CY8C20346-24LQXI [CYPRESS]

CapSense Applications; CapSense应用
CY8C20346-24LQXI
型号: CY8C20346-24LQXI
厂家: CYPRESS    CYPRESS
描述:

CapSense Applications
CapSense应用

时钟
文件: 总39页 (文件大小:1045K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY8C20X36/46/66/96  
CapSense® Applications  
Features  
1.71V to 5.5V Operating Range  
Versatile Analog Mux  
Common Internal Analog Bus  
Simultaneous Connection of I/O  
High PSRR Comparator  
Low Dropout Voltage Regulator for All Analog Resources  
Low Power CapSense® Block  
Configurable Capacitive Sensing Elements  
Supports Combination of CapSense Buttons, Sliders,  
Touchpads, Touch Screens, and Proximity Sensor  
Additional System Resources  
I2C Slave:  
Powerful Harvard Architecture Processor  
M8C Processor Speeds Running to 24 MHz  
Low Power at High Speed  
• Selectable to 50 kHz, 100 kHz, or 400 kHz  
• No Clock Stretching Required (under most conditions)  
Interrupt Controller  
• Implementation During Sleep Modes with Less Than  
100 µA  
• Hardware Address Validation  
SPI™ Master and Slave: Configurable 46.9 kHz to 12 MHz  
Three 16-Bit Timers  
Watchdog and Sleep Timers  
Internal Voltage Reference  
Integrated Supervisory Circuit  
8-bit Delta-Sigma Analog-to-Digital Converter  
Temperature Range: -40°C to +85°C  
Flexible On-Chip Memory  
Three Program/Data Storage Size Options:  
• CY8C20x36: 8K Flash / 1K SRAM  
• CY8C20x46, CY8C20x96: 16K Flash / 2K SRAM  
• CY8C20x66: 32K Flash / 2K SRAM  
50,000 Flash Erase/Write Cycles  
Partial Flash Updates  
Flexible Protection Modes  
In-System Serial Programming (ISSP)  
Two General Purpose High Speed, Low Power Analog  
Comparators  
Complete Development Tools  
Free Development Tool (PSoC Designer™)  
Full Featured, In-Circuit Emulator and Programmer  
Full Speed Emulation  
Complex Breakpoint Structure  
128K Trace Memory  
Full Speed USB  
Available on CY8C20646, CY8C20666, CY8C20x96 Only  
12 Mbps USB 2.0 Compliant  
Eight Unidirectional Endpoints  
One Bidirectional Control Endpoint  
Dedicated 512 Byte Buffer  
Internally Regulated at 3.3V  
Package Options  
Precision, Programmable Clocking  
CY8C20x36:  
• 16-Pin 3 x 3 x 0.6 mm QFN  
• 24-Pin 4 x 4 x 0.6 mm QFN  
• 32-Pin 5 x 5 x 0.6 mm QFN  
• 48-Pin SSOP  
• 48-Pin 7 x 7 x 1.0 mm QFN  
CY8C20x46:  
• 16-Pin 3 x 3 x 0.6 mm QFN  
• 24-Pin 4 x 4 x 0.6 mm QFN  
• 32-Pin 5 x 5 x 0.6 mm QFN  
• 48-Pin SSOP  
Internal Main Oscillator: 6/12/24 MHz ± 5%  
Internal Low Speed Oscillator at 32 kHz for Watchdog and  
Sleep Timers  
Precision 32 kHz Oscillator for Optional External Crystal  
0.25% Accuracy for USB with No External Components  
(CY8C20646, CY8C20666, CY8C20x96 only)  
Programmable Pin Configurations  
Up to 36 GPIO (Depending on Package)  
Dual Mode GPIO: All GPIO Support Digital I/O and Analog  
Input  
25 mA Sink Current on All GPIO  
• 48-Pin 7 x 7 x 1.0 mm QFN (with USB)  
CY8C20x96:  
• 24-Pin 4 x 4 x 0.6 mm QFN (with USB)  
• 32-Pin 5 x 5 x 0.6 mm QFN (with USB)  
CY8C20x66:  
• 32-Pin 5 x 5 x 0.6 mm QFN  
• 48-Pin 7 x 7 x 1.0 mm QFN (with USB)  
• 48-Pin SSOP  
Pull up, High Z, Open Drain Modes on All GPIO  
CMOS Drive Mode (5 mA Source Current) on Ports 0 and 1:  
• 20 mA (at 3.0V) Total Source Current on Port 0  
• 20 mA (at 3.0V) Total Source Current on Port 1  
Selectable, Regulated Digital I/O on Port 1  
Configurable Input Threshold on Port 1  
Hot Swap Capability on all Port 1 GPIO  
Cypress Semiconductor Corporation  
Document Number: 001-12696 Rev. *F  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised September 09, 2009  
[+] Feedback  
CY8C20X36/46/66/96  
Logic Block Diagram  
1.8/2.5/3V  
LDO  
PWRSYS  
(Regulator)  
Port 4 Port 3  
Port 2  
Port 1  
Port 0  
PSoC CORE  
SYSTEM BUS  
Global Analog Interconnect  
8K/16K/32K Flash  
1K/2K  
SRAM  
Supervisory ROM (SROM)  
Nonvolatile Memory  
Interrupt  
Controller  
Sleep and  
Watchdog  
CPU Core (M8C)  
6/12/24 MHz Internal Main Oscillator  
(IMO)  
Internal Low Speed Oscillator (ILO)  
Multiple Clock Sources  
CAPSENSE  
SYSTEM  
Analog  
Reference  
CapSense  
Module  
Two  
Analog  
Mux  
Comparators  
SYSTEM BUS  
Internal  
Voltage  
References  
POR  
and  
LVD  
SPI  
Master/  
Slave  
Three 16-Bit  
Programmable  
Timers  
I2C  
Slave  
System  
Resets  
Digital  
Clocks  
USB  
SYSTEM RESOURCES  
Document Number: 001-12696 Rev. *F  
Page 2 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
®
Figure 1. Analog System Block Diagram  
PSoC Functional Overview  
The PSoC family consists of on-chip Controller devices. These  
devices are designed to replace multiple traditional MCU-based  
components with one, low cost single-chip programmable  
component. A PSoC device includes configurable analog and  
digital blocks, and programmable interconnect. This architecture  
allows the user to create customized peripheral configurations,  
to match the requirements of each individual application.  
Additionally, a fast CPU, Flash program memory, SRAM data  
memory, and configurable I/O are included in a range of  
convenient pinouts.  
IDAC  
Vr  
The architecture for this device family, as shown in the Logic  
Block Diagram on page 2, is comprised of three main areas: the  
Core, the CapSense Analog System, and the System Resources  
(including a full speed USB port). A common, versatile bus allows  
connection between I/O and the analog system. Each  
CY8C20x36/46/66/96 PSoC Device includes a dedicated  
CapSense block that provides sensing and scanning control  
circuitry for capacitive sensing applications. Depending on the  
PSoC package, up to 36 general purpose IO (GPIO) are also  
included. The GPIO provides access to the MCU and analog  
mux.  
Reference  
Buffer  
Cinternal  
Comparator  
Mux  
Mux  
Refs  
PSoC Core  
CapSenseCounters  
CSCLK  
The PSoC Core is a powerful engine that supports a rich  
instruction set. It encompasses SRAM for data storage, an  
interrupt controller, sleep and watchdog timers, and IMO  
(internal main oscillator) and ILO (internal low speed oscillator).  
The CPU core, called the M8C, is a powerful processor with  
speeds up to 24 MHz. The M8C is a 4-MIPS, 8-bit Harvard archi-  
tecture microprocessor.  
CapSense  
ClockSelect  
IMO  
Oscillator  
System Resources provide additional capability, such as  
configurable USB and I2C slave/SPI master-slave  
communication interface, three 16-bit programmable timers, and  
various system resets supported by the M8C.  
Analog Multiplexer System  
The Analog Mux Bus can connect to every GPIO pin. Pins are  
connected to the bus individually or in any combination. The bus  
also connects to the analog system for analysis with the  
CapSense block comparator.  
The Analog System is composed of the CapSense PSoC block  
and an internal 1.2V analog reference, which together support  
capacitive sensing of up to 36 inputs.  
Switch control logic enables selected pins to precharge  
continuously under hardware control. This enables capacitive  
measurement for applications such as touch sensing. Other  
multiplexer applications include:  
CapSense Analog System  
The Analog System contains the capacitive sensing hardware.  
Several hardware algorithms are supported. This hardware  
performs capacitive sensing and scanning without requiring  
external components. Capacitive sensing is configurable on  
each GPIO pin. Scanning of enabled CapSense pins are  
completed quickly and easily across multiple ports.  
Complex capacitive sensing interfaces, such as sliders and  
touchpads.  
Chip-wide mux that allows analog input from any I/O pin.  
Crosspoint connection between any I/O pin combinations.  
When designing capacitive sensing applications, refer to the  
latest signal-to-noise signal level requirements Application  
Notes, which can be found under http://www.cypress.com >  
Documentation > Application Notes. In general, and unless  
otherwise noted in the relevant Application Notes, the minimum  
signal-to-noise ratio (SNR) for CapSense applications is 5:1.  
Document Number: 001-12696 Rev. *F  
Page 3 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
Additional System Resources  
Getting Started  
System Resources, some of which are listed in the previous  
sections, provide additional capability useful to complete  
systems. Additional resources include low voltage detection and  
power on reset. The merits of each system resource are listed  
here:  
The quickest way to understand PSoC silicon is to read this data  
sheet and then use the PSoC Designer Integrated Development  
Environment (IDE). This data sheet is an overview of the PSoC  
integrated circuit and presents specific pin, register, and  
electrical specifications.  
The I2C slave/SPI master-slave module provides 50/100/400  
kHz communication over two wires. SPI communication over  
three or four wires runs at speeds of 46.9 kHz to 3 MHz (lower  
for a slower system clock).  
For in depth information, along with detailed programming  
details, see the PSoC® Programmable System-on-Chip™  
Technical Reference Manual for CY8C20x36/46/66/96 PSoC  
Devices.  
The I2C hardware address recognition feature reduces the  
already low power consumption by eliminating the need for  
CPU intervention until a packet addressed to the target device  
is received.  
For up-to-date ordering, packaging, and electrical specification  
information, see the latest PSoC device data sheets on the web  
at www.cypress.com/psoc.  
Application Notes  
Low Voltage Detection (LVD) interrupts can signal the  
application of falling voltage levels, while the advanced POR  
(Power-On-Reset) circuit eliminates the need for a system  
supervisor.  
Application notes are an excellent introduction to the wide variety  
of possible PSoC designs. They are located here:  
www.cypress.com/psoc. Select Application Notes under the  
Documentation tab.  
An internal reference provides an absolute reference for capac-  
itive sensing.  
Development Kits  
A register-controlled bypass mode allows the user to disable  
the LDO.  
PSoC Development Kits are available online from Cypress at  
www.cypress.com/shop and through a growing number of  
regional and global distributors, which include Arrow, Avnet, Digi-  
Key, Farnell, Future Electronics, and Newark.  
Standard Cypress PSoC IDE tools are available for debugging  
the CY8C20x36/46/66/96 family of parts. However, the  
additional trace length and a minimal ground plane in the Flex-  
Pod can create noise problems that make it difficult to debug  
the design. A custom bonded On-Chip Debug (OCD) device is  
available in an 48-pin QFN package. The OCD device is  
recommended for debugging designs that have high current  
and/or high analog accuracy requirements. The QFN package  
is compact and is connected to the ICE through a high density  
connector.  
Training  
Free PSoC technical training (on demand, webinars, and  
workshops) is available online at www.cypress.com/training. The  
training covers a wide variety of topics and skill levels to assist  
you in your designs.  
CYPros Consultants  
Certified PSoC Consultants offer everything from technical  
assistance to completed PSoC designs. To contact or become a  
PSoC Consultant go to www.cypress.com/cypros.  
Solutions Library  
Visit our growing library of solution focused designs at  
www.cypress.com/solutions. Here you can find various  
application designs that include firmware and hardware design  
files that enable you to complete your designs quickly.  
Technical Support  
For assistance with technical issues, search KnowledgeBase  
articles and forums at www.cypress.com/support. If you cannot  
find an answer to your question, call technical support at 1-800-  
541-4736.  
Document Number: 001-12696 Rev. *F  
Page 4 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
Development Tools  
PSoC Designer is a Microsoft® Windows-based, integrated  
development environment for the Programmable System-on-  
Chip (PSoC) devices. The PSoC Designer IDE and application  
runs on Windows XP and Windows Vista.  
Code Generation Tools  
PSoC Designer supports multiple third-party C compilers and  
assemblers. The code generation tools work seamlessly within  
the PSoC Designer interface and have been tested with a full  
range of debugging tools. The choice is yours.  
This system provides design database management by project,  
an integrated debugger with In-Circuit Emulator, in-system  
programming support, and built-in support for third-party assem-  
blers and C compilers.  
Assemblers. The assemblers allow assembly code to be  
merged seamlessly with C code. Link libraries automatically use  
absolute addressing or are compiled in relative mode, and linked  
with other software modules to get absolute addressing.  
PSoC Designer also supports C language compilers developed  
specifically for the devices in the PSoC family.  
C Language Compilers. C language compilers are available  
that support the PSoC family of devices. The products allow you  
to create complete C programs for the PSoC family devices.  
PSoC Designer Software Subsystems  
System-Level View  
The system-level view is a drag-and-drop visual embedded  
system design environment based on PSoC Express. In this  
view you solve design problems the same way you might think  
about the system. Select input and output devices based upon  
system requirements. Add a communication interface and define  
the interface to the system (registers). Define when and how an  
output device changes state based upon any/all other system  
devices. Based upon the design, PSoC Designer automatically  
selects one or more PSoC devices that match your system  
requirements.  
The optimizing C compilers provide all the features of C tailored  
to the PSoC architecture. They come complete with embedded  
libraries providing port and bus operations, standard keypad and  
display support, and extended math functionality.  
Debugger  
PSoC Designer has a debug environment that provides  
hardware in-circuit emulation, allowing you to test the program in  
a physical system while providing an internal view of the PSoC  
device. Debugger commands allow the designer to read and  
program and read and write data memory, read and write I/O  
registers, read and write CPU registers, set and clear break-  
points, and provide program run, halt, and step control. The  
debugger also allows the designer to create a trace buffer of  
registers and memory locations of interest.  
PSoC Designer generates all embedded code, then compiles  
and links it into a programming file for a specific PSoC device.  
Chip-Level View  
The chip-level view is a more traditional integrated development  
environment (IDE) based on PSoC Designer 4.x. You choose a  
base device to work with and then select different onboard  
analog and digital components called user modules that use the  
PSoC blocks. Examples of user modules are ADCs, DACs,  
Amplifiers, and Filters. You configure the user modules for your  
chosen application and connect them to each other and to the  
proper pins. Then you generate your project. This prepopulates  
your project with APIs and libraries that you can use to program  
your application.  
Online Help System  
The online help system displays online, context-sensitive help  
for the user. Designed for procedural and quick reference, each  
functional subsystem has its own context-sensitive help. This  
system also provides tutorials and links to FAQs and an Online  
Support Forum to aid the designer in getting started.  
In-Circuit Emulator  
A low cost, high functionality In-Circuit Emulator (ICE) is  
available for development support. This hardware has the  
capability to program single devices.  
The tool also supports easy development of multiple configura-  
tions and dynamic reconfiguration. Dynamic reconfiguration  
allows for changing configurations at run time.  
The emulator consists of a base unit that connects to the PC by  
way of a USB port. The base unit is universal and operates with  
all PSoC devices. Emulation pods for each device family are  
available separately. The emulation pod takes the place of the  
PSoC device in the target board and performs full speed (24  
MHz) operation.  
Hybrid Designs  
You can begin in the system-level view, allow it to choose and  
configure your user modules, routing, and generate code, then  
switch to the chip-level view to gain complete control over on-  
chip resources. All views of the project share common code  
editor, builder, and common debug, emulation, and programming  
tools.  
Document Number: 001-12696 Rev. *F  
Page 5 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
Designing with PSoC Designer  
The development process for the PSoC device differs from that  
of a traditional fixed function microprocessor. The configurable  
analog and digital hardware blocks give the PSoC architecture a  
unique flexibility that pays dividends in managing specification  
change during development and by lowering inventory costs.  
These configurable resources, called PSoC Blocks, have the  
ability to implement a wide variety of user-selectable functions.  
Organize and Connect  
You build signal chains at the chip level by interconnecting user  
modules to each other and the I/O pins, or connect system-level  
inputs, outputs, and communication interfaces to each other with  
valuator functions.  
In the system-level view selecting a potentiometer driver to  
control a variable speed fan driver and setting up the valuators  
to control the fan speed based on input from the pot selects,  
places, routes, and configures a programmable gain amplifier  
(PGA) to buffer the input from the potentiometer, an analog-to-  
digital converter (ADC) to convert the potentiometer’s output to  
a digital signal, and a PWM to control the fan.  
The PSoC development process can be summarized in the  
following four steps:  
1. Select Components  
2. Configure Components  
3. Organize and Connect  
4. Generate, Verify, and Debug  
In the chip-level view, you perform the selection, configuration,  
and routing so that you have complete control over the use of all  
on-chip resources.  
Select Components  
Both the system-level and chip-level views provide a library of  
pre-built, pre-tested hardware peripheral components. In the  
system-level view these components are called “drivers” and  
correspond to inputs (a thermistor, for example), outputs (a  
brushless DC fan, for example), communication interfaces (I2C-  
bus, for example), and the logic to control how they interact with  
one another (called valuators).  
Generate, Verify, and Debug  
When you are ready to test the hardware configuration or move  
on to developing code for the project, you perform the “Generate  
Configuration Files” step. This causes PSoC Designer to  
generate source code that automatically configures the device to  
your specification and provides the software for the system.  
Both system-level and chip-level designs generate software  
based on your design. The chip-level design provides application  
programming interfaces (APIs) with high-level functions to  
control and respond to hardware events at run time and interrupt  
service routines that you can adapt as needed. The system-level  
design also generates a C main() program that completely  
controls the chosen application and contains placeholders for  
custom code at strategic positions allowing you to further refine  
the software without disrupting the generated code.  
In the chip-level view the components are called “user modules.”  
User modules make selecting and implementing peripheral  
devices simple, and come in analog, digital, and programmable  
system-on-chip varieties.  
Configure Components  
Each of the components you select establishes the basic register  
settings that implement the selected function. They also provide  
parameters and properties that allow you to tailor their precise  
configuration to your particular application. For example, a Pulse  
Width Modulator (PWM) User Module configures one or more  
digital PSoC blocks, one for each 8 bits of resolution. The user  
module parameters permit you to establish the pulse width and  
duty cycle. Configure the parameters and properties to corre-  
spond to your chosen application. Enter values directly or by  
selecting values from drop-down menus.  
A complete code development environment allows you to  
develop and customize your applications in C, assembly  
language, or both.  
The last step in the development process takes place inside  
PSoC Designer’s Debugger (access by clicking the Connect  
icon). PSoC Designer downloads the HEX image to the ICE  
where it runs at full speed. PSoC Designer debugging capabil-  
ities rival those of systems costing many times more. In addition  
to traditional single-step, run-to-breakpoint and watch-variable  
features, the debug interface provides a large trace buffer and  
allows you to define complex breakpoint events that include  
monitoring address and data bus values, memory locations and  
external signals.  
Both the system-level drivers and chip-level user modules are  
documented in data sheets that are viewed directly in PSoC  
Designer. These data sheets explain the internal operation of the  
component and provide performance specifications. Each data  
sheet describes the use of each user module parameter or driver  
property, and other information you may need to successfully  
implement your design.  
Document Number: 001-12696 Rev. *F  
Page 6 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
Document Conventions  
Acronyms Used  
Units of Measure  
The following table lists the acronyms that are used in this  
document.  
A units of measure table is located in the Electrical Specifications  
section. Table 11 on page 17 lists all the abbreviations used to  
measure the PSoC devices.  
Table 1. Acronyms  
Numeric Naming  
Acronym  
AC  
Description  
alternating current  
Hexadecimal numbers are represented with all letters in  
uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or  
‘3Ah’). Hexadecimal numbers may also be represented by a ‘0x’  
prefix, the C coding convention. Binary numbers have an  
appended lowercase ‘b’ (for example, 01010100b’ or  
‘01000011b’). Numbers not indicated by an ‘h’, ‘b’, or 0x are  
decimal.  
API  
application programming interface  
central processing unit  
direct current  
CPU  
DC  
FSR  
GPIO  
GUI  
full scale range  
general purpose I/O  
graphical user interface  
in-circuit emulator  
ICE  
ILO  
internal low speed oscillator  
internal main oscillator  
input/output  
IMO  
I/O  
LSb  
least-significant bit  
LVD  
low voltage detect  
MSb  
POR  
PPOR  
PSoC®  
SLIMO  
SRAM  
most-significant bit  
power on reset  
precision power on reset  
Programmable System-on-Chip™  
slow IMO  
static random access memory  
Document Number: 001-12696 Rev. *F  
Page 7 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
Pinouts  
The CY8C20x36/46/66/96 PSoC device is available in a variety of packages which are listed and illustrated in the following tables.  
Every port pin (labeled with a “P”) is capable of Digital I/O and connection to the common analog bus. However, Vss, Vdd, and XRES  
are not capable of Digital I/O.  
16-Pin QFN (No E-Pad)  
Table 2. Pin Definitions - CY8C20236, CY8C20246 PSoC Device [2]  
Type  
Figure 2. CY8C20236, CY8C20246 PSoC Device  
Pin  
No.  
Name  
Description  
Digital Analog  
1
2
3
4
5
6
I/O  
I
I
I
I
I
I
P2[5] Crystal output (XOut)  
P2[3] Crystal input (XIn)  
P1[7] I2C SCL, SPI SS  
P1[5] I2C SDA, SPI MISO  
P1[3] SPI CLK  
I/O  
AI, XOut, P2[5]  
AI, XIn, P2[3]  
1
2
P0[4], AI  
IOHR  
IOHR  
IOHR  
IOHR  
12  
11  
10  
QFN  
(Top View)  
XRES  
P1[4], EXTCLK, AI  
P1[2], AI  
AI, I2C SCL, SPI SS, P1[7]  
AI, I2C SDA, SPI MISO, P1[5]  
3
4
9
P1[1] ISSP CLK[1], I2C SCL, SPI  
MOSI  
7
8
Power  
Vss Ground connection  
P1[0] ISSP DATA[1], I2C SDA, SPI  
CLK  
IOHR  
I
9
IOHR  
IOHR  
I
I
P1[2]  
10  
P1[4] Optional external clock  
(EXTCLK)  
11  
Input  
XRES Active high external reset with  
internal pull down  
12  
13  
14  
15  
16  
IOH  
Power  
I
P0[4]  
Vdd Supply voltage  
P0[7]  
IOH  
IOH  
IOH  
I
I
I
P0[3] Integrating input  
P0[1] Integrating input  
LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.  
Notes  
1. These are the ISSP pins, which are not High Z at POR (Power On Reset).  
2. During power up or reset event, device P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter any issues.  
Document Number: 001-12696 Rev. *F  
Page 8 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
24-Pin QFN  
[2, 3]  
Table 3. Pin Definitions - CY8C20336, CY8C20346  
Type  
Pin  
Figure 3. CY8C20336, CY8C20346 PSoC Device  
Name  
Description  
No.  
Digital Analog  
1
2
3
4
5
6
7
I/O  
I/O  
I
I
I
I
I
I
I
P2[5]  
P2[3]  
P2[1]  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
Crystal output (XOut)  
Crystal input (XIn)  
18  
17  
16  
15  
AI, XOut, P2[5]  
AI, XIn, P2[3]  
1
2
3
4
5
6
P0[4], AI  
P0[2], AI  
P0[0], AI  
P2[0], AI  
XRES  
I/O  
IOHR  
IOHR  
IOHR  
IOHR  
I2C SCL, SPI SS  
I2C SDA, SPI MISO  
SPI CLK  
ISSP CLK[1], I2C SCL, SPI  
MOSI  
AI, P2[1]  
QFN  
(Top View)  
AI, I2C SCL, SPI SS, P1[7]  
AI, I2C SDA, SPI MISO, P1[5]  
AI, SPI CLK, P1[3]  
14  
13  
P1[6], AI  
8
NC  
No connection  
9
Power  
Vss  
P1[0]  
Ground connection  
ISSP DATA[1], I2C SDA, SPI  
CLK  
10  
IOHR  
I
11  
12  
IOHR  
IOHR  
I
I
P1[2]  
P1[4]  
Optional external clock input  
(EXTCLK)  
13  
14  
IOHR  
I
P1[6]  
Input  
XRES Active high external reset with  
internal pull down  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
CP  
I/O  
I
I
I
I
I
P2[0]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
IOH  
IOH  
IOH  
IOH  
Power  
Power  
Vdd  
Supply voltage  
IOH  
IOH  
IOH  
IOH  
I
I
I
I
P0[7]  
P0[5]  
P0[3]  
P0[1]  
Vss  
Integrating input  
Integrating input  
Center pad must be connected  
to ground  
LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.  
Note  
3. The center pad (CP) on the QFN package must be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it  
must be electrically floated and not connected to any other signal.  
Document Number: 001-12696 Rev. *F  
Page 9 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
24-Pin QFN with USB  
[2, 3]  
Table 4. Pin Definitions - CY8C20396 PSoC Device  
Type  
Pin No.  
Name  
Description  
Figure 4. CY8C20396 PSoC Device  
Digital Analog  
1
2
I/O  
I/O  
I
I
I
I
I
I
I
P2[5]  
P2[3]  
P2[1]  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
VSS  
D+  
3
I/O  
4
IOHR  
IOHR  
IOHR  
IOHR  
I2C SCL, SPI SS  
18  
17  
16  
15  
14  
13  
P2[5]  
P2[3]  
1
2
P0[2]  
5
I2C SDA, SPI MISO  
SPI CLK  
P0[0]  
6
XRES  
P2[1]  
3
4
5
6
QFN  
( Top View)  
I2 C SCL, SPI SS, P1[7]  
I2 C SDA, SPI MISO, P1[5]  
SPI CLK, P1[3]  
P1[6]  
7
ISSP CLK, I2C SCL, SPI MOSI  
Ground  
P1[4] , EXTCLK  
P1[2]  
8
Power  
9
I/O  
I/O  
I
I
USB D+  
10  
11  
12  
13  
14  
D-  
USB D-  
Power  
VDD  
P1[0]  
P1[2]  
P1[4]  
Supply  
IOHR  
IOHR  
IOHR  
I
I
I
ISSP DATA, I2C SDA  
Optional external clock input  
(EXTCLK)  
15  
16  
IOHR  
I
P1[6]  
RESET INPUT  
XRES  
Active high external reset with  
internal pull down  
17  
18  
19  
20  
21  
22  
23  
24  
CP  
IOH  
IOH  
IOH  
IOH  
IOH  
IOH  
IOH  
IOH  
I
I
I
I
I
I
I
I
P0[0]  
P0[2]  
P0[4]  
P0[6]  
P0[7]  
P0[5]  
P0[3]  
P0[1]  
VSS  
Integrating input  
Integrating input  
Power  
Thermal pad must be  
connected to Ground  
LEGEND I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output  
Document Number: 001-12696 Rev. *F  
Page 10 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
32-Pin QFN  
Table 5. Pin Definitions - CY8C20436, CY8C20446,  
CY8C20466 PSoC Device [2, 3]  
Type  
Pin  
Figure 5. CY8C20436, CY8C20446, CY8C20466 PSoC Device  
Name  
Description  
No.  
Digital Analog  
1
IOH  
I/O  
I
I
I
I
I
I
I
I
I
I
I
P0[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P3[3]  
P3[1]  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
Vss  
Integrating input  
2
3
I/O  
Crystal output (XOut)  
Crystal input (XIn)  
AI, P0[1]  
AI, P2[7]  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
P0[0], AI  
P2[6], AI  
P2[4], AI  
P2[2], AI  
P2[0], AI  
P3[2], AI  
P3[0], AI  
XRES  
4
I/O  
AI, XOut, P2[5]  
AI, XIn, P2[3]  
AI, P2[1]  
5
I/O  
QFN  
(Top View)  
6
I/O  
7
I/O  
AI, P3[3]  
AI, P3[1]  
AI, I2C SCL, SPI SS, P1[7]  
8
IOHR  
IOHR  
IOHR  
IOHR  
I2C SCL, SPI SS  
9
I2C SDA, SPI MISO  
10  
11  
12  
13  
14  
15  
SPI CLK.  
ISSP CLK[1], I2C SCL, SPI MOSI.  
Power  
Ground connection.  
ISSP DATA[1], I2C SDA., SPI CLK  
IOHR  
IOHR  
IOHR  
I
I
I
P1[0]  
P1[2]  
P1[4]  
Optional external clock input  
(EXTCLK)  
16  
17  
IOHR  
I
P1[6]  
Input  
XRES Active high external reset with  
internal pull down  
18  
I/O  
I
P3[0]  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
CP  
I/O  
I/O  
I
I
I
I
I
I
I
I
I
P3[2]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
I/O  
I/O  
I/O  
IOH  
IOH  
IOH  
IOH  
Power  
Vdd  
Supply voltage  
IOH  
IOH  
IOH  
I
I
I
P0[7]  
P0[5]  
P0[3]  
Vss  
Integrating input  
Power  
Power  
Ground connection  
Vss  
Center pad must be connected to  
ground  
LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.  
Document Number: 001-12696 Rev. *F  
Page 11 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
32-Pin QFN (with USB)  
[2, 3]  
Table 6. Pin Definitions - CY8C20496 PSoC Device  
Type  
Pin  
Figure 5. CY8C20496 PSoC Device  
Name  
Description  
No.  
Digital Analog  
1
IOH  
I/O  
I
I
I
I
I
I
I
I
P0[1]  
P2[5]  
P2[3]  
P2[1]  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
VSS  
2
XTAL Out  
XTAL In  
3
I/O  
AI , P0[1]  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
P0[0] , AI  
P2[6] , AI  
P2[4] , AI  
P2[2] , AI  
P2[0] , AI  
P3[2] , AI  
P3[0] , AI  
XRES  
2
XTAL OUT, P [5]  
4
I/O  
XTAL IN P2 3  
,
[ ]  
5
IOHR  
IOHR  
IOHR  
IOHR  
I2C SCL, SPI SS  
I2C SDA, SPI MISO  
SPI CLK  
AI P2 1  
,
[ ]  
QFN  
( Top View)  
6
P
I2C SCL, SPI SS  
7]  
1[  
,
I2C SDA, SPI MISO P  
5
1[ ]  
,
7
SPI CLK P1  
]
[3  
,
8
TC CLK, I2C SCL, SPI MOSI  
Ground Pin  
TC CLK, I2C SCL, SPI MOSI,P1 1  
[ ]  
9
Power  
10  
11  
12  
13  
14  
15  
16  
17  
I
I
D+  
USB PHY  
D-  
USB PHY  
Power  
Vdd  
Power pin  
IOHR  
IOHR  
IOHR  
IOHR  
I
I
I
I
P1[0]  
P1[2]  
P1[4]  
P1[6]  
TC DATA*, I2C SDA, SPI CLKI  
EXTCLK  
Input  
XRES Active high external reset with  
internal pull down  
18  
I/O  
I
P3[0]  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
I/O  
I/O  
I
I
I
I
I
I
I
I
I
P3[2]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
I/O  
I/O  
I/O  
IOH  
IOH  
IOH  
IOH  
Power  
Power  
Vdd  
Power Pin  
IOH  
IOH  
IOH  
I
I
I
P0[7]  
P0[5]  
P0[3]  
Vss  
Ground Pin  
LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.  
Document Number: 001-12696 Rev. *F  
Page 12 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
48-Pin SSOP  
Table 7. Pin Definitions - CY8C20536, CY8C20546,  
[2]  
and CY8C20566 PSoC Device  
Figure 6. CY8C20536, CY8C20546, and CY8C20566 PSoC Device  
Name  
Description  
AI, P0[7]  
AI, P0[5]  
AI, P0[3]  
AI P0[1]  
AI, P2[7]  
1
2
3
4
5
6
VDD  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
P0[6], AI  
P0[4], AI  
P0[2], AI  
P0[0], AI  
P2[6], AI  
P2[4], AI  
P2[2], AI  
P2[0], AI  
P3[6], AI  
P3[4], AI  
P3[2], AI  
P3[0], AI  
XRES  
1
IOH  
IOH  
IOH  
IOH  
I/O  
I
I
I
I
I
I
I
I
P0[7]  
P0[5]  
P0[3]  
P0[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
NC  
2
3
XTALOUT, P2[5]  
XTALIN, P2[3]  
7
8
9
4
AI, P2[1]  
NC  
5
NC  
10  
6
I/O  
XTAL Out  
XTAL In  
AI, P4[3]  
AI, P4[1]  
NC  
11  
12  
13  
14  
7
I/O  
SSOP  
8
I/O  
AI, P3[7]  
9
No connection  
No connection  
AI, P3[5] 15  
AI, P3[3] 16  
AI, P3[1] 17  
NC  
NC  
NC  
10  
NC  
11 I/O  
12 I/O  
13  
I
I
P4[3]  
P4[1]  
NC  
NC  
NC  
18  
19  
20  
NC  
NC  
NC  
P1[6], AI  
I2C SCL, SPI SS, P1[7]  
No connection  
I2C SDA, SPI MISO, P1[5] 21  
SPI CLK, P1[3]  
TC CLK, I2C SCL, SPI MOSI, P1[1] 23  
22  
P1[4], EXT CLK  
P1[2], AI  
14 I/O  
15 I/O  
16 I/O  
17 I/O  
18  
I
I
I
I
P3[7]  
P3[5]  
P3[3]  
P3[1]  
NC  
VSS 24  
P1[0], TC DATA, I2C SDA, SPI CLK  
No connection  
19  
NC  
No connection  
20 IOHR  
21 IOHR  
22 IOHR  
23 IOHR  
24  
I
I
I
I
P1[7]  
P1[5]  
P1[3]  
P1[1]  
VSS  
P1[0]  
P1[2]  
P1[4]  
P1[6]  
NC  
I2C SCL, SPI SS  
I2C SDA, SPI MISO  
SPI CLK  
TC CLK[1], I2C SCL, SPI MOSI  
Ground Pin  
TC DATA[1], I2C SDA, SPI CLK  
25 IOHR  
26 IOHR  
27 IOHR  
28 IOHR  
29  
I
I
I
I
EXT CLK  
No connection  
No connection  
No connection  
No connection  
30  
NC  
31  
NC  
32  
NC  
Name  
Description  
33  
34  
35  
NC  
NC  
No connection  
No connection  
41  
42  
I/O  
I/O  
I/O  
I
I
I
P2[2]  
P2[4]  
P2[6]  
XRES Active high external reset with internal 43  
pull down  
36 I/O  
37 I/O  
38 I/O  
39 I/O  
40 I/O  
I
I
I
I
I
P3[0]  
P3[2]  
P3[4]  
P3[6]  
P2[0]  
44  
45  
46  
47  
48  
IOH  
IOH  
IOH  
IOH  
I
I
I
I
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
Power  
Power Pin  
LEGEND A = Analog, I = Input, O = Output, NC = No Connection, H = 5 mA High Output Drive, R = Regulated Output Option.  
Document Number: 001-12696 Rev. *F  
Page 13 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
48-Pin QFN  
[2, 3]  
Table 8. Pin Definitions - CY8C20636 PSoC Device  
Figure 7. CY8C20636 PSoC Device  
Pin  
No.  
Name  
Description  
1
NC  
No connection  
2
I/O  
I/O  
I
I
I
I
I
I
I
I
I
I
I
I
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P4[3]  
P4[1]  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P1[7]  
P1[5]  
NC  
NC  
AI ,P2[7]  
P2[6] ,AI  
P2[4] ,AI  
36  
35  
34  
33  
32  
31  
1
2
3
Crystal output (XOut)  
Crystal input (XIn)  
AI, XOut,P2[5]  
3
4
5
6
P2[2] ,AI  
P2[0] ,AI  
P4[2] ,AI  
P4[0] ,AI  
4
I/O  
AI, XIn ,P2[3]  
AI ,P2[1]  
AI ,P4[3]  
AI ,P4[1]  
AI ,P3[7]  
AI,P3[5]  
AI,P3[3]  
5
I/O  
QFN  
( Top View)  
6
I/O  
30  
29  
28  
27  
P3[6] ,AI  
P3[4] , AI  
7
8
9
10  
7
I/O  
P3[2] ,AI  
8
I/O  
] , AI  
P3[0  
XRES  
P1[6], AI  
9
I/O  
AI P  
3[1]  
26  
25  
11  
12  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
I/O  
AI,I2 C SCL, SPI SS,P1[7]  
I/O  
IOHR  
IOHR  
I2C SCL, SPI SS  
I2C SDA, SPI MISO  
No connection  
No connection  
SPI CLK  
NC  
IOHR  
IOHR  
I
I
P1[3]  
P1[1]  
Vss  
ISSP CLK[1], I2C SCL, SPI MOSI  
Power  
Ground connection  
DNU  
DNU  
Vdd  
Power  
IOHR  
Supply voltage  
ISSP DATA[1], I2C SDA, SPI CLK  
I
I
I
P1[0]  
P1[2]  
P1[4]  
IOHR  
IOHR  
Optional external clock input  
(EXTCLK)  
25  
26  
IOHR  
I
P1[6]  
Input  
XRES Active high external reset with  
internal pull down  
27  
28  
29  
I/O  
I/O  
I/O  
I
I
I
P3[0]  
P3[2]  
P3[4]  
Pin  
No.  
Name  
Description  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
I/O  
I/O  
I
I
I
I
I
I
I
I
I
I
P3[6]  
P4[0]  
P4[2]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
40  
41  
42  
43  
44  
45  
46  
47  
48  
CP  
IOH  
I
P0[6]  
Vdd  
Power  
Supply voltage  
No connection  
No connection  
I/O  
NC  
I/O  
NC  
I/O  
IOH  
I
I
I
P0[7]  
P0[5]  
P0[3]  
Vss  
I/O  
IOH  
IOH  
I/O  
Integrating input  
IOH  
IOH  
IOH  
Power  
Ground connection  
IOH  
I
P0[1]  
Vss  
Power  
Center pad must be connected to ground  
LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.  
Document Number: 001-12696 Rev. *F  
Page 14 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
48-Pin QFN with USB  
[2, 3]  
Table 9. Pin Definitions - CY8C20646, CY8C20666 PSoC Device  
Figure 8. CY8C20646, CY8C20666 PSoC Device  
Pin  
No.  
Name  
Description  
1
NC  
No connection  
NC  
AI, P2[7]  
P2[6],AI  
P2[4],AI  
36  
35  
34  
33  
32  
31  
1
2
2
I/O  
I/O  
I
I
I
I
I
I
I
I
I
I
I
I
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P4[3]  
P4[1]  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P1[7]  
P1[5]  
NC  
3
Crystal output (XOut)  
Crystal input (XIn)  
AI, XOut, P2[5]  
3
4
5
6
P2[2],AI  
P2[0],AI  
P4[2],AI  
P4[0],AI  
4
I/O  
AI, XIn , P2[3]  
AI, P2[1]  
5
I/O  
AI, P4[3]  
QFN  
(Top View)  
6
I/O  
AI, P4[1]  
AI, P3[7]  
30  
29  
28  
27  
P3[6],AI  
P3[4], AI  
7
8
9
10  
7
I/O  
AI, P3[5]  
AI, P3[3]  
AI, P3[1]  
P3[2],AI  
8
I/O  
], AI  
P3[0  
9
I/O  
XRES  
26  
25  
11  
12  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
I/O  
AI, I2C SCL, SPI SS, P1[7]  
P1[6], AI  
I/O  
IOHR  
IOHR  
I2C SCL, SPI SS  
I2C SDA, SPI MISO  
No connection  
NC  
No connection  
IOHR  
IOHR  
I
I
P1[3]  
P1[1]  
Vss  
SPI CLK  
ISSP CLK[1], I2C SCL, SPI MOSI  
Ground connection  
USB D+  
Power  
I/O  
I/O  
D+  
D-  
USB D-  
Power  
Vdd  
Supply voltage  
ISSP DATA[1], I2C SDA, SPI CLK  
IOHR  
IOHR  
IOHR  
I
I
I
P1[0]  
P1[2]  
P1[4]  
Optional external clock input  
(EXTCLK)  
25  
26  
IOHR  
I
P1[6]  
Input  
XRES Active high external reset with  
internal pull down  
27  
28  
29  
I/O  
I/O  
I/O  
I
I
I
P3[0]  
P3[2]  
P3[4]  
Pin  
No.  
Name  
Description  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
I/O  
I/O  
I
I
I
I
I
I
I
I
I
I
P3[6]  
P4[0]  
P4[2]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
40  
41  
42  
43  
44  
45  
46  
47  
48  
CP  
IOH  
I
P0[6]  
Vdd  
Power  
Supply voltage  
I/O  
NC  
No connection  
No connection  
I/O  
NC  
I/O  
IOH  
I
I
I
P0[7]  
P0[5]  
P0[3]  
Vss  
I/O  
IOH  
IOH  
I/O  
Integrating input  
IOH  
IOH  
IOH  
Power  
Ground connection  
IOH  
I
P0[1]  
Vss  
Power  
Center pad must be connected to ground  
LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.  
Document Number: 001-12696 Rev. *F  
Page 15 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
48-Pin QFN OCD  
The 48-pin QFN part is for the CY8C20066 On-Chip Debug (OCD) PSoC device. Note that this part is only used for in-circuit  
[4]  
debugging.  
[2, 3]  
Table 10. Pin Definitions - CY8C20066 PSoC Device  
Figure 9. CY8C20066 PSoC Device  
Pin  
No.  
Name  
Description  
1
OCDOE  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P4[3]  
P4[1]  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P1[7]  
P1[5]  
CCLK  
HCLK  
P1[3]  
P1[1]  
Vss  
OCD mode direction pin  
OCDO  
2
I/O  
I/O  
I
I
I
I
I
I
I
I
I
I
I
I
P2[6], AI  
P2[4], AI  
36  
35  
34  
33  
32  
31  
1
2
E
A
I
, P2[7]  
3
Crystal output (XOut)  
Crystal input (XIn)  
AI, XOut, P2[5]  
3
4
5
6
P2[2], AI  
P2[0], AI  
P4[2], AI  
P4[0], AI  
4
I/O  
AI, XIn , P2[3]  
AI, P2[1]  
5
I/O  
6
I/O  
AI, P4[3]  
QFN  
(Top View)  
AI, P4[1]  
AI, P3[7]  
30  
29  
28  
27  
P3[6], AI  
P3[4], AI  
7
8
9
10  
7
I/O  
8
I/O  
AI, P3[5]  
AI, P3[3]  
P3[2], AI  
P3[0], AI  
9
I/O  
AI, P3[1]  
XRES  
26  
25  
11  
12  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
I/O  
AI, I2C SCL, SPI SS, P1[7]  
P1[6], AI  
I/O  
IOHR  
IOHR  
I2C SCL, SPI SS  
I2C SDA, SPI MISO  
OCD CPU clock output  
OCD high speed clock output  
SPI CLK.  
ISSP CLK[1], I2C SCL, SPI MOSI  
Ground connection  
USB D+  
IOHR  
IOHR  
I
I
Power  
I/O  
I/O  
D+  
D-  
USB D-  
Power  
Vdd  
Supply voltage  
ISSP DATA(1), I2C SDA, SPI CLK  
IOHR  
IOHR  
I
I
P1[0]  
P1[2]  
Pin  
No.  
Name  
Description  
24  
IOHR  
IOHR  
I
I
P1[4]  
Optional external clock input  
(EXTCLK)  
37  
IOH  
I
P0[0]  
25  
26  
P1[6]  
38  
39  
IOH  
IOH  
I
I
P0[2]  
P0[4]  
Input  
XRES  
Active high external reset with  
internal pull down  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I
I
I
I
I
I
I
I
I
P3[0]  
P3[2]  
P3[4]  
P3[6]  
P4[0]  
P4[2]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
40  
41  
42  
43  
44  
45  
46  
47  
48  
CP  
IOH  
I
P0[6]  
Vdd  
Power  
Supply voltage  
OCDO OCD even data I/O  
OCDE OCD odd data output  
IOH  
IOH  
IOH  
I
I
I
P0[7]  
P0[5]  
P0[3]  
Vss  
Integrating input  
Power  
IOH  
Power  
Ground connection  
I
P0[1]  
Vss  
Center pad must be connected to ground  
LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.  
Note  
4. This part is available in limited quantities for In-Circuit Debugging during prototype development. It is not available in production volumes.  
Document Number: 001-12696 Rev. *F  
Page 16 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
Electrical Specifications  
This section presents the DC and AC electrical specifications of the CY8C20x36/46/66/96 PSoC devices. For the latest electrical  
specifications, confirm that you have the most recent data sheet by visiting the web at http://www.cypress.com/psoc.  
Figure 10. Voltage versus CPU Frequency  
Figure 11. IMO Frequency Trim Options  
5.5V  
5.5V  
SLIMO SLIMO SLIMO  
Mode  
= 01  
Mode  
= 00  
Mode  
= 10  
1.71V  
1.71V  
750 kHz  
3 MHz  
750 kHz  
3 MHz  
6 MHz 12 MHz 24 MHz  
24 MHz  
IMO Frequency  
CPU Frequency  
The following table lists the units of measure that are used in this section.  
Table 11. Units of Measure  
Symbol  
Unit of Measure  
degree Celsius  
Symbol  
Unit of Measure  
°C  
mA  
ms  
mV  
nA  
ns  
milli-ampere  
milli-second  
milli-volts  
dB  
decibels  
fF  
femto farad  
hertz  
Hz  
nanoampere  
nanosecond  
nanovolts  
KB  
Kbit  
kHz  
ksps  
kΩ  
1024 bytes  
1024 bits  
nV  
Ω
kilohertz  
ohm  
kilo samples per second  
kilohm  
pA  
pF  
pp  
ppm  
ps  
picoampere  
picofarad  
MHz  
MΩ  
μA  
megahertz  
megaohm  
microampere  
microfarad  
microhenry  
microsecond  
microwatts  
peak-to-peak  
parts per million  
picosecond  
μF  
sps  
s
samples per second  
μH  
μs  
sigma: one standard deviation  
volts  
V
μW  
Document Number: 001-12696 Rev. *F  
Page 17 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
Absolute Maximum Ratings  
Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.  
Table 12. Absolute Maximum Ratings  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
T
Storage Temperature  
Higher storage temperatures reduces data  
retention time. Recommended Storage  
Temperature is +25°C ± 25°C. Extended  
–55  
+25  
+125  
°C  
STG  
o
duration storage temperatures above 85 C  
degrades reliability.  
Vdd  
Supply Voltage Relative to Vss  
DC Input Voltage  
–0.5  
Vss – 0.5  
Vss –0.5  
–25  
+6.0  
Vdd + 0.5  
Vdd + 0.5  
+50  
V
V
V
V
IO  
IOZ  
MIO  
DC Voltage Applied to Tri-state  
Maximum Current into any Port Pin  
Electro Static Discharge Voltage  
Latch up Current  
V
I
mA  
V
ESD  
LU  
Human Body Model ESD  
2000  
In accordance with JESD78 standard  
200  
mA  
Operating Temperature  
Table 13. Operating Temperature  
Symbol  
Description  
Ambient Temperature  
Conditions  
Min  
Typ  
Max  
Units  
T
–40  
+85  
°C  
A
T
Operational Die Temperature  
The temperature risefrom ambient tojunction  
is package specific. Refer the table Thermal  
Impedances per Package on page 34. The  
user must limit the power consumption to  
comply with this requirement.  
J
–40  
+100  
°C  
Document Number: 001-12696 Rev. *F  
Page 18 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
DC Chip-Level Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 14. DC Chip-Level Specifications  
Symbol  
Description  
Supply Voltage  
Conditions  
Min  
Typ  
Max  
Units  
[5]  
Vdd  
Refer the table DC POR and LVD  
Specifications on page 24  
1.71  
5.5  
V
I
I
I
Supply Current, IMO = 24 MHz  
Supply Current, IMO = 12 MHz  
Supply Current, IMO = 6 MHz  
Deep Sleep Current  
Conditions are Vdd <= 3.0V, T = 25°C,  
2.88  
1.71  
1.16  
4.0  
2.6  
1.8  
mA  
mA  
mA  
DD24  
DD12  
DD6  
A
CPU = 24 MHz. CapSense running at 12  
MHz, no I/O sourcing current  
Conditions are Vdd <= 3.0V, T = 25°C,  
A
CPU = 12 MHz. CapSense running at 12  
MHz, no I/O sourcing current  
Conditions are Vdd <= 3.0V, T = 25°C,  
A
CPU = 6 MHz. CapSense running at 6 MHz,  
no I/O sourcing current  
I
I
Vdd <= 3.0V, T = 25°C, I/O regulator turned  
0.1  
μA  
μA  
SB0  
A
off  
Standby Current with POR, LVD and Vdd <= 3.0V, T = 25°C, I/O regulator turned  
Sleep Timer  
1.07  
1.5  
SB1  
A
off  
DC General Purpose IO Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0V to 5.5V and  
–40°C T 85°C, 2.4V to 3.0V and –40°C T 85°C, or 1.71V to 2.4V and –40°C T 85°C, respectively. Typical parameters  
A
A
A
apply to 5V and 3.3V at 25°C and are for design guidance only.  
Table 15. 3.0V to 5.5V DC GPIO Specifications  
Symbol  
Description  
Pull up Resistor  
Conditions  
Min  
Typ  
5.6  
Max  
8
Units  
kΩ  
R
4
PU  
V
V
V
High Output Voltage  
Port 2 or 3 Pins  
IOH < 10 μA, maximum of 10 mA source Vdd - 0.2  
current in all IOs  
V
OH1  
High Output Voltage  
Port 2 or 3 Pins  
IOH = 1 mA, maximum of 20 mA source  
current in all IOs  
Vdd - 0.9  
V
V
OH2  
OH3  
High Output Voltage  
Port 0 or 1 Pins with LDO Regulator current in all IOs  
Disabled for Port 1  
IOH < 10 μA, maximum of 10 mA source Vdd - 0.2  
V
V
V
V
V
High Output Voltage  
Port 0 or 1 Pins with LDO Regulator current in all IOs  
Disabled for Port 1  
IOH = 5 mA, maximum of 20 mA source  
Vdd - 0.9  
2.85  
3.00  
3.3  
V
V
V
V
V
OH4  
OH5  
OH6  
OH7  
OH8  
High Output Voltage  
Port 1 Pins with LDO Regulator  
Enabled for 3V Out  
IOH < 10 μA, Vdd > 3.1V, maximum of  
4 IOs all sourcing 5 mA  
High Output Voltage  
Port 1 Pins with LDO Regulator  
Enabled for 3V Out  
IOH = 5 mA, Vdd > 3.1V, maximum of  
20 mA source current in all IOs  
2.20  
High Output Voltage  
Port 1 Pins with LDO Enabled for 2.5V 20 mA source current in all IOs  
Out  
IOH < 10 μA, Vdd > 2.7V, maximum of  
2.35  
2.50  
2.75  
High Output Voltage  
Port 1 Pins with LDO Enabled for 2.5V 20 mA source current in all IOs  
Out  
IOH = 2 mA, Vdd > 2.7V, maximum of  
1.90  
Note  
5. When Vdd remains in the range from 1.71V to 1.9V for more than 50 usec, the slew rate when moving from the 1.71V to 1.9V range to greater than 2V must be  
slower than 1V/500 usec to avoid triggering POR. The only other restriction on slew rates for any other voltage range or transition is the T  
parameter.  
RAMP  
Document Number: 001-12696 Rev. *F  
Page 19 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
Table 15. 3.0V to 5.5V DC GPIO Specifications (continued)  
Symbol Description  
High Output Voltage  
Conditions  
Min  
Typ  
Max  
Units  
V
IOH < 10 μA, Vdd > 2.7V, maximum of  
1.60  
1.80  
2.1  
V
OH9  
OH10  
OL  
Port 1 Pins with LDO Enabled for 1.8V 20 mA source current in all IOs  
Out  
V
V
High Output Voltage  
Port 1 Pins with LDO Enabled for 1.8V 20 mA source current in all IOs  
Out  
IOH = 1 mA, Vdd > 2.7V, maximum of  
1.20  
V
V
Low Output Voltage  
IOL = 25 mA, Vdd > 3.3V, maximum of  
60 mA sink current on even port pins (for  
example, P0[2] and P1[4]) and 60 mA sink  
current on odd port pins (for example, P0[3]  
and P1[5])  
0.75  
V
V
V
I
Input Low Voltage  
2.00  
0.80  
V
V
IL  
IH  
H
Input High Voltage  
Input Hysteresis Voltage  
Input Leakage (Absolute Value)  
Pin Capacitance  
80  
1
5
mV  
μA  
pF  
0.001  
1.7  
IL  
C
Package and pin dependent  
0.5  
PIN  
Temp = 25°C  
Document Number: 001-12696 Rev. *F  
Page 20 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
Table 16. 2.4V to 3.0V DC GPIO Specifications  
Symbol Description  
Pull up Resistor  
Conditions  
Min  
4
Typ  
5.6  
Max  
8
Units  
kΩ  
R
PU  
V
V
V
High Output Voltage  
Port 2 or 3 Pins  
IOH < 10 μA, maximum of 10 mA  
source current in all IOs  
Vdd - 0.2  
V
OH1  
High Output Voltage  
Port 2 or 3 Pins  
IOH = 0.2 mA, maximum of 10 mA  
source current in all IOs  
Vdd - 0.4  
Vdd - 0.2  
V
V
OH2  
OH3  
High Output Voltage  
Port 0 or 1 Pins with LDO Regulator  
IOH < 10 μA, maximum of 10 mA  
source current in all IOs  
Disabled for Port 1  
V
V
V
V
High Output Voltage  
Port 0 or 1 Pins with LDO Regulator  
Disabled for Port 1  
IOH = 2 mA, maximum of 10 mA source Vdd - 0.5  
current in all IOs  
1.80  
2.1  
V
V
V
V
OH4  
OH5A  
OH6A  
OL  
High Output Voltage  
Port 1 Pins with LDO Enabled for 1.8V 20 mA source current in all IOs  
Out  
IOH < 10 μA, Vdd > 2.4V, maximum of  
1.50  
1.20  
High Output Voltage  
Port 1 Pins with LDO Enabled for 1.8V 20 mA source current in all IOs  
Out  
IOH = 1 mA, Vdd > 2.4V, maximum of  
Low Output Voltage  
IOL = 10 mA, maximum of 30 mA sink  
current on even port pins (for example,  
P0[2] and P1[4]) and 30 mA sink  
current on odd port pins (for example,  
P0[3] and P1[5])  
0.75  
V
V
V
I
Input Low Voltage  
1.4  
0.72  
V
V
IL  
IH  
H
Input High Voltage  
Input Hysteresis Voltage  
Input Leakage (Absolute Value)  
Capacitive Load on Pins  
80  
1
5
mV  
μA  
pF  
0.001  
1.7  
IL  
C
Package and pin dependent  
Temp = 25 C  
0.5  
PIN  
o
Table 17. 1.71V to 2.4V DC GPIO Specifications  
Symbol Description  
Pull up Resistor  
Conditions  
Min  
4
Typ  
5.6  
Max  
8
Units  
kΩ  
R
PU  
V
V
V
High Output Voltage  
Port 2 or 3 Pins  
IOH = 10 μA, maximum of 10 mA  
source current in all I/Os  
Vdd - 0.2  
V
OH1  
High Output Voltage  
Port 2 or 3 Pins  
IOH = 0.5 mA, maximum of 10 mA  
source current in all I/Os  
Vdd - 0.5  
Vdd - 0.2  
V
V
OH2  
OH3  
High Output Voltage  
Port 0 or 1 Pins with LDO Regulator  
Disabled for Port 1  
IOH = 100 μA, maximum of 10 mA  
source current in all I/Os  
V
High Output Voltage  
Port 0 or 1 Pins with LDO Regulator  
Disabled for Port 1  
IOH=2mA, maximumof10mAsource Vdd - 0.5  
current in all I/Os  
V
V
OH4  
OL  
V
Low Output Voltage  
IOL = 5 mA, maximum of 20 mA sink  
current on even port pins (for example,  
P0[2] and P1[4]) and 30 mA sink  
current on odd port pins (for example,  
P0[3] and P1[5])  
0.4  
V
V
Input Low Voltage  
Input High Voltage  
0.3 x Vdd  
V
V
IL  
0.65 x Vdd  
IH  
Document Number: 001-12696 Rev. *F  
Page 21 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
Table 17. 1.71V to 2.4V DC GPIO Specifications (continued)  
Symbol  
Description  
Input Hysteresis Voltage  
Input Leakage (Absolute Value)  
Capacitive Load on Pins  
Conditions  
Min  
Typ  
80  
Max  
Units  
mV  
μA  
V
1
5
H
I
0.001  
1.7  
IL  
C
Package and pin dependent  
Temp = 25 C  
0.5  
pF  
PIN  
o
Table 18.DC Characteristics – USB Interface  
Symbol  
Rusbi  
Rusba  
Vohusb  
Volusb  
Vdi  
Description  
USB D+ Pull Up Resistance  
USB D+ Pull Up Resistance  
Static Output High  
Conditions  
With idle bus  
Min  
0.900  
1.425  
2.8  
Typ  
Max  
1.575  
3.090  
3.6  
Units  
kΩ  
kΩ  
V
-
-
-
-
-
-
While receiving traffic  
Static Output Low  
0.3  
V
Differential Input Sensitivity  
0.2  
0.8  
V
Vcm  
Differential Input Common Mode  
Range  
2.5  
V
Vse  
Cin  
Single Ended Receiver Threshold  
Transceiver Capacitance  
0.8  
-
2.0  
50  
V
-
-
pF  
μA  
kΩ  
Ω
Iio  
Hi-Z State Data Line Leakage  
PS/2 Pull Up Resistance  
On D+ or D- line  
-10  
3
+10  
7
Rps2  
Rext  
5
External USB Series Resistor  
In series with each USB pin  
21.78  
22.0  
22.22  
DC Analog Mux Bus Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 19. DC Analog Mux Bus Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
R
Switch Resistance to Common Analog  
Bus  
800  
Ω
SW  
R
Resistance of Initialization Switch to  
Vss  
800  
Ω
GND  
The maximum pin voltage for measuring R  
and R  
is 1.8V  
GND  
SW  
DC Low Power Comparator Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 20. DC Comparator Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
V
Low Power Comparator (LPC)  
common mode  
Maximum voltage limited to Vdd  
0.0  
1.8  
V
LPC  
I
LPC supply current  
LPC voltage offset  
10  
40  
30  
μA  
LPC  
V
2.5  
mV  
OSLPC  
Document Number: 001-12696 Rev. *F  
Page 22 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
Comparator User Module Electrical Specifications  
The following table lists the guaranteed maximum and minimum specifications. Unless stated otherwise, the specifications are for the  
entire device voltage and temperature operating range: –40°C <= TA <= 85°C, 1.71V <= Vdd <= 5.5V.  
Table 21. Comparator User Module Electrical Specifications  
Symbol  
Description  
Conditions  
50 mV overdrive  
Min  
Typ  
70  
Max  
100  
30  
Units  
ns  
T
Comparator Response Time  
COMP  
Offset  
2.5  
20  
mV  
µA  
Current  
PSRR  
Average DC current, 50 mV  
overdrive  
80  
Supply voltage >2V  
Supply voltage <2V  
Power Supply Rejection Ratio  
Power Supply Rejection Ratio  
80  
40  
dB  
dB  
V
Input  
0
1.5  
Range  
ADC Electrical Specifications  
Table 22. ADC User Module Electrical Specifications  
Symbol  
Input  
Description  
Conditions  
Min  
Typ  
Max  
Units  
V
Input Voltage Range  
This gives 72% of maximum  
code  
Vss  
1.3  
V
IN  
C
Input Capacitance  
Resolution  
5
pF  
IN  
RES  
S8  
Settings 8, 9, or 10  
8
10  
Bits  
ksps  
8-Bit Sample Rate  
Data Clock set to 6 MHz.  
Sample Rate = 0.001/  
(2^Resolution/Data clock)  
23.4375  
5.859  
S10  
10-Bit Sample Rate  
Data Clock set to 6 MHz.  
Sample Rate = 0.001/  
ksps  
(2^Resolution/Data clock)  
DC Accuracy  
[6]  
DNL  
INL  
Differential Nonlinearity  
For any configuration  
For any configuration  
-1  
-2  
0
+2  
+2  
LSB  
LSB  
mV  
Integral Nonlinearity  
Offset Error  
Eoffset  
15  
90  
I
Operating Current  
Data Clock  
275  
350  
12  
μA  
ADC  
F
Source is chip’s internal main  
oscillator. See device data  
sheet for accuracy.  
2.25  
MHz  
CLK  
PSRR Power Supply Rejection Ration  
PSRR (Vdd>3.0V)  
24  
30  
12  
0
dB  
PSRR (2.2 < Vdd < 3.0)  
PSRR (2.0 < Vdd < 2.2)  
PSRR (Vdd < 2.0)  
dB  
dB  
dB  
Egain Gain Error  
For any resolution  
1
5
%FSR  
R
Input Resistance  
Equivalent switched cap input  
resistance for 8-, 9-, or 10-bit  
resolution.  
1/(500fF*  
1/(400fF*  
1/(300fF*  
Ω
IN  
Data-Clock) Data-Clock) Data-Clock)  
Note  
6. Monotonicity is not guaranteed.  
Document Number: 001-12696 Rev. *F  
Page 23 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
DC POR and LVD Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 23. DC POR and LVD Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Vdd Value for PPOR Trip  
Vdd must be greater than or equal to  
V
PORLEV[1:0] = 00b, HPOR = 0 1.71Vduringstartup, resetfromtheXRES  
PORLEV[1:0] = 00b, HPOR = 1 pin, or reset from watchdog.  
PORLEV[1:0] = 01b, HPOR = 1  
1.61  
1.66  
2.36  
2.60  
2.82  
1.71  
2.41  
2.66  
2.95  
V
V
V
V
PPOR0  
PPOR1  
PPOR2  
PPOR3  
V
V
V
PORLEV[1:0] = 10b, HPOR = 1  
Vdd Value for LVD Trip  
VM[2:0] = 000b  
VM[2:0] = 001b  
VM[2:0] = 010b  
VM[2:0] = 011b  
VM[2:0] = 100b  
VM[2:0] = 101b  
VM[2:0] = 110b  
VM[2:0] = 111b  
[7]  
V
V
V
V
V
V
V
V
2.40  
2.64  
2.85  
2.45  
2.71  
2.92  
3.02  
3.13  
1.90  
1.80  
4.73  
2.51  
2.78  
2.99  
3.09  
3.20  
2.32  
1.84  
4.83  
V
V
V
V
V
V
V
V
LVD0  
LVD1  
LVD2  
LVD3  
LVD4  
LVD5  
LVD6  
LVD7  
[8]  
[9]  
2.95  
3.06  
1.84  
[10]  
1.75  
4.62  
DC Programming Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 24. DC Programming Specifications  
Symbol  
Vdd  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Supply Voltage for Flash Write  
Operations  
1.71  
5.25  
V
IWRITE  
I
Supply Current During  
Programming or Verify  
5
25  
mA  
V
DDP  
V
V
Input Low Voltage During  
Programming or Verify  
See the appropriate DC General Purpose  
IO Specifications on page 19  
V
IL  
ILP  
Input High Voltage During  
Programming or Verify  
See appropriate DC General Purpose IO  
Specifications on page 19 table on pages  
15 or 16  
V
V
IHP  
IH  
I
I
Input Current when Applying Vilp Driving internal pull down resistor  
to P1[0] or P1[1] During  
Programming or Verify  
0.2  
1.5  
mA  
mA  
ILP  
Input Current when Applying Vihp Driving internal pull down resistor  
to P1[0] or P1[1] During  
IHP  
Programming or Verify  
V
V
Output Low Voltage During  
Programming or Verify  
Vss + 0.75  
Vdd  
V
V
OLP  
Output High Voltage During  
Programming or Verify  
See appropriate DC General Purpose IO  
Specifications on page 19 table on page  
V
OH  
OHP  
16. For Vdd > 3V use V  
in Table 13 on  
OH4  
page 18.  
Flash  
Flash  
Flash Write Endurance  
Flash Data Retention  
Erase/write cycles per block  
50,000  
10  
-
ENPB  
Following maximum Flash write cycles;  
ambient temperature of 55°C  
20  
Years  
DR  
Notes  
7. Always greater than 50 mV above V  
8. Always greater than 50 mV above V  
9. Always greater than 50 mV above V  
10. Always greater than 50 mV above V  
voltage for falling supply.  
PPOR1  
PPOR2  
PPOR3  
PPOR0  
voltage for falling supply.  
voltage for falling supply.  
voltage for falling supply.  
Document Number: 001-12696 Rev. *F  
Page 24 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
AC Chip-Level Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 25. AC Chip-Level Specifications  
Symbol  
Description  
CPU Frequency  
Conditions  
Min  
5.7  
Typ  
Max  
25.2  
50  
Units  
MHz  
kHz  
F
F
F
CPU  
Internal Low Speed Oscillator Frequency  
19  
32  
24  
32K1  
Internal Main Oscillator Frequency at 24  
MHz Setting  
22.8  
25.2  
MHz  
IMO24  
F
F
Internal Main Oscillator Frequency at 12  
MHz Setting  
11.4  
5.7  
12  
12.6  
6.3  
MHz  
MHz  
IMO12  
IMO6  
Internal Main Oscillator Frequency at 6  
MHz Setting  
6.0  
DC  
T
Duty Cycle of IMO  
Supply Ramp Time  
40  
20  
1
50  
60  
%
μs  
ms  
μs  
IMO  
RAMP  
XRST  
XRST2  
T
T
External Reset Pulse Width at Power Up After supply voltage is valid  
External Reset Pulse Width after Power Applies after part has booted  
10  
[11]  
Up  
Note  
11. The minimum required XRES pulse length is longer when programming the device (see Table 32 on page 28).  
Document Number: 001-12696 Rev. *F  
Page 25 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
AC General Purpose IO Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 26. AC GPIO Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
F
GPIO Operating Frequency  
Normal Strong Mode Port 0, 1  
0
6 MHz for  
1.71V<Vdd<2.4V  
MHz  
GPIO  
0
12 MHz for  
2.4V<Vdd<5.5V  
TRise23  
Rise Time, Strong Mode, Cload = 50 pF Vdd = 3.0 to 3.6V, 10% – 90%  
Ports 2 or 3  
15  
15  
10  
10  
10  
10  
80  
80  
50  
80  
50  
70  
ns  
ns  
ns  
ns  
ns  
ns  
TRise23L Rise Time, Strong Mode Low Supply,  
Cload = 50 pF, Ports 2 or 3  
Vdd = 1.71 to 3.0V, 10% – 90%  
TRise01  
Rise Time, Strong Mode, Cload = 50 pF Vdd = 3.0 to 3.6V, 10% – 90%  
Ports 0 or 1  
LDO enabled or disabled  
TRise01L Rise Time, Strong Mode Low Supply,  
Cload = 50 pF, Ports 0 or 1  
Vdd = 1.71 to 3.0V, 10% – 90%  
LDO enabled or disabled  
TFall  
Fall Time, Strong Mode, Cload = 50 pF Vdd = 3.0 to 3.6V, 10% – 90%  
All Ports  
TFallL  
Fall Time, Strong Mode Low Supply,  
Cload = 50 pF, All Ports  
Vdd = 1.71 to 3.0V, 10% – 90%  
Figure 12. GPIO Timing Diagram  
90%  
GPIO Pin  
Output  
Voltage  
10%  
TRise23  
TRise01  
TRise23L  
TRise01L  
TFall  
TFallL  
Document Number: 001-12696 Rev. *F  
Page 26 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
Table 27.AC Characteristics – USB Data Timings  
Symbol  
Tdrate  
Description  
Full speed data rate  
Conditions  
Average bit rate  
Min  
12–0.25%  
-18.5  
-9  
Typ  
12  
Max  
Units  
12 + 0.25% MHz  
Tdjr1  
Receiver data jitter tolerance  
Receiver data jitter tolerance  
Driver differential jitter  
Driver differential jitter  
To next transition  
To pair transition  
To next transition  
To pair transition  
To SE0 transition  
18.5  
9
ns  
ns  
ns  
ns  
ns  
Tdjr2  
Tudj1  
Tudj2  
Tfdeop  
-3.5  
3.5  
4.0  
5
-4.0  
Source jitter for differential  
transition  
-2  
Tfeopt  
Tfeopr  
Tfst  
Source SE0 interval of EOP  
Receiver SE0 interval of EOP  
160  
82  
175  
14  
ns  
ns  
ns  
Width of SE0 interval during  
differential transition  
Table 28.AC Characteristics – USB Driver  
Symbol Description  
Transition rise time  
Conditions  
Min  
4
Typ  
Max  
20  
Units  
ns  
Tr  
Tf  
50 pF  
50 pF  
Transition fall time  
4
20  
ns  
TR  
Rise/fall time matching  
Output signal crossover voltage  
90.00  
1.3  
111.1  
2.0  
%
Vcrs  
V
AC Comparator Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 29. AC Low Power Comparator Specifications  
Symbol  
Description  
Comparator Response Time, 50 50 mV overdrive does not include  
mV Overdrive offset voltage.  
Conditions  
Min  
Typ  
Max  
Units  
T
100  
ns  
LPC  
AC Analog Mux Bus Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 30. AC Analog Mux Bus Specifications  
Symbol  
Description  
Switch Rate  
Conditions  
Min  
Typ  
Max  
Units  
F
Maximumpinvoltagewhenmeasuring  
switch rate is 1.8Vp-p  
6.3  
MHz  
SW  
AC External Clock Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 31. AC External Clock Specifications  
Symbol  
Description  
Conditions  
Min  
0.750  
20.6  
20.6  
150  
Typ  
Max  
25.2  
5300  
Units  
MHz  
ns  
F
Frequency  
High Period  
Low Period  
OSCEXT  
ns  
Power Up IMO to Switch  
μs  
Document Number: 001-12696 Rev. *F  
Page 27 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
AC Programming Specifications  
Figure 13. AC Waveform  
SCLK (P1[1])  
TRSCLK  
TFSCLK  
SDATA (P1[0])  
TSSCLK  
THSCLK  
TDSCLK  
The following table lists the guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 32. AC Programming Specifications  
Symbol  
Description  
Rise Time of SCLK  
Conditions  
Min  
1
Typ  
Max  
20  
20  
Units  
ns  
T
RSCLK  
FSCLK  
SSCLK  
HSCLK  
SCLK  
T
T
T
F
T
T
T
T
T
T
Fall Time of SCLK  
1
ns  
Data Set up Time to Falling Edge of SCLK  
Data Hold Time from Falling Edge of SCLK  
Frequency of SCLK  
40  
40  
0
ns  
ns  
8
MHz  
ms  
ms  
ns  
Flash Erase Time (Block)  
18  
25  
60  
85  
130  
ERASEB  
WRITE  
DSCLK  
DSCLK3  
DSCLK2  
XRST3  
Flash Block Write Time  
Data Out Delay from Falling Edge of SCLK 3.6 < Vdd  
Data Out Delay from Falling Edge of SCLK 3.0 Vdd 3.6  
Data Out Delay from Falling Edge of SCLK 1.71 Vdd 3.0  
External Reset Pulse Width after Power Up Required to enter programming mode  
when coming out of sleep  
ns  
ns  
263  
μs  
Document Number: 001-12696 Rev. *F  
Page 28 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
AC I2C Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 33. AC Characteristics of the I2C SDA and SCL Pins  
Standard  
Mode  
Fast Mode  
Symbol  
Description  
Units  
Min  
Max  
100  
Min  
0
Max  
F
T
SCL Clock Frequency  
0
400 kHz  
SCLI2C  
Hold Time (repeated) START Condition. After this period, the first clock pulse is 4.0  
generated.  
0.6  
μs  
HDSTAI2C  
T
T
T
T
T
T
T
T
LOW Period of the SCL Clock  
4.7  
4.0  
4.7  
0
1.3  
0.6  
0.6  
0
μs  
μs  
μs  
μs  
ns  
μs  
μs  
ns  
LOWI2C  
HIGH Period of the SCL Clock  
HIGHI2C  
SUSTAI2C  
HDDATI2C  
SUDATI2C  
SUSTOI2C  
BUFI2C  
Setup Time for a Repeated START Condition  
Data Hold Time  
[12]  
Data Setup Time  
250  
4.0  
4.7  
100  
Setup Time for STOP Condition  
0.6  
1.3  
0
Bus Free Time Between a STOP and START Condition  
Pulse Width of spikes are suppressed by the input filter.  
[13]  
50  
SPI2C  
Figure 14. Definition for Timing for Fast/Standard Mode on the I2C Bus  
SDA  
SCL  
TSPI2C  
T
LOWI2C  
TSUDATI2C  
THDSTAI2C  
TBUFI2C  
TSUSTOI2C  
TSUSTAI2C  
THDDATI2C  
THDSTAI2C  
THIGHI2C  
S
Sr  
P
S
Notes  
12. A Fast-Mode I2C-bus device can be used in a Standard Mode I2C-bus system, but the requirement t  
250 ns must then be met. This automatically be the case  
SU;DAT  
if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the  
SDA line t + t = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.  
rmax  
SU;DAT  
13. In I2C sleep mode, wherein the part can wake up from sleep when the address matches its own slave address, there is no glitch/spike filtering on SCL and SDA lines  
on the 7-bit address + R/W bit. Once, the part wakes up there is glitch/spike filtering on SCL and SDA lines.  
Document Number: 001-12696 Rev. *F  
Page 29 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
Table 34. SPI Master AC Specifications  
Symbol Description  
SCLK clock frequency  
Conditions  
Min  
Typ  
Max  
Units  
F
V
V
2.4V  
DD  
6
3
MHz  
SCLK  
< 2.4V  
DD  
DC  
T
SCLK duty cycle  
50  
%
MISO to SCLK setup time  
V
V
2.4V  
< 2.4V  
60  
100  
ns  
SETUP  
DD  
DD  
T
T
T
SCLK to MISO hold time  
SCLK to MOSI valid time  
MOSI high time  
40  
ns  
ns  
ns  
HOLD  
40  
OUT_VAL  
OUT_HIGH  
40  
Table 35. SPI Slave AC Specifications  
Symbol  
Description  
SCLK clock frequency  
Conditions  
Min  
Typ  
Max  
Units  
F
V
V
2.4V  
< 2.4V  
12  
6
MHz  
SCLK  
DD  
DD  
T
T
T
T
T
T
T
T
T
SCLK low time  
41.67  
41.67  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LOW  
SCLK high time  
HIGH  
MOSI to SCLK setup time  
SCLK to MOSI hold time  
SS high to MISO valid  
SCLK to MISO valid  
SS high time  
SETUP  
50  
HOLD  
153  
125  
50  
SS_MISO  
SCLK_MISO  
SS_HIGH  
SS_CLK  
CLK_SS  
Time from SS low to first SCLK  
Time from last SCLK to SS high  
2/SCLK  
2/SCLK  
Document Number: 001-12696 Rev. *F  
Page 30 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
Packaging Information  
This section illustrates the packaging specifications for the CY8C20x36/46/66/96 PSoC device, along with the thermal impedances  
for each package.  
Important Note Emulation tools may require a larger area on the target PCB than the chip’s footprint. For a detailed description of  
the emulation tools’ dimensions, refer to the document titled PSoC Emulator Pod Dimensions at  
http://www.cypress.com/design/MR10161.  
Figure 15. 16-pin QFN No E-pad 3x3mm Package Outline (Sawn)  
001-09116 *D  
Figure 16. 24-Pin (4x4 x 0.6 mm) QFN  
001-13937 *B  
Document Number: 001-12696 Rev. *F  
Page 31 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
Figure 17. 32-Pin (5x5 x 0.6 mm) QFN  
001-42168 *C  
Figure 18. 48-Pin (300 MIL) SSOP  
.020  
1
24  
0.395  
0.420  
0.292  
0.299  
DIMENSIONS IN INCHES MIN.  
MAX.  
25  
48  
0.620  
0.630  
0.005  
0.010  
SEATING PLANE  
.010  
0.088  
0.092  
0.095  
0.110  
GAUGE PLANE  
0.004  
0.024  
0.040  
0.025  
BSC  
0°-8°  
0.008  
0.016  
0.008  
51-85061 *C  
0.0135  
Document Number: 001-12696 Rev. *F  
Page 32 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
Figure 19. 48-Pin (7x7 mm) QFN  
001-13191 *D  
Important Notes  
For information on the preferred dimensions for mounting QFN packages, see the following Application Note at  
http://www.amkor.com/products/notes_papers/MLFAppNote.pdf.  
Pinned vias for thermal conduction are not required for the low power PSoC device.  
Document Number: 001-12696 Rev. *F  
Page 33 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
Thermal Impedances  
Table 36. Thermal Impedances per Package  
[14]  
Package  
Typical θJA  
o
32.69 C/W  
16 QFN  
o
[15]  
20.90 C/W  
24 QFN  
o
[15]  
19.51 C/W  
32 QFN  
o
69 C/W  
48 SSOP  
o
[15]  
17.68 C/W  
48 QFN  
Solder Reflow Peak Temperature  
This table lists the minimum solder reflow peak temperature to achieve good solderability.  
Table 37. Solder Reflow Peak Temperature  
[16]  
Package  
16 QFN  
24 QFN  
32 QFN  
48 SSOP  
48 QFN  
Maximum Peak Temperature  
Minimum Peak Temperature  
o
o
240 C  
260 C  
o
o
240 C  
260 C  
o
o
240 C  
260 C  
o
o
220 C  
260 C  
o
o
240 C  
260 C  
Capacitance on Crystal Pins  
Table 38. Typical Package Capacitance on Crystal Pins  
Package  
32 QFN  
48 QFN  
Package Capacitance  
3.2 pF  
3.3 pF  
Notes  
14. T = T + Power x θ .  
JA  
J
A
15. To achieve the thermal impedance specified for the QFN package, the center thermal pad must be soldered to the PCB ground plane.  
o
o
16. Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220 ± 5 C with Sn-Pb or 245 ± 5 C with Sn-Ag-Cu paste.  
Refer to the solder manufacturer specifications.  
Document Number: 001-12696 Rev. *F  
Page 34 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
Development Tool Selection  
Software  
Evaluation Tools  
All evaluation tools are sold at the Cypress Online Store.  
CY3210-MiniProg1  
PSoC Designer™  
The CY3210-MiniProg1 kit enables the user to program PSoC  
devices via the MiniProg1 programming unit. The MiniProg is a  
small, compact prototyping programmer that connects to the PC  
via a provided USB 2.0 cable. The kit includes:  
At the core of the PSoC development software suite is PSoC  
Designer, used to generate PSoC firmware applications. PSoC  
Designer is available free of charge at  
http://www.cypress.com/psocdesigner and includes a free C  
compiler.  
MiniProg Programming Unit  
PSoC Programmer  
MiniEval Socket Programming and Evaluation Board  
28-Pin CY8C29466-24PXI PDIP PSoC Device Sample  
28-Pin CY8C27443-24PXI PDIP PSoC Device Sample  
PSoC Designer Software CD  
PSoC Programmer is flexible enough and is used on the bench  
in development and is also suitable for factory programming.  
PSoC Programmer works either as a standalone programming  
application or operates directly from PSoC Designer or PSoC  
Express. PSoC Programmer software is compatible with both  
PSoC ICE Cube In-Circuit Emulator and PSoC MiniProg. PSoC  
programmer is available free of cost at  
Getting Started Guide  
USB 2.0 Cable  
http://www.cypress.com/psocprogrammer.  
CY3210-PSoCEval1  
Development Kits  
The CY3210-PSoCEval1 kit features an evaluation board and  
the MiniProg1 programming unit. The evaluation board includes  
an LCD module, potentiometer, LEDs, and plenty of bread-  
boarding space to meet all of your evaluation needs. The kit  
includes:  
All development kits are sold at the Cypress Online Store.  
CY3215-DK Basic Development Kit  
The CY3215-DK is for prototyping and development with PSoC  
Designer. This kit supports in-circuit emulation and the software  
interface enables users to run, halt, and single step the  
processor and view the content of specific memory locations.  
PSoC Designer supports the advance emulation features also.  
The kit includes:  
Evaluation Board with LCD Module  
MiniProg Programming Unit  
28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2)  
PSoC Designer Software CD  
Getting Started Guide  
PSoC Designer Software CD  
ICE-Cube In-Circuit Emulator  
ICE Flex-Pod for CY8C29x66 Family  
Cat-5 Adapter  
USB 2.0 Cable  
CY3214-PSoCEvalUSB  
Mini-Eval Programming Board  
110 ~ 240V Power Supply, Euro-Plug Adapter  
iMAGEcraft C Compiler (Registration Required)  
ISSP Cable  
The CY3214-PSoCEvalUSB evaluation kit features  
a
development board for the CY8C24794-24LFXI PSoC device.  
Special features of the board include both USB and capacitive  
sensing development and debugging support. This evaluation  
board also includes an LCD module, potentiometer, LEDs, an  
enunciator and plenty of bread boarding space to meet all of your  
evaluation needs. The kit includes:  
USB 2.0 Cable and Blue Cat-5 Cable  
2 CY8C29466-24PXI 28-PDIP Chip Samples  
PSoCEvalUSB Board  
LCD Module  
MIniProg Programming Unit  
Mini USB Cable  
PSoC Designer and Example Projects CD  
Getting Started Guide  
Wire Pack  
Document Number: 001-12696 Rev. *F  
Page 35 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
CY3207ISSP In-System Serial Programmer (ISSP)  
Device Programmers  
The CY3207ISSP is a production programmer. It includes  
protection circuitry and an industrial case that is more robust than  
the MiniProg in a production programming environment.  
Note that CY3207ISSP needs special software and is not  
compatible with PSoC Programmer. The kit includes:  
All device programmers are purchased from the Cypress Online  
Store.  
CY3216 Modular Programmer  
The CY3216 Modular Programmer kit features a modular  
programmer and the MiniProg1 programming unit. The modular  
programmer includes three programming module cards and  
supports multiple Cypress products. The kit includes:  
CY3207 Programmer Unit  
PSoC ISSP Software CD  
110 ~ 240V Power Supply, Euro-Plug Adapter  
USB 2.0 Cable  
Modular Programmer Base  
Three Programming Module Cards  
MiniProg Programming Unit  
PSoC Designer Software CD  
Getting Started Guide  
USB 2.0 Cable  
Accessories (Emulation and Programming)  
Table 39. Emulation and Programming Accessories  
[17]  
[18]  
[19]  
Part Number  
CY8C20236-24LKXI  
CY8C20246-24LKXI  
CY8C20336-24LQXI  
CY8C20346-24LQXI  
CY8C20396-24LQXI  
CY8C20436-24LQXI  
CY8C20446-24LQXI  
CY8C20466-24LQXI  
CY8C20496-24LQXI  
CY8C20536-24PVXI  
CY8C20546-24PVXI  
CY8C20566-24PVXI  
CY8C20636-24LTXI  
CY8C20646-24LTXI  
CY8C20666-24LTXI  
Pin Package  
16 QFN  
Flex-Pod Kit  
Foot Kit  
Adapter  
CY3250-20266QFN  
CY3250-20266QFN  
CY3250-20366QFN  
CY3250-20366QFN  
CY3250-16QFN-RK  
CY3250-16QFN-FK  
CY3250-24QFN-FK  
CY3250-24QFN-FK  
Not Available  
See note 15  
See note 19  
See note 15  
See note 19  
16 QFN  
24 QFN  
24 QFN  
24 QFN  
32 QFN  
32 QFN  
32 QFN  
32 QFN  
48 SSOP  
48 SSOP  
48 SSOP  
48 QFN  
48 QFN  
48 QFN  
CY3250-20466QFN  
CY3250-20466QFN  
CY3250-20466QFN  
CY3250-32QFN-RK  
CY3250-32QFN-FK  
CY3250-32QFN-FK  
Not Available  
See note 15  
See note 19  
See note 19  
CY3250-20566  
CY3250-48SSOP-FK  
CY3250-48SSOP-FK  
CY3250-48SSOP-FK  
CY3250-48QFN-FK  
CY3250-48QFN-FK  
CY3250-48QFN-FK  
See note 19  
See note 19  
See note 19  
See note 19  
See note 19  
See note 19  
CY3250-20566  
CY3250-20566  
CY3250-20666QFN  
CY3250-20666QFN  
CY3250-20666QFN  
Third-Party Tools  
Several tools have been specially designed by the following third-party vendors to accompany PSoC devices during development and  
production. Specific details for each of these tools can be found at http://www.cypress.com under Documentation > Evaluation Boards.  
Build a PSoC Emulator into Your Board  
For details on how to emulate your circuit before going to volume production using an on-chip debug (OCD) non-production PSoC  
device, refer Application Note “Debugging - Build a PSoC Emulator into Your Board - AN2323” at http://www.cypress.com/?rID2748.  
Notes  
17. Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.  
18. Foot kit includes surface mount feet that can be soldered to the target PCB.  
19. Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at  
http://www.emulation.com.  
Document Number: 001-12696 Rev. *F  
Page 36 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
Ordering Information  
The following table lists the CY8C20x36/46/66/96 PSoC devices' key package features and ordering codes.  
Table 40. PSoC Device Key Features and Ordering Information  
Analog  
Flash  
SRAM  
CapSense  
Blocks  
Digital I/O  
Pins  
XRES  
Pin  
Inputs[20]  
Package  
Ordering Code  
USB  
(Bytes) (Bytes)  
16-Pin (3x3x0.6mm) QFN  
CY8C20236-24LKXI  
CY8C20236-24LKXIT  
8K  
8K  
1K  
1K  
1
1
13  
13  
13  
13  
Yes  
Yes  
No  
No  
16-Pin (3x3x0.6mm) QFN  
(Tape and Reel)  
16 Pin (3x3 x 0.6 mm) QFN  
CY8C20246-24LKXI  
CY8C20246-24LKXIT  
16K  
16K  
2K  
2K  
1
1
13  
13  
Yes  
Yes  
No  
No  
13  
13  
16 Pin (3x3 x 0.6 mm) QFN  
(Tape and Reel)  
24-Pin (4x4x0.6mm) QFN  
CY8C20336-24LQXI  
CY8C20336-24LQXIT  
8K  
8K  
1K  
1K  
1
1
20  
20  
20  
20  
Yes  
Yes  
No  
No  
24-Pin (4x4x0.6mm) QFN  
(Tape and Reel)  
24 Pin (4x4 x 0.6 mm) QFN  
CY8C20346-24LQXI  
CY8C20346-24LQXIT  
16K  
16K  
2K  
2K  
1
1
20  
20  
Yes  
Yes  
No  
No  
20  
20  
24 Pin (4x4 x 0.6 mm) QFN  
(Tape and Reel)  
24-Pin (4x4x0.6mm) QFN  
CY8C20396-24LQXI  
CY8C20396-24LQXIT  
16K  
16K  
2K  
2K  
1
1
19  
19  
19  
19  
Yes  
Yes  
Yes  
Yes  
24-Pin (4x4x0.6mm) QFN  
(Tape and Reel)  
32-Pin (5x5x0.6mm) QFN  
CY8C20436-24LQXI  
CY8C20436-24LQXIT  
8K  
8K  
1K  
1K  
1
1
28  
28  
28  
28  
Yes  
Yes  
No  
No  
32-Pin (5x5x0.6mm) QFN  
(Tape and Reel)  
32 Pin (5x5 x 0.6 mm) QFN  
CY8C20446-24LQXI  
CY8C20446-24LQXIT  
16K  
16K  
2K  
2K  
1
1
28  
28  
Yes  
Yes  
No  
No  
28  
28  
32 Pin (5x5 x 0.6 mm) QFN  
(Tape and Reel)  
32 Pin (5x5 x 0.6 mm) QFN  
CY8C20466-24LQXI  
CY8C20466-24LQXIT  
32K  
32K  
2K  
2K  
1
1
28  
28  
Yes  
Yes  
No  
No  
28  
28  
32 Pin (5x5 x 0.6 mm) QFN  
(Tape and Reel)  
32 Pin (5x5 x 0.6 mm) QFN  
CY8C20496-24LQXI  
CY8C20496-24LQXIT  
16K  
16K  
2K  
2K  
1
1
25  
25  
Yes  
Yes  
Yes  
Yes  
25  
25  
32 Pin (5x5 x 0.6 mm) QFN  
(Tape and Reel)  
48-Pin SSOP  
CY8C20536-24PVXI  
CY8C20536-24PVXIT  
8K  
8K  
1K  
1K  
1
1
34  
34  
Yes  
Yes  
No  
No  
34  
34  
48-Pin SSOP  
(Tape and Reel)  
48-Pin SSOP  
CY8C20546-24PVXI  
CY8C20546-24PVXIT  
16K  
16K  
2K  
2K  
1
1
34  
34  
Yes  
Yes  
No  
No  
34  
34  
48-Pin SSOP  
(Tape and Reel)  
48-Pin SSOP  
CY8C20566-24PVXI  
CY8C20566-24PVXIT  
32K  
32K  
2K  
2K  
1
1
34  
34  
Yes  
Yes  
No  
No  
34  
34  
48-Pin SSOP  
(Tape and Reel)  
48 Pin (7x7 mm) QFN  
CY8C20636-24LTXI  
CY8C20636-24LTXIT  
8K  
8K  
1K  
1K  
1
1
36  
36  
Yes  
Yes  
No  
No  
36  
36  
48 Pin (7x7 mm) QFN  
(Tape and Reel)  
48 Pin (7x7 mm) QFN  
CY8C20646-24LTXI  
CY8C20646-24LTXIT  
16K  
16K  
2K  
2K  
1
1
36  
36  
Yes  
Yes  
Yes  
Yes  
36  
36  
48 Pin (7x7 mm) QFN  
(Tape and Reel)  
48 Pin (7x7 mm) QFN  
CY8C20666-24LTXI  
CY8C20666-24LTXIT  
32K  
32K  
2K  
2K  
1
1
36  
36  
Yes  
Yes  
Yes  
Yes  
36  
36  
48 Pin (7x7 mm) QFN  
(Tape and Reel)  
48 Pin (7x7 mm) QFN (OCD)[4]  
CY8C20066-24LTXI  
32K  
2K  
1
36  
Yes  
Yes  
36  
Notes  
20. Dual-function Digital I/O Pins also connect to the common analog mux.  
Document Number: 001-12696 Rev. *F  
Page 37 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
Document History Page  
Document Title: CY8C20x36/46/66/96 CapSense® Applications  
Document Number: 001-12696  
Revision  
**  
ECN  
Origin of Change Submission Date  
Description of Change  
766857  
HMT  
See ECN  
See ECN  
New silicon and document (Revision **).  
*A  
*B  
1242866 HMT  
Add features. Update all applicable sections. Update specs.  
Fix 24-pin QFN pinout moving pins inside. Update package  
revisions. Update and add to Emulation and Programming  
Accessories table.  
2174006 AESA  
See ECN  
Added 48-Pin SSOP Part Pinout  
Modified symbol R  
Specification  
to R  
in Table DC Analog Mux Bus  
VDD  
GND  
Added footnote in Table DC Analog Mux Bus Specification  
Added 16K FLASH Parts. Updated Notes, Package Diagrams  
and Ordering Information table. Updated Thermal Impedance  
and Solder Reflow tables  
*C  
2587518 TOF/JASM/MNU/ 10/13/08  
HMT  
Converted from Preliminary to Final  
Fixed broken links. Updated data sheet template.  
Added operating voltage ranges with USB  
ADC resolution changed from 10-bit to 8-bit  
Included ADC specifications table  
Included Comparator specification table  
Included Voh7, Voh8, Voh9, Voh10 specs  
Flash data retention – condition added to Note  
Input leakage spec changed to 1 μA max  
GPIO rise time for ports 0,1 and ports 2,3 made common  
AC Programming specifications updated  
Included AC Programming cycle timing diagram  
AC SPI specification updated  
The VIH for 3.0<Vdd<2.4 changed to 1.6 from 2.0  
Added USB specification  
Added SPI CLK to P1[0]  
Updated package diagrams  
Updated thermal impedances for QFN packages  
Updated F  
Updated voltage ranges for F  
parameter in Table 23  
GPIO  
and F  
in Table 30  
SPIM  
SPIS  
Update Development Tools, add Designing with PSoC  
Designer. Edit, fix links, notes and table format. Update R  
IN  
formula, fix TRise parameter names in GPIO figure, fix Switch  
Rate note. Update maximum data in Table 20. DC POR and  
LVD Specifications.  
*D  
*E  
2649637 SNV/AESA  
2700196 SNV/PYRS  
03/17/2009  
04/30/2009  
Changed title to “CY8C20x36/46/66, CY8C20396  
CapSense™ Applications”. Updated data sheet Features, pin  
information, and ordering information sections. Updated  
package diagram 001-42168 to *C.  
Added part numbers CY8C20496, CY8C20536, CY8C20546,  
CY8C20636, CY8C20646. Updated Features on page 1  
Added 48-PinQFN withoutUSB pinDiagram and Pin Definition  
table. Added 32-Pin QFN (with USB) package  
Added SPI Master and Slave AC Specifications  
Updated Emulations and Programming Accessories Table on  
page 33. Updated Ordering Information on page 37  
Removed reference to Hi-Tech C Compiler in Development  
Tool Selection on page 35  
*F  
2761504 MATT/AESA  
09/09/2009  
Added Note 5 and 13. Updated Table 14, 38, 39, and Ordering  
Information table. Updated Figure 19.  
Document Number: 001-12696 Rev. *F  
Page 38 of 39  
[+] Feedback  
CY8C20X36/46/66/96  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at cypress.com/sales.  
Products  
PSoC  
PSoC Solutions  
General  
psoc.cypress.com  
clocks.cypress.com  
wireless.cypress.com  
memory.cypress.com  
image.cypress.com  
psoc.cypress.com/solutions  
psoc.cypress.com/low-power  
psoc.cypress.com/precision-analog  
psoc.cypress.com/lcd-drive  
psoc.cypress.com/can  
Clocks & Buffers  
Wireless  
Low Power/Low Voltage  
Precision Analog  
LCD Drive  
Memories  
Image Sensors  
CAN 2.0b  
USB  
psoc.cypress.com/usb  
© Cypress Semiconductor Corporation, 2007-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used  
for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use  
as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support  
systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 001-12696 Rev. *F  
Revised September 09, 2009  
Page 39 of 39  
PSoC Designer™ is a trademark and PSoC® and CapSense® are registered trademarks of Cypress Semiconductor Corporation. All other trademarks or registered trademarks referenced herein are  
property of the respective corporations. Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I2C Patent Rights to use these  
components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips. All products and company names mentioned in this document may be the  
trademarks of their respective holders.  
[+] Feedback  

相关型号:

CY8C20346-24LQXIT

CapSense™ Applications
CYPRESS

CY8C20346A-24LQXI

CapSense Applications
CYPRESS

CY8C20346A-24LQXIT

CapSense Applications
CYPRESS

CY8C20346AS-24LQXI

1.8 V Programmable CapSense® Controller with SmartSense™ Auto-tuning 1–33 Buttons, 0–6 Sliders
CYPRESS

CY8C20346AS-24LQXIT

1.8 V Programmable CapSense® Controller with SmartSense™ Auto-tuning 1–33 Buttons, 0–6 Sliders
CYPRESS

CY8C20347-24LQXI

1.8 V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors
CYPRESS

CY8C20347-24LQXIT

1.8 V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors
CYPRESS

CY8C20347S-24LQXI

1.8 V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors
CYPRESS

CY8C20347S-24LQXIT

1.8 V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors
CYPRESS

CY8C20366-24LQXI

CapSense™ Applications
CYPRESS

CY8C20366-24LQXIT

CapSense™ Applications
CYPRESS

CY8C20396-24LQXI

CapSense Applications
CYPRESS