CY8C22213-24PVXIT [CYPRESS]

Multifunction Peripheral, CMOS, PDSO20, 0.210 INCH, SSOP-20;
CY8C22213-24PVXIT
型号: CY8C22213-24PVXIT
厂家: CYPRESS    CYPRESS
描述:

Multifunction Peripheral, CMOS, PDSO20, 0.210 INCH, SSOP-20

光电二极管
文件: 总24页 (文件大小:634K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY8C21323  
PRELIMINARY  
Automotive PSoC® Programmable  
System-on-Chip™  
Features  
Logic Block Diagram  
Powerful Harvard Architecture Processor  
M8C Processor Speeds to 12 MHz  
Low Power at High Speed  
4.75V to 5.25V Operating Voltage  
Automotive Temperature Range: -40°C to +125°C  
Advanced Peripherals (PSoC® Blocks)  
4 Analog Type “E” PSoC Blocks Provide:  
• 2 Comparators with DAC Refs  
• Single or Dual 8-Bit 8:1 ADC  
4 Digital PSoC Blocks Provide:  
• 8- to 32-Bit Timers, Counters, and PWMs  
• CRC and PRS Modules  
• Full-Duplex UART, SPIMaster or Slave  
• Connectable to All GPIO Pins  
Complex Peripherals by Combining Blocks  
Flexible On-Chip Memory  
4K Flash Program Storage 100 Erase/Write Cycles  
256 Bytes SRAM Data Storage  
In-System Serial Programming (ISSP)  
Partial Flash Updates  
Flexible Protection Modes  
Complete Development Tools  
Free Development Software (PSoC Designer™)  
Full-Featured, In-Circuit Emulator and Programmer  
Full Speed Emulation  
Complex Breakpoint Structure  
128 Bytes Trace Memory  
Precision, Programmable Clocking  
Internal ±4% 24 MHz Oscillator  
Internal Oscillator for Watchdog and Sleep  
Programmable Pin Configurations  
25 mA Sink, 10 mA Drive on All GPIO  
Pull Up, Pull Down, High Z, Strong, or Open Drain Drive  
Modes on All GPIO  
Up to eight Analog Inputs on GPIO  
Configurable Interrupt on All GPIO  
Additional System Resources  
I2C™ Master, Slave and Multi-Master to 400 kHz  
Watchdog and Sleep Timers  
User-Configurable Low Voltage Detection  
Integrated Supervisory Circuit  
On-Chip Precision Voltage Reference  
Cypress Semiconductor Corporation  
Document Number:001-06161 Rev. *A  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised January 21, 2009  
[+] Feedback  
PRELIMINARY  
CY8C21323  
Figure 1. Digital System Block Diagram  
PSoC Functional Overview  
Port 1  
The PSoC family consists of many Mixed-Signal Array with  
On-Chip Controller devices. These devices are designed to  
replace multiple traditional MCU-based system components with  
one, low cost single-chip programmable component. A PSoC  
device includes configurable blocks of analog and digital logic,  
and programmable interconnect. This architecture enables the  
user to create customized peripheral configurations, to match  
the requirements of each individual application. Additionally, a  
fast CPU, Flash program memory, SRAM data memory, and  
configurable IO are included in a range of convenient pinouts.  
Port 0  
To System Bus  
Digital Clocks  
FromCore  
ToAnalog  
System  
DIGITAL SYSTEM  
Digital PSoC Block Array  
Row 0  
4
4
The PSoC architecture, as illustrated in the “Logic Block  
Diagram” on page 1, is comprised of four main areas: the Core,  
the System Resources, the Digital System, and the Analog  
System. Configurable global bus resources enable all the device  
resources to be combined into a complete custom system. Each  
PSoC device includes four digital blocks. Depending on the  
PSoC package, up to two analog comparators and up to 16  
general purpose IO (GPIO) are also included. The GPIO provide  
access to the global digital and analog interconnects.  
DBB00  
DBB01  
DCB02  
DCB03  
8
8
8
8
Global Digital  
Interconnect  
GOE[7:0]  
GOO[7:0]  
GIE[7:0]  
GIO[7:0]  
The PSoC Core  
The PSoC Core is a powerful engine that supports a rich  
instruction set. It encompasses SRAM for data storage, an  
interrupt controller, sleep and watchdog timers, and IMO  
(internal main oscillator) and ILO (internal low speed oscillator).  
The CPU core, called the M8C, is a powerful processor with  
speeds up to 12 MHz. The M8C is a two MIPS 8-bit Harvard  
architecture microprocessor.  
The Digital System  
The Digital System is composed of four digital PSoC blocks.  
Each block is an 8-bit resource that can be used alone or  
combined with other blocks to form 8, 16, 24, and 32-bit  
peripherals, which are called user module references. Digital  
peripheral configurations include the following:  
System Resources provide additional capability, such as digital  
clocks to increase the flexibility of the PSoC mixed-signal arrays,  
I2C functionality for implementing an I2C master, slave,  
Multi-Master, an internal voltage reference that provides an  
absolute value of 1.3V to a number of PSoC subsystems, and  
various system resets supported by the M8C.  
PWMs (8 to 32 bit)  
PWMs with Dead band (8 to 32 bit)  
Counters (8 to 32 bit)  
Timers (8 to 32 bit)  
The Digital System is composed of an array of digital PSoC  
blocks, which can be configured into any number of digital  
peripherals. The digital blocks can be connected to the GPIO  
through a series of global busses that can route any signal to any  
pin, freeing designs from the constraints of a fixed peripheral  
controller.  
UART 8 bit with selectable parity (up to 4)  
SPI master and slave  
I2C slave, master, multi-master (1 available as a System  
Resource)  
The Analog System is composed of four analog PSoC blocks,  
supporting comparators and analog-to-digital conversion up to 8  
bits in precision.  
Cyclical Redundancy Checker/Generator (8 to 32 bit)  
IrDA (up to 4)  
Pseudo Random Sequence Generators (8 to 32 bit)  
The digital blocks can be connected to any GPIO through a  
series of global busses that can route any signal to any pin. The  
busses also enable signal multiplexing and performing logic  
operations. This configurability frees your designs from the  
constraints of a fixed peripheral controller.  
Digital blocks are provided in rows of four, where the number of  
blocks varies by PSoC device family. This allows you the  
optimum choice of system resources for your application. Family  
resources are shown in the table titled “PSoC Device  
Characteristics” on page 3.  
Document Number:001-06161 Rev. *A  
Page 2 of 24  
[+] Feedback  
PRELIMINARY  
CY8C21323  
The Analog System  
Additional System Resources  
The Analog System is composed of four configurable blocks to  
allow creation of complex analog signal flows. Analog periph-  
erals are very flexible and can be customized to support specific  
application requirements. Some of the more common PSoC  
analog functions (most available as user modules) are:  
System Resources, some of which have been previously listed,  
provide additional capability useful to complete systems.  
Additional resources include low voltage detection and power on  
reset. The following statements describe the merits of each  
system resource:  
Analog-to-digital converters (single or dual, with up to 10-bit  
resolution)  
Digital clock dividers provide three customizable clock  
frequencies for use in applications. The clocks can be routed  
to both the digital and analog systems. Additional clocks can  
be generated using digital PSoC blocks as clock dividers.  
Pin-to-pin comparators (1)  
Single-ended comparators (up to 2) with absolute (1.3V)  
reference or 8-bit DAC reference  
TheI2Cmoduleprovides100and400kHzcommunicationover  
two wires. Slave, master, and multi-master modes are all  
supported.  
1.3V reference (as a System Resource)  
In most PSoC devices, analog blocks are provided in columns of  
three, which includes one CT (Continuous Time) and two SC  
(Switched Capacitor) blocks. The CY8C21x23 devices provide  
limited functionality Type “E” analog blocks. Each column  
contains one CT block and one SC block.  
Low Voltage Detection (LVD) interrupts can signal the  
application of falling voltage levels, while the advanced POR  
(Power On Reset) circuit eliminates the need for a system  
supervisor.  
An internal 1.3 voltage reference provides an absolute  
reference for the analog system, including ADCs and DACs.  
The number of blocks is on the device family which is detailed in  
the table titled “PSoC Device Characteristics” on page 3.  
PSoC Device Characteristics  
Figure 2. Analog System Block Diagram, CY8C21323  
Depending on your PSoC device characteristics, the digital and  
analog systems can have 16, 8, or 4 digital blocks and 12, 6, or  
4 analog blocks. The following table lists the resources available  
for specific PSoC device groups. The PSoC device covered by  
this data sheet is highlighted here.  
Array Input  
Configuration  
Table 1. PSoC Device Characteristics  
PSoC Part  
Number  
ACI0[1:0]  
ACI1[1:0]  
CY8C29x66  
CY8C27x43  
up to  
64  
4
2
16  
8
12  
12  
4
4
4
4
12  
12  
2K  
32K  
16K  
up to  
44  
256  
Bytes  
AC O L 1MU X  
CY8C24x94  
49  
1
1
4
4
48  
12  
2
2
2
2
6
6
1K  
16K  
4K  
Array  
CY8C24x23A  
up to  
24  
256  
Bytes  
[1]  
ACE00  
ASE10  
ACE01  
ASE11  
CY8C21x34  
CY8C21x23  
up to  
28  
1
1
4
4
28  
8
0
0
2
2
4
512  
8K  
4K  
Bytes  
[1]  
16  
4
256  
Bytes  
Note  
1. Limited analog functionality.  
Document Number:001-06161 Rev. *A  
Page 3 of 24  
[+] Feedback  
PRELIMINARY  
CY8C21323  
PSoC Consultant go to http://www.cypress.com, click on Support  
located at the top of the web page, and select CYPros  
Consultants.  
Getting Started  
The quickest path to understanding the PSoC silicon is by  
reading this data sheet and using the PSoC Designer Integrated  
Development Environment (IDE). This data sheet is an overview  
of the PSoC integrated circuit and presents specific pin, register,  
and electrical specifications. For in-depth information, along with  
detailed programming information, reference the PSoC  
Programmable System-on-Chip Technical Reference Manual,  
which can be found on http://www.cypress.com/psoc.  
Technical Support  
PSoC application engineers take pride in fast and accurate  
response. They can be reached with a 4-hour guaranteed  
response at http://www.cypress.com/support/.  
Application Notes  
For up-to-date Ordering, Packaging, and Electrical Specification  
information, reference the latest PSoC device data sheets on the  
web at http://www.cypress.com.  
A long list of application notes can assist you in every aspect of  
your design effort. To view the PSoC application notes, go to  
http://www.cypress.com and select Application Notes under  
Documentation list located in the center of the web page.  
Development Kits  
Development Tools  
PSoC Designer is a Microsoft® Windows-based, integrated  
Development Kits are available from the following distributors:  
Digi-Key, Avnet, Arrow, and Future. The Cypress Online Store  
contains development kits, C compilers, and all accessories for  
PSoC development. Go to the Cypress Online Store web site at  
Order >> Buy Kits at http://www.cypress.com/shop, click the  
Online Store shopping cart icon at the bottom of the web page,  
and click PSoC (Programmable System-on-Chip) to view a  
current list of available items.  
development  
environment  
for  
the  
Programmable  
System-on-Chip (PSoC) devices. The PSoC Designer IDE and  
application runs on Windows NT 4.0, Windows 2000, Windows  
Millennium (Me), or Windows XP. (Reference the PSoC Designer  
Functional Flow diagram below.)  
PSoC Designer helps the customer to select an operating  
configuration for the PSoC, write application code that uses the  
PSoC, and debug the application. This system provides design  
database management by project, an integrated debugger with  
In-Circuit Emulator, in-system programming support, and the  
CYASM macro assembler for the CPUs.  
Technical Training  
Free On-Demand PSoC Training modules are available for new  
users to PSoC. Training modules cover designing, debugging,  
advanced  
analog,  
and  
CapSense.  
Go  
to  
http://www.cypress.com/techtrain.  
PSoC Designer also supports a high-level C language compiler  
developed specifically for the devices in the family.  
Consultants  
Certified PSoC Consultants offer everything from technical  
assistance to completed PSoC designs. To contact or become a  
Document Number:001-06161 Rev. *A  
Page 4 of 24  
[+] Feedback  
PRELIMINARY  
CY8C21323  
Online Help System  
PSoC Designer Software Subsystems  
The online help system displays online, context-sensitive help  
for the user. Designed for procedural and quick reference, each  
functional subsystem has its own context-sensitive help. This  
system also provides tutorials and links to FAQs and an Online  
Support Forum to aid the designer in getting started.  
Device Editor  
The device editor subsystem allows the user to select different  
onboard analog and digital components called user modules  
using the PSoC blocks. Examples of user modules are ADCs,  
DACs, Amplifiers, and Filters.  
Hardware Tools  
The device editor also supports easy development of multiple  
configurations and dynamic reconfiguration. Dynamic  
reconfiguration r changing configurations at run time.  
In-Circuit Emulator  
A low cost, high functionality ICE (In-Circuit Emulator) is  
available for development support. This hardware has the  
capability to program single devices.  
PSoC Designer sets up power-on initialization tables for selected  
PSoC block configurations and creates source code for an  
application framework. The framework contains software to  
operate the selected components and, if the project uses more  
than one operating configuration, contains routines to switch  
between different sets of PSoC block configurations at run time.  
PSoC Designer can print out a configuration sheet for a given  
project configuration for use during application programming in  
conjunction with the Device Data Sheet. Once the framework is  
generated, the user can add application-specific code to flesh  
out the framework. It’s also possible to change the selected  
components and regenerate the framework.  
The emulator consists of a base unit that connects to the PC by  
way of the parallel or USB port. The base unit is universal and  
operates with all PSoC devices. Emulation pods for each device  
family are available separately. The emulation pod takes the  
place of the PSoC device in the target board and performs full  
speed (12 MHz) operation  
Designing with User Modules  
The development process for the PSoC device differs from that  
of a traditional fixed function microprocessor. The configurable  
analog and digital hardware blocks give the PSoC architecture a  
unique flexibility that pays dividends in managing specification  
change during development and by lowering inventory costs.  
These configurable resources, called PSoC Blocks, have the  
ability to implement a wide variety of user-selectable functions.  
Each block has several registers that determine its function and  
connectivity to other blocks, multiplexers, busses and to the IO  
pins. Iterative development cycles permit you to adapt the  
hardware and the software. This substantially lowers the risk of  
having to select a different part to meet the final design require-  
ments.  
Design Browser  
The Design Browser allows users to select and import  
preconfigured designs into the user’s project. Users can easily  
browse  
a catalog of preconfigured designs to facilitate  
time-to-design. Examples provided in the tools include a  
300-baud modem, LIN Bus master and slave, fan controller, and  
magnetic card reader.  
Application Editor  
In the Application Editor you can edit your C language and  
Assembly language source code. You can also assemble,  
compile, link, and build.  
To speed the development process, the PSoC Designer  
Integrated Development Environment (IDE) provides a library of  
pre-built, pre-tested hardware peripheral functions, called “User  
Modules.” User modules make selecting and implementing  
peripheral devices simple, and come in analog, digital, and  
mixed signal varieties. The standard User Module library  
contains over 50 common peripherals such as ADCs, DACs  
Timers, Counters, UARTs, and other not-so common peripherals  
such as DTMF Generators and Bi-Quad analog filter sections.  
Assembler The macro assembler allows the assembly code to  
be merged seamlessly with C code. The link libraries  
automatically use absolute addressing or can be compiled in  
relative mode, and linked with other software modules to get  
absolute addressing.  
C Language Compiler A C language compiler is available that  
supports PSoC family devices. Even if you have never worked in  
the C language before, the product quickly allows you to create  
complete C programs for the PSoC family devices.  
Each user module establishes the basic register settings that  
implement the selected function. It also provides parameters that  
allow you to tailor its precise configuration to your particular  
application. For example, a Pulse Width Modulator User Module  
configures one or more digital PSoC blocks, one for each 8 bits  
of resolution. The user module parameters permit you to  
establish the pulse width and duty cycle. User modules also  
provide tested software to cut your development time. The user  
module application programming interface (API) provides  
high-level functions to control and respond to hardware events  
at run time. The API also provides optional interrupt service  
routines that you can adapt as needed.  
The embedded, optimizing C compiler provides all the features  
of C tailored to the PSoC architecture. It comes complete with  
embedded libraries providing port and bus operations, standard  
keypad and display support, and extended math functionality.  
Debugger  
The PSoC Designer Debugger subsystem provides hardware  
in-circuit emulation, allowing the designer to test the program in  
a physical system while providing an internal view of the PSoC  
device. Debugger commands allow the designer to read the  
program and read and write data memory, read and write IO  
registers, read and write CPU registers, set and clear  
breakpoints, and provide program run, halt, and step control. The  
debugger also allows the designer to create a trace buffer of  
registers and memory locations of interest.  
The API functions are documented in user module data sheets  
that are viewed directly in the PSoC Designer IDE. These data  
sheets explain the internal operation of the user module and  
provide performance specifications. Each data sheet describes  
Document Number:001-06161 Rev. *A  
Page 5 of 24  
[+] Feedback  
PRELIMINARY  
CY8C21323  
the use of each user module parameter and documents the  
setting of each register controlled by the user module.  
editor provides syntax coloring and advanced edit features for  
both C and assembly language. File search capabilities include  
simple string searches and recursive “grep-style” patterns. A  
single mouse click invokes the Build Manager. It employs a  
professional-strength “makefile” system to automatically analyze  
all file dependencies and run the compiler and assembler as  
necessary. Project-level options control optimization strategies  
used by the compiler and linker. Syntax errors are displayed in a  
console window. Double clicking the error message takes you  
directly to the offending line of source code. When all is correct,  
the linker builds a HEX file image suitable for programming.  
The development process starts when you open a new project  
and bring up the Device Editor, a graphical user interface (GUI)  
for configuring the hardware. You pick the user modules you  
need for your project and map them onto the PSoC blocks with  
point-and-click simplicity. Next, you build signal chains by inter-  
connecting user modules to each other and the IO pins. At this  
stage, you also configure the clock source connections and enter  
parameter values directly or by selecting values from drop-down  
menus. When you are ready to test the hardware configuration  
or move on to developing code for the project, you perform the  
“Generate Application” step. This causes PSoC Designer to  
generate source code that automatically configures the device to  
your specification and provides the high-level user module API  
functions.  
The last step in the development process takes place inside the  
PSoC Designer’s Debugger subsystem. The Debugger  
downloads the HEX image to the In-Circuit Emulator (ICE) where  
it runs at full speed. Debugger capabilities rival those of systems  
costing many times more. In addition to traditional single-step,  
run-to-breakpoint and watch-variable features, the Debugger  
provides a large trace buffer and allows you define complex  
breakpoint events that include monitoring address and data bus  
values, memory locations and external signals.  
The next step is to write your main program, and any  
sub-routines using PSoC Designer’s Application Editor  
subsystem. The Application Editor includes a Project Manager  
that allows you to open the project source code files (including  
all generated code files) from a hierarchal view. The source code  
Document Number:001-06161 Rev. *A  
Page 6 of 24  
[+] Feedback  
PRELIMINARY  
CY8C21323  
Units of Measure  
Document Conventions  
A units of measure table is located in the Electrical Specifications  
section. Table 3-1 on page 12 lists all the abbreviations used to  
measure the PSoC devices.  
Acronyms Used  
The following table lists the acronyms that are used in this  
document.  
Numeric Naming  
Acronym  
AC  
Description  
alternating current  
Hexidecimal numbers are represented with all letters in  
uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or  
‘3Ah’). Hexidecimal numbers may also be represented by a ‘0x’  
prefix, the C coding convention. Binary numbers have an  
appended lowercase ‘b’ (for example, 01010100b’ or  
‘01000011b’). Numbers not indicated by an ‘h’, ‘b’, or 0x are  
decimal.  
ADC  
API  
analog-to-digital converter  
application programming interface  
central processing unit  
continuous time  
CPU  
CT  
DAC  
DC  
digital-to-analog converter  
direct current  
EEPROM  
electrically erasable programmable read-only  
memory  
FSR  
GPIO  
IO  
full scale range  
general purpose IO  
input/output  
IPOR  
LSb  
imprecise power on reset  
least-significant bit  
low voltage detect  
LVD  
MSb  
PC  
most-significant bit  
program counter  
POR  
PPOR  
PSoC®  
PWM  
ROM  
SC  
power on reset  
precision power on reset  
Programmable System-on-Chip™  
pulse width modulator  
read only memory  
switched capacitor  
static random access memory  
SRAM  
Document Number:001-06161 Rev. *A  
Page 7 of 24  
[+] Feedback  
PRELIMINARY  
CY8C21323  
Pinouts  
The CY8C21323 PSoC device is available in one package, which is listed and illustrated in the following table. Every port pin (labeled  
with a “P”) is capable of Digital IO. However, Vss, Vdd, and XRES are not capable of Digital IO.  
20-Pin Part Pinout  
Table 2. 20-Pin Part Pinout (SSOP)  
Type  
Figure 3. CY8C21323 20-Pin PSoC Device  
Pin  
No.  
Name  
Description  
Digital Analog  
1
2
IO  
IO  
IO  
IO  
I
I
I
I
P0[7] Analog column mux input.  
P0[5] Analog column mux input.  
P0[3] Analog column mux input.  
P0[1] Analog column mux input.  
A, I,P0[7]  
A,I, P0[5]  
A,I, P0[3]  
A,I, P0[1]  
Vss  
Vdd  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
9
P0[6], A,I  
P0[4], A,I  
P0[2], A,I  
P0[0], A,I  
XRES  
3
4
SSOP  
5
Power  
Power  
Vss  
Ground connection.  
I2C SCL,P1[7]  
I2C SDA,P1[5]  
P1[3]  
P1[6]  
6
IO  
IO  
IO  
IO  
P1[7] I2C Serial Clock (SCL).  
P1[5] I2C Serial Data (SDA).  
P1[3]  
P1[4],EXTCLK  
P1[2]  
P1[0],I2C SDA  
7
I2C SCL,P1[1]  
Vss  
8
10  
[2]  
9
P1[1] I2C Serial Clock (SCL), ISSP-SCLK .  
10  
11  
12  
13  
Vss  
Ground connection.  
[2]  
IO  
IO  
IO  
P1[0] I2C Serial Data (SDA), ISSP-SDATA  
P1[2]  
.
P1[4] Optional External Clock Input  
(EXTCLK).  
14  
15  
IO  
P1[6]  
Input  
XRES Active high external reset with internal  
pull down.  
16  
17  
18  
19  
20  
IO  
IO  
IO  
IO  
I
I
I
I
P0[0] Analog column mux input.  
P0[2] Analog column mux input.  
P0[4] Analog column mux input.  
P0[6] Analog column mux input.  
Power  
Vdd  
Supply voltage.  
LEGEND A = Analog, I = Input, and O = Output.s.  
Notes  
2. These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Mixed-Signal Array Technical Reference Manual for details.  
Document Number:001-06161 Rev. *A  
Page 8 of 24  
[+] Feedback  
PRELIMINARY  
CY8C21323  
Register Conventions  
Register Mapping Tables  
The register conventions specific to this section are listed in the  
following table.  
The PSoC device has a total register address space of 512  
bytes. The register space is referred to as IO space and is  
divided into two banks. The XOI bit in the Flag register (CPU_F)  
determines which bank the user is currently in. When the XOI bit  
is set the user is in Bank 1.  
Convention  
Description  
Read register or bit(s)  
R
W
L
Note In the following register mapping tables, blank fields are  
Reserved and must not be accessed.  
Write register or bit(s)  
Logical register or bit(s)  
Clearable register or bit(s)  
Access is bit specific  
C
#
Document Number:001-06161 Rev. *A  
Page 9 of 24  
[+] Feedback  
PRELIMINARY  
CY8C21323  
Table 3. Register Map Bank 0 Table: User Space  
Addr  
Addr  
Addr  
Addr  
Name  
PRT0DR  
Access  
RW  
Name  
Access  
Name  
Access  
RW  
Name  
Access  
(0,Hex)  
(0,Hex)  
(0,Hex)  
(0,Hex)  
00  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
ASE10CR0  
80  
C0  
PRT0IE  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
PRT0GS  
PRT0DM2  
PRT1DR  
PRT1IE  
ASE11CR0  
RW  
PRT1GS  
PRT1DM2  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
I2C_CFG  
I2C_SCR  
I2C_DR  
RW  
#
RW  
#
I2C_MSCR  
INT_CLR0  
INT_CLR1  
RW  
RW  
INT_CLR3  
INT_MSK3  
RW  
RW  
DBB00DR0  
DBB00DR1  
DBB00DR2  
DBB00CR0  
DBB01DR0  
DBB01DR1  
DBB01DR2  
DBB01CR0  
DCB02DR0  
DCB02DR1  
DCB02DR2  
DCB02CR0  
DCB03DR0  
DCB03DR1  
DCB03DR2  
DCB03CR0  
#
AMX_IN  
RW  
RW  
#
INT_MSK0  
INT_MSK1  
INT_VC  
RW  
RW  
RC  
W
W
RW  
#
PWM_CR  
CMP_CR0  
CMP_CR1  
RES_WDT  
#
W
RW  
#
RW  
DEC_CR0  
DEC_CR1  
RW  
RW  
#
ADC0_CR  
ADC1_CR  
#
#
W
RW  
#
#
TMP_DR0  
TMP_DR1  
TMP_DR2  
TMP_DR3  
RW  
RW  
RW  
RW  
W
RW  
#
Blank fields are Reserved and must not be accessed.  
# Access is bit specific.  
Document Number:001-06161 Rev. *A  
Page 10 of 24  
[+] Feedback  
PRELIMINARY  
CY8C21323  
Addr  
Addr  
Addr  
Addr  
Name  
Access  
Name  
Access  
Name  
RDI0RI  
Access  
RW  
Name  
Access  
(0,Hex)  
(0,Hex)  
(0,Hex)  
(0,Hex)  
30  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
B0  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
RDI0SYN  
RDI0IS  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
RW  
RW  
RW  
RW  
RW  
RW  
ACE00CR1  
ACE00CR2  
RW  
RW  
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
ACE01CR1  
ACE01CR2  
RW  
RW  
CPU_F  
RL  
7A  
7B  
7C  
7D  
7E  
7F  
FB  
FC  
FD  
FE  
FF  
CPU_SCR1  
CPU_SCR0  
#
#
Blank fields are Reserved and must not be accessed.  
# Access is bit specific.  
Table 4. Register Map Bank 1 Table: Configuration Space  
Addr  
Addr  
Addr  
Name  
Addr  
(1,Hex)  
Name  
Access  
RW  
Name  
Access  
Access  
Name  
Access  
(1,Hex)  
(1,Hex)  
(1,Hex)  
PRT0DM0  
PRT0DM1  
PRT0IC0  
PRT0IC1  
PRT1DM0  
PRT1DM1  
PRT1IC0  
PRT1IC1  
00  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
ASE10CR0  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
RW  
C0  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
ASE11CR0  
RW  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
GDI_O_IN  
GDI_E_IN  
GDI_O_OU  
GDI_E_OU  
RW  
RW  
RW  
RW  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
Blank fields are Reserved and must not be accessed.  
# Access is bit specific.  
Document Number:001-06161 Rev. *A  
Page 11 of 24  
[+] Feedback  
PRELIMINARY  
CY8C21323  
Addr  
(1,Hex)  
Addr  
(1,Hex)  
Addr  
(1,Hex)  
Addr  
Name  
Access  
Name  
Access  
Name  
Access  
Name  
Access  
(1,Hex)  
1D  
5D  
9D  
OSC_GO_EN DD  
RW  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
5E  
5F  
60  
61  
62  
63  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
OSC_CR4  
OSC_CR3  
OSC_CR0  
OSC_CR1  
OSC_CR2  
VLT_CR  
DE  
RW  
RW  
RW  
RW  
RW  
RW  
R
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
DBB00FN  
DBB00IN  
DBB00OU  
RW  
CLK_CR0  
CLK_CR1  
ABF_CR0  
AMD_CR0  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
DBB01FN  
DBB01IN  
DBB01OU  
RW  
RW  
RW  
CMP_GO_EN 64  
65  
VLT_CMP  
ADC0_TR  
ADC1_TR  
RW  
RW  
AMD_CR1  
ALT_CR0  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
RW  
RW  
DCB02FN  
DCB02IN  
DCB02OU  
RW  
RW  
RW  
IMO_TR  
ILO_TR  
BDG_TR  
ECO_TR  
W
W
RW  
W
CLK_CR3  
TMP_DR0  
TMP_DR1  
TMP_DR2  
TMP_DR3  
RW  
RW  
RW  
RW  
RW  
DCB03FN  
DCB03IN  
DCB03OU  
RW  
RW  
RW  
RDI0RI  
RW  
RDI0SYN  
RDI0IS  
RW  
RW  
RW  
RW  
RW  
RW  
ACE00CR1  
ACE00CR2  
RW  
RW  
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
ACE01CR1  
ACE01CR2  
RW  
RW  
CPU_F  
RL  
FLS_PR1  
RW  
CPU_SCR1  
CPU_SCR0  
#
#
Blank fields are Reserved and must not be accessed.  
# Access is bit specific.  
Document Number:001-06161 Rev. *A  
Page 12 of 24  
[+] Feedback  
PRELIMINARY  
CY8C21323  
Electrical Specifications  
This section presents the DC and AC electrical specifications of the CY8C21x23 PSoC device. For the most up to date electrical  
specifications, confirm that you have the most recent data sheet by going to the web at http://www.cypress.com/psoc.  
Specifications are valid for -40oC T 125oC and T 135oC, except where noted.  
A
J
Figure 4. Voltage versus CPU Frequency  
5.25  
4.75  
3.00  
2.40  
93 kHz 3 MHz  
12 MHz  
24 MHz  
CPUFrequency  
The following table lists the units of measure that are used in this chapter.  
Table 5. Units of Measure  
Symbol  
oC  
Unit of Measure  
degree Celsius  
Symbol  
μW  
mA  
ms  
mV  
nA  
Unit of Measure  
microwatts  
dB  
decibels  
milli-ampere  
milli-second  
milli-volts  
fF  
femto farad  
hertz  
Hz  
KB  
1024 bytes  
1024 bits  
nanoampere  
nanosecond  
nanovolts  
Kbit  
kHz  
kΩ  
ns  
kilohertz  
nV  
kilohm  
W
ohm  
MHz  
MΩ  
μA  
megahertz  
megaohm  
pA  
picoampere  
picofarad  
pF  
microampere  
microfarad  
microhenry  
microsecond  
microvolts  
pp  
peak-to-peak  
parts per million  
picosecond  
μF  
ppm  
ps  
μH  
μs  
sps  
s
samples per second  
sigma: one standard deviation  
volts  
μV  
μVrms  
microvolts root-mean-square  
V
Document Number:001-06161 Rev. *A  
Page 13 of 24  
[+] Feedback  
PRELIMINARY  
CY8C21323  
Absolute Maximum Ratings  
Table 6. Absolute Maximum Ratings  
Symbol  
TSTG  
Description  
Min  
-55  
Typ.  
Max  
+125  
Units  
oC  
Notes  
Storage Temperature  
+25  
Higher storage temperatures  
reduce data retention time.  
Recommended storage temper-  
ature is +25°C +/- 25°C. Storage  
temperatures above 65oC  
degrade reliability. Maximum  
combined storage and opera-  
tional time at +125°C is 7000  
hours.  
TA  
Ambient Temperature with Power Applied  
Supply Voltage on Vdd Relative to Vss  
DC Input Voltage  
-40  
+125  
+6.0  
oC  
V
Vdd  
VIO  
-0.5  
Vss -  
0.5  
Vdd +  
0.5  
V
VIOZ  
DC Voltage Applied to Tri-state  
Vss -  
0.5  
Vdd +  
0.5  
V
IMIO  
ESD  
LU  
Maximum Current into any Port Pin  
Electro Static Discharge Voltage  
Latch-up Current  
-25  
2000  
+25  
mA  
V
Human Body Model ESD.  
200  
mA  
Operating Temperature  
Table 7. Operating Temperature  
Symbol  
Description  
Min  
-40  
Typ.  
Max  
+125  
+135  
Units  
Notes  
TA  
TJ  
Ambient Temperature  
Junction Temperature  
oC  
oC  
-40  
The temperature rise from  
ambient to junction is package  
specific. See “Thermal Imped-  
ances” on page 22. The user  
mustlimitthepowerconsumption  
to comply with this requirement.  
DC Electrical Characteristics  
DC Chip-Level Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 125°C. Typical parameters apply to 5V at 25°C and are for design guidance only.  
Table 8. DC Chip-Level Specifications  
Symbol  
Vdd  
Description  
Min  
4.75  
Typ.  
Max  
5.25  
Units  
Notes  
Supply Voltage  
3
V
See DC POR and LVD  
specifications, Table 11 on  
page 16.  
Conditions are Vdd = 5.0V, 25oC,  
CPU = 3 MHz, SYSCLK doubler  
disabled. VC1 = 1.5 MHz, VC2 =  
93.75 kHz, VC3 = 0.366 kHz.  
IDD  
Supply Current, IMO = 24 MHz  
4
mA  
Document Number:001-06161 Rev. *A  
Page 14 of 24  
[+] Feedback  
PRELIMINARY  
CY8C21323  
Table 8. DC Chip-Level Specifications (continued)  
Symbol  
ISB  
Description  
Min  
Typ.  
Max  
12  
Units  
μA  
Notes  
Sleep (Mode) Current with POR, LVD, Sleep  
Timer, WDT, and internal slow oscillator active.  
5
5
Vdd = 5.25V, -40oC TA 55oC.  
ISBH  
Sleep (Mode) Current with POR, LVD, Sleep  
Timer, WDT, and internal slow oscillator active.  
100  
μA  
V
Vdd = 5.25V, 55oC TA 125oC.  
VREF  
AGND  
Reference Voltage (Bandgap)  
1.28  
1.30  
1.32  
Trimmed for appropriate Vdd.  
Vdd = 4.75V to 5.25V.  
Analog Ground  
VREF  
VREF  
VREF  
V
- 0.003  
+ 0.003  
DC General Purpose IO Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 125°C. Typical parameters apply to 5V at 25°C and are for design guidance only.  
Table 9. DC GPIO Specifications  
Symbol  
RPU  
Description  
Min  
Typ.  
5.6  
Max  
Units  
kΩ  
Notes  
Pull up Resistor  
4
4
8
8
RPD  
VOH  
Pull down Resistor  
High Output Level  
5.6  
kΩ  
3.5  
V
IOH = 10 mA, Vdd = 4.75 to  
5.25V (8 total loads, 4 on even  
port pins (for example, P0[2],  
P1[4]), 4 on odd port pins (for  
example, P0[3], P1[5])). 80 mA  
maximum combined IOH budget.  
VOL  
Low Output Level  
0.75  
0.8  
V
IOL = 25 mA, Vdd = 4.75 to 5.25V  
(8 total loads, 4 on even port pins  
(for example, P0[2], P1[4]), 4 on  
odd port pins (for example, P0[3],  
P1[5])). 150 mA maximum  
combined IOL budget.  
VIL  
VIH  
VH  
IIL  
Input Low Level  
V
Vdd = 4.75 to 5.25.  
Vdd = 4.75 to 5.25.  
Input High Level  
2.1  
V
Input Hysteresis  
60  
1
mV  
nA  
pF  
Input Leakage (Absolute Value)  
Capacitive Load on Pins as Input  
Gross tested to 1 μA.  
CIN  
3.5  
10  
Package and pin dependent.  
Temp = 25oC.  
COUT  
Capacitive Load on Pins as Output  
3.5  
10  
pF  
Package and pin dependent.  
Temp = 25oC.  
DC Amplifier Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 125°C. Typical parameters apply to 5V at 25°C and are for design guidance only.  
Table 10. DC Amplifier Specifications  
Symbol  
VOSOA  
Description  
Min  
Typ.  
2.5  
Max  
15  
Units  
mV  
μV/oC  
Notes  
Input Offset Voltage (absolute value)  
TCVOSOA Average Input Offset Voltage Drift  
10  
IEBOA  
CINOA  
Input Leakage Current (Port 0 Analog Pins)  
Input Capacitance (Port 0 Analog Pins)  
200  
4.5  
pA  
Gross tested to 1 μA.  
9.5  
pF  
Package and pin dependent.  
Temp = 25oC.  
Document Number:001-06161 Rev. *A  
Page 15 of 24  
[+] Feedback  
PRELIMINARY  
CY8C21323  
Table 10. DC Amplifier Specifications (continued)  
Symbol  
VCMOA  
Description  
Min  
0.0  
Typ.  
Max  
Units  
Notes  
Common Mode Voltage Range  
Vdd - 1 V  
GOLOA  
ISOA  
Open Loop Gain  
80  
10  
dB  
Amplifier Supply Current  
100  
μA  
DC POR and LVD Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 125°C. Typical parameters apply to 5V at 25°C and are for design guidance only.  
Table 11. DC POR and LVD Specifications  
Symbol  
Description  
Vdd Value for PPOR Trip  
PORLEV[1:0] = 10b  
Min  
Typ.  
4.55  
Max  
4.70  
Units  
Notes  
Vdd must be greater than or  
equal to 2.5V during startup,  
reset from the XRES pin, or reset  
from Watchdog.  
VPPOR2  
V
Vdd Value for LVD Trip  
VM[2:0] = 110b  
VM[2:0] = 111b  
VLVD6  
VLVD7  
4.62  
4.71  
4.73  
4.81  
4.83  
4.95  
V
V
DC Programming Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 125°C. Typical parameters apply to 5V at 25°C and are for design guidance only.  
Table 12. DC Programming Specifications  
Symbol  
Description  
Min  
4.75  
Typ.  
Max  
Units  
Notes  
VddIWRITE Supply Voltage for Flash Write Operations  
5
V
IDDP  
VILP  
Supply Current During Programming or Verify  
25  
mA  
V
Input Low Voltage During Programming or  
Verify  
0.8  
VIHP  
IILP  
Input High Voltage During Programming or  
Verify  
2.2  
V
Input Current when Applying Vilp to P1[0] or  
P1[1] During Programming or Verify  
0.2  
1.5  
mA  
mA  
V
Driving internal pull down  
resistor.  
IIHP  
Input Current when Applying Vihp to P1[0] or  
P1[1] During Programming or Verify  
Driving internal pull down  
resistor.  
VOLV  
VOHV  
Output Low Voltage During Programming or  
Verify  
Vss +  
0.75  
Output High Voltage During Programming or  
Verify  
3.5  
Vdd  
V
Flash Endurance (per block)[3]  
FlashENPB  
FlashENT  
FlashDR  
100  
64000  
15  
Erase/write cycles per block.  
Erase/write cycles.0  
0
0
0
Flash Endurance (total)[3], [4]  
Flash Data Retention[5]  
Years  
Notes  
3. For the full temperature range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing.  
Refer to the Flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more information  
4. A maximum of 36 x 100 block endurance cycles is allowed.  
5. Flash data retention based on the use condition of 7000 hours at T 125°C and the remaining time at T 65°C.  
A
A
Document Number:001-06161 Rev. *A  
Page 16 of 24  
[+] Feedback  
PRELIMINARY  
CY8C21323  
AC Electrical Characteristics  
AC Chip-Level Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 125°C. Typical parameters apply to 5V at 25°C and are for design guidance only..  
Table 13. AC Chip-Level Specifications  
Symbol  
FIMO24  
FCPU1  
FBLK5  
Description  
Min  
Typ.  
24  
Max  
24.6  
Units  
MHz  
Notes  
Internal Main Oscillator Frequency for 24 MHz 23.4  
CPU Frequency (5V Nominal)  
Digital PSoC Block Frequency0(5V Nominal)  
0.09  
0
12  
24  
12.48 MHz  
24.96 MHz  
Refer to the AC Digital Block  
Specifications below.  
F32K1  
Internal Low Speed Oscillator Frequency  
32 kHz RMS Period Jitter  
15  
32  
100  
250  
64  
600  
kHz  
ns  
Jitter32k  
Jitter32k  
TXRST  
32 kHz Peak-to-Peak Period Jitter  
External Reset Pulse Width  
24 MHz Duty Cycle  
ns  
10  
40  
μs  
DC24M  
Step24M  
50  
50  
600  
60  
%
24 MHz Trim Step Size  
kHz  
ps  
Jitter24M1 24 MHz Peak-to-Peak Period Jitter (IMO)  
FMAX  
Maximum frequency of signal on row input or  
row output.  
12.48 MHz  
TRAMP  
Supply Ramp Time  
0
μs  
Figure 5. 24 MHz Period Jitter (IMO) Timing Diagram  
Jitter24M1  
F24M  
Figure 6. 32 kHz Period Jitter (ILO) Timing Diagram  
Jitter32k  
F32K1  
Document Number:001-06161 Rev. *A  
Page 17 of 24  
[+] Feedback  
PRELIMINARY  
CY8C21323  
AC General Purpose IO Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 125°C. Typical parameters apply to 5V at 25°C and are for design guidance only.  
Table 14. AC GPIO Specifications  
Symbol  
FGPIO  
Description  
Min  
Typ.  
Max  
12.48  
22  
Units  
MHz  
ns  
Notes  
GPIO Operating Frequency  
0
Normal Strong Mode  
TRiseF  
TFallF  
Rise Time, Normal Strong Mode, Cload = 50 pF 2  
Fall Time, Normal Strong Mode, Cload = 50 pF 2  
Vdd = 4.75 to 5.25V, 10% - 90%  
Vdd = 4.75 to 5.25V, 10% - 90%  
Vdd = 4.75 to 5.25V, 10% - 90%  
Vdd = 4.75 to 5.25V, 10% - 90%  
22  
ns  
TRiseS  
TFallS  
Rise Time, Slow Strong Mode, Cload = 50 pF  
Fall Time, Slow Strong Mode, Cload = 50 pF  
7
7
27  
22  
ns  
ns  
Figure 7. GPIO Timing Diagram  
90%  
10%  
GPIO  
Pin  
TRiseF  
TRiseS  
TFallF  
TFallS  
AC Amplifier Specifications  
The following table list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and  
-40°C TA 125°C. Typical parameters apply to 5V at 25°C and are for design guidance only.  
Settling times, slew rates, and gain bandwidth are based on the Analog Continuous Time PSoC block.  
Table 15. AC Amplifier Specifications  
Symbol  
Description  
Min  
Typ.  
Max  
150  
Units  
ns  
Notes  
TCOMP1  
Comparator Mode Response Time, 50 mVpp  
Signal Centered on Ref  
AC Digital Block Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 125°C. Typical parameters apply to 5V at 25°C and are for design guidance only.  
Table 16. AC Digital Block Specifications  
Function  
Description  
Min  
Typ.  
Max  
Units  
Notes  
All  
Maximum Block Clocking Frequency (> 4.75V)  
24.96 MHz  
4.75V < Vdd < 5.25V.  
Functions  
Timer  
Capture Pulse Width  
50[6]  
ns  
Maximum Frequency, No Capture  
Maximum Frequency, With or Without Capture  
24.96 MHz  
24.96 MHz  
4.75V < Vdd < 5.25V.  
4.75V < Vdd < 5.25V.  
Counter Enable Pulse Width  
Maximum Frequency, No Enable Input  
50  
ns  
24.96 MHz  
24.96 MHz  
Maximum Frequency, Enable Input  
Document Number:001-06161 Rev. *A  
Page 18 of 24  
[+] Feedback  
PRELIMINARY  
CY8C21323  
Table 16. AC Digital Block Specifications (continued)  
Function  
Description  
Min  
20  
Typ.  
Max  
Units  
ns  
Notes  
Dead  
Band  
Kill Pulse Width:  
Asynchronous Restart Mode  
Synchronous Restart Mode  
Disable Mode  
50  
50  
ns  
ns  
Maximum Frequency  
24.96 MHz  
24.96 MHz  
4.75V < Vdd < 5.25V.  
CRCPRS Maximum Input Clock Frequency  
4.75V < Vdd < 5.25V.  
(PRS  
Mode)  
CRCPRS Maximum Input Clock Frequency  
(CRC  
Mode)  
24.96 MHz  
SPIM  
Maximum Input Clock Frequency  
Maximum Input Clock Frequency  
4.1  
MHz  
Maximum data rate at 4.1 MHz due  
to 2 x over clocking.  
SPIS  
2.05  
MHz  
ns  
Width of SS_ Negated Between Transmissions 50  
Trans-  
mitter  
Maximum Input Clock Frequency  
8.2  
MHz  
Maximum data rate at 3.08 MHz due to 8  
x over clocking.  
Receiver Maximum Input Clock Frequency  
24.96 MHz  
Maximum data rate at 3.08 MHz due to 8  
x over clocking.  
AC External Clock Specifications  
The following table list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and  
-40°C TA 125°C. Typical parameters apply to 5V at 25°C and are for design guidance only.  
Table 17. AC External Clock Specifications  
Symbol  
Description  
Min  
0.093  
20.6  
Typ.  
Max  
24.24  
5300  
Units  
MHz  
Notes  
FOSCEXT Frequency  
High Period  
Low Period  
ns  
ns  
μs  
20.6  
Power Up IMO to Switch  
150  
AC Programming Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 125°C. Typical parameters apply to 5V at 25°C and are for design guidance only.  
Table 18. AC Programming Specifications  
Symbol  
TRSCLK  
TFSCLK  
TSSCLK  
THSCLK  
FSCLK  
Description  
Rise Time of SCLK  
Min  
Typ.  
Max  
20  
Units  
ns  
Notes  
1
1
Fall Time of SCLK  
20  
ns  
Data Set up Time to Falling Edge of SCLK  
Data Hold Time from Falling Edge of SCLK  
Frequency of SCLK  
40  
40  
0
ns  
ns  
8
MHz  
ms  
ms  
ns  
TERASEB Flash Erase Time (Block)  
15  
30  
TWRITE  
TDSCLK  
Flash Block Write Time  
Data Out Delay from Falling Edge of SCLK  
50  
Note  
6. 50 ns minimum input pulse width is based on the input synchronizers running at 12 MHz (84 ns nominal period).  
Document Number:001-06161 Rev. *A  
Page 19 of 24  
[+] Feedback  
PRELIMINARY  
CY8C21323  
2
AC I C Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 125°C. Typical parameters apply to 5V at 25°C and are for design guidance only.  
Table 19. AC Characteristics of the I2C SDA and SCL Pins for Vcc 4.75V  
Standard Mode  
Min Max  
100  
Fast Mode  
Min Max  
Symbol  
Description  
Units  
kHz  
Notes  
FSCLI2C SCL Clock Frequency  
THDSTAI2 Hold Time (repeated) START Condition. After 4.0  
this period, the first clock pulse is generated.  
0
0
400  
0.6  
μs  
C
TLOWI2C LOW Period of the SCL Clock  
THIGHI2C HIGH Period of the SCL Clock  
4.7  
4.0  
1.3  
0.6  
0.6  
μs  
μs  
μs  
TSUSTAI2 Set up Time for a Repeated START Condition 4.7  
C
THDDATI2 Data Hold Time  
C
TSUDATI2 Data Set up Time0  
C
0
0
μs  
ns0  
μs  
μs  
ns  
2500  
4.0  
0
0
100[7]  
0.6  
TSUSTOI2 Set up Time for STOP Condition  
C
TBUFI2C Bus Free Time Between a STOP and START 4.7  
Condition  
1.3  
0
TSPI2C  
Pulse Width of spikes are suppressed by the –  
input filter.  
50  
Figure 8. Definition for Timing for Fast/Standard Mode on the I2C Bus  
SDA  
TSPI2C  
TLOWI2C  
TSUDATI2C  
THDSTAI2C  
TBUFI2C  
SCL  
Note  
7. A Fast-Mode I2C-bus device can be used in a Standard-Mode I2C-bus system, but the requirement tSU;DAT Š 250 ns must then be met. This is automatically the  
case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit  
to the SDA line trmax + tSU;DAT = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.  
Document Number:001-06161 Rev. *A  
Page 20 of 24  
[+] Feedback  
PRELIMINARY  
CY8C21323  
Packaging Information  
This section illustrates the packaging specifications for the CY8C21323 PSoC device, along with the thermal impedances for each  
package and minimum solder reflow peak temperature.  
Important Note Emulation tools may require a larger area on the target PCB than the chip’s footprint. For a detailed description of  
the emulation tools’ dimensions, refer to the document titled PSoC Emulator Pod Dimensions at  
http://www.cypress.com/design/MR10161.  
Packaging Dimensions  
Figure 9. 20-Pin (210-MIL) SSOP  
51-85077 *C  
Document Number:001-06161 Rev. *A  
Page 21 of 24  
[+] Feedback  
PRELIMINARY  
CY8C21323  
Thermal Impedances  
Table 20. Thermal Impedances per Package  
[8]  
Package  
Typical θJA  
117 oC/W  
20 SSOP  
Solder Reflow Peak Temperature  
Following is the minimum solder reflow peak temperature to achieve good solderability.  
Table 21. Solder Reflow Peak Temperature  
Minimum Peak Temperature[9] Maximum Peak Temperature  
Package  
20 SSOP  
240oC  
260oC  
Notes  
8. TJ = TA + POWER x θJA  
9. Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220+/-5oC with Sn-Pb or 245+/-5oC with Sn-Ag-Cu  
paste. Refer to the solder manufacturer specifications.  
Document Number:001-06161 Rev. *A  
Page 22 of 24  
[+] Feedback  
PRELIMINARY  
CY8C21323  
Ordering Information  
The following table lists the CY8C21323 PSoC device’s key package features and ordering codes.  
Table 22. PSoC Device Key Features and Ordering Information  
20 Pin (210-Mil) SSOP  
CY8C21334-12PVXE  
8K  
512  
512  
-40°C to +125°C  
-40°C to +125°C  
4
4
4
4
16  
16  
16  
16  
0
0
Yes  
Yes  
20 Pin (210-Mil) SSOP  
(Tape and Reel)  
CY8C21334-12PVXET 8K  
8 Pin (300 Mil) DIP  
8 Pin (150 Mil) SOIC  
CY8C22113-24PI  
CY8C22113-24SI  
CY8C22113-24SIT  
2
2
2
256  
256  
256  
No -40°C to +85°C  
No -40°C to +85°C  
4
4
4
3
3
3
6
6
6
4
4
4
1
1
1
No  
No  
No  
8 Pin (150 Mil) SOIC  
(Tape and Reel)  
No  
-40°C to +85°C  
20 Pin (300 Mil) DIP  
CY8C22213-24PI  
CY8C22213-24PVI  
CY8C22213-24PVIT  
2
2
2
256  
256  
256  
No -40°C to +85°C  
No -40°C to +85°C  
4
4
4
3
3
3
16  
16  
16  
10  
10  
10  
1
1
1
Yes  
Yes  
Yes  
20 Pin (210 Mil) SSOP  
20 Pin (210 Mil) SSOP  
(Tape and Reel)  
No  
-40°C to +85°C  
32 Pin (5x5 mm) MLF  
CY8C22213-24LFI  
2
256  
No -40°C to +85°C  
4
3
16  
10  
1
Yes  
Note For Die sales information, contact a local Cypress sales office, or a Field Applications Engineer (FAE).  
Ordering Code Definitions  
CY 8 C 21 xxx-12xx  
Package Type:  
Thermal Rating:  
C = Commercial  
I = Industrial  
PX = PDIP Pb-Free  
SX = SOIC Pb-Free  
PVX = SSOP Pb-Free  
LFX = QFN Pb-Free  
AX = TQFP Pb-Free  
E = Extended  
Speed: 12 MHz  
Part Number  
Family Code  
Technology Code: C = CMOS  
Marketing Code: 8 = Cypress PSoC  
Company ID: CY = Cypress  
Document Number:001-06161 Rev. *A  
Page 23 of 24  
[+] Feedback  
PRELIMINARY  
CY8C21323  
Document History Page  
Document Title: CY8C21323 Automotive PSoC® Programmable System-on-Chip™  
Document Number:001-06161  
Orig. of  
Change  
Submission  
Date  
Revision  
**  
*A  
ECN  
Description of Change  
New silicon and document (Revision **).  
414127  
HMT  
02/05/06  
2641945 OGNE/PYRS 01/21/09  
Changed 25 mA Drive on All GPIO under Programmable Pin Configurations to  
25 mA Sink, 10 mA Drive on All GPIO  
Changed Analog-to-digital converters (single or dual, with 8-bit or 10-bit  
resolution) to Analog-to-digital converters (single or dual, with up to 10-bit  
resolution)  
Updated template.  
Added Note in Ordering Information section.  
Changed title from PSoC Mixed-Signal Array to PSoC  
Programmable System-on-Chip  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at cypress.com/sales.  
Products  
PSoC  
PSoC Solutions  
General  
psoc.cypress.com  
clocks.cypress.com  
wireless.cypress.com  
memory.cypress.com  
image.cypress.com  
psoc.cypress.com/solutions  
psoc.cypress.com/low-power  
psoc.cypress.com/precision-analog  
psoc.cypress.com/lcd-drive  
psoc.cypress.com/can  
Clocks & Buffers  
Wireless  
Low Power/Low Voltage  
Precision Analog  
LCD Drive  
Memories  
Image Sensors  
CAN 2.0b  
USB  
psoc.cypress.com/usb  
© Cypress Semiconductor Corporation, 2005-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number:001-06161 Rev. *A  
Revised January 21, 2009  
Page 24 of 24  
PSoC Designer™, Programmable System-on-Chip™, and PSoC Express™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered  
trademarks referenced herein are property of the respective corporations. Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the  
Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
All products and company names mentioned in this document may be the trademarks of their respective holders.  
[+] Feedback  

相关型号:

CY8C22213-24PXI

Multifunction Peripheral, CMOS, PDIP20, 0.300 INCH, PLASTIC, DIP-20
CYPRESS

CY8C22213-24SI

PSoC Mixed Signal Array
CYPRESS

CY8C22213-24SIT

PSoC Mixed Signal Array
CYPRESS

CY8C22213-24SXI

Multifunction Peripheral, CMOS, PDSO20, 0.300 INCH, MO-119, SOIC-20
CYPRESS

CY8C22213A-24LFXI

Microcontroller, 8-Bit, FLASH, M8C CPU, 24MHz, CMOS, PQCC32,
CYPRESS

CY8C22213A-24PVXI

Microcontroller, 8-Bit, FLASH, M8C CPU, 24MHz, CMOS, PDSO20,
CYPRESS

CY8C22213A-24PVXIT

Microcontroller, 8-Bit, FLASH, M8C CPU, 24MHz, CMOS, PDSO20,
CYPRESS

CY8C22213A-24PXI

Microcontroller, 8-Bit, FLASH, M8C CPU, 24MHz, CMOS, PDIP20,
CYPRESS

CY8C22213A-24SXI

Microcontroller, 8-Bit, FLASH, M8C CPU, 24MHz, CMOS, PDSO20,
CYPRESS

CY8C22213A-24SXIT

Microcontroller, 8-Bit, FLASH, M8C CPU, 24MHz, CMOS, PDSO20,
CYPRESS

CY8C22345

PSoC Programmable System-on-Chip
CYPRESS

CY8C22345-12PVXE

Automotive PSoC? Programmable System-on-Chip?
CYPRESS