CY8C24423A-24PVXAT [CYPRESS]

Automotive PSoC Programmable System-on-Chip; 汽车的PSoC可编程系统级芯片
CY8C24423A-24PVXAT
型号: CY8C24423A-24PVXAT
厂家: CYPRESS    CYPRESS
描述:

Automotive PSoC Programmable System-on-Chip
汽车的PSoC可编程系统级芯片

多功能外围设备 微控制器和处理器 光电二极管 时钟
文件: 总36页 (文件大小:919K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY8C24423A  
Automotive PSoC®  
Programmable System-on-Chip  
Additional System Resources  
Features  
I2C™ Slave, Master, or Multi-Master operation up to 400 kHz  
Watchdog and Sleep Timers  
AEC Qualified  
User-Configurable Low Voltage Detection  
Integrated Supervisory Circuit  
On-Chip Precision Voltage Reference  
Powerful Harvard Architecture Processor  
M8C Processor Speeds up to 24 MHz  
8x8 Multiply, 32-Bit Accumulate  
Low Power at High Speed  
3.0V to 5.25V Operating Voltage  
Automotive Temperature Range: -40°C to +85°C  
Complete Development Tools  
Free Development Software (PSoC Designer™)  
Full Featured, In-Circuit Emulator and Programmer  
Full Speed Emulation  
Complex Breakpoint Structure  
128K Bytes Trace Memory  
Advanced Peripherals (PSoC® Blocks)  
Six Rail-to-Rail Analog PSoC Blocks Provide:  
• Up to 14-Bit ADCs  
• Up to 9-Bit DACs  
• Programmable Gain Amplifiers  
• Programmable Filters and Comparators  
Four Digital PSoC Blocks Provide:  
• 8- to 32-Bit Timers, Counters, and PWMs  
• CRC and PRS Modules  
Logic Block Diagram  
Analog  
Drivers  
Port 2 Port 1 Port 0  
PSoC CORE  
• Full- or Half-Duplex UART  
System Bus  
• SPI Master or Slave  
• Connectable to all GPIO Pins  
Complex Peripherals by Combining Blocks  
Global Digital Interconnect  
Global Analog Interconnect  
Flash 4K  
SRAM  
SROM  
Precision, Programmable Clocking  
256 Bytes  
Internal ±5% 24/48 MHz Oscillator  
High Accuracy 24 MHz with Optional 32 kHz Crystal and PLL  
Optional External Oscillator, up to 24 MHz  
Internal Low Speed, Low Power Oscillator for Watchdog and  
Sleep Functionality  
Sleep and  
Watchdog  
CPU Core (M8C)  
Interrupt  
Controller  
Multiple Clock Sources  
(Includes IMO, ILO, PLL, and ECO)  
Flexible On-Chip Memory  
DIGITAL SYSTEM  
ANALOG SYSTEM  
4K Bytes Flash Program Storage, 1000 Erase/Write Cycles  
256 Bytes SRAM Data Storage  
In-System Serial Programming (ISSP)  
Partial Flash Updates  
Flexible Protection Modes  
EEPROM Emulation in Flash  
Analog  
Ref  
Digital  
Block  
Array  
Analog  
Block  
Array  
Analog  
Input  
Muxing  
(1 Row,  
4 Blocks)  
(2 Columns,  
6 Blocks)  
Programmable Pin Configurations  
25 mA Sink, 10 mA Drive on All GPIO  
Pull Up, Pull Down, High Z, Strong, or Open Drain Drive  
Modes on All GPIO  
Up to 12 Analog Inputs on GPIO[1]  
Two 30 mA Analog Outputs on GPIO  
Configurable Interrupt on All GPIO  
POR and LVD  
System Resets  
Internal  
Voltage  
Ref.  
Digital  
Clocks  
Multiply  
Accum.  
Decimator  
I2C  
SYSTEM RESOURCES  
Note  
1. There are eight standard analog inputs on the GPIO. The other four analog inputs connect from the GPIO directly to specific switched-capacitor block inputs. See  
the PSoC Technical Reference Manual for more details.  
Cypress Semiconductor Corporation  
Document Number: 001-52469 Rev. *C  
198 Champion Court  
San Jose  
,
CA 95134-1709  
408-943-2600  
Revised July 22, 2009  
[+] Feedback  
CY8C24423A  
Digital System  
PSoC Functional Overview  
The Digital System is composed of four digital PSoC blocks.  
Each block is an 8-bit resource that can be used alone or  
combined with other blocks to form 8, 16, 24, and 32-bit  
peripherals, which are called user modules.  
The PSoC family consists of many programmable  
system-on-chips with on-chip Controller devices. These devices  
are designed to replace multiple traditional MCU-based system  
components with one, low cost single-chip programmable  
device. PSoC devices include configurable blocks of analog and  
digital logic, and programmable interconnects. This architecture  
enables the user to create customized peripheral configurations  
that match the requirements of each individual application.  
Additionally, a fast CPU, Flash program memory, SRAM data  
memory, and configurable I/O are included in a range of  
convenient pinouts and packages.  
Figure 1. Digital System Block Diagram  
Port 1  
Port 2  
Port 0  
To System Bus  
Digital Clocks  
From Core  
To Analog  
System  
The PSoC architecture, as shown in the Logic Block Diagram on  
page 1, is comprised of four main areas: PSoC Core, Digital  
System, Analog System, and System Resources. Configurable  
global buses allow all the device resources to be combined into  
a complete custom system. Each CY8C24x23A PSoC device  
includes four digital blocks and six analog blocks. Depending on  
the PSoC package, up to 24 general purpose I/O (GPIO) are also  
included. The GPIO provide access to the global digital and  
analog interconnects.  
DIGITAL SYSTEM  
Digital PSoC Block Array  
Row 0  
8
4
8
8
8
DBB00  
DBB01  
DCB02  
DCB03  
4
PSoC Core  
GIE[7:0]  
GIO[7:0]  
GOE[7:0]  
GOO[7:0]  
Global Digital  
Interconnect  
The PSoC Core is a powerful engine that supports a rich feature  
set. The core includes a CPU, memory, clocks, and configurable  
GPIO (General Purpose I/O).  
The M8C CPU core is a powerful processor with speeds up to  
24 MHz, providing a four MIPS 8-bit Harvard architecture  
microprocessor. The CPU uses an interrupt controller with  
multiple vectors, to simplify programming of real time embedded  
events. Program execution is timed and protected using the  
included Sleep Timer and Watchdog Timer (WDT).  
Digital peripheral configurations include:  
PWMs (8 to 32 bit)  
PWMs with Dead Band (8 to 24 bit)  
Counters (8 to 32 bit)  
Memory includes 4 KB of Flash for program storage and 256  
bytes of SRAM for data storage. Program Flash uses four  
protection levels on blocks of 64 bytes, allowing customized  
software IP protection.  
Timers (8 to 32 bit)  
Full or Half-Duplex 8-bit UART with selectable parity  
SPI master and slave  
The PSoC device incorporates flexible internal clock generators,  
including a 24 MHz IMO (internal main oscillator) accurate to  
±5% over temperature and voltage. A low power 32 kHz ILO  
(internal low speed oscillator) is provided for the Sleep Timer and  
WDT. If crystal accuracy is desired, the ECO (32.768 kHz  
external crystal oscillator) is available for use as a Real Time  
Clock (RTC) and can optionally generate a crystal-accurate 24  
MHz system clock using a PLL. The clocks, together with  
programmable clock dividers (as a System Resource), provide  
the flexibility to integrate almost any timing requirement into the  
PSoC device.  
I2C master, slave, or multi-master  
Cyclical Redundancy Checker/Generator (16 bit)  
IrDA  
Pseudo Random Sequence Generators (8 to 32 bit)  
The digital blocks can be connected to any GPIO through a  
series of global buses that can route any signal to any pin. The  
buses also allow for signal multiplexing and for performing logic  
operations. This configurability frees your designs from the  
constraints of a fixed peripheral controller.  
PSoC GPIOs provide connection to the CPU, digital, and analog  
resources of the device. Each pin’s drive mode may be selected  
from eight options, allowing great flexibility in external inter-  
facing. Every pin also has the capability to generate a system  
interrupt.  
Digital blocks are provided in rows of four, where the number of  
blocks varies by PSoC device family. This allows the optimum  
choice of system resources for your application. Family  
resources are shown in Table 1 on page 4.  
Document Number: 001-52469 Rev. *C  
Page 2 of 36  
[+] Feedback  
CY8C24423A  
Figure 2. Analog System Block Diagram  
Analog System  
The Analog System is composed of six configurable blocks, each  
comprised of an opamp circuit allowing the creation of complex  
analog signal flows. Analog peripherals are very flexible and can  
be customized to support specific application requirements.  
Some of the common PSoC analog functions for this device  
(most available as user modules) are:  
P0[7]  
P0[5]  
P0[6]  
P0[4]  
P0[3]  
P0[1]  
P0[2]  
P0[0]  
Analog-to-digital converters (up to two, with 6 to 14-bit  
resolution, selectable as Incremental, Delta-Sigma, and SAR)  
P2[6]  
P2[4]  
Filters (two and four pole band-pass, low-pass, and notch)  
Amplifiers (up to two, with selectable gain up to 48x)  
Instrumentation amplifiers (one with selectable gain up to 93x)  
Comparators (up to two, with 16 selectable thresholds)  
DACs (up to two, with 6 to 9-bit resolution)  
Multiplying DACs (up to two, with 6 to 9-bit resolution)  
High current output drivers (two with 30 mA drive)  
1.3V reference (as a System Resource)  
DTMF Dialer  
P2[3]  
P2[1]  
P2[2]  
P2[0]  
Array Input Configuration  
ACI0[1:0]  
ACI1[1:0]  
Modulators  
Correlators  
Peak Detectors  
Block Array  
ACB00 ACB01  
Many other topologies possible  
Analog blocks are arranged in a column of three, which includes  
one CT (Continuous Time) and two SC (Switched Capacitor)  
blocks, as shown in Figure 2.  
ASC10  
ASD20  
ASD11  
ASC22  
Analog Reference  
Interface to  
Digital System  
Reference  
Generators  
RefHi  
RefLo  
AGND  
AGNDIn  
RefIn  
BandGap  
M8C Interface (Address Bus, Data Bus, Etc.)  
Document Number: 001-52469 Rev. *C  
Page 3 of 36  
[+] Feedback  
CY8C24423A  
Additional System Resources  
Getting Started  
System Resources, some of which have been previously listed,  
provide additional capability useful for complete systems.  
Additional resources include a multiplier, decimator, low voltage  
detection, and power on reset. Brief statements describing the  
merits of each system resource follow:  
The quickest way to understand PSoC silicon is to read this data  
sheet and then use the PSoC Designer Integrated Development  
Environment (IDE). This data sheet is an overview of the PSoC  
integrated circuit and presents specific pin, register, and  
electrical specifications.  
Digital clock dividers provide three customizable clock  
frequencies for use in applications. The clocks can be routed  
to both the digital and analog systems. Additional clocks can  
be generated using digital PSoC blocks as clock dividers.  
For in depth information, along with detailed programming  
details, see the PSoC® Programmable System-on-Chip  
Technical Reference Manual for CY8C24x23A PSoC devices.  
For up-to-date ordering, packaging, and electrical specification  
information, see the latest PSoC device data sheets on the web  
at www.cypress.com/psoc.  
A multiply accumulate (MAC) provides a fast 8-bit multiplier  
with 32-bit accumulate, to assist in both general math as well  
as digital filters.  
Application Notes  
The decimator provides a custom hardware filter for digital  
signal processing applications including the creation of Delta  
Sigma ADCs.  
Application notes are an excellent introduction to the wide variety  
of possible PSoC designs. They are located here:  
www.cypress.com/psoc. Select Application Notes under the  
Documentation tab.  
The I2C module provides 0 to 400 kHz communication over two  
wires. Slave, master, and multi-master modes are all  
supported.  
Development Kits  
PSoC Development Kits are available online from Cypress at  
www.cypress.com/shop and through a growing number of  
regional and global distributors, which include Arrow, Avnet,  
Digi-Key, Farnell, Future Electronics, and Newark.  
Low Voltage Detection (LVD) interrupts can signal the  
application of falling voltage levels, while the advanced POR  
(Power On Reset) circuit eliminates the need for a system  
supervisor.  
Training  
An internal 1.3V voltage reference provides an absolute  
reference for the analog system, including ADCs and DACs.  
Free PSoC technical training (on demand, webinars, and  
workshops) is available online at www.cypress.com/training. The  
PSoC Device Characteristics  
training covers a wide variety of topics and skill levels to assist  
you in your designs.  
Depending on your PSoC device characteristics, the digital and  
analog systems can have a varying number of digital and analog  
blocks. The following table lists the resources available for  
specific PSoC device groups. The PSoC device covered by this  
data sheet is highlighted in Table 1.  
CYPros Consultants  
Certified PSoC Consultants offer everything from technical  
assistance to completed PSoC designs. To contact or become a  
PSoC Consultant go to www.cypress.com/cypros.  
Table 1. PSoC Device Characteristics  
Solutions Library  
PSoC Part  
Number  
Visit our growing library of solution focused designs at  
www.cypress.com/solutions. Here you can find various appli-  
cation designs that include firmware and hardware design files  
that enable you to complete your designs quickly.  
[2]  
CY8C29x66  
CY8C27x43  
up to  
64  
4
2
16  
8
12  
12  
4
4
4
4
12  
12  
2K  
32K  
16K  
up to  
44  
256  
Bytes  
Technical Support  
CY8C24x94  
64  
1
1
4
4
48  
12  
2
2
2
2
6
6
1K  
16K  
4K  
[2]  
For assistance with technical issues, search KnowledgeBase  
articles and forums at www.cypress.com/support. If you cannot  
find an answer to your question, call technical support at  
1-800-541-4736.  
CY8C24x23A  
up to  
24  
256  
Bytes  
CY8C23x33  
up to  
1
1
1
0
4
4
4
0
12  
28  
8
2
0
0
0
2
2
2
0
4
256  
Bytes  
8K  
8K  
4K  
8K  
[2]  
[3]  
CY8C21x34  
CY8C21x23  
CY8C20x34  
up to  
28  
4
4
3
512  
Bytes  
[3]  
16  
256  
Bytes  
[3, 4]  
up to  
28  
28  
512  
Bytes  
Notes  
2. Automotive qualified devices available in this group.  
3. Limited analog functionality.  
4. Two analog blocks and one CapSense™ block.  
Document Number: 001-52469 Rev. *C  
Page 4 of 36  
[+] Feedback  
CY8C24423A  
Code Generation Tools  
Development Tools  
PSoC Designer supports multiple third party C compilers and  
assemblers. The code generation tools work seamlessly within  
the PSoC Designer interface and have been tested with a full  
range of debugging tools. The choice is yours.  
PSoC Designer is a Microsoft® Windows-based, integrated  
development  
environment  
for  
the  
Programmable  
System-on-Chip (PSoC) devices. The PSoC Designer IDE runs  
on Windows XP or Windows Vista.  
This system provides design database management by project,  
an integrated debugger with In-Circuit Emulator, in-system  
programming support, and built-in support for third-party  
assemblers and C compilers.  
Assemblers. The assemblers allow assembly code to merge  
seamlessly with C code. Link libraries automatically use absolute  
addressing or are compiled in relative mode, and linked with  
other software modules to get absolute addressing.  
PSoC Designer also supports C language compilers developed  
specifically for the devices in the PSoC family.  
C Language Compilers. C language compilers are available  
that support the PSoC family of devices. The products allow you  
to create complete C programs for the PSoC family devices.  
PSoC Designer Software Subsystems  
System-Level View  
The optimizing C compilers provide all the features of C tailored  
to the PSoC architecture. They come complete with embedded  
libraries providing port and bus operations, standard keypad and  
display support, and extended math functionality.  
A drag-and-drop visual embedded system design environment  
based on PSoC Express. In the system level view you create a  
model of your system inputs, outputs, and communication inter-  
faces. You define when and how an output device changes state  
based upon any or all other system devices. Based upon the  
design, PSoC Designer automatically selects one or more PSoC  
On-Chip Controllers that match your system requirements.  
Debugger  
The PSoC Designer Debugger subsystem provides hardware  
in-circuit emulation, allowing you to test the program in a physical  
system while providing an internal view of the PSoC device.  
Debugger commands allow the designer to read and program  
and read and write data memory, read and write I/O registers,  
read and write CPU registers, set and clear breakpoints, and  
provide program run, halt, and step control. The debugger also  
allows the designer to create a trace buffer of registers and  
memory locations of interest.  
PSoC Designer generates all embedded code, then compiles  
and links it into a programming file for a specific PSoC device.  
Chip-Level View  
The chip-level view is a more traditional integrated development  
environment (IDE) based on PSoC Designer 4.4. Choose a base  
device to work with and then select different onboard analog and  
digital components called user modules that use the PSoC  
blocks. Examples of user modules are ADCs, DACs, Amplifiers,  
and Filters. Configure the user modules for your chosen  
application and connect them to each other and to the proper  
pins. Then generate your project. This prepopulates your project  
with APIs and libraries that you can use to program your  
application.  
Online Help System  
The online help system displays online, context-sensitive help  
for the user. Designed for procedural and quick reference, each  
functional subsystem has its own context-sensitive help. This  
system also provides tutorials and links to FAQs and an Online  
Support Forum to aid the designer in getting started.  
In-Circuit Emulator  
The device editor also supports easy development of multiple  
configurations and dynamic reconfiguration. Dynamic  
configuration allows for changing configurations at run time.  
A low cost, high functionality ICE (In-Circuit Emulator) is  
available for development support. This hardware has the  
capability to program single devices.  
Hybrid Designs  
The emulator consists of a base unit that connects to the PC by  
way of a USB port. The base unit is universal and operates with  
all PSoC devices. Emulation pods for each device family are  
available separately. The emulation pod takes the place of the  
PSoC device in the target board and performs full speed (24  
MHz) operation.  
You can begin in the system-level view, allow it to choose and  
configure your user modules, routing, and generate code, then  
switch to the chip-level view to gain complete control over  
on-chip resources. All views of the project share a common code  
editor, builder, and common debug, emulation, and programming  
tools.  
Document Number: 001-52469 Rev. *C  
Page 5 of 36  
[+] Feedback  
CY8C24423A  
Organize and Connect  
Designing with PSoC Designer  
You can build signal chains at the chip level by interconnecting  
user modules to each other and the I/O pins, or connect system  
level inputs, outputs, and communication interfaces to each  
other with valuator functions.  
The development process for the PSoC device differs from that  
of a traditional fixed function microprocessor. The configurable  
analog and digital hardware blocks give the PSoC architecture a  
unique flexibility that pays dividends in managing specification  
change during development and by lowering inventory costs.  
These configurable resources, called PSoC Blocks, have the  
ability to implement a wide variety of user-selectable functions.  
In the system-level view, selecting a potentiometer driver to  
control a variable speed fan driver and setting up the valuators  
to control the fan speed based on input from the pot selects,  
places, routes, and configures a programmable gain amplifier  
(PGA) to buffer the input from the potentiometer, an analog to  
digital converter (ADC) to convert the potentiometer’s output to  
a digital signal, and a PWM to control the fan.  
The PSoC development process can be summarized in the  
following four steps:  
1. Select components  
2. Configure components  
3. Organize and Connect  
4. Generate, Verify, and Debug  
In the chip-level view, perform the selection, configuration, and  
routing so that you have complete control over the use of all  
on-chip resources.  
Generate, Verify, and Debug  
Select Components  
When you are ready to test the hardware configuration or move  
on to developing code for the project, perform the “Generate  
Application” step. This causes PSoC Designer to generate  
source code that automatically configures the device to your  
specification and provides the software for the system.  
Both the system-level and chip-level views provide a library of  
prebuilt, pretested hardware peripheral components. In the  
system-level view, these components are called “drivers” and  
correspond to inputs (a thermistor, for example), outputs (a  
brushless DC fan, for example), communication interfaces  
(I2C-bus, for example), and the logic to control how they interact  
with one another (called valuators).  
Both system-level and chip-level designs generate software  
based on your design. The chip-level design provides application  
programming interfaces (APIs) with high level functions to  
control and respond to hardware events at run-time and interrupt  
service routines that you can adapt as needed. The system-level  
design also generates a C main() program that completely  
controls the chosen application and contains placeholders for  
custom code at strategic positions allowing you to further refine  
the software without disrupting the generated code.  
In the chip-level view, the components are called “user modules”.  
User modules make selecting and implementing peripheral  
devices simple, and come in analog, digital, and mixed signal  
varieties.  
Configure Components  
Each of the components you select establishes the basic register  
settings that implement the selected function. They also provide  
parameters and properties that allow you to tailor their precise  
configuration to your particular application. For example, a Pulse  
Width Modulator (PWM) User Module configures one or more  
digital PSoC blocks, one for each 8 bits of resolution. The user  
module parameters permit you to establish the pulse width and  
duty cycle. Configure the parameters and properties to  
correspond to your chosen application. Enter values directly or  
by selecting values from drop-down menus.  
A complete code development environment allows you to  
develop and customize your applications in C, assembly  
language, or both.  
The last step in the development process takes place inside the  
PSoC Designer’s Debugger subsystem. The Debugger  
downloads the HEX image to the In-Circuit Emulator (ICE) where  
it runs at full speed. Debugger capabilities rival those of systems  
costing many times more. In addition to traditional single-step,  
run-to-breakpoint and watch-variable features, the Debugger  
provides a large trace buffer and allows you define complex  
breakpoint events that include monitoring address and data bus  
values, memory locations and external signals.  
Both the system-level drivers and chip-level user modules are  
documented in data sheets that are viewed directly in the PSoC  
Designer. These data sheets explain the internal operation of the  
component and provide performance specifications. Each data  
sheet describes the use of each user module parameter or driver  
property, and other information you may need to successfully  
implement your design.  
Document Number: 001-52469 Rev. *C  
Page 6 of 36  
[+] Feedback  
CY8C24423A  
Units of Measure  
Document Conventions  
A units of measure table is located in the Electrical Specifications  
section. Table 7 on page 12 lists all the abbreviations used to  
measure the PSoC devices.  
Acronyms Used  
The following table lists the acronyms that are used in this  
document.  
Numeric Naming  
Table 2. Acronyms  
Hexadecimal numbers are represented with all letters in  
uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or  
‘3Ah’). Hexadecimal numbers may also be represented by a ‘0x’  
prefix, the C coding convention. Binary numbers have an  
appended lowercase ‘b’ (for example, ‘01010100b’ or  
‘01000011b’). Numbers not indicated by an ‘h’, ‘b’, or ‘0x’ are  
decimal.  
Acronym  
AC  
Description  
alternating current  
ADC  
API  
analog-to-digital converter  
application programming interface  
central processing unit  
continuous time  
CPU  
CT  
DAC  
DC  
digital-to-analog converter  
direct current  
ECO  
external crystal oscillator  
EEPROM electrically erasable programmable read-only  
memory  
FSR  
GPIO  
GUI  
full scale range  
general purpose I/O  
graphical user interface  
human body model  
in-circuit emulator  
internal low speed oscillator  
internal main oscillator  
input/output  
HBM  
ICE  
ILO  
IMO  
I/O  
IPOR  
LSb  
imprecise power on reset  
least-significant bit  
low voltage detect  
most-significant bit  
program counter  
LVD  
MSb  
PC  
PLL  
phase-locked loop  
power on reset  
POR  
PPOR  
precision power on reset  
PSoC  
PWM  
SC  
Programmable System-on-Chip  
pulse width modulator  
switched capacitor  
SRAM  
static random access memory  
Document Number: 001-52469 Rev. *C  
Page 7 of 36  
[+] Feedback  
CY8C24423A  
Pinouts  
The automotive CY8C24x23A PSoC device is available in a variety of packages which are listed and illustrated in the following tables.  
Every port pin (labeled with a “P”) is capable of Digital I/O. However, Vss, Vdd, and XRES are not capable of Digital I/O.  
28-Pin Part Pinout  
Table 3. 28-Pin Part Pinout (SSOP)  
Type  
Figure 3. CY8C24423A 28-Pin PSoC Device  
Pin  
No.  
Pin  
Name  
Description  
Digital Analog  
1
2
I/O  
I/O  
I
P0[7] Analog column mux input  
AI, P0[7]  
AIO, P0[5]  
AIO, P0[3]  
AI, P0[1]  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
Vdd  
P0[6], AI  
P0[4], AI  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
I/O  
P0[5] Analog column mux input and column  
output  
P0[2], AI  
P0[0], AI  
P2[6], External VRef  
P2[4], External AGND  
P2[2], AI  
3
I/O  
I/O  
I
P0[3] Analog column mux input and column  
output  
P2[7]  
P2[5]  
4
5
I/O  
I/O  
I/O  
I/O  
I/O  
P0[1] Analog column mux input  
AI, P2[3]  
AI, P2[1]  
SSOP  
P2[7]  
Vss  
P2[0], AI  
XRES  
P1[6]  
6
P2[5]  
I2C SCL, P1[7]  
I2C SDA, P1[5]  
P1[3]  
7
I
I
P2[3] Direct switched capacitor block input  
P2[1] Direct switched capacitor block input  
P1[4], EXTCLK  
P1[2]  
P1[0], XTALout, I2C SDA  
8
I2C SCL, XTALin, P1[1]  
Vss  
9
Power  
Vss  
Ground connection  
10  
11  
12  
13  
I/O  
I/O  
I/O  
I/O  
P1[7] I2C Serial Clock (SCL)  
P1[5] I2C Serial Data (SDA)  
P1[3]  
P1[1] Crystal Input (XTALin), I2C Serial Clock  
(SCL), ISSP-SCLK[5]  
14  
15  
Power  
Input  
Vss  
Ground connection  
I/O  
P1[0] CrystalOutput(XTALout),I2CSerialData  
(SDA), ISSP-SDATA[5]  
16  
17  
18  
19  
I/O  
I/O  
I/O  
P1[2]  
P1[4] Optional External Clock Input (EXTCLK)  
P1[6]  
XRES Active high external reset with internal  
pull down  
20  
21  
22  
23  
24  
25  
26  
27  
28  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I
P2[0] Direct switched capacitor block input  
P2[2] Direct switched capacitor block input  
P2[4] External Analog Ground (AGND)  
P2[6] External Voltage Reference (VRef)  
P0[0] Analog column mux input  
I
I
I
I
P0[2] Analog column mux input  
P0[4] Analog column mux input  
P0[6] Analog column mux input  
Power  
Vdd  
Supply voltage  
LEGEND: A = Analog, I = Input, and O = Output.  
Note  
5. These are the ISSP pins, which are not High Z when coming out of POR (Power On Reset). See the PSoC Technical Reference Manual for details.  
Document Number: 001-52469 Rev. *C  
Page 8 of 36  
[+] Feedback  
CY8C24423A  
Registers  
Register Conventions  
Register Mapping Tables  
This section lists the registers of the automotive CY8C24x23A  
PSoC device. For detailed register information, reference the  
PSoC Technical Reference Manual.  
The PSoC device has a total register address space of 512  
bytes. The register space is referred to as I/O space and is  
divided into two banks. The XIO bit in the Flag register (CPU_F)  
determines which bank the user is currently in. When the XIO bit  
is set the user is in Bank 1.  
The register conventions specific to this section are listed in the  
following table.  
Note In the following register mapping tables, blank fields are  
Reserved and must not be accessed.  
Table 4. Abbreviations  
Convention  
Description  
Read register or bit(s)  
R
W
L
Write register or bit(s)  
Logical register or bit(s)  
Clearable register or bit(s)  
Access is bit specific  
C
#
Document Number: 001-52469 Rev. *C  
Page 9 of 36  
[+] Feedback  
CY8C24423A  
Table 5. Register Map Bank 0 Table: User Space  
Name Addr (0,Hex) Access Name  
PRT0DR  
Addr (0,Hex) Access  
Name  
ASC10CR0  
ASC10CR1  
ASC10CR2  
ASC10CR3  
ASD11CR0  
ASD11CR1  
ASD11CR2  
ASD11CR3  
Addr (0,Hex) Access  
Name  
Addr (0,Hex) Access  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
PRT0IE  
PRT0GS  
PRT0DM2  
PRT1DR  
PRT1IE  
PRT1GS  
PRT1DM2  
PRT2DR  
PRT2IE  
PRT2GS  
PRT2DM2  
ASD20CR0  
ASD20CR1  
ASD20CR2  
ASD20CR3  
ASC21CR0  
ASC21CR1  
ASC21CR2  
ASC21CR3  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
I2C_CFG  
I2C_SCR  
I2C_DR  
I2C_MSCR  
INT_CLR0  
INT_CLR1  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
RW  
#
RW  
#
RW  
RW  
INT_CLR3  
INT_MSK3  
RW  
RW  
DBB00DR0  
DBB00DR1  
DBB00DR2  
DBB00CR0  
DBB01DR0  
DBB01DR1  
DBB01DR2  
DBB01CR0  
DCB02DR0  
DCB02DR1  
DCB02DR2  
DCB02CR0  
DCB03DR0  
DCB03DR1  
DCB03DR2  
DCB03CR0  
#
W
RW  
#
AMX_IN  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
RW  
INT_MSK0  
INT_MSK1  
INT_VC  
RES_WDT  
DEC_DH  
DEC_DL  
DEC_CR0  
DEC_CR1  
MUL_X  
RW  
RW  
RC  
W
RC  
RC  
RW  
RW  
W
W
R
R
RW  
RW  
RW  
RW  
ARF_CR  
CMP_CR0  
ASY_CR  
CMP_CR1  
RW  
#
#
#
W
RW  
#
RW  
#
W
RW  
#
MUL_Y  
MUL_DH  
MUL_DL  
ACC_DR1  
ACC_DR0  
ACC_DR3  
ACC_DR2  
#
W
RW  
#
ACB00CR3  
ACB00CR0  
ACB00CR1  
ACB00CR2  
ACB01CR3  
ACB01CR0  
ACB01CR1  
ACB01CR2  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RDI0RI  
RDI0SYN  
RDI0IS  
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
CPU_F  
RL  
CPU_SCR1  
CPU_SCR0  
#
#
Blank fields are Reserved and must not be accessed.  
# Access is bit specific.  
Document Number: 001-52469 Rev. *C  
Page 10 of 36  
[+] Feedback  
CY8C24423A  
Table 6. Register Map Bank 1 Table: Configuration Space  
Name  
PRT0DM0  
PRT0DM1  
PRT0IC0  
PRT0IC1  
PRT1DM0  
PRT1DM1  
PRT1IC0  
PRT1IC1  
PRT2DM0  
PRT2DM1  
PRT2IC0  
PRT2IC1  
Addr (1,Hex) Access  
Name  
Addr (1,Hex) Access  
Name  
ASC10CR0  
ASC10CR1  
ASC10CR2  
ASC10CR3  
ASD11CR0  
ASD11CR1  
ASD11CR2  
ASD11CR3  
Addr (1,Hex) Access  
Name  
Addr (1,Hex) Access  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
ASD20CR0  
ASD20CR1  
ASD20CR2  
ASD20CR3  
ASC21CR0  
ASC21CR1  
ASC21CR2  
ASC21CR3  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
GDI_O_IN  
GDI_E_IN  
GDI_O_OU  
GDI_E_OU  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
RW  
RW  
RW  
RW  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
OSC_GO_EN  
OSC_CR4  
OSC_CR3  
OSC_CR0  
OSC_CR1  
OSC_CR2  
VLT_CR  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
DBB00FN  
DBB00IN  
DBB00OU  
RW  
RW  
RW  
CLK_CR0  
CLK_CR1  
ABF_CR0  
AMD_CR0  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
RW  
RW  
RW  
RW  
DBB01FN  
DBB01IN  
DBB01OU  
RW  
RW  
RW  
VLT_CMP  
AMD_CR1  
ALT_CR0  
RW  
RW  
DCB02FN  
DCB02IN  
DCB02OU  
RW  
RW  
RW  
IMO_TR  
ILO_TR  
BDG_TR  
ECO_TR  
W
W
RW  
W
DCB03FN  
DCB03IN  
DCB03OU  
RW  
RW  
RW  
ACB00CR3  
ACB00CR0  
ACB00CR1  
ACB00CR2  
ACB01CR3  
ACB01CR0  
ACB01CR1  
ACB01CR2  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RDI0RI  
RDI0SYN  
RDI0IS  
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
CPU_F  
RL  
CPU_SCR1  
CPU_SCR0  
#
#
Blank fields are Reserved and must not be accessed.  
# Access is bit specific.  
Document Number: 001-52469 Rev. *C  
Page 11 of 36  
[+] Feedback  
CY8C24423A  
Electrical Specifications  
This section presents the DC and AC electrical specifications of the automotive CY8C24x23A PSoC devices. For the latest electrical  
specifications, visit http://www.cypress.com/psoc.  
Specifications are valid for -40°C T 85°C and T 100°C, except where noted.  
A
J
Refer to Table 22 on page 22 for the electrical specifications on the IMO using SLIMO mode.  
Figure 4. Voltage versus CPU Frequency  
Figure 5. IMO Frequency Trim Options  
5.25  
5.25  
4.75  
SLIMO  
Mode=1  
SLIMO  
Mode=0  
O
e
V
a
a
p
4.75  
l
e
R
i
d
r
g
t
i
i
n
o
g
n
3.6  
3.0  
SLIMO  
Mode=1  
SLIMO  
Mode=0  
3.0  
0
0
93 kHz  
12 MHz  
24 MHz  
6 MHz  
12 MHz  
IMO Frequency  
24 MHz  
CPU Frequency  
(nominal setting)  
The following table lists the units of measure that are used in this section.  
Table 7. Units of Measure  
Symbol  
oC  
Unit of Measure  
degree Celsius  
Symbol  
μVrms  
μW  
mA  
ms  
mV  
nA  
Unit of Measure  
microvolts root-mean-square  
microwatts  
dB  
decibels  
fF  
femto farad  
hertz  
milli-ampere  
milli-second  
Hz  
KB  
1024 bytes  
1024 bits  
milli-volts  
Kbit  
kHz  
kΩ  
nanoampere  
nanosecond  
nanovolts  
kilohertz  
ns  
kilohm  
nV  
Mbaud  
Mbps  
MHz  
MΩ  
μA  
μF  
μH  
μs  
μV  
megabaud  
megabits per second  
megahertz  
megaohm  
microampere  
microfarad  
microhenry  
microsecond  
microvolts  
Ω
pA  
ohm  
picoampere  
pF  
picofarad  
pp  
peak-to-peak  
parts per million  
picosecond  
ppm  
ps  
sps  
σ
V
samples per second  
sigma: one standard deviation  
volts  
Document Number: 001-52469 Rev. *C  
Page 12 of 36  
[+] Feedback  
CY8C24423A  
Absolute Maximum Ratings  
Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.  
Table 8. Absolute Maximum Ratings  
Symbol  
Description  
Storage Temperature  
Min  
Typ  
Max  
Units  
Notes  
TSTG  
-55  
25  
+100  
°C Higher storage temperatures  
reduce data retention time.  
Recommended storage  
temperature is +25°C ± 25°C.  
Extended duration storage  
temperatures above 65°C  
degrades reliability.  
TA  
Ambient Temperature with Power Applied  
Supply Voltage on Vdd Relative to Vss  
DC Input Voltage  
-40  
-0.5  
+85  
°C  
V
Vdd  
VIO  
+6.0  
Vss - 0.5  
Vdd +  
0.5  
V
VIOZ  
DC Voltage Applied to Tri-state  
Vss - 0.5  
Vdd +  
0.5  
V
IMIO  
ESD  
LU  
Maximum Current into any Port Pin  
Electro Static Discharge Voltage  
Latch Up Current  
-25  
2000  
+50  
mA  
V
Human Body Model ESD.  
200  
mA  
Operating Temperature  
Table 9. Operating Temperature  
Symbol  
Description  
Min  
-40  
-40  
Typ  
Max  
+85  
Units  
Notes  
TA  
TJ  
Ambient Temperature  
Junction Temperature  
°C  
+100  
°C The temperature rise from ambient  
to junction is package specific. See  
Table 34 on page 32. The user must  
limit the power consumption to  
comply with this requirement.  
Document Number: 001-52469 Rev. *C  
Page 13 of 36  
[+] Feedback  
CY8C24423A  
DC Electrical Characteristics  
DC Chip-Level Specifications  
Table 10 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design  
guidance only.  
Table 10. DC Chip-Level Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
Vdd  
Supply Voltage  
Supply Current  
3.0  
5.25  
V
See DC POR and LVD specifications,  
Table 20 on page 20.  
IDD  
5
8
mA Conditions are Vdd = 5.0V, CPU = 3  
MHz, 48 MHz disabled, VC1 = 1.5  
MHz, VC2 = 93.75 kHz, VC3 = 93.75  
kHz, Analog power = off. SLIMO mode  
= 0. IMO = 24 MHz.  
IDD3  
Supply Current  
3.3  
6.0  
mA Conditions are Vdd = 3.3V, CPU = 3  
MHz, 48 MHz disabled, VC1 = 1.5  
MHz, VC2 = 93.75 kHz, VC3 = 93.75  
kHz, Analog power = off. SLIMO mode  
= 0. IMO = 24 MHz.  
ISB  
Sleep (Mode) Current with POR, LVD, Sleep  
Timer, and WDT.[6]  
3
4
4
6.5  
25  
μA Conditions are with internal low speed  
oscillator active, Vdd = 3.3V, -40°C ≤  
TA 55°C, Analog power = off.  
μA Conditions are with internal low speed  
oscillator active, Vdd = 3.3V, 55°C < TA  
85°C, Analog power = off.  
μA Conditions are with properly loaded,  
1 μW max, 32.768 kHz crystal.  
Vdd = 3.3V, -40°C TA 55°C, Analog  
power = off.  
ISBH  
Sleep (Mode) Current with POR, LVD, Sleep  
Timer, and WDT at High Temperature.[6]  
ISBXTL  
Sleep (Mode) Current with POR, LVD, Sleep  
Timer, WDT, and External Crystal.[6]  
7.5  
ISBXTLH Sleep (Mode) Current with POR, LVD, Sleep  
Timer, WDT, and External Crystal at High  
Temperature.[6]  
5
26  
μA Conditions are with properly loaded,  
1 μW max, 32.768 kHz crystal.  
Vdd = 3.3 V, 55°C < TA 85°C, Analog  
power = off.  
VREF  
Reference Voltage (Bandgap)  
1.28  
1.30  
1.32  
V
Trimmed for appropriate Vdd.  
Vdd 3.0V  
Note  
6. Standby current includes all functions (POR, LVD, WDT, Sleep Timer) needed for reliable system operation. This must be compared with devices that have similar  
functions enabled.  
Document Number: 001-52469 Rev. *C  
Page 14 of 36  
[+] Feedback  
CY8C24423A  
DC General Purpose I/O Specifications  
Table 11 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design  
guidance only.  
Table 11. 5V and 3.3V DC GPIO Specifications  
Symbol  
RPU  
Description  
Min  
Typ  
5.6  
5.6  
Max  
Units  
kΩ  
kΩ  
Notes  
Pull Up Resistor  
4
4
8
8
RPD  
Pull Down Resistor  
High Output Level  
VOH  
Vdd - 1.0  
V
IOH = 10 mA, Vdd = 4.75 to 5.25V  
(maximum 40 mA on even port pins  
(for example, P0[2], P1[4]),  
maximum 40 mA on odd port pins  
(for example, P0[3], P1[5])). 80 mA  
maximum combined IOH budget.  
VOL  
Low Output Level  
0.75  
V
IOL = 25 mA, Vdd = 4.75 to 5.25V  
(maximum 100 mA on even port  
pins (for example, P0[2], P1[4]),  
maximum 100 mA on odd port pins  
(for example, P0[3], P1[5])). 150  
mA maximum combined IOL  
budget.  
VIL  
VIH  
VH  
IIL  
Input Low Level  
2.1  
0.8  
V
V
Input High Level  
Input Hysterisis  
60  
1
mV  
Input Leakage (Absolute Value)  
Capacitive Load on Pins as Input  
nA Gross tested to 1 μA  
pF Package and pin dependent.  
Temp = 25°C  
CIN  
3.5  
10  
COUT  
Capacitive Load on Pins as Output  
3.5  
10  
pF Package and pin dependent.  
Temp = 25°C  
Document Number: 001-52469 Rev. *C  
Page 15 of 36  
[+] Feedback  
CY8C24423A  
DC Operational Amplifier Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are  
for design guidance only.  
The Operational Amplifier is a component of both the Analog Continuous Time (CT) PSoC blocks and the Analog Switched Capacitor  
(SC) PSoC blocks. The guaranteed specifications are measured in the Analog Continuous Time (CT) PSoC block.  
Table 12. 5V DC Operational Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
VOSOA  
Input Offset Voltage (absolute value)  
Power = Low, Opamp Bias = High  
Power = Medium, Opamp Bias = High  
Power = High, Opamp Bias = High  
1.6  
1.3  
1.2  
10  
8
7.5  
mV  
mV  
mV  
TCVOSOA Average Input Offset Voltage Drift  
7.0  
20  
35.0  
μV/°C  
IEBOA  
CINOA  
Input Leakage Current (Port 0 Analog Pins)  
Input Capacitance (Port 0 Analog Pins)  
pA Gross tested to 1 μA  
pF Package and pin dependent.  
Temp = 25°C  
4.5  
9.5  
VCMOA  
Common Mode Voltage Range  
Common Mode Voltage Range (high power or  
high opamp bias)  
0.0  
0.5  
Vdd  
Vdd - 0.5  
V
The common-mode input voltage  
range is measured through an  
analog output buffer. The  
specification includes the  
limitations imposed by the  
characteristics of the analog  
output buffer.  
GOLOA  
Open Loop Gain  
Specification is applicable at high  
Power = Low, Opamp Bias = High  
Power = Medium, Opamp Bias = High  
Power = High, Opamp Bias = High  
60  
60  
80  
dB power. For all other bias modes  
(except high power, high opamp  
bias), minimum is 60 dB.  
VOHIGHOA High Output Voltage Swing (internal signals)  
Power = Low, Opamp Bias = High  
Vdd - 0.2  
Vdd - 0.2  
Vdd - 0.5  
V
V
V
Power = Medium, Opamp Bias = High  
Power = High, Opamp Bias = High  
VOLOWOA Low Output Voltage Swing (internal signals)  
Power = Low, Opamp Bias = High  
0.2  
0.2  
0.5  
V
V
V
Power = Medium, Opamp Bias = High  
Power = High, Opamp Bias = High  
ISOA  
Supply Current (including associated AGND  
buffer)  
Power = Low, Opamp Bias = High  
Power = Low, Opamp Bias = High  
Power = Medium, Opamp Bias = High  
Power = Medium, Opamp Bias = High  
Power = High, Opamp Bias = High  
Power = High, Opamp Bias = High  
150  
300  
600  
1200  
2400  
4600  
200  
400  
800  
1600  
3200  
6400  
μA  
μA  
μA  
μA  
μA  
μA  
PSRROA Supply Voltage Rejection Ratio  
64  
80  
dB Vss VIN (Vdd - 2.25) or  
(Vdd - 1.25V) VIN Vdd  
Document Number: 001-52469 Rev. *C  
Page 16 of 36  
[+] Feedback  
CY8C24423A  
Table 13. 3.3V DC Operational Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
VOSOA  
Input Offset Voltage (absolute value)  
Power = Low, Opamp Bias = High  
Power = Medium, Opamp Bias = High  
High Power is 5V Only  
1.65  
1.32  
10  
8
mV  
mV  
TCVOSOA Average Input Offset Voltage Drift  
7.0  
20  
35.0  
μV/°C  
IEBOA  
CINOA  
Input Leakage Current (Port 0 Analog Pins)  
Input Capacitance (Port 0 Analog Pins)  
pA Gross tested to 1 μA  
4.5  
9.5  
pF Package and pin dependent.  
Temp = 25°C  
VCMOA  
Common Mode Voltage Range  
0.2  
Vdd - 0.2  
V
The common-mode input voltage  
range is measured through an  
analog output buffer. The  
specification includes the  
limitations imposed by the  
characteristics of the analog  
output buffer.  
GOLOA  
Open Loop Gain  
Specification is applicable at high  
Power = Low, Opamp Bias = Low  
Power = Medium, Opamp Bias = Low  
Power = High, Opamp Bias = Low  
60  
60  
80  
dB power. For all other bias modes  
(except high power, high opamp  
bias), minimum is 60 dB.  
VOHIGHOA High Output Voltage Swing (internal signals)  
Power = Low, Opamp Bias = Low  
Vdd - 0.2  
Vdd - 0.2  
Vdd - 0.2  
V
V
V
Power = Medium, Opamp Bias = Low  
Power = High is 5V only  
VOLOWOA Low Output Voltage Swing (internal signals)  
Power = Low, Opamp Bias = Low  
0.2  
0.2  
0.2  
V
V
V
Power = Medium, Opamp Bias = Low  
Power = High, Opamp Bias = Low  
ISOA  
Supply Current (including associated AGND  
buffer)  
Power = Low, Opamp Bias = Low  
Power = Low, Opamp Bias = High  
Power = Medium, Opamp Bias = Low  
Power = Medium, Opamp Bias = High  
Power = High, Opamp Bias = Low  
Power = High, Opamp Bias = High  
150  
300  
600  
1200  
2400  
200  
400  
800  
1600  
3200  
μA  
μA  
μA  
μA  
μA  
Not allowed  
PSRROA Supply Voltage Rejection Ratio  
64  
80  
dB Vss VIN (Vdd - 2.25) or  
(Vdd - 1.25V) VIN Vdd  
DC Low Power Comparator Specifications  
Table 14 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V at 25°C and are for design guidance only.  
Table 14. DC Low Power Comparator Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
VREFLPC Low power comparator (LPC) reference  
voltage range  
0.2  
Vdd - 1  
V
ISLPC  
LPC supply current  
LPC voltage offset  
10  
40  
30  
μA  
mV  
VOSLPC  
2.5  
Document Number: 001-52469 Rev. *C  
Page 17 of 36  
[+] Feedback  
CY8C24423A  
DC Analog Output Buffer Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are  
for design guidance only.  
Table 15. 5V DC Analog Output Buffer Specifications  
Symbol  
Description  
Min  
Typ  
3
Max  
12  
Units  
mV  
Notes  
VOSOB  
Input Offset Voltage (Absolute Value)  
TCVOSOB Average Input Offset Voltage Drift  
+6  
μV/°C  
V
VCMOB  
Common-Mode Input Voltage Range  
0.5  
Vdd - 1.0  
ROUTOB  
Output Resistance  
Power = Low  
Power = High  
1
1
Ω
Ω
VOHIGHOB High Output Voltage Swing (Load = 32Ω to  
Vdd/2)  
0.5 x Vdd + 1.1  
0.5 x Vdd + 1.1  
V
V
Power = Low  
Power = High  
VOLOWOB Low Output Voltage Swing (Load = 32Ω to  
Vdd/2)  
Power = Low  
Power = High  
0.5 x Vdd - 1.3  
0.5 x Vdd - 1.3  
V
V
ISOB  
Supply Current Including Bias Cell (No Load)  
Power = Low  
Power = High  
1.1  
2.6  
5.1  
8.8  
mA  
mA  
PSRROB Supply Voltage Rejection Ratio  
52  
64  
dB  
VOUT > (Vdd - 1.25).  
Table 16. 3.3V DC Analog Output Buffer Specifications  
Symbol  
Description  
Min  
Typ  
3
Max  
12  
Units  
mV  
Notes  
VOSOB  
Input Offset Voltage (Absolute Value)  
TCVOSOB Average Input Offset Voltage Drift  
+6  
-
μV/°C  
V
VCMOB  
Common-Mode Input Voltage Range  
0.5  
Vdd - 1.0  
ROUTOB  
Output Resistance  
Power = Low  
Power = High  
1
1
Ω
Ω
VOHIGHOB High Output Voltage Swing (Load = 1 kΩ to  
Vdd/2)  
Power = Low  
Power = High  
0.5 x Vdd + 1.0  
0.5 x Vdd + 1.0  
V
V
VOLOWOB Low Output Voltage Swing (Load = 1 kΩ to  
Vdd/2)  
Power = Low  
Power = High  
0.5 x Vdd - 1.0  
0.5 x Vdd - 1.0  
V
V
ISOB  
Supply Current Including Bias Cell (No Load)  
Power = Low  
Power = High  
0.8  
2.0  
2.0  
4.3  
mA  
mA  
PSRROB Supply Voltage Rejection Ratio  
52  
64  
dB  
VOUT > (Vdd - 1.25)  
Document Number: 001-52469 Rev. *C  
Page 18 of 36  
[+] Feedback  
CY8C24423A  
DC Analog Reference Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are  
for design guidance only.  
The guaranteed specifications are measured through the Analog Continuous Time PSoC blocks. The power levels for AGND refer to  
the power of the Analog Continuous Time PSoC block. The power levels for RefHi and RefLo refer to the Analog Reference Control  
register. The limits stated for AGND include the offset error of the AGND buffer local to the Analog Continuous Time PSoC block.  
Reference control power is high.  
Note Avoid using P2[4] for digital signaling when using an analog resource that depends on the Analog Reference. Some coupling  
of the digital signal may appear on the AGND.  
Table 17. 5V DC Analog Reference Specifications  
Symbol  
Description  
Bandgap Voltage Reference  
AGND = Vdd/2[7]  
AGND = 2 x BandGap[7]  
AGND = P2[4] (P2[4] = Vdd/2)[7]  
AGND = BandGap[7]  
Min  
1.28  
Typ  
1.30  
Max  
1.32  
Units  
BG  
V
V
V
V
V
V
V
Vdd/2 - 0.04  
2 x BG - 0.048  
P2[4] - 0.011  
BG - 0.009  
1.6 x BG - 0.022  
-0.034  
Vdd/2 - 0.01  
2 x BG - 0.030  
P2[4]  
Vdd/2 + 0.007  
2 x BG + 0.024  
P2[4] + 0.011  
BG + 0.016  
1.6 x BG + 0.018  
0.034  
BG + 0.008  
1.6 x BG - 0.010  
0.000  
AGND = 1.6 x BandGap[7]  
AGND Block to Block Variation  
(AGND = Vdd/2)[7]  
RefHi = Vdd/2 + BandGap[8]  
RefHi = 3 x BandGap[8]  
Vdd/2 + BG - 0.10  
3 x BG - 0.06  
Vdd/2 + BG  
3 x BG  
Vdd/2 + BG + 0.10  
3 x BG + 0.06  
V
V
V
V
V
RefHi = 2 x BandGap + P2[6] (P2[6] = 1.3V)[8] 2 x BG + P2[6] - 0.113 2 x BG + P2[6] - 0.018 2 x BG + P2[6] + 0.077  
RefHi = P2[4] + BandGap (P2[4] = Vdd/2)[8]  
P2[4] + BG - 0.130  
P2[4] + BG - 0.016  
P2[4] + BG + 0.098  
RefHi = P2[4] + P2[6] (P2[4] = Vdd/2  
P2[4] + P2[6] - 0.133 P2[4] + P2[6] - 0.016 P2[4] + P2[6] + 0.100  
P2[6] = 1.3V)[8]  
RefHi = 3.2 x BandGap[8]  
RefLo = Vdd/2 - BandGap[8]  
RefLo = BandGap[8]  
3.2 x BG - 0.112  
Vdd/2 - BG - 0.04  
BG - 0.06  
3.2 x BG  
Vdd/2 - BG 0.024  
BG  
3.2 x BG + 0.076  
Vdd/2 - BG + 0.04  
BG + 0.06  
V
V
V
V
V
V
+
RefLo = 2 x BandGap - P2[6] (P2[6] = 1.3V)[8] 2 x BG - P2[6] - 0.084 2 x BG - P2[6] + 0.025 2 x BG - P2[6] + 0.134  
RefLo = P2[4] - BandGap (P2[4] = Vdd/2)[8]  
P2[4] - BG - 0.056  
P2[4] - BG + 0.026  
P2[4] - BG + 0.107  
RefLo = P2[4] - P2[6] (P2[4] = Vdd/2,  
P2[6] = 1.3V)[8]  
P2[4] - P2[6] - 0.057 P2[4] - P2[6] + 0.026 P2[4] - P2[6] + 0.110  
Table 18. 3.3V DC Analog Reference Specifications  
Symbol  
Description  
Bandgap Voltage Reference  
AGND = Vdd/2[7]  
Min  
1.28  
Typ  
1.30  
Max  
1.33  
Units  
BG  
V
V
Vdd/2 - 0.03  
Vdd/2 - 0.01  
Vdd/2 + 0.005  
AGND = 2 x BandGap[7]  
AGND = P2[4] (P2[4] = Vdd/2)[7]  
AGND = BandGap[7]  
Not Allowed  
P2[4] - 0.008  
BG - 0.009  
P2[4] + 0.001  
BG + 0.005  
1.6 x BG - 0.010  
0.000  
P2[4] + 0.009  
BG + 0.015  
1.6 x BG + 0.018  
0.034  
V
V
AGND = 1.6 x BandGap[7]  
1.6 x BG - 0.027  
-0.034  
V
AGND Column to Column Variation  
mV  
(AGND = Vdd/2)[7]  
RefHi = Vdd/2 + BandGap[8]  
Not Allowed  
Notes  
7. This specification is only valid when CT Block Power = High. AGND tolerance includes the offsets of the local buffer in the PSoC block.  
8. This specification is only valid when Ref Control Power = High.  
Document Number: 001-52469 Rev. *C  
Page 19 of 36  
[+] Feedback  
CY8C24423A  
Table 18. 3.3V DC Analog Reference Specifications (continued)  
Symbol  
Description  
RefHi = 3 x BandGap[8]  
RefHi = 2 x BandGap + P2[6] (P2[6] = 0.5V)[8]  
RefHi = P2[4] + BandGap (P2[4] = Vdd/2)[8]  
Min  
Typ  
Max  
Units  
Not Allowed  
Not Allowed  
Not Allowed  
RefHi = P2[4] + P2[6] (P2[4] = Vdd/2,  
P2[4] + P2[6] - 0.075 P2[4] + P2[6] - 0.009 P2[4] + P2[6] + 0.057  
V
P2[6] = 0.5V)[8]  
RefHi = 3.2 x BandGap[8]  
RefLo = Vdd/2 - BandGap[8]  
RefLo = BandGap[8]  
RefLo = 2 x BandGap - P2[6] (P2[6] = 0.5V)[8]  
RefLo = P2[4] - BandGap (P2[4] = Vdd/2)[8]  
Not Allowed  
Not Allowed  
Not Allowed  
Not Allowed  
Not Allowed  
RefLo = P2[4] - P2[6] (P2[4] = Vdd/2,  
P2[6] = 0.5V)[8]  
P2[4] - P2[6] - 0.048 P2[4]- P2[6] + 0.022 P2[4] - P2[6] + 0.092  
V
DC Analog PSoC Block Specifications  
Table 15 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design  
guidance only.  
Table 19. DC Analog PSoC Block Specifications  
Symbol  
RCT  
Description  
Min  
Typ  
12.2  
80  
Max  
Units  
kΩ  
fF  
Notes  
Resistor Unit Value (Continuous Time)  
Capacitor Unit Value (Switched Capacitor)  
CSC  
DC POR and LVD Specifications  
Table 20 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design  
guidance only.  
Note The bits PORLEV and VM in the following table refer to bits in the VLT_CR register. See the PSoC Programmable  
System-on-Chip Technical Reference Manual for more information on the VLT_CR register.  
Table 20. DC POR and LVD Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
Vdd Value for PPOR Trip  
Vdd must be greater than or  
equal to 2.5V during startup,  
reset from the XRES pin, or  
reset from Watchdog.  
VPPOR0 PORLEV[1:0] = 00b  
VPPOR1 PORLEV[1:0] = 01b  
VPPOR2 PORLEV[1:0] = 10b  
2.36  
2.82  
4.55  
2.40  
2.95  
4.70  
V
V
V
Vdd Value for LVD Trip  
VLVD0  
VLVD1  
VLVD2  
VLVD3  
VLVD4  
VLVD5  
VLVD6  
VLVD7  
VM[2:0] = 000b  
VM[2:0] = 001b  
VM[2:0] = 010b  
VM[2:0] = 011b  
VM[2:0] = 100b  
VM[2:0] = 101b  
VM[2:0] = 110b  
VM[2:0] = 111b  
2.40  
2.85  
2.95  
3.06  
4.37  
4.50  
4.62  
4.71  
2.450  
2.920  
3.02  
3.13  
4.48  
4.64  
4.73  
4.81  
2.51[9]  
2.99[10]  
3.09  
3.20  
4.55  
4.75  
4.83  
4.95  
V
V
V
V
V
V
V
V
Notes  
9. Always greater than 50 mV above V  
10. Always greater than 50 mV above V  
(PORLEV=00) for falling supply.  
(PORLEV=01) for falling supply.  
PPOR  
PPOR  
Document Number: 001-52469 Rev. *C  
Page 20 of 36  
[+] Feedback  
CY8C24423A  
DC Programming Specifications  
Table 21 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design  
guidance only.  
Table 21. DC Programming Specifications  
Symbol  
Description  
Min  
3.0  
Typ  
Max  
Units  
V
Notes  
VddIWRITE Supply Voltage for Flash Write Operations  
IDDP  
VILP  
VIHP  
IILP  
Supply Current During Programming or Verify  
Input Low Voltage During Programming or Verify  
Input High Voltage During Programming or Verify  
5
25  
0.8  
mA  
V
2.1  
V
Input Current when Applying VILP to P1[0] or P1[1]  
During Programming or Verify  
0.2  
mA Drivinginternalpulldown  
resistor.  
IIHP  
InputCurrentwhenApplyingVIHP toP1[0]orP1[1]  
During Programming or Verify  
1.5  
mA Drivinginternalpulldown  
resistor.  
VOLV  
VOHV  
Output Low Voltage During Programming or Verify  
0.75  
Vdd  
V
V
Output High Voltage During Programming or  
Verify  
Vdd - 1.0  
FlashENPB Flash Endurance (per block)  
1,000  
Erase/write cycles per  
block  
FlashENT  
FlashDR  
Flash Endurance (total)[11]  
Flash Data Retention  
36,000  
10  
Erase/write cycles  
Years  
Note  
11. A maximum of 36 x 1,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 1,000 maximum cycles each, 36x2 blocks  
of 500 maximum cycles each, or 36x4 blocks of 250 maximum cycles each (to limit the total number of cycles to 36x1,000 and that no single block ever sees more  
than 1,000 cycles).  
For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing.  
Refer to the Flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more information.  
Document Number: 001-52469 Rev. *C  
Page 21 of 36  
[+] Feedback  
CY8C24423A  
AC Electrical Characteristics  
AC Chip-Level Specifications  
Table 22 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design  
guidance only.  
Table 22. 5V and 3.3V AC Chip-Level Specifications  
Symbol  
FIMO24  
Description  
Internal Main Oscillator  
Frequency for 24 MHz  
Min  
Typ  
24  
Max  
Units  
Notes  
22.8[13]  
25.2[12,13]  
MHz Trimmed for 5V or 3.3V operation using  
factory trim values. See Figure 5 on  
page 12. SLIMO mode = 0.  
MHz Trimmed for 5V or 3.3V operation using  
factory trim values. See Figure 5 on  
page 12. SLIMO mode = 1.  
FIMO6  
Internal Main Oscillator  
Frequency for 6 MHz  
5.5[13]  
6
6.5[12,13]  
FCPU1  
FCPU2  
F48M  
CPU Frequency (5V Vdd  
Nominal)  
CPU Frequency (3.3V Vdd  
Nominal)  
0.089[13]  
0.089[13]  
0
24  
12  
48  
25.2[12,13]  
12.6[13]  
MHz Minimum CPU frequency is 0.022 MHz  
when SLIMO mode = 1  
MHz Minimum CPU frequency is 0.022 MHz  
when SLIMO mode = 1  
Digital PSoC Block Frequency  
50.4[12,13,14] MHz Refer to the AC Digital Block  
Specifications.  
25.2[13,14]  
64  
F24M  
F32K1  
Digital PSoC Block Frequency  
Internal Low Speed Oscillator  
Frequency  
0
15  
24  
32  
MHz  
kHz This specification applies when the ILO  
has been trimmed. During power up,  
the ILO is untrimmed and has a  
minimum frequency of 5 kHz.  
F32K2  
External Crystal Oscillator  
32.768  
kHz Accuracy is capacitor and crystal  
dependent. 50% duty cycle.  
FPLL  
Jitter24M2  
TPLLSLEW  
PLL Frequency  
24 MHz Period Jitter (PLL)  
PLL Lock Time  
0.5  
0.5  
23.986  
600  
10  
MHz Is a multiple (x732) of crystal frequency.  
ps Refer to Figure 9 on page 23.  
ms Refer to Figure 6 on page 23.  
ms Refer to Figure 7 on page 23.  
TPLLSLEWSLOW PLL Lock Time for Low Gain  
Setting  
50  
TOS  
External Crystal Oscillator  
Startup to 1%  
External Crystal Oscillator  
Startup to 100 ppm  
1700  
2800  
2620  
3800  
ms Refer to Figure 8 on page 23.  
TOSACC  
ms The crystal oscillator frequency is  
within 100 ppm of its final value by the  
end of the TOSACC period. Correct  
operation assumes a properly loaded 1  
µW maximum drive level 32.768 kHz  
crystal. 3.0V Vdd 5.25V, -40 oC TA  
85 oC.  
Jitter32k  
TXRST  
DC24M  
Step24M  
Fout48M  
Jitter24M1P  
32 kHz Period Jitter  
External Reset Pulse Width  
24 MHz Duty Cycle  
24 MHz Trim Step Size  
48 MHz Output Frequency  
24 MHz Period Jitter (IMO)  
Peak-to-Peak  
10  
40  
45.6[13]  
100  
50  
50  
48.0  
300  
60  
ns Refer to Figure 10 on page 23.  
μs  
%
kHz  
50.4[12, 13] MHz Trimmed. Using factory trim values.  
ps Refer to Figure 9 on page 23.  
Jitter24M1R  
FMAX  
24 MHz Period Jitter (IMO) Root  
Mean Squared  
Maximum Frequency of signal  
on row input or row output.  
600  
ps  
MHz  
μs  
12.6[13]  
TRAMP  
Supply Ramp Time  
20  
Notes  
12. 4.75V Vdd 5.25V.  
13. Accuracy derived from Internal Main Oscillator (IMO) with appropriate trim for Vdd range.  
14. See the individual user module data sheets for information on maximum frequencies for user modules.  
Document Number: 001-52469 Rev. *C  
Page 22 of 36  
[+] Feedback  
CY8C24423A  
Figure 6. PLL Lock Timing Diagram  
PLL  
Enable  
T
24 MHz  
PLLSLEW  
FPLL  
PLL  
Gain  
0
Figure 7. PLL Lock for Low Gain Setting Timing Diagram  
PLL  
Enable  
T
24 MHz  
PLLSLEWLOW  
FPLL  
PLL  
Gain  
1
Figure 8. External Crystal Oscillator Startup Timing Diagram  
32K  
Select  
32 kHz  
T
OS  
F32K2  
Figure 9. 24 MHz Period Jitter (IMO) Timing Diagram  
Jitter24M1P  
Jitter24M2  
F24M  
Figure 10. 32 kHz Period Jitter (ECO) Timing Diagram  
Jitter32k  
F32K2  
Document Number: 001-52469 Rev. *C  
Page 23 of 36  
[+] Feedback  
CY8C24423A  
AC General Purpose I/O Specifications  
Table 23 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design  
guidance only.  
Table 23. 5V and 3.3V AC GPIO Specifications  
Symbol  
FGPIO  
Description  
Min  
0
Typ  
Max  
Units  
Notes  
GPIO Operating Frequency  
12.6[13] MHz Normal Strong Mode  
TRiseF  
TFallF  
Rise Time, Normal Strong Mode, Cload = 50 pF  
Fall Time, Normal Strong Mode, Cload = 50 pF  
Rise Time, Slow Strong Mode, Cload = 50 pF  
Fall Time, Slow Strong Mode, Cload = 50 pF  
3
18  
18  
ns  
ns  
ns  
ns  
Vdd = 4.5 to 5.25V, 10% - 90%  
Vdd = 4.5 to 5.25V, 10% - 90%  
Vdd = 3 to 5.25V, 10% - 90%  
Vdd = 3 to 5.25V, 10% - 90%  
2
TRiseS  
TFallS  
10  
10  
27  
22  
Figure 11. GPIO Timing Diagram  
90%  
GPIO  
Pin  
Output  
Voltage  
10%  
TRiseF  
TRiseS  
TFallF  
TFallS  
Document Number: 001-52469 Rev. *C  
Page 24 of 36  
[+] Feedback  
CY8C24423A  
AC Operational Amplifier Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are  
for design guidance only.  
Settling times, slew rates, and gain bandwidth are based on the Analog Continuous Time PSoC block.  
Power = High and Opamp Bias = High is not supported at 3.3V.  
Table 24. 5V AC Operational Amplifier Specifications  
Symbol  
TROA  
Description  
Min  
Typ  
Max  
Units  
Rising Settling Time from 80% of ΔV to 0.1% of ΔV  
(10 pF load, Unity Gain)  
Power = Low, Opamp Bias = Low  
Power = Medium, Opamp Bias = High  
Power = High, Opamp Bias = High  
3.9  
0.72  
0.62  
μs  
μs  
μs  
TSOA  
Falling Settling Time from 20% of ΔV to 0.1% of ΔV  
(10 pF load, Unity Gain)  
Power = Low, Opamp Bias = Low  
Power = Medium, Opamp Bias = High  
Power = High, Opamp Bias = High  
5.9  
0.92  
0.72  
μs  
μs  
μs  
SRROA  
SRFOA  
BWOA  
ENOA  
Rising Slew Rate (20% to 80%) (10 pF load, Unity Gain)  
Power = Low, Opamp Bias = Low  
Power = Medium, Opamp Bias = High  
Power = High, Opamp Bias = High  
0.15  
1.7  
6.5  
V/μs  
V/μs  
V/μs  
Falling Slew Rate (80% to 20%) (10 pF load, Unity Gain)  
Power = Low, Opamp Bias = Low  
Power = Medium, Opamp Bias = High  
0.01  
0.5  
4.0  
V/μs  
V/μs  
V/μs  
Power = High, Opamp Bias = High  
Gain Bandwidth Product  
Power = Low, Opamp Bias = Low  
Power = Medium, Opamp Bias = High  
Power = High, Opamp Bias = High  
0.75  
3.1  
5.4  
MHz  
MHz  
MHz  
Noise at 1 kHz (Power = Medium, Opamp Bias = High)  
100  
nV/rt-Hz  
Table 25. 3.3V AC Operational Amplifier Specifications  
Symbol  
TROA  
Description  
Min  
Typ  
Max  
Units  
Rising Settling Time from 80% of ΔV to 0.1% of ΔV  
(10 pF load, Unity Gain)  
Power = Low, Opamp Bias = Low  
Power = Medium, Opamp Bias = High  
3.92  
0.72  
μs  
μs  
TSOA  
Falling Settling Time from 20% of ΔV to 0.1% of ΔV  
(10 pF load, Unity Gain)  
Power = Low, Opamp Bias = Low  
Power = Medium, Opamp Bias = High  
5.41  
0.72  
μs  
μs  
SRROA  
SRFOA  
BWOA  
ENOA  
Rising Slew Rate (20% to 80%) (10 pF load, Unity Gain)  
Power = Low, Opamp Bias = Low  
Power = Medium, Opamp Bias = High  
0.31  
2.7  
V/μs  
V/μs  
Falling Slew Rate (80% to 20%) (10 pF load, Unity Gain)  
Power = Low, Opamp Bias = Low  
Power = Medium, Opamp Bias = High  
0.24  
1.8  
V/μs  
V/μs  
Gain Bandwidth Product  
Power = Low, Opamp Bias = Low  
Power = Medium, Opamp Bias = High  
0.67  
2.8  
MHz  
MHz  
Noise at 1 kHz (Power = Medium, Opamp Bias = High)  
100  
nV/rt-Hz  
Document Number: 001-52469 Rev. *C  
Page 25 of 36  
[+] Feedback  
CY8C24423A  
When bypassed by a capacitor on P2[4], the noise of the analog ground signal distributed to each block is reduced by a factor of up  
to 5 (14 dB). This is at frequencies above the corner frequency defined by the on-chip 8.1 kΩ resistance and the external capacitor.  
Figure 12. Typical AGND Noise with P2[4] Bypass  
dBV/rtHz  
10000  
0
0.01  
0.1  
1.0  
10  
1000  
100  
0.001  
0.01  
0.1 Freq (kHz)  
1
10  
100  
At low frequencies, the opamp noise is proportional to 1/f, power independent, and determined by device geometry. At high  
frequencies, increased power level reduces the noise spectrum level.  
Figure 13. Typical Opamp Noise  
nV/rtHz  
10000  
PH_BH  
PH_BL  
PM_BL  
PL_BL  
1000  
100  
10  
0.001  
0.01  
0.1  
1
10  
100  
Freq (kHz)  
Document Number: 001-52469 Rev. *C  
Page 26 of 36  
[+] Feedback  
CY8C24423A  
AC Low Power Comparator Specifications  
Table 26 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design  
guidance only.  
Table 26. AC Low Power Comparator Specifications  
Symbol  
TRLPC  
Description  
LPC response time  
Min  
Typ  
Max  
Units  
Notes  
50  
μs  
50 mV overdrive comparator  
reference set within VREFLPC  
AC Digital Block Specifications  
Table 27 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design  
guidance only.  
Table 27. 5V and 3.3V AC Digital Block Specifications  
Function  
Timer  
Description  
Capture Pulse Width  
Min  
50[15]  
Typ  
Max  
Units  
Notes  
ns  
Maximum Frequency, No Capture  
Maximum Frequency, With Capture  
Enable Pulse Width  
50.4[13] MHz 4.75V Vdd 5.25V.  
25.2[13] MHz  
50[15]  
Counter  
ns  
Maximum Frequency, No Enable Input  
Maximum Frequency, Enable Input  
Kill Pulse Width:  
50.4[13] MHz 4.75V Vdd 5.25V.  
25.2[13] MHz  
Dead Band  
Asynchronous Restart Mode  
Synchronous Restart Mode  
Disable Mode  
20  
50[15]  
50[15]  
ns  
ns  
ns  
Maximum Frequency  
50.4[13] MHz 4.75V Vdd 5.25V.  
50.4[13] MHz 4.75V Vdd 5.25V.  
CRCPRS  
(PRS Mode)  
Maximum Input Clock Frequency  
CRCPRS  
(CRC Mode)  
Maximum Input Clock Frequency  
Maximum Input Clock Frequency  
Maximum Input Clock Frequency  
25.2[13] MHz  
SPIM  
SPIS  
8.4[13]  
MHz Maximum data rate is 4.2 Mbps  
due to 2 x over clocking.  
4.2[13]  
MHz  
ns  
Width of SS_ Negated Between Transmissions 50[15]  
Transmitter  
Maximum Input Clock Frequency  
25.2[13] MHz Maximum baud rate is 3.15  
Mbaud due to 8 x over clocking.  
50.4[13] MHz Maximum baud rate is 6.3  
Mbaud due to 8 x over clocking.  
25.2[13] MHz Maximum baud rate is 3.15  
Mbaud due to 8 x over clocking.  
50.4[13] MHz Maximum baud rate is 6.3  
Mbaud due to 8 x over clocking.  
Maximum Input Clock Frequency with Vdd ≥  
4.75V, 2 Stop Bits  
Receiver  
Maximum Input Clock Frequency  
Maximum Input Clock Frequency with Vdd ≥  
4.75V, 2 Stop Bits  
Note  
15. 50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).  
Document Number: 001-52469 Rev. *C  
Page 27 of 36  
[+] Feedback  
CY8C24423A  
AC Analog Output Buffer Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are  
for design guidance only.  
Table 28. 5V AC Analog Output Buffer Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
TROB  
Rising Settling Time to 0.1%, 1V Step, 100 pF Load  
Power = Low  
Power = High  
2.5  
2.5  
μs  
μs  
TSOB  
Falling Settling Time to 0.1%, 1V Step, 100 pF Load  
Power = Low  
Power = High  
2.2  
2.2  
μs  
μs  
SRROB  
SRFOB  
BWOB  
BWOB  
Rising Slew Rate (20% to 80%), 1V Step, 100 pF Load  
Power = Low  
Power = High  
0.65  
0.65  
V/μs  
V/μs  
Falling Slew Rate (80% to 20%), 1V Step, 100 pF Load  
Power = Low  
Power = High  
0.65  
0.65  
V/μs  
V/μs  
Small Signal Bandwidth, 20 mVpp, 3dB BW, 100 pF Load  
Power = Low  
Power = High  
0.8  
0.8  
MHz  
MHz  
Large Signal Bandwidth, 1 Vpp, 3dB BW, 100 pF Load  
Power = Low  
Power = High  
300  
300  
kHz  
kHz  
Table 29. 3.3V AC Analog Output Buffer Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
TROB  
Rising Settling Time to 0.1%, 1V Step, 100 pF Load  
Power = Low  
Power = High  
3.8  
3.8  
μs  
μs  
TSOB  
Falling Settling Time to 0.1%, 1V Step, 100 pF Load  
Power = Low  
Power = High  
2.6  
2.6  
μs  
μs  
SRROB  
SRFOB  
BWOB  
BWOB  
Rising Slew Rate (20% to 80%), 1V Step, 100 pF Load  
Power = Low  
Power = High  
0.5  
0.5  
V/μs  
V/μs  
Falling Slew Rate (80% to 20%), 1V Step, 100 pF Load  
Power = Low  
Power = High  
0.5  
0.5  
V/μs  
V/μs  
Small Signal Bandwidth, 20 mVpp, 3dB BW, 100 pF Load  
Power = Low  
Power = High  
0.7  
0.7  
MHz  
MHz  
Large Signal Bandwidth, 1 Vpp, 3dB BW, 100 pF Load  
Power = Low  
Power = High  
200  
200  
kHz  
kHz  
Document Number: 001-52469 Rev. *C  
Page 28 of 36  
[+] Feedback  
CY8C24423A  
AC External Clock Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are  
for design guidance only.  
Table 30. 5V AC External Clock Specifications  
Symbol  
Description  
Min  
0.093  
20.6  
20.6  
150  
Typ  
Max  
24.6  
5300  
Units  
MHz  
ns  
FOSCEXT Frequency  
High Period  
Low Period  
ns  
Power Up IMO to Switch  
μs  
Table 31. 3.3V AC External Clock Specifications  
Symbol Description  
FOSCEXT Frequency with CPU Clock divide by 1[16]  
Min  
0.093  
0.186  
41.7  
41.7  
150  
Typ  
Max  
12.3  
24.6  
5300  
Units  
MHz  
MHz  
ns  
FOSCEXT Frequency with CPU Clock divide by 2 or greater[17]  
High Period with CPU Clock divide by 1  
Low Period with CPU Clock divide by 1  
Power Up IMO to Switch  
ns  
μs  
AC Programming Specifications  
Table 32 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design  
guidance only.  
Table 32. AC Programming Specifications  
Symbol  
TRSCLK  
TFSCLK  
TSSCLK  
THSCLK  
FSCLK  
Description  
Rise Time of SCLK  
Min  
1
Typ  
Max  
20  
20  
Units  
ns  
Notes  
Fall Time of SCLK  
1
ns  
Data Setup Time to Falling Edge of SCLK  
Data Hold Time from Falling Edge of SCLK  
Frequency of SCLK  
40  
40  
0
ns  
ns  
8
MHz  
ms  
ms  
ns  
TERASEB Flash Erase Time (Block)  
20  
20  
TWRITE  
TDSCLK  
Flash Block Write Time  
Data Out Delay from Falling Edge of SCLK  
45  
50  
Vdd > 3.6  
3.0 Vdd 3.6  
TDSCLK3 Data Out Delay from Falling Edge of SCLK  
ns  
Notes  
16. Maximum CPU frequency is 12 MHz nominal at 3.3V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle  
requirements.  
17. If the frequency of the external clock is greater than 12 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider ensures that the  
fifty percent duty cycle requirement is met.  
Document Number: 001-52469 Rev. *C  
Page 29 of 36  
[+] Feedback  
CY8C24423A  
AC I2C Specifications  
Table 33 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design  
guidance only.  
Table 33. AC Characteristics of the I2C SDA and SCL Pins  
Standard Mode  
Fast Mode  
Symbol  
Description  
SCL Clock Frequency  
Units  
Min  
0
Max  
100[18]  
Min  
Max  
400[18]  
FSCLI2C  
0
kHz  
THDSTAI2C Hold Time (repeated) START Condition. After  
this period, the first clock pulse is generated.  
4.0  
0.6  
μs  
TLOWI2C  
THIGHI2C  
LOW Period of the SCL Clock  
HIGH Period of the SCL Clock  
4.7  
4.0  
4.7  
0
1.3  
0.6  
μs  
μs  
μs  
μs  
ns  
μs  
μs  
TSUSTAI2C Setup Time for a Repeated START Condition  
THDDATI2C Data Hold Time  
0.6  
0
TSUDATI2C Data Setup Time  
250  
4.0  
4.7  
100[19]  
TSUSTOI2C Setup Time for STOP Condition  
0.6  
TBUFI2C  
Bus Free Time Between a STOP and START  
Condition  
1.3  
TSPI2C  
Pulse Width of spikes are suppressed by the  
input filter.  
0
50  
ns  
Figure 14. Definition for Timing for Fast/Standard Mode on the I2C Bus  
SDA  
SCL  
TSPI2C  
T
LOWI2C  
TSUDATI2C  
THDSTAI2C  
TBUFI2C  
TSUSTOI2C  
TSUSTAI2C  
THDDATI2C  
THDSTAI2C  
THIGHI2C  
S
Sr  
P
S
Notes  
18. F  
is derived from SysClk of the PSoC. This specification assumes that SysClk is operating at 24 MHz, nominal. If SysClk is at a lower frequency, then the  
specification adjusts accordingly.  
SCLI2C  
SCLI2C  
F
19. A Fast-Mode I2C-bus device can be used in a Standard-Mode I2C-bus system, but the requirement T  
250 ns must then be met. This is automatically the  
SUDATI2C  
case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit  
to the SDA line t + T = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.  
rmax  
SUDATI2C  
Document Number: 001-52469 Rev. *C  
Page 30 of 36  
[+] Feedback  
CY8C24423A  
Packaging Information  
This section illustrates the packaging specifications for the automotive CY8C24x23A PSoC device, along with the thermal impedances  
for the package and the typical package capacitance on crystal pins.  
Important Note Emulation tools may require a larger area on the target PCB than the chip’s footprint. For a detailed description of  
the emulation tools’ dimensions, refer to the drawings at http://www.cypress.com/design/MR10161.  
Packaging Dimensions  
Figure 15. 28-Pin (210-Mil) SSOP  
51-85079 *C  
Document Number: 001-52469 Rev. *C  
Page 31 of 36  
[+] Feedback  
CY8C24423A  
Thermal Impedances  
Table 34. Thermal Impedances per Package  
[20]  
Package  
Typical θJA  
101°C/W  
28 SSOP  
Capacitance on Crystal Pins  
Table 35. Typical Package Capacitance on Crystal Pins  
Package Package Capacitance  
2.8 pF  
28 SSOP  
Solder Reflow Peak Temperature  
The following table lists the minimum solder reflow peak temperatures to achieve good solderability.  
Table 36. Solder Reflow Peak Temperature  
Package  
Minimum Peak Temperature[21] Maximum Peak Temperature  
240°C 260°C  
28 SSOP  
Notes  
20. T = T + POWER x θ  
J
A
JA  
o
o
21. Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220 ± 5 C with Sn-Pb or 245 ± 5 C with Sn-Ag-Cu paste.  
Refer to the solder manufacturer specifications.  
Document Number: 001-52469 Rev. *C  
Page 32 of 36  
[+] Feedback  
CY8C24423A  
Development Tool Selection  
This section presents the development tools available for the CY8C24x23A family.  
Software  
Evaluation Tools  
All evaluation tools can be purchased from the Cypress Online  
Store. The online store (www.cypress.com/shop) also has the  
most up to date information on kit contents, descriptions, and  
availability.  
PSoC Designer  
At the core of the PSoC development software suite is PSoC  
Designer. Utilized by thousands of PSoC developers, this robust  
software has been facilitating PSoC designs for years. PSoC  
Designer is available free of charge at http://www.cypress.com.  
PSoC Designer comes with a free C compiler.  
CY3210-PSoCEval1  
The CY3210-PSoCEval1 kit features an evaluation board and  
the MiniProg1 programming unit. The evaluation board includes  
an LCD module, potentiometer, LEDs, an RS-232 port, and  
plenty of breadboarding space to meet all of your evaluation  
needs. The kit includes:  
PSoC Programmer  
Flexible enough to be used on the bench in development, yet  
suitable for factory programming, PSoC Programmer works  
either as a standalone programming application or it can operate  
directly from PSoC Designer. PSoC Programmer software is  
compatible with both PSoC ICE-Cube In-Circuit Emulator and  
PSoC MiniProg. PSoC programmer is available free of charge at  
http://www.cypress.com/psocprogrammer.  
Evaluation Board with LCD Module  
MiniProg Programming Unit  
28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2)  
PSoC Designer Software CD  
Getting Started Guide  
Development Kits  
All development kits can be purchased from the Cypress Online  
Store. The online store (www.cypress.com/shop) also has the  
most up to date information on kit contents, descriptions, and  
availability.  
USB 2.0 Cable  
CY3210-24X23 Evaluation Pod (EvalPod)  
PSoC EvalPods are pods that connect to the ICE In-Circuit  
Emulator (CY3215-DK kit) to allow debugging capability. They  
can also function as a standalone device without debugging  
capability. The EvalPod has a 28-pin DIP footprint on the bottom  
for easy connection to development kits or other hardware. The  
top of the EvalPod has prototyping headers for easy connection  
to the device's pins. CY3210-24X23 provides evaluation of the  
CY8C24x23A PSoC device family.  
CY3215-DK Basic Development Kit  
The CY3215-DK is for prototyping and development with PSoC  
Designer. This kit supports in-circuit emulation and the software  
interface allows users to run, halt, and single step the processor  
and view the contents of specific memory locations. Advanced  
emulation features are also supported through PSoC Designer.  
The kit includes:  
ICE-Cube Unit  
28-Pin PDIP Emulation Pod for CY8C29466-24PXI  
28-Pin CY8C29466-24PXI PDIP PSoC Device Samples (two)  
PSoC Designer Software CD  
ISSP Cable  
MiniEval Socket Programming and Evaluation board  
Backward Compatibility Cable (for connecting to legacy Pods)  
Universal 110/220 Power Supply (12V)  
European Plug Adapter  
USB 2.0 Cable  
Getting Started Guide  
Development Kit Registration form  
Document Number: 001-52469 Rev. *C  
Page 33 of 36  
[+] Feedback  
CY8C24423A  
CY3207ISSP In-System Serial Programmer (ISSP)  
Device Programmers  
The CY3207ISSP is a production programmer. It includes  
protection circuitry and an industrial case that is more robust than  
the MiniProg in a production-programming environment.  
All device programmers can be purchased from the Cypress  
Online Store.  
CY3210-MiniProg1  
Note: CY3207ISSP needs special software and is not  
compatible with PSoC Programmer. This software is free and  
can be downloaded from http://www.cypress.com. The kit  
includes:  
The CY3210-MiniProg1 kit allows a user to program PSoC  
devices via the MiniProg1 programming unit. The MiniProg is a  
small, compact prototyping programmer that connects to the PC  
via a provided USB 2.0 cable. The kit includes:  
CY3207 Programmer Unit  
PSoC ISSP Software CD  
MiniProg Programming Unit  
MiniEval Socket Programming and Evaluation Board  
28-Pin CY8C29466-24PXI PDIP PSoC Device Sample  
PSoC Designer Software CD  
110 ~ 240V Power Supply, Euro-Plug Adapter  
USB 2.0 Cable  
Getting Started Guide  
USB 2.0 Cable  
Accessories (Emulation and Programming)  
Table 37. Emulation and Programming Accessories  
Part Number  
Pin Package  
Pod Kit[22]  
Foot Kit[23]  
Adapter[24]  
CY8C24423A-24PVXA  
28 SSOP  
CY3250-24X23A  
CY3250-28SSOP-FK  
Adapters can be found at  
http://www.emulation.com.  
Third Party Tools  
Build a PSoC Emulator into Your Board  
Several tools have been specially designed by the following  
3rd-party vendors to accompany PSoC devices during devel-  
opment and production. Specific details for each of these tools  
can be found at http://www.cypress.com under Design  
Resources > Evaluation Boards.  
For details on how to emulate your circuit before going to volume  
production using an on-chip debug (OCD) non-production PSoC  
device, see Application Note “Debugging - Build a PSoC  
Emulator into Your Board - AN2323” at http://www.cypress.com.  
Notes  
22. Pod kit contains an emulation pod, a flex-cable (connects the pod to the ICE), two feet, and device samples.  
23. Foot kit includes surface mount feet that can be soldered to the target PCB.  
24. Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at  
http://www.emulation.com.  
Document Number: 001-52469 Rev. *C  
Page 34 of 36  
[+] Feedback  
CY8C24423A  
Ordering Information  
The following table lists the automotive CY8C24x23A PSoC device group’s key package features and ordering codes.  
Table 38. CY8C24423A Automotive PSoC Device Key Features and Ordering Information  
28 Pin (210 Mil) SSOP  
CY8C24423A-24PVXA 4K  
CY8C24423A-24PVXAT 4K  
256 -40°C to +85°C  
256 -40°C to +85°C  
4
4
6
6
24  
24  
12  
12  
2
2
Yes  
Yes  
28 Pin (210 Mil) SSOP  
(Tape and Reel)  
Ordering Code Definitions  
CY 8 C 24 xxx-SPxx  
Package Type:  
Thermal Rating:  
PX = PDIP Pb-Free  
SX = SOIC Pb-Free  
C = Commercial  
I = Industrial  
PVX = SSOP Pb-Free  
LFX/LKX = QFN Pb-Free  
AX = TQFP Pb-Free  
E = Automotive Extended -40  
°
C to +125°C  
A = Automotive -40 C to +85°C  
°
CPU Speed: 24 MHz  
Part Number  
Family Code  
Technology Code: C = CMOS  
Marketing Code: 8 = PSoC  
Company ID: CY = Cypress  
Document Number: 001-52469 Rev. *C  
Page 35 of 36  
[+] Feedback  
CY8C24423A  
Document History Page  
Document Title: CY8C24423A Automotive PSoC® Programmable System-on-Chip  
Document Number: 001-52469  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN  
Description of Change  
New data sheet for Automotive A-Grade  
Minor ECN to correct the spec number in Document History.  
**  
2678061 VIVG/PYRS  
03/24/09  
04/08/09  
*A  
*B  
*C  
2685606  
2702925  
SHEA  
BTK  
05/06/2009 Post to external web  
2742354 BTK/PYRS  
07/22/09 Changed title. Updated Features section. Updated text of PSoC Functional  
Overview section. Updated Getting Started section. Made corrections and minor text  
edits to Pinouts section. Changed the name of the Register Reference section to  
"Registers". Added clarifying comments to some electrical specifications. Updated  
some figures. Changed TRAMP specification per MASJ input. Fixed all AC specifi-  
cations to conform to a ±5% IMO accuracy. Made other miscellaneous minor text  
edits. Deleted some non-applicable or redundant information. Added a footnote to  
clarify that 8 of the 12 analog inputs are regular and the other 4 are direct SC block  
connections. Updated Development Tool Selection section.  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at www.cypress.com/sales.  
Products  
PSoC  
psoc.cypress.com  
clocks.cypress.com  
wireless.cypress.com  
memory.cypress.com  
image.cypress.com  
Clocks & Buffers  
Wireless  
Memories  
Image Sensors  
© Cypress Semiconductor Corporation, 2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any  
circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical,  
life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical  
components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 001-52469 Rev. *C  
Revised July 22, 2009  
Page 36 of 36  
PSoC Designer™ is a trademark and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are property of the respective  
corporations. Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I2C Patent Rights to use these components in an I2C  
system, provided that the system conforms to the I2C Standard Specification as defined by Philips. All products and company names mentioned in this document may be the trademarks of their  
respective holders.  
[+] Feedback  

相关型号:

CY8C24423A-24PVXI

PSoC Mixed-Signal Array
CYPRESS

CY8C24423A-24PVXIT

PSoC Mixed-Signal Array
CYPRESS

CY8C24423A-24PXI

PSoC Mixed-Signal Array
CYPRESS

CY8C24423A-24SXI

PSoC Mixed-Signal Array
CYPRESS

CY8C24423A-24SXIT

PSoC Mixed-Signal Array
CYPRESS

CY8C24423A_09

Automotive PSoC Programmable System-on-Chip
CYPRESS

CY8C24533-24PVXI

PSoC® Programmable System-on-Chip™
CYPRESS

CY8C24633

PSoC Programmable System-on-Chip
CYPRESS

CY8C24633-24PVXI

PSoC Programmable System-on-Chip
CYPRESS

CY8C24633-24PVXIT

PSoC Programmable System-on-Chip
CYPRESS

CY8C24633-24PVXI_12

PSoC® Programmable System-on-Chip
CYPRESS

CY8C24633_10

PSoC? Programmable System-on-Chip
CYPRESS