k  
V
Rusba  
Vohusb  
Volusb  
Vdi  
While receiving traffic  
Static output low  
0.3  
V
Differential input sensitivity  
0.2  
V
Vcm  
Differential input common mode  
range  
0.8  
2.5  
V
Vse  
Cin  
Single ended receiver threshold  
Transceiver capacitance  
0.8  
2.0  
50  
V
pF  
A  
Iio  
Hi-Z state data line leakage  
PS/2 pull-up resistance  
On D+ or D- line  
–10  
3000  
21.78  
+10  
Rps2  
Rext  
5000  
22.0  
7000  
22.22  
External USB series resistor  
In series with each USB pin  
DC Analog Mux Bus Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 7. DC Analog Mux Bus Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
R
R
Switch resistance to common  
analog bus  
800  
SW  
Resistance of initialization switch  
to Vss  
800  
GND  
The maximum pin voltage for measuring R  
and R  
is 1.8 V with PUMP on.  
GND  
SW  
Comparator User Module Electrical Specifications  
The following table lists the guaranteed maximum and minimum specifications. Unless stated otherwise, the specifications are for the  
entire device voltage and temperature operating range: –40 °C TA 85 °C, 3 V Vdd 5.5 V.  
Table 8. Comparator User Module Electrical Specifications  
Symbol  
Description  
Conditions  
50 mV overdrive  
Min  
Typ  
70  
Max  
100  
30  
Units  
ns  
T
Comparator response time  
COMP  
Offset  
2.5  
20  
mV  
µA  
Current  
Average DC current, 50 mV  
overdrive  
80  
Supply voltage >2 V  
Supply voltage <2 V  
Power supply rejection ratio  
Power supply rejection ratio  
0
80  
40  
dB  
dB  
V
PSRR  
Input Range  
1.5  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 14 of 31  
CY7C69356  
ADC Electrical Specifications  
Table 9. ADC User Module Electrical Specifications  
Symbol  
Input  
Description  
Conditions  
Min  
Typ  
Max  
Units  
V
Input voltage range  
0
V
V
pF  
IN  
REFADC  
C
R
Input capacitance  
Input resistance  
5
IIN  
IN  
Equivalent switched capacitance  
1/(500 fF × 1/(400 fF × 1/(300 fF ×  
input resistance for 8-, 9-, or 10-bit data clock) data clock) data clock)  
resolution  
Reference  
V
ADC reference voltage  
1.14  
2.25  
1.26  
6
V
REFADC  
Conversion Rate  
F
Data clock  
Source is chip’s internal main  
oscillator. See AC Chip-Level  
Specifications on page 18 for  
accuracy  
MHz  
CLK  
S8  
8-bit sample rate  
10-bit sample rate  
Data clock set to 6 MHz. Sample  
rate = 0.001/ (2^resolution/data  
clock)  
23.43  
5.85  
ksps  
ksps  
S10  
Data clock set to 6 MHz. Sample  
rate = 0.001/ ((2^resolution/data  
clock)  
DC Accuracy  
RES  
Resolution  
Can be set to 8-, 9-, or 10-bit  
8
–1  
–2  
0
10  
+2  
bits  
LSB  
LSB  
LSB  
LSB  
DNL  
Differential nonlinearity  
Integral nonlinearity  
Offset error  
INL  
+2  
E
8-bit resolution  
3.2  
12.8  
19.2  
76.8  
+5  
Offset  
gain  
10-bit resolution  
For any resolution  
0
E
Gain error  
–5  
%FS  
R
Power  
I
Operating current  
2.1  
24  
30  
2.6  
mA  
dB  
dB  
ADC  
PSRR  
Power supply rejection ratio  
PSRR (Vdd > 3.0 V)  
PSRR (Vdd < 3.0 V)  
DC Low Power Comparator Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 10. DC Comparator Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
V
I
Low power comparator (LPC)  
common mode  
Maximum voltage limited to Vdd.  
0.0  
1.8  
V
LPC  
LPC supply current  
LPC voltage offset  
10  
40  
30  
A  
LPC  
V
2.5  
mV  
OSLPC  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 15 of 31  
CY7C69356  
DC POR and LVD Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 11. DC POR and LVD Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
V
value for PPOR trip  
V
must be greater than or equal  
DD  
DD  
to 1.71 V during startup, reset from  
the XRES pin, or reset from  
watchdog.  
V
V
V
V
PORLEV[1:0] = 00b, HPOR = 0  
PORLEV[1:0] = 00b, HPOR = 1  
PORLEV[1:0] = 01b, HPOR = 1  
PORLEV[1:0] = 10b, HPOR = 1  
1.61  
1.66  
2.36  
2.60  
2.82  
1.71  
2.41  
2.66  
2.95  
V
V
V
V
PPOR0  
PPOR1  
PPOR2  
PPOR3  
V
value for LVD trip  
DD  
[7]  
V
V
V
V
V
V
V
V
VM[2:0] = 000b  
VM[2:0] = 001b  
VM[2:0] = 010b  
VM[2:0] = 011b  
VM[2:0] = 100b  
VM[2:0] = 101b  
VM[2:0] = 110b  
VM[2:0] = 111b  
2.40  
2.64  
2.85  
2.45  
2.71  
2.92  
3.02  
3.13  
1.90  
1.80  
4.73  
2.51  
2.78  
2.99  
3.09  
3.20  
2.32  
1.84  
4.83  
V
V
V
V
V
V
V
V
LVD0  
LVD1  
LVD2  
LVD3  
LVD4  
LVD5  
LVD6  
LVD7  
[8]  
[9]  
2.95  
3.06  
1.84  
[10]  
1.75  
4.62  
Notes  
7. Always greater than 50 mV above V  
8. Always greater than 50 mV above V  
9. Always greater than 50 mV above V  
10. Always greater than 50 mV above V  
voltage for falling supply.  
PPOR1  
PPOR2  
PPOR3  
PPOR0  
voltage for falling supply.  
voltage for falling supply.  
voltage for falling supply.  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 16 of 31  
CY7C69356  
DC Programming Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 12. DC Programming Specifications  
Symbol  
Vdd  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Supply voltage for flash write  
operations  
1.71  
5.25  
V
IWRITE  
I
Supply current during  
programming or verify  
5
25  
mA  
V
DDP  
V
V
Input low voltage during  
programming or verify  
See appropriate DC General  
Purpose I/O Specifications.  
V
IL  
ILP  
Input high voltage during  
programming or verify  
See appropriate DC General  
Purpose I/O Specifications.  
V
V
IHP  
IH  
I
Input current when applying V  
to P1[0] or P1[1] during  
programming or verify  
Driving internal pull down resistor.  
0.2  
1.5  
mA  
ILP  
ILP  
I
Input current when applying V  
to P1[0] or P1[1] during  
programming or verify  
Driving internal pull down resistor.  
mA  
IHP  
IHP  
V
V
Output low voltage during  
programming or verify  
Vss + 0.75  
Vdd  
V
V
OLP  
Output high voltage during  
programming or verify  
See appropriate DC General  
Purpose I/O Specifications.  
V
OH  
OHP  
For Vdd > 3 V use V  
on page 13.  
in Table 5  
OH4  
Flash  
Flash  
Flash write endurance  
Flash data retention  
Erase/write cycles per block.  
50,000  
20  
Cycles  
Years  
ENPB  
Following maximum flash write  
cycles,  
DR  
ambient temperature of 55 °C  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 17 of 31  
CY7C69356  
AC Chip-Level Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 13. AC Chip-Level Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
F
F
F
Internal main oscillator frequency –  
at 24 MHz Setting  
22.8  
24  
25.2  
MHz  
IMO24  
Internal main oscillator frequency –  
at 12 MHz setting  
11.4  
5.7  
12  
12.6  
6.3  
MHz  
MHz  
IMO12  
IMO6  
Internal main oscillator frequency –  
at 6 MHz setting  
6.0  
F
F
CPU frequency  
5.7  
19  
25.20  
50  
MHz  
kHz  
CPU  
Internal low speed oscillator  
frequency  
32  
32K1  
F
Internallowspeedoscillator(ILO) –  
untrimmed frequency)  
13  
32  
82  
kHz  
32K_U  
DC  
DC  
Duty cycle of IMO  
40  
40  
50  
50  
60  
60  
%
%
IMO  
Internal low speed oscillator duty –  
cycle  
ILO  
SR  
Power supply slew rate  
V
slew rate during power-up  
1
250  
V/ms  
ms  
POWER_UP  
DD  
t
External reset pulse width at  
power-up  
After supply voltage is valid  
XRST  
t
External reset pulse width after Applies after part has booted  
power-up  
10  
s  
XRST2  
[11]  
AC General Purpose I/O Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 14. AC GPIO Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
F
GPIO operating frequency  
Normal strong mode,  
Port 1.  
0
12 MHz for  
3 V < Vdd < 5.5 V  
MHz  
GPIO  
TRise23  
TRise01  
Rise time, strong mode,  
Cload = 50 pF, Ports 2 or 3  
Vdd = 3.0 to 3.6 V,  
10%–90%  
15  
10  
80  
50  
ns  
ns  
Rise time, strong mode,  
Cload = 50 pF, Ports 0 or 1  
Vdd = 3.0 to 3.6 V,  
10%–90%.  
LDO enabled or  
disabled.  
TFall  
Fall time, strong mode,  
Cload = 50 pF, All ports  
Vdd = 3.0 to 3.6 V,  
10%–90%  
10  
50  
ns  
Note  
11. The minimum required XRES pulse length is longer when programming the device (see Table 22 on page 24).  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 18 of 31  
CY7C69356  
Figure 8. GPIO Timing Diagram  
90%  
GPIO Pin  
Output  
Voltage  
10%  
TRise23  
TRise01  
TRise23L  
TRise01L  
TFall  
TFallL  
Table 15. AC Characteristics – USB Data Timings  
Symbol  
Tdrate  
Description  
Full speed data rate  
Conditions  
Average bit rate  
Min  
12 – 0.25%  
–18.5  
–9  
Typ  
12  
Max  
Units  
12 + 0.25% MHz  
Tdjr1  
Receiver data jitter tolerance  
Receiver data jitter tolerance  
Driver differential jitter  
Driver differential jitter  
To next transition  
To pair transition  
To next transition  
To pair transition  
To SE0 transition  
18.5  
9
ns  
ns  
ns  
ns  
ns  
Tdjr2  
Tudj1  
Tudj2  
Tfdeop  
–3.5  
3.5  
4.0  
5
–4.0  
Source jitter for differential  
transition  
–2  
Tfeopt  
Tfeopr  
Tfst  
Source SE0 interval of EOP  
Receiver SE0 interval of EOP  
160  
82  
175  
14  
ns  
ns  
ns  
Width of SE0 interval during  
differential transition  
Table 16. AC Characteristics – USB Driver  
Symbol Description  
Transition rise time  
Conditions  
Min  
4
Typ  
Max  
20  
Units  
ns  
Tr  
50 pF  
50 pF  
Tf  
Transition fall time  
4
20  
ns  
TR  
Rise/fall time matching  
Output signal crossover voltage  
90.00  
1.3  
111.1  
2.0  
%
Vcrs  
V
AC Comparator Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 17. AC Low Power Comparator Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
T
Comparator response time, 50  
mV Overdrive  
50 mV overdrive does not include  
offset voltage.  
100  
ns  
LPC  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 19 of 31  
CY7C69356  
AC External Clock Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 18. AC External Clock Specifications  
Symbol  
Description  
Frequency  
Conditions  
Min  
0.75  
20.60  
20.60  
150  
Typ  
Max  
25.20  
5300  
Units  
MHz  
ns  
F
OSCEXT  
High period  
Low period  
ns  
Power up IMO to switch  
s  
Figure 9. AC Waveform  
SCLK (P1[1])  
TRSCLK  
TFSCLK  
SDATA (P1[0])  
TSSCLK  
THSCLK  
TDSCLK  
AC Programming Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 19. AC Programming Specifications  
Symbol  
Description  
Rise time of SCLK  
Conditions  
Min  
1
Typ  
Max  
20  
20  
Units  
ns  
T
T
T
RSCLK  
Fall time of SCLK  
1
ns  
FSCLK  
SSCLK  
Data setup time to falling edge of  
SCLK  
40  
ns  
T
Data hold time from falling edge  
of SCLK  
40  
ns  
HSCLK  
F
T
T
T
Frequency of SCLK  
0
8
MHz  
ms  
ms  
ns  
SCLK  
Flash erase time (block)  
Flash block write time  
18  
25  
60  
ERASEB  
WRITE  
DSCLK  
Data out delay from falling edge 3.6 V  
of SCLK  
DD  
T
T
T
Data out delay from falling edge 1.71 V 3.0  
of SCLK  
130  
85  
ns  
ns  
s  
DSCLK2  
DSCLK3  
XRST3  
DD  
Data out delay from falling edge 3.0 V 3.6  
DD  
of SCLK  
External reset pulse width after Required to enter programming  
263  
power up  
mode when coming out of sleep  
T
T
XRES pulse length  
300  
0.1  
1
s  
XRES  
V
stable to wait-and-poll hold  
ms  
VDDWAIT  
DD  
off  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 20 of 31  
CY7C69356  
Table 19. AC Programming Specifications (continued)  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
T
T
V
delay  
stable to XRES assertion  
14.27  
ms  
VDDXRES  
DD  
SDATA high pulse time  
“Key window” time after a V  
0.01  
3.20  
200  
ms  
ms  
POLL  
T
19.60  
ACQ  
DD  
ramp acquire event, based on  
256 ILO clocks.  
T
“Key window” time after an XRES  
event, based on 8 ILO clocks  
98  
615  
s  
XRESINI  
AC SPI Specifications  
Table 20. SPI Master AC Specifications  
Symbol  
Description  
SCLK clock frequency  
SCLK duty cycle  
Conditions  
Min  
Typ  
Max  
6
Units  
MHz  
%
F
V
V
3 V  
3 V  
SCLK  
DD  
DC  
T
50  
MISO to SCLK setup time  
SCLK to MISO hold time  
SCLK to MOSI valid time  
MOSI high time  
60  
40  
ns  
SETUP  
DD  
T
T
T
ns  
HOLD  
40  
ns  
OUT_VAL  
40  
ns  
OUT_HIGH  
Figure 10. SPI Master Mode 0 and 2  
SPI Master, modes 0 and 2  
1/FSCLK  
THIGH  
TLOW  
SCLK  
(mode 0)  
SCLK  
(mode 2)  
TSETUP  
THOLD  
MISO  
(input)  
LSB  
MSB  
TOUT_SU  
TOUT_H  
MOSI  
(output)  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 21 of 31  
CY7C69356  
Figure 11. SPI Master Mode 1 and 3  
SPI Master, modes 1 and 3  
1/FSCLK  
THIGH  
TLOW  
SCLK  
(mode 1)  
SCLK  
(mode 3)  
TSETUP  
THOLD  
MISO  
(input)  
MSB  
LSB  
TOUT_SU  
TOUT_H  
MOSI  
(output)  
LSB  
MSB  
Table 21. SPI Slave AC Specifications  
Symbol  
Description  
SCLK clock frequency  
SCLK low time  
Conditions  
Min  
Typ  
Max  
12  
Units  
MHz  
ns  
F
T
T
T
T
T
T
T
T
T
V
3 V  
SCLK  
DD  
42  
42  
30  
50  
LOW  
SCLK high time  
ns  
HIGH  
MOSI to SCLK setup time  
SCLK to MOSI hold time  
SS high to MISO valid  
SCLK to MISO valid  
SS high time  
ns  
SETUP  
ns  
HOLD  
153  
125  
ns  
SS_MISO  
SCLK_MISO  
SS_HIGH  
SS_CLK  
CLK_SS  
ns  
50  
ns  
Time from SS low to first SCLK  
Time from last SCLK to SS high  
2/SCLK  
2/SCLK  
ns  
ns  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 22 of 31  
CY7C69356  
Figure 12. SPI Slave Mode 0 and 2  
SPI Slave, modes 0 and 2  
TSS_HIGH  
TCLK_SS  
TSS_CLK  
/SS  
1/FSCLK  
THIGH  
TLOW  
SCLK  
(mode 0)  
SCLK  
(mode 2)  
TOUT_H  
TSS_MISO  
MISO  
(output)  
TSETUP  
THOLD  
MOSI  
(input)  
LSB  
MSB  
Figure 13. SPI Slave Mode 1 and 3  
SPI Slave, modes 1 and 3  
TSS_CLK  
TCLK_SS  
/SS  
1/FSCLK  
THIGH  
TLOW  
SCLK  
(mode 1)  
SCLK  
(mode 3)  
TOUT_H  
TSCLK_MISO  
TSS_MISO  
MISO  
(output)  
MSB  
LSB  
TSETUP  
THOLD  
MOSI  
(input)  
MSB  
LSB  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 23 of 31  
CY7C69356  
2
AC I C Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 22. AC Characteristics of the I2C SDA and SCL Pins  
Standard Mode  
Fast Mode  
Symbol  
Description  
Conditions  
Units  
Min  
0
Max  
100  
Min  
Max  
400  
f
t
SCL clock frequency  
0
kHz  
SCLI2C  
Hold time (repeated) START  
condition. After this period, the  
first clock pulse is generated.  
4.0  
0.6  
s  
HDSTAI2C  
t
t
t
LOW period of the SCL clock  
HIGH period of the SCL clock  
4.7  
4.0  
4.7  
1.3  
0.6  
0.6  
s  
s  
s  
LOWI2C  
HIGHI2C  
SUSTAI2C  
Setup time for a repeated START  
condition  
t
t
t
t
Data hold time  
0
3.45  
0
0.90  
s  
ns  
s  
s  
HDDATI2C  
SUDATI2C  
SUSTOI2C  
BUFI2C  
[12]  
Data setup time  
250  
4.0  
4.7  
100  
Setup time for STOP Condition  
0.6  
1.3  
Bus free time between a STOP  
and START Condition  
t
Pulse width of spikes are  
suppressed by the input filter.  
0
50  
ns  
SPI2C  
Figure 14. Definition for Timing for Fast/Standard Mode on the I2C Bus  
Note  
12. A Fast-Mode I2C-bus device can be used in a Standard Mode I2C-bus system, but the requirement t  
250 ns must then be met. This automatically be the case  
SU;DAT  
if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the  
SDA line t  
+ t  
= 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.  
rmax  
SU;DAT  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 24 of 31  
CY7C69356  
Packaging Information  
This section illustrates the packaging specifications for the CY7C69356 PSoC device, along with the thermal impedances for each  
package.  
Important Note Emulation tools may require a larger area on the target PCB than the chip’s footprint. For a detailed description of  
the emulation tools’ dimensions, refer to the document titled  
PSoC Emulator Pod Dimensions  
at  
http://www.cypress.com/design/MR1016  
Figure 15. 48-pin QFN (7 × 7 × 1.0 mm) LT48A 5.1 × 5.1 E-Pad (Sawn) Package Outline, 001-13191  
001-13191 *H  
Important Note  
For information on the preferred dimensions for mounting QFN packages, see the following Application Note at  
http://www.amkor.com/products/notes_papers/MLFAppNote.pdf.  
Pinned vias for thermal conduction are not required for the low power PSoC device.  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 25 of 31  
CY7C69356  
Thermal Impedances  
Table 23. Thermal Impedances per Package  
Package  
[13]  
Typical JA  
[14]  
48-pin QFN  
18 °C/W  
Capacitance on Crystal Pins  
Table 24. Typical Package Capacitance on Crystal Pins  
Package  
Package Capacitance  
48-pin QFN  
3.3 pF  
Solder Reflow Peak Temperature  
Following is the minimum solder reflow peak temperature to achieve good solderability.  
Table 25. Solder Reflow Peak Temperature  
[15]  
Package  
Minimum Peak Temperature  
Maximum Peak Temperature  
48-pin QFN  
240 °C  
260 °C  
Notes  
13. T = T + Power x .  
JA  
J
A
14. To achieve the thermal impedance specified for the QFN package, the center thermal pad should be soldered to the PCB ground plane.  
15. Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220 ± 5 °C with Sn-Pb or 245 ± 5 °C with Sn-Ag-Cu  
paste. Refer to the solder manufacturer specifications.  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 26 of 31  
CY7C69356  
Development Tool Selection  
This section presents the development tools available for the CY7C69356 family.  
Software  
Device Programmers  
All device programmers are available for purchase from The  
Cypress Store. For programming during development, use:  
PSoC Designer  
At the core of the PSoC development software suite is PSoC  
Designer. Used by thousands of PSoC developers, this robust  
software has made designing with PSoC easy for half a decade.  
TrueTouch products require a dedicated PSoC Designer  
installer. Contact your local sales representative or send your  
request to tsbusdev@cypress.com.  
MiniProg1 Programming Unit (does not support debug  
monitor). It is available for purchase through the Cypress online  
store as part of kit:CY3210-MiniProg1.  
MiniProg3 Programming Unit (supports debug monitor). It is  
available for purchase through the Cypress online store as part  
of kit:CY8CKIT-002.  
PSoC Programmer  
PSoC Programmer is flexible enough to be used on the bench in  
development, yet suitable for factory programming. It works as a  
standalone programming application, or it can operate directly  
from PSoC Designer. PSoC Programmer software is compatible  
with PSoC MiniProg. PSoC programmer is available free of  
charge at http://www.cypress.com/psocprogrammer.  
CY3207ISSP In-System Serial Programmer (ISSP)  
The CY3207ISSP is a production programmer. It includes  
protection circuitry and an industrial case that is more robust than  
the MiniProg in a production-programming environment.  
Development Kits  
Under development.  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 27 of 31  
CY7C69356  
Ordering Information  
The following table lists the CY7C69356 PSoC devices key package features and ordering codes.  
Table 26. PSoC Device Key Features and Ordering Information  
Flash SRAM TrueTouch Digital I/O Analog XRES  
Package  
Ordering Code  
USB  
(KB) (Bytes)  
Blocks  
Pins  
Inputs  
Pin  
[16]  
48-pin (7 × 7 mm) QFN  
CY7C69356-48LTXC  
32 2048  
1
36  
36  
Yes  
Yes  
Ordering Code Definitions  
CY  
48LT  
X
7
C
69 356 -  
X
C
X = blank or T  
blank = Tube; T = Tape and Reel  
Temperature Range:  
C = Commercial grade  
X = Pb-free  
Package Type:  
48LT = 48-pin QFN  
Part Number  
Family Code: 69 = Full Speed USB  
Technology Code: C = CMOS  
Marketing Code: 7 = Cypress Products  
Company ID: CY = Cypress  
Notes  
16. Dual-function Digital I/O pins also connect to the common analog mux.  
17. This part may be used for in-circuit debugging. It is NOT available for production.  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 28 of 31  
CY7C69356  
Acronyms  
Document Conventions  
Table 27. Acronyms used  
Acronym  
Units of Measure  
Description  
Table 28. Units of Measure  
AC  
alternating current  
Symbol  
°C  
Unit of Measure  
API  
application programming interface  
central processing unit  
direct current  
degree Celsius  
decibels  
dB  
CPU  
DC  
fF  
femto farad  
hertz  
Hz  
GPIO  
GUI  
ICE  
general purpose I/O  
graphical user interface  
in-circuit emulator  
KB  
Kbit  
kHz  
k  
MHz  
M  
A  
F  
1024 bytes  
1024 bits  
kilohertz  
ILO  
internal low speed oscillator  
internal main oscillator  
input/output  
kilohm  
IMO  
I/O  
megahertz  
megaohm  
LSb  
LVD  
MSb  
POR  
PPOR  
least-significant bit  
microampere  
microfarad  
low voltage detect  
most-significant bit  
H  
s  
microhenry  
power on reset  
microsecond  
microvolts  
precision power on reset  
Programmable System-on-Chip  
slow IMO  
V  
Vrms  
ksps  
W  
mA  
ms  
mV  
nA  
®
PSoC  
SLIMO  
SRAM  
FSR  
microvolts root-mean-square  
kilo samples per second  
microwatts  
static random access memory  
full scale range  
milli-ampere  
milli-second  
milli-volts  
nanoampere  
nanosecond  
nanovolts  
ns  
nV  
W
ohm  
pA  
picoampere  
picofarad  
pF  
pp  
peak-to-peak  
parts per million  
picosecond  
samples per second  
sigma: one standard deviation  
volts  
ppm  
ps  
sps  
s
V
Numeric Naming  
Hexadecimal numbers are represented with all letters in  
uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or  
‘3Ah’). Hexadecimal numbers are also represented by a ‘0x’  
prefix, the C coding convention. Binary numbers have an  
appended lowercase ‘b’ (for example, 01010100b’ or  
‘01000011b’). Numbers not indicated by an ‘h’, ‘b’, or 0x are  
decimal.  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 29 of 31  
CY7C69356  
Document History Page  
Document Title: CY7C69356, TrueTouch® Multi-Touch Gesture Full Speed USB Controller  
Document Number: 001-86334  
Origin of Submission  
Revision  
ECN #  
Description of Change  
Change  
Date  
*B  
5222044  
SKUV  
04/15/2016 Changed status from Preliminary to Final.  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Page 30 of 31  
CY7C69356  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
®
®
ARM Cortex Microcontrollers  
Automotive  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/powerpsoc  
cypress.com/memory  
cypress.com/psoc  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Forums | Projects | Video | Blogs | Training | Components  
Technical Support  
Lighting & Power Control  
Memory  
cypress.com/support  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/touch  
cypress.com/usb  
cypress.com/wireless  
© Cypress Semiconductor Corporation, 2013-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,  
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United  
States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)  
Document Number: 001-86334 Rev. *B  
Revised April 15, 2016  
Page 31 of 31  
TrueTouch™ and PSoC Designer™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corporation.  
2
2
2
Purchase of I C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I C Patent Rights to use these components in an I C system, provided  
2
that the system conforms to the I C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors.  

相关型号:

CY7C6981-BAI

Telecom Circuit, 1-Func, PBGA81, 10 X 10 MM, 1.20 MM HEIGHT, TFBGA-81
CYPRESS

CY7C901-23DC

Bit-Slice Processor, 4-Bit, CMOS, CDIP40, 0.600 INCH, CERDIP-40
CYPRESS

CY7C901-23LC

Bit-Slice Processor, 4-Bit, CMOS, CQCC44, CERAMIC, LCC-44
CYPRESS

CY7C901-23PC

Bit-Slice Processor, 4-Bit, CMOS, PDIP40, 0.600 INCH, PLASTIC, DIP-40
CYPRESS

CY7C901-27DMB

Bit-Slice Processor, 4-Bit, CMOS, CDIP40, 0.600 INCH, CERDIP-40
CYPRESS

CY7C901-27LMB

Bit-Slice Processor, 4-Bit, CMOS, CQCC44, CERAMIC, LCC-44
CYPRESS

CY7C901-31DC

Bit-Slice Processor, 4-Bit, CMOS, CDIP40, 0.600 INCH, CERDIP-40
CYPRESS

CY7C901-31JC

4-BIT, BIT-SLICE MICROPROCESSOR, PQCC44, PLASTIC, LCC-44
ROCHESTER

CY7C901-31JC

Bit-Slice Processor, 4-Bit, CMOS, PQCC44, PLASTIC, LCC-44
CYPRESS

CY7C901-31LC

Bit-Slice Processor, 4-Bit, CMOS, CQCC44, CERAMIC, LCC-44
CYPRESS

CY7C901-31PC

暂无描述
CYPRESS

CY7C901-32DMB

Microprocessor Slice
ETC