CY8C27466-24PXI [CYPRESS]

PSoC⑩ Mixed Signal Array; 的PSoC ™混合信号阵列
CY8C27466-24PXI
型号: CY8C27466-24PXI
厂家: CYPRESS    CYPRESS
描述:

PSoC⑩ Mixed Signal Array
的PSoC ™混合信号阵列

文件: 总39页 (文件大小:799K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PSoC™ Mixed Signal Array  
CY8C27466, CY8C27566, and CY8C27666  
Features  
Preliminary Data Sheet  
Powerful Harvard Architecture Processor  
Precision, Programmable Clocking  
Additional System Resources  
M8C Processor Speeds to 24 MHz  
Two 8x8 Multiply, 32-Bit Accumulate  
Low Power at High Speed  
3.0 to 5.25 V Operating Voltage  
Operating Voltages Down to 1.0V Using On-  
Chip Switch Mode Pump (SMP)  
Internal ±2.5% 24/48 MHz Oscillator  
I2CSlave, Master, and Multi-Master to  
400 kHz  
Watchdog and Sleep Timers  
User-Configurable Low Voltage Detection  
Integrated Supervisory Circuit  
On-Chip Precision Voltage Reference  
24/48 MHz with Optional 32.768 kHz Crystal  
Optional External Oscillator, up to 24 MHz  
Internal Oscillator for Watchdog and Sleep  
Flexible On-Chip Memory  
32K Bytes Flash Program Storage 50,000  
Erase/Write Cycles  
1K Bytes SRAM Data Storage  
In-System Serial Programming (ISSP)  
Partial Flash Updates  
Industrial Temperature Range: -40°C to +85°C  
Complete Development Tools  
Advanced Peripherals (PSoC Blocks)  
Free Development Software  
(PSoC™ Designer)  
Full-Featured, In-Circuit Emulator and  
Programmer  
12 Rail-to-Rail Analog PSoC Blocks Provide:  
- Up to 14-Bit ADCs  
- Up to 9-Bit DACs  
Flexible Protection Modes  
EEPROM Emulation in Flash  
Full Speed Emulation  
- Programmable Gain Amplifiers  
- Programmable Filters and Comparators  
8 Digital PSoC Blocks Provide:  
- 8- to 32-Bit Timers, Counters, and PWMs  
- CRC and PRS Modules  
- Up to 2 Full-Duplex UARTs  
- Multiple SPIMasters or Slaves  
- Connectable to all GPIO Pins  
Complex Breakpoint Structure  
128K Bytes Trace Memory  
Complex Events  
Programmable Pin Configurations  
25 mA Sink on all GPIO  
Pull up, Pull down, High Z, Strong, or Open  
Drain Drive Modes on all GPIO  
Up to 12 Analog Inputs on GPIO  
Four 40 mA Analog Outputs on GPIO  
Configurable Interrupt on all GPIO  
C Compilers, Assembler, and Linker  
Complex Peripherals by Combining Blocks  
Analog  
Drivers  
PSoC™ Functional Overview  
Port 5 Port 4 Port 3 Port 2 Port 1 Port 0  
PSoC  
CORE  
The PSoC™ family consists of many Mixed Signal Array with  
On-Chip Controller devices. These devices are designed to  
replace multiple traditional MCU-based system components  
with one, low cost single-chip programmable device. PSoC  
devices include configurable blocks of analog and digital logic,  
as well as programmable interconnects. This architecture  
allows the user to create customized peripheral configurations  
that match the requirements of each individual application.  
Additionally, a fast CPU, Flash program memory, SRAM data  
memory, and configurable IO are included in a range of conve-  
nient pinouts and packages.  
SYSTEM BUS  
Global Digital Interconnect  
SRAM  
Global Analog Interconnect  
SROM  
Flash 32K  
1K  
Sleep and  
Watchdog  
CPU Core (M8C)  
Interrupt  
Controller  
Multiple Clock Sources  
(Includes IMO, ILO, PLL, and ECO)  
The PSoC architecture, as illustrated on the left, is comprised of  
four main areas: PSoC Core, Digital System, Analog System,  
and System Resources. Configurable global busing allows all  
the device resources to be combined into a complete custom  
system. The PSoC CY8C27x66 family can have up to five IO  
ports that connect to the global digital and analog interconnects,  
providing access to 16 digital blocks and 12 analog blocks.  
DIGITAL SYSTEM  
ANALOG SYSTEM  
Analog  
Ref  
Analog  
Block  
Array  
Digital  
Block Array  
(2 Rows,  
8 Blocks)  
(4 Columns,  
12 Blocks)  
Analog  
Input  
Muxing  
The PSoC Core  
The PSoC Core is a powerful engine that supports a rich fea-  
ture set. The core includes a CPU, memory, clocks, and config-  
urable GPIO (General Purpose IO).  
Two  
POR and LVD Internal  
Voltage  
Switch  
Mode  
Pump  
Digital  
Clocks  
I2C  
Multiply Decimator  
Accum.  
System Resets  
Ref.  
The M8C CPU core is a powerful processor with speeds up to  
24 MHz, providing a four MIPS 8-bit Harvard architecture micro-  
processor. The CPU utilizes an interrupt controller with 18 vec-  
SYSTEM RESOURCES  
June 2004  
© Cypress MicroSystems, Inc. 2004 — Document No. 38-12019 Rev. *B  
1
CY8C27x66 Preliminary Data Sheet  
PSoC™ Overview  
tors, to simplify programming of real time embedded events.  
Program execution is timed and protected using the included  
Sleep and Watch Dog Timers (WDT).  
Port 5 Port 4 Port 3 Port 2 Port 1 Port 0  
Digital Clocks  
From Core  
To Analog  
System  
To System Bus  
Memory encompasses 32K of Flash for program storage, 1 KB  
of SRAM for data storage, and up to 2K of EEPROM emulated  
using the Flash. Program Flash utilizes four protection levels on  
blocks of 64 bytes, allowing customized software IP protection.  
DIGITAL SYSTEM  
The PSoC device incorporates flexible internal clock genera-  
tors, including a 24 MHz IMO (internal main oscillator) accurate  
to 2.5% over temperature and voltage. The 24 MHz IMO can  
also be doubled to 48 MHz for use by the digital system. A low  
power 32 kHz ILO (internal low speed oscillator) is provided for  
the Sleep timer and WDT. If crystal accuracy is desired, the  
ECO (32.768 kHz external crystal oscillator) is available for use  
as a Real Time Clock (RTC) and can optionally generate a crys-  
tal-accurate 24 MHz system clock using a PLL. The clocks,  
together with programmable clock dividers (as a System  
Resource), provide the flexibility to integrate almost any timing  
requirement into the PSoC device.  
Digital PSoC Block Array  
Row 0  
4
DBB00  
DBB01  
DCB02 DCB03  
4
4
8
8
8
8
Row 1  
DBB11  
DBB10  
DCB12 DCB13  
PSoC GPIOs provide connection to the CPU, digital and analog  
resources of the device. Each pin’s drive mode may be selected  
from eight options, allowing great flexibility in external interfac-  
ing. Every pin also has the capability to generate a system inter-  
rupt on high level, low level, and change from last read.  
4
GIE[7:0]  
GIO[7:0]  
GOE[7:0]  
GOO[7:0]  
Global Digital  
Interconnect  
The Digital System  
The Digital System is composed of 8 digital PSoC blocks. Each  
block is an 8-bit resource that can be used alone or combined  
with other blocks to form 8, 16, 24, and 32-bit peripherals, which  
are called user module references. Digital peripheral configura-  
tions include those listed below.  
Digital System Block Diagram  
The Analog System  
PWMs (8 to 32 bit)  
PWMs with Dead band (8 to 32 bit)  
Counters (8 to 32 bit)  
The Analog System is composed of 12 configurable blocks,  
each comprised of an opamp circuit allowing the creation of  
complex analog signal flows. Analog peripherals are very flexi-  
ble and can be customized to support specific application  
requirements. Some of the more common PSoC analog func-  
tions (most available as user modules) are listed below.  
Timers (8 to 32 bit)  
UART 8 bit with selectable parity (up to 2)  
SPI master and slave (up to 2 each)  
I2C slave and master (1 available as a System Resource)  
Cyclical Redundancy Checker/Generator (8 to 32 bit)  
IrDA (up to 2)  
Analog to digital converters (up to 4, with 6- to 14-bit resolu-  
tion, selectable as Incremental, Delta Sigma, and SAR)  
Filters (2, 4, 6, or 8 pole band-pass, low-pass, and notch)  
Amplifiers (up to 4, with selectable gain to 48x)  
Pseudo Random Sequence Generators (8 to 32 bit)  
Instrumentation amplifiers (up to 2, with selectable gain to  
The digital blocks can be connected to any GPIO through a  
series of global buses that can route any signal to any pin. The  
buses also allow for signal multiplexing and for performing logic  
operations. This configurability frees your designs from the con-  
straints of a fixed peripheral controller.  
93x)  
Comparators (up to 4, with 16 selectable thresholds)  
DACs (up to 4, with 6- to 9-bit resolution)  
Multiplying DACs (up to 4, with 6- to 9-bit resolution)  
High current output drivers (four with 40 mA drive as a Core  
Digital blocks are provided in rows of four, where the number of  
blocks varies by PSoC device family. This allows you the opti-  
mum choice of system resources for your application. Family  
resources are shown in the table titled “PSoC Device Charac-  
teristics” on page 3.  
Resource)  
1.3V reference (as a System Resource)  
DTMF dialer  
Modulators  
Correlators  
June 1, 2004  
Document No. 38-12019 Rev. *B  
2
CY8C27x66 Preliminary Data Sheet  
PSoC™ Overview  
Peak detectors  
Additional System Resources  
Many other topologies possible  
System Resources, some of which have been previously listed,  
provide additSNRional capability useful to complete systems.  
Additional resources include a multiplier, decimator, switch  
mode pump, low voltage detection, and power on reset. Brief  
statements describing the merits of each system resource are  
presented below.  
Analog blocks are provided in columns of three, which includes  
one CT (Continuous Time) and two SC (Switched Capacitor)  
blocks. The number of blocks is dependant on the device family  
which is detailed in the table titled “PSoC Device Characteris-  
tics” on page 3.  
Digital clock dividers provide three customizable clock fre-  
quencies for use in applications. The clocks can be routed to  
both the digital and analog systems. Additional clocks can be  
generated using digital PSoC blocks as clock dividers.  
P0[7]  
P0[5]  
P0[6]  
P0[4]  
A multiply accumulate (MAC) provides a fast 8-bit multiplier  
with 32-bit accumulate to assist in both general math as well  
as digital filters.  
P0[3]  
P0[1]  
P0[2]  
P0[0]  
The decimator provides a custom hardware filter for digital  
signal, processing applications including the creation of Delta  
Sigma ADCs.  
P2[6]  
P2[4]  
P2[3]  
P2[1]  
The I2C module provides 100 and 400 kHz communication  
over two wires. Slave, master, and multi-master modes are  
all supported.  
P2[2]  
P2[0]  
Low Voltage Detection (LVD) interrupts can signal the appli-  
cation of falling voltage levels, while the advanced POR  
(Power On Reset) circuit eliminates the need for a system  
supervisor.  
An internal 1.3 voltage reference provides an absolute refer-  
ence for the analog system, including ADCs and DACs.  
Array Input Configuration  
An integrated switch mode pump (SMP) generates normal  
operating voltages from a single 1.2V battery cell, providing a  
low cost boost converter.  
ACI0[1:0]  
ACI1[1:0]  
ACI2[1:0]  
ACI3[1:0]  
PSOC Device Characteristics  
Depending on your PSoC device characteristics, the digital and  
analog systems can have 16, 8, or 4 digital blocks and 12, 6, or  
3 analog blocks. The following table lists the resources  
available for specific PSoC device groups.  
Block Array  
ACB00  
ASC10  
ASD20  
ACB01  
ASD11  
ASC21  
ACB02  
ASC12  
ASD22  
ACB03  
ASD13  
ASC23  
PSoC Device Characteristics  
PSoC Part  
Number  
Analog Reference  
up to  
64  
CY8C29x66  
CY8C27x66  
CY8C27x43  
CY8C24x23  
CY8C22x13  
4
2
2
1
1
16  
8
12  
12  
12  
12  
8
4
4
4
2
1
4
4
4
2
1
12  
12  
12  
6
Interface to  
Digital System  
Reference  
Generators  
RefHi  
RefLo  
AGND  
AGNDIn  
RefIn  
Bandgap  
up to  
44  
up to  
44  
8
up to  
24  
4
M8C Interface (Address Bus, Data Bus, Etc.)  
up to  
16  
4
3
Analog System Block Diagram  
June 1, 2004  
Document No. 38-12019 Rev. *B  
3
CY8C27x66 Preliminary Data Sheet  
PSoC™ Overview  
Getting Started  
Development Tools  
The Cypress MicroSystems PSoC Designer is a Microsoft®  
Windows-based, integrated development environment for the  
Programmable System-on-Chip (PSoC) devices. The PSoC  
Designer IDE and application runs on Windows 98, Windows  
NT 4.0, Windows 2000, Windows Millennium (Me), or Windows  
XP. (Reference the PSoC Designer Functional Flow diagram  
below.)  
The quickest path to understanding the PSoC silicon is by read-  
ing this data sheet and using the PSoC Designer Integrated  
Development Environment (IDE). This data sheet is an over-  
view of the PSoC integrated circuit and presents specific pin,  
register, and electrical specifications. For in-depth information,  
along with detailed programming information, reference the  
PSoC™ Mixed Signal Array Technical Reference Manual.  
For up-to-date Ordering, Packaging, and Electrical Specification  
information, reference the latest PSoC device data sheets on  
the web at http://www.cypress.com/psoc.  
PSoC Designer helps the customer to select an operating con-  
figuration for the PSoC, write application code that uses the  
PSoC, and debug the application. This system provides design  
database management by project, an integrated debugger with  
In-Circuit Emulator, in-system programming support, and the  
CYASM macro assembler for the CPUs.  
Development Kits  
Development Kits are available from the following distributors:  
Digi-Key, Avnet, Arrow, and Future. The Cypress Online Store  
at http://www.onfulfillment.com/cypressstore/ contains develop-  
ment kits, C compilers, and all accessories for PSoC develop-  
ment. Click on PSoC (Programmable System-on-Chip) to view  
a current list of available items.  
PSoC Designer also supports a high-level C language compiler  
developed specifically for the devices in the family.  
Context  
Sensitive  
Help  
Graphical Designer  
PSoCTM  
Interface  
Tele-Training  
Designer  
Free PSoC "Tele-training" is available for beginners and taught  
by a live marketing or application engineer over the phone. Five  
training classes are available to accelerate the learning curve  
including introduction, designing, debugging, advanced design,  
advanced analog, as well as application-specific classes cover-  
ing topics like PSoC and the LIN bus. For days and times of the  
tele-training, see http://www.cypress.com/support/training.cfm.  
Importable  
Design  
Database  
PSoC  
Configuration  
Sheet  
Device  
Database  
Consultants  
PSoCTM  
Designer  
Core  
Certified PSoC Consultants offer everything from technical  
assistance to completed PSoC designs. To contact or become a  
PSoC Consultant, go to the following Cypress support web site:  
http://www.cypress.com/support/cypros.cfm.  
Application  
Database  
Manufacturing  
Information  
File  
Engine  
Project  
Database  
Technical Support  
User  
Modules  
Library  
PSoC application engineers take pride in fast and accurate  
response. They can be reached with a 4-hour guaranteed  
response at http://www.cypress.com/support/login.cfm.  
Application Notes  
Emulation  
Pod  
In-Circuit  
Emulator  
Device  
Programmer  
A long list of application notes will assist you in every aspect of  
your design effort. To locate the PSoC application notes, go to  
http://www.cypress.com/design/results.cfm.  
PSoC Designer Subsystems  
June 1, 2004  
Document No. 38-12019 Rev. *B  
4
CY8C27x66 Preliminary Data Sheet  
PSoC™ Overview  
Debugger  
PSoC Designer Software Subsystems  
The PSoC Designer Debugger subsystem provides hardware  
in-circuit emulation, allowing the designer to test the program in  
a physical system while providing an internal view of the PSoC  
device. Debugger commands allow the designer to read and  
program and read and write data memory, read and write IO  
registers, read and write CPU registers, set and clear break-  
points, and provide program run, halt, and step control. The  
debugger also allows the designer to create a trace buffer of  
registers and memory locations of interest.  
Device Editor  
The Device Editor subsystem allows the user to select different  
onboard analog and digital components called user modules  
using the PSoC blocks. Examples of user modules are ADCs,  
DACs, Amplifiers, and Filters.  
The device editor also supports easy development of multiple  
configurations and dynamic reconfiguration. Dynamic configu-  
ration allows for changing configurations at run time.  
Online Help System  
PSoC Designer sets up power-on initialization tables for  
selected PSoC block configurations and creates source code  
for an application framework. The framework contains software  
to operate the selected components and, if the project uses  
more than one operating configuration, contains routines to  
switch between different sets of PSoC block configurations at  
run time. PSoC Designer can print out a configuration sheet for  
given project configuration for use during application program-  
ming in conjunction with the Device Data Sheet. Once the  
framework is generated, the user can add application-specific  
code to flesh out the framework. It’s also possible to change the  
selected components and regenerate the framework.  
The online help system displays online, context-sensitive help  
for the user. Designed for procedural and quick reference, each  
functional subsystem has its own context-sensitive help. This  
system also provides tutorials and links to FAQs and an Online  
Support Forum to aid the designer in getting started.  
Hardware Tools  
In-Circuit Emulator  
A low cost, high functionality ICE (In-Circuit Emulator) is avail-  
able for development support. This hardware has the capability  
to program single devices.  
Design Browser  
The Design Browser allows users to select and import precon-  
figured designs into the user’s project. Users can easily browse  
a catalog of preconfigured designs to facilitate time-to-design.  
Examples provided in the tools include a 300-baud modem, LIN  
Bus master and slave, fan controller, and magnetic card reader.  
The emulator consists of a base unit that connects to the PC by  
way of the parallel or USB port. The base unit is universal and  
will operate with all PSoC devices. Emulation pods for each  
device family are available separately. The emulation pod takes  
the place of the PSoC device in the target board and performs  
full speed (24 MHz) operation.  
Application Editor  
In the Application Editor you can edit your C language and  
Assembly language source code. You can also assemble, com-  
pile, link, and build.  
Assembler. The macro assembler allows the assembly code  
to be merged seamlessly with C code. The link libraries auto-  
matically use absolute addressing or can be compiled in relative  
mode, and linked with other software modules to get absolute  
addressing.  
C Language Compiler. A C language compiler is available  
that supports Cypress MicroSystems’ PSoC family devices.  
Even if you have never worked in the C language before, the  
product quickly allows you to create complete C programs for  
the PSoC family devices.  
The embedded, optimizing C compiler provides all the features  
of C tailored to the PSoC architecture. It comes complete with  
embedded libraries providing port and bus operations, standard  
keypad and display support, and extended math functionality.  
PSoC Development Tool Kit  
June 1, 2004  
Document No. 38-12019 Rev. *B  
5
CY8C27x66 Preliminary Data Sheet  
PSoC™ Overview  
the device to your specification and provides the high-level user  
module API functions.  
User Modules and the PSoC  
Development Process  
The development process for the PSoC device differs from that  
of a traditional fixed function microprocessor. The configurable  
analog and digital hardware blocks give the PSoC architecture  
a unique flexibility that pays dividends in managing specification  
change during development and by lowering inventory costs.  
These configurable resources, called PSoC Blocks, have the  
ability to implement a wide variety of user-selectable functions.  
Each block has several registers that determine its function and  
connectivity to other blocks, multiplexers, buses, and to the IO  
pins. Iterative development cycles permit you to adapt the hard-  
ware as well as the software. This substantially lowers the risk  
of having to select a different part to meet the final design  
requirements.  
Device Editor  
Placement  
User  
Module  
Selection  
Source  
Code  
Generator  
and  
Parameter  
-ization  
Generate  
Application  
Application Editor  
Source  
Code  
Editor  
Project  
Manager  
Build  
Manager  
To speed the development process, the PSoC Designer Inte-  
grated Development Environment (IDE) provides a library of  
pre-built, pre-tested hardware peripheral functions, called “User  
Modules.” User modules make selecting and implementing  
peripheral devices simple, and come in analog, digital, and  
mixed signal varieties. The standard User Module library con-  
tains over 50 common peripherals such as ADCs, DACs Tim-  
ers, Counters, UARTs, and other not-so common peripherals  
such as DTMF Generators and Bi-Quad analog filter sections.  
Build  
All  
Debugger  
Each user module establishes the basic register settings that  
implement the selected function. It also provides parameters  
that allow you to tailor its precise configuration to your particular  
application. For example, a Pulse Width Modulator User Mod-  
ule configures one or more digital PSoC blocks, one for each 8  
bits of resolution. The user module parameters permit you to  
establish the pulse width and duty cycle. User modules also  
provide tested software to cut your development time. The user  
module application programming interface (API) provides high-  
level functions to control and respond to hardware events at  
run-time. The API also provides optional interrupt service rou-  
tines that you can adapt as needed.  
Event &  
Breakpoint  
Manager  
Interface  
to ICE  
Storage  
Inspector  
User Module and Source Code Development Flows  
The next step is to write your main program, and any sub-rou-  
tines using PSoC Designer’s Application Editor subsystem.  
The Application Editor includes a Project Manager that allows  
you to open the project source code files (including all gener-  
ated code files) from a hierarchal view. The source code editor  
provides syntax coloring and advanced edit features for both C  
and assembly language. File search capabilities include simple  
string searches and recursive “grep-style” patterns. A single  
mouse click invokes the Build Manager. It employs a profes-  
sional-strength “makefile” system to automatically analyze all  
file dependencies and run the compiler and assembler as nec-  
essary. Project-level options control optimization strategies  
used by the compiler and linker. Syntax errors are displayed in  
a console window. Double clicking the error message takes you  
directly to the offending line of source code. When all is correct,  
the linker builds a ROM file image suitable for programming.  
The API functions are documented in user module data sheets  
that are viewed directly in the PSoC Designer IDE. These data  
sheets explain the internal operation of the user module and  
provide performance specifications. Each data sheet describes  
the use of each user module parameter and documents the set-  
ting of each register controlled by the user module.  
The development process starts when you open a new project  
and bring up the Device Editor, a pictorial environment (GUI) for  
configuring the hardware. You pick the user modules you need  
for your project and map them onto the PSoC blocks with point-  
and-click simplicity. Next, you build signal chains by intercon-  
necting user modules to each other and the IO pins. At this  
stage, you also configure the clock source connections and  
enter parameter values directly or by selecting values from  
drop-down menus. When you are ready to test the hardware  
configuration or move on to developing code for the project, you  
perform the “Generate Application” step. This causes PSoC  
Designer to generate source code that automatically configures  
The last step in the development process takes place inside the  
PSoC Designer’s Debugger subsystem. The Debugger down-  
loads the ROM image to the In-Circuit Emulator (ICE) where it  
runs at full speed. Debugger capabilities rival those of systems  
costing many times more. In addition to traditional single-step,  
run-to-breakpoint and watch-variable features, the Debugger  
provides a large trace buffer and allows you define complex  
breakpoint events that include monitoring address and data bus  
values, memory locations and external signals.  
June 1, 2004  
Document No. 38-12019 Rev. *B  
6
CY8C27x66 Preliminary Data Sheet  
PSoC™ Overview  
Document Conventions  
Table of Contents  
For an in depth discussion and more information on your PSoC  
device, obtain the PSoC Mixed Signal Array Technical Refer-  
ence Manual. This document encompasses and is organized  
into the following chapters and sections.  
Acronyms Used  
The following table lists the acronyms that are used in this doc-  
ument.  
1.  
Pin Information ............................................................. 8  
Acronym  
AC  
Description  
alternating current  
1.1 Pinouts ................................................................... 8  
1.1.1 28-Pin Part Pinout ..................................... 8  
1.1.2 44-Pin Part Pinout ..................................... 9  
1.1.3 48-Pin Part Pinouts .................................. 10  
ADC  
API  
analog-to-digital converter  
application programming interface  
central processing unit  
continuous time  
CPU  
CT  
2.  
3.  
Register Reference ..................................................... 12  
DAC  
DC  
digital-to-analog converter  
direct current  
2.1 Register Conventions ........................................... 12  
2.1.1 Abbreviations Used .................................. 12  
2.2 Register Mapping Tables ..................................... 12  
EEPROM  
FSR  
GPIO  
IO  
electrically erasable programmable read-only memory  
full scale range  
Electrical Specifications ............................................ 15  
general purpose IO  
3.1 Absolute Maximum Ratings ................................ 16  
3.2 Operating Temperature ....................................... 16  
3.3 DC Electrical Characteristics ................................ 17  
3.3.1 DC Chip-Level Specifications ................... 17  
3.3.2 DC General Purpose IO Specifications .... 17  
3.3.3 DC Operational Amplifier Specifications ... 18  
3.3.4 DC Analog Output Buffer Specifications ... 19  
3.3.5 DC Switch Mode Pump Specifications ..... 20  
3.3.6 DC Analog Reference Specifications ....... 21  
3.3.7 DC Analog PSoC Block Specifications ..... 22  
3.3.8 DC POR, SMP, and LVD Specifications ... 23  
3.3.9 DC Programming Specifications ............... 24  
3.4 AC Electrical Characteristics ................................ 25  
3.4.1 AC Chip-Level Specifications ................... 25  
3.4.2 AC General Purpose IO Specifications .... 27  
3.4.3 AC Operational Amplifier Specifications ... 28  
3.4.4 AC Digital Block Specifications ................. 30  
3.4.5 AC Analog Output Buffer Specifications ... 31  
3.4.6 AC External Clock Specifications ............. 32  
3.4.7 AC Programming Specifications ............... 32  
3.4.8 AC I2C Specifications ............................... 33  
input/output  
IPOR  
LSb  
imprecise power on reset  
least-significant bit  
LVD  
low voltage detect  
MSb  
PC  
most-significant bit  
program counter  
POR  
PPOR  
PSoC™  
PWM  
RAM  
ROM  
SC  
power on reset  
precision power on reset  
Programmable System-on-Chip  
pulse width modulator  
random access memory  
read only memory  
switched capacitor  
SMP  
TBD  
switch mode pump  
to be determined  
Units of Measure  
A units of measure table is located in the Electrical Specifica-  
tions section. Table 3-1 on page 15 lists all the abbreviations  
used to measure the PSoC devices.  
4.  
Packaging Information ............................................... 34  
4.1 Packaging Dimensions ......................................... 34  
4.2 Thermal Impedances .......................................... 37  
4.3 Capacitance on Crystal Pins ............................... 37  
Numeric Naming  
5.  
6.  
Ordering Information .................................................. 38  
Hexidecimal numbers are represented with all letters in upper-  
case with an appended lowercase ‘h’ (for example, ‘14h’ or  
‘3Ah’). Hexidecimal numbers may also be represented by a ‘0x’  
prefix, the C coding convention. Binary numbers have an  
appended lowercase ‘b’ (e.g., 01010100b’ or ‘01000011b’).  
Numbers not indicated by an ‘h’, ‘b’, or 0x are decimal.  
5.1 Ordering Code Definitions ................................... 38  
Sales and Service Information .................................. 39  
6.1 Revision History .................................................. 39  
6.2 Copyrights ............................................................ 39  
June 1, 2004  
Document No. 38-12019 Rev. *B  
7
1. Pin Information  
This chapter describes, lists, and illustrates the CY8C27x66 PSoC device pins and pinout configurations.  
1.1  
Pinouts  
The CY8C27x66 PSoC device is available in a variety of packages which are listed and illustrated in the following tables. Every port  
pin (labeled with a “P”) is capable of Digital IO. However, Vss, Vdd, SMP, and XRES are not capable of Digital IO.  
1.1.1  
28-Pin Part Pinout  
Table 1-1. 28-Pin Part Pinout (PDIP, SSOP, SOIC)  
Type  
CY8C27466 28-Pin PSoC Device  
Pin  
No.  
Pin  
Name  
Description  
Digital Analog  
1
2
3
4
5
6
7
8
9
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
P0[7]  
P0[5]  
P0[3]  
P0[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
SMP  
Analog column mux input.  
AI, P0[7]  
AIO, P0[5]  
AIO, P0[3]  
AI, P0[1]  
Vdd  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
IO  
IO  
I
Analog column mux input and column output.  
Analog column mux input and column output.  
Analog column mux input.  
P0[6], AI  
P0[4], AIO  
P0[2], AIO  
P0[0], AI  
P2[7]  
P2[5]  
P2[6], External VREF  
P2[4], External AGND  
P2[2], AI  
PDIP  
SSOP  
SOIC  
I
I
Direct switched capacitor block input.  
Direct switched capacitor block input.  
AI, P2[3]  
AI, P2[1]  
Power  
Switch Mode Pump (SMP) connection to  
external components required.  
SMP  
P2[0], AI  
I2C SCL, P1[7]  
I2C SDA, P1[5]  
P1[3]  
XRES  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
IO  
IO  
IO  
IO  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
Vss  
I2C Serial Clock (SCL)  
I2C Serial Data (SDA)  
P1[6]  
P1[4], EXTCLK  
P1[2]  
I2C SCL, XTALin, P1[1]  
Vss  
Crystal (XTALin), I2C Serial Clock (SCL)  
Ground connection.  
P1[0], XTALout, I2C SDA  
Power  
Input  
IO  
IO  
IO  
IO  
P1[0]  
P1[2]  
P1[4]  
P1[6]  
XRES  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
Crystal (XTALout), I2C Serial Data (SDA)  
Optional External Clock Input (EXTCLK)  
Active high pin reset with internal pull down.  
Direct switched capacitor block input.  
Direct switched capacitor block input.  
External Analog Ground (AGND)  
External Voltage Reference (VREF)  
Analog column mux input.  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
I
I
IO  
IO  
I
Analog column mux input and column output.  
Analog column mux input and column output.  
Analog column mux input.  
Power  
Supply voltage.  
LEGEND: A = Analog, I = Input, and O = Output.  
May 2004  
Document No. 38-12019 Rev. *B  
8
CY8C27x66 Preliminary Data Sheet  
1. Pin Information  
1.1.2  
44-Pin Part Pinout  
Table 1-2. 44-Pin Part Pinout (TQFP)  
Type  
CY8C27566 44-Pin PSoC Device  
Pin  
No.  
Pin  
Name  
Description  
Digital Analog  
1
2
3
4
5
6
7
8
IO  
P2[5]  
P2[3]  
P2[1]  
P4[7]  
P4[5]  
P4[3]  
P4[1]  
SMP  
IO  
IO  
IO  
IO  
IO  
IO  
I
I
Direct switched capacitor block input.  
Direct switched capacitor block input.  
Power  
Switch Mode Pump (SMP) connection to  
external components required.  
P2[5]  
P2[4], External AGND  
1
2
33  
32  
31  
30  
9
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
Vss  
AI, P2[3]  
AI, P2[1]  
P4[7]  
P2[2], AI  
P2[0], AI  
P4[6]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
3
4
5
P4[4]  
P4[5]  
29  
28  
27  
I2C Serial Clock (SCL)  
I2C Serial Data (SDA)  
TQFP  
P4[2]  
6
P4[3]  
P4[1]  
SMP  
P3[7]  
P4[0]  
7
8
9
10  
XRES  
P3[6]  
26  
25  
Crystal (XTALin), I2C Serial Clock (SCL)  
Ground connection.  
24  
23  
P3[5]  
P3[4]  
P3[2]  
Power  
IO  
IO  
P1[0]  
P1[2]  
Crystal (XTALout), I2C Serial Data (SDA)  
P3[3] 11  
20  
21  
22  
23  
24  
25  
26  
27  
28  
IO  
IO  
IO  
IO  
IO  
IO  
P1[4]  
P1[6]  
P3[0]  
P3[2]  
P3[4]  
P3[6]  
XRES  
P4[0]  
P4[2]  
Optional External Clock Input (EXTCLK)  
Input  
Active high pin reset with internal pull down.  
IO  
IO  
29  
30  
31  
32  
33  
34  
35  
36  
37  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
P4[4]  
P4[6]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
I
I
Direct switched capacitor block input.  
Direct switched capacitor block input.  
External Analog Ground (AGND)  
External Voltage Reference (VREF)  
Analog column mux input.  
I
IO  
IO  
Analog column mux input and column output.  
Analog column mux input and column output.  
38  
39  
40  
41  
42  
43  
44  
IO  
I
P0[6]  
Vdd  
Analog column mux input.  
Power  
Supply voltage.  
IO  
IO  
IO  
IO  
IO  
I
P0[7]  
P0[5]  
P0[3]  
P0[1]  
P2[7]  
Analog column mux input.  
IO  
IO  
I
Analog column mux input and column output.  
Analog column mux input and column output.  
Analog column mux input.  
LEGEND: A = Analog, I = Input, and O = Output.  
June 1, 2004  
Document No. 38-12019 Rev. *B  
9
CY8C27x66 Preliminary Data Sheet  
1. Pin Information  
1.1.3  
48-Pin Part Pinouts  
Table 1-3. 48-Pin Part Pinout (SSOP)  
Type  
CY8C27666 48-Pin PSoC Device  
Pin  
No.  
Pin  
Name  
Description  
Digital Analog  
1
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
P0[7]  
P0[5]  
P0[3]  
P0[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P4[7]  
P4[5]  
P4[3]  
P4[1]  
SMP  
Analog column mux input.  
AI, P0[7]  
1
2
Vdd  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
2
IO  
IO  
I
Analog column mux input and column output.  
Analog column mux input and column output.  
Analog column mux input.  
AIO, P0[5]  
AIO, P0[3]  
P0[6], AI  
P0[4], AIO  
P0[2], AIO  
P0[0], AI  
P2[6], External VREF  
P2[4], External AGND  
P2[2], AI  
P2[0], AI  
P4[6]  
3
3
4
5
4
AI, P0[1]  
P2[7]  
5
6
P2[5]  
6
7
7
I
I
Direct switched capacitor block input.  
Direct switched capacitor block input.  
AI, P2[3]  
AI, P2[1]  
P4[7]  
8
8
9
10  
9
P4[5]  
10  
11  
12  
13  
P4[3]  
11  
12  
13  
14  
15  
16  
P4[4]  
P4[2]  
P4[1]  
SSOP  
SMP  
P4[0]  
Power  
Switch Mode Pump (SMP) connection to  
external components required.  
P3[7]  
XRES  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P5[3]  
P5[1]  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
Vss  
P3[5]  
P3[6]  
P3[3]  
P3[1]  
P3[4]  
17  
18  
19  
20  
21  
P3[2]  
P5[3]  
P5[1]  
I2C SCL, P1[7]  
P3[0]  
P5[2]  
P5[0]  
P1[6]  
I2C SDA, P1[5]  
I2C Serial Clock (SCL)  
I2C Serial Data (SDA)  
P1[3]  
I2C SCL, XTALin, P1[1]  
Vss  
22  
23  
24  
P1[4], EXTCLK  
P1[2]  
P1[0], XTALout, I2C SDA  
Crystal (XTALin), I2C Serial Clock (SCL)  
Ground connection.  
Power  
IO  
IO  
P1[0]  
P1[2]  
Crystal (XTALout), I2C Serial Data (SDA)  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
P1[4]  
P1[6]  
P5[0]  
P5[2]  
P3[0]  
P3[2]  
P3[4]  
P3[6]  
XRES  
P4[0]  
P4[2]  
P4[4]  
P4[6]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
Optional External Clock Input (EXTCLK)  
Input  
Active high pin reset with internal pull down.  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
I
Direct switched capacitor block input.  
Direct switched capacitor block input.  
External Analog Ground (AGND)  
External Voltage Reference (VREF)  
Analog column mux input.  
I
IO  
IO  
Analog column mux input and column output.  
Analog column mux input and column output.  
47  
48  
IO  
I
P0[6]  
Vdd  
Analog column mux input.  
Supply voltage.  
Power  
LEGEND: A = Analog, I = Input, and O = Output.  
June 1, 2004  
Document No. 38-12019 Rev. *B  
10  
CY8C27x66 Preliminary Data Sheet  
1. Pin Information  
Table 1-4. 48-Pin Part Pinout (MLF*)  
Type  
CY8C27666 48-Pin PSoC Device  
Pin  
No.  
Pin  
Name  
Description  
Digital Analog  
1
2
3
4
5
6
7
IO  
IO  
IO  
IO  
IO  
IO  
I
I
P2[3]  
P2[1]  
P4[7]  
P4[5]  
P4[3]  
P4[1]  
SMP  
Direct switched capacitor block input.  
Direct switched capacitor block input.  
P2[4], External AGND  
P2[2], AI  
AI, P2[3]  
AI, P2[1]  
P4[7]  
36  
35  
34  
33  
32  
31  
1
2
Power  
Switch Mode Pump (SMP) connection to  
external components required.  
3
4
5
6
P2[0], AI  
P4[6]  
8
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P5[3]  
P5[1]  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
Vss  
P4[5]  
P4[3]  
P4[1]  
SMP  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P5[3]  
9
P4[4]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
P4[2]  
MLF  
(Top View)  
30  
29  
28  
27  
P4[0]  
7
8
9
XRES  
P3[6]  
P3[4]  
10  
I2C Serial Clock (SCL)  
I2C Serial Data (SDA)  
26  
25  
P3[2]  
P3[0]  
11  
12  
Crystal (XTALin), I2C Serial Clock (SCL)  
Ground connection.  
Power  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
P1[0]  
P1[2]  
P1[4]  
P1[6]  
P5[0]  
P5[2]  
P3[0]  
P3[2]  
P3[4]  
P3[6]  
XRES  
P4[0]  
P4[2]  
P4[4]  
P4[6]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
Crystal (XTALout), I2C Serial Data (SDA)  
Optional External Clock Input (EXTCLK)  
Input  
Active high pin reset with internal pull down.  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
I
Direct switched capacitor block input.  
Direct switched capacitor block input.  
External Analog Ground (AGND)  
External Voltage Reference (VREF)  
Analog column mux input.  
I
IO  
IO  
I
Analog column mux input and column output.  
Analog column mux input and column output.  
Analog column mux input.  
Power  
Supply voltage.  
IO  
IO  
IO  
IO  
IO  
IO  
I
P0[7]  
P0[5]  
P0[3]  
P0[1]  
P2[7]  
P2[5]  
Analog column mux input.  
IO  
IO  
I
Analog column mux input and column output.  
Analog column mux input and column output.  
Analog column mux input.  
LEGEND: A = Analog, I = Input, and O = Output.  
* The MLF package has a center pad that must be connected to the ground (Vss).  
June 1, 2004  
Document No. 38-12019 Rev. *B  
11  
2. Register Reference  
This chapter lists the registers of the CY8C27x66 PSoC device by way of mapping tables, in offset order. For detailed register infor-  
mation, reference the PSoC™ Mixed Signal Array Technical Reference Manual.  
2.1  
Register Conventions  
2.2  
Register Mapping Tables  
The PSoC device has a total register address space of 512  
bytes. The register space is also referred to as IO space and is  
broken into two parts. The XOI bit in the Flag register deter-  
mines which bank the user is currently in. When the XOI bit is  
set, the user is said to be in the “extended” address space or  
the “configuration” registers.  
2.1.1  
Abbreviations Used  
The register conventions specific to this section are listed in the  
following table.  
Convention  
Description  
Read and write register or bit(s)  
Read register or bit(s)  
Note In the following register mapping tables, blank fields are  
Reserved and should not be accessed.  
RW  
R
W
L
Write register or bit(s)  
Logical register or bit(s)  
Clearable register or bit(s)  
Access is bit specific  
C
#
June 2004  
Document No. 38-12019 Rev. *B  
12  
CY8C27x66 Preliminary Data Sheet  
2. Register Reference  
Register Map Bank 0 Table: User Space  
PRT0DR  
PRT0IE  
PRT0GS  
PRT0DM2  
PRT1DR  
PRT1IE  
PRT1GS  
PRT1DM2  
PRT2DR  
PRT2IE  
PRT2GS  
PRT2DM2  
PRT3DR  
PRT3IE  
PRT3GS  
PRT3DM2  
PRT4DR  
PRT4IE  
PRT4GS  
PRT4DM2  
PRT5DR  
PRT5IE  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
ASC10CR0  
ASC10CR1  
ASC10CR2  
ASC10CR3  
ASD11CR0  
ASD11CR1  
ASD11CR2  
ASD11CR3  
ASC12CR0  
ASC12CR1  
ASC12CR2  
ASC12CR3  
ASD13CR0  
ASD13CR1  
ASD13CR2  
ASD13CR3  
ASD20CR0  
ASD20CR1  
ASD20CR2  
ASD20CR3  
ASC21CR0  
ASC21CR1  
ASC21CR2  
ASC21CR3  
ASD22CR0  
ASD22CR1  
ASD22CR2  
ASD22CR3  
ASC23CR0  
ASC23CR1  
ASC23CR2  
ASC23CR3  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RDI2RI  
RDI2SYN  
RDI2IS  
RDI2LT0  
RDI2LT1  
RDI2RO0  
RDI2RO1  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RDI3RI  
RDI3SYN  
RDI3IS  
RDI3LT0  
RDI3LT1  
RDI3RO0  
RDI3RO1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
CUR_PP  
STK_PP  
RW  
RW  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
IDX_PP  
RW  
RW  
RW  
RW  
#
MVR_PP  
MVW_PP  
I2C_CFG  
I2C_SCR  
I2C_DR  
I2C_MSCR  
INT_CLR0  
INT_CLR1  
INT_CLR2  
INT_CLR3  
INT_MSK3  
INT_MSK2  
INT_MSK0  
INT_MSK1  
INT_VC  
PRT5GS  
PRT5DM2  
RW  
#
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RC  
W
RC  
RC  
RW  
RW  
W
W
R
R
RW  
RW  
RW  
RW  
RW  
#
W
RW  
#
DBB00DR0  
DBB00DR1  
DBB00DR2  
DBB00CR0  
DBB01DR0  
DBB01DR1  
DBB01DR2  
DBB01CR0  
DCB02DR0  
DCB02DR1  
DCB02DR2  
DCB02CR0  
DCB03DR0  
DCB03DR1  
DCB03DR2  
DCB03CR0  
DBB10DR0  
DBB10DR1  
DBB10DR2  
DBB10CR0  
DBB11DR0  
DBB11DR1  
DBB11DR2  
DBB11CR0  
DCB12DR0  
DCB12DR1  
DCB12DR2  
DCB12CR0  
DCB13DR0  
DCB13DR1  
DCB13DR2  
DCB13CR0  
AMX_IN  
RW  
ARF_CR  
CMP_CR0  
ASY_CR  
CMP_CR1  
RW  
#
#
RES_WDT  
DEC_DH  
DEC_DL  
DEC_CR0  
DEC_CR1  
MUL0_X  
#
W
RW  
#
RW  
#
MUL1_X  
MUL1_Y  
W
W
R
R
W
RW  
#
MUL0_Y  
MUL1_DH  
MUL1_DL  
ACC1_DR1  
ACC1_DR0  
ACC1_DR3  
ACC1_DR2  
RDI0RI  
RDI0SYN  
RDI0IS  
RDI0LT0  
MUL0_DH  
MUL0_DL  
ACC0_DR1  
ACC0_DR0  
ACC0_DR3  
ACC0_DR2  
#
TMP0_DR  
TMP1_DR  
TMP2_DR  
TMP3_DR  
ACB00CR3  
ACB00CR0  
ACB00CR1  
ACB00CR2  
ACB01CR3  
ACB01CR0  
ACB01CR1  
ACB01CR2  
ACB02CR3  
ACB02CR0  
ACB02CR1  
ACB02CR2  
ACB03CR3  
ACB03CR0  
ACB03CR1  
ACB03CR2  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
W
RW  
#
#
W
RW  
#
#
RDIOLT1  
RDI0RO0  
RDI0RO1  
W
RW  
#
CPU_F  
RL  
#
RDI1RI  
RDI1SYN  
RDI1IS  
RDI1LT0  
RDI1LT1  
RDI1RO0  
RDI1RO1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
W
RW  
#
#
W
RW  
#
CPU_SCR1  
CPU_SCR0  
#
#
Blank fields are Reserved and should not be accessed.  
# Access is bit specific.  
June 1, 2004  
Document No. 38-12019 Rev. *B  
13  
CY8C27x66 Preliminary Data Sheet  
2. Register Reference  
Register Map Bank 1 Table: Configuration Space  
PRT0DM0  
PRT0DM1  
PRT0IC0  
PRT0IC1  
PRT1DM0  
PRT1DM1  
PRT1IC0  
PRT1IC1  
PRT2DM0  
PRT2DM1  
PRT2IC0  
PRT2IC1  
PRT3DM0  
PRT3DM1  
PRT3IC0  
PRT3IC1  
PRT4DM0  
PRT4DM1  
PRT4IC0  
PRT4IC1  
PRT5DM0  
PRT5DM1  
PRT5IC0  
PRT5IC1  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
ASC10CR0  
ASC10CR1  
ASC10CR2  
ASC10CR3  
ASD11CR0  
ASD11CR1  
ASD11CR2  
ASD11CR3  
ASC12CR0  
ASC12CR1  
ASC12CR2  
ASC12CR3  
ASD13CR0  
ASD13CR1  
ASD13CR2  
ASD13CR3  
ASD20CR0  
ASD20CR1  
ASD20CR2  
ASD20CR3  
ASC21CR0  
ASC21CR1  
ASC21CR2  
ASC21CR3  
ASD22CR0  
ASD22CR1  
ASD22CR2  
ASD22CR3  
ASC23CR0  
ASC23CR1  
ASC23CR2  
ASC23CR3  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RDI2RI  
RDI2SYN  
RDI2IS  
RDI2LT0  
RDI2LT1  
RDI2RO0  
RDI2RO1  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RDI3RI  
RDI3SYN  
RDI3IS  
RDI3LT0  
RDI3LT1  
RDI3RO0  
RDI3RO1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
GDI_O_IN  
GDI_E_IN  
GDI_O_OU  
GDI_E_OU  
RW  
RW  
RW  
RW  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
OSC_GO_EN DD  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
OSC_CR4  
OSC_CR3  
OSC_CR0  
OSC_CR1  
OSC_CR2  
VLT_CR  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
DBB00FN  
DBB00IN  
DBB00OU  
RW  
RW  
RW  
CLK_CR0  
CLK_CR1  
ABF_CR0  
AMD_CR0  
RW  
RW  
RW  
RW  
DBB01FN  
DBB01IN  
DBB01OU  
RW  
RW  
RW  
VLT_CMP  
AMD_CR1  
ALT_CR0  
ALT_CR1  
CLK_CR2  
RW  
RW  
RW  
RW  
DCB02FN  
DCB02IN  
DCB02OU  
RW  
RW  
RW  
IMO_TR  
ILO_TR  
BDG_TR  
ECO_TR  
W
W
RW  
W
DCB03FN  
DCB03IN  
DCB03OU  
RW  
RW  
RW  
TMP0_DR  
TMP1_DR  
TMP2_DR  
TMP3_DR  
ACB00CR3  
ACB00CR0  
ACB00CR1  
ACB00CR2  
ACB01CR3  
ACB01CR0  
ACB01CR1  
ACB01CR2  
ACB02CR3  
ACB02CR0  
ACB02CR1  
ACB02CR2  
ACB03CR3  
ACB03CR0  
ACB03CR1  
ACB03CR2  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
DBB10FN  
DBB10IN  
DBB10OU  
RW  
RW  
RW  
RDI0RI  
RDI0SYN  
RDI0IS  
RDI0LT0  
RDIOLT1  
RDI0RO0  
RDI0RO1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
DBB11FN  
DBB11IN  
DBB11OU  
RW  
RW  
RW  
CPU_F  
RL  
DCB12FN  
DCB12IN  
DCB12OU  
RW  
RW  
RW  
RDI1RI  
RDI1SYN  
RDI1IS  
RDI1LT0  
RDI1LT1  
RDI1RO0  
RDI1RO1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
FLS_PR1  
RW  
DCB13FN  
DCB13IN  
DCB13OU  
RW  
RW  
RW  
CPU_SCR1  
CPU_SCR0  
#
#
Blank fields are Reserved and should not be accessed.  
# Access is bit specific.  
June 1, 2004  
Document No. 38-12019 Rev. *B  
14  
3. Electrical Specifications  
This chapter presents the DC and AC electrical specifications of the CY8C27x66 PSoC device. For the most up to date electrical  
specifications, confirm that you have the most recent data sheet by going to the web at http://www.cypress.com/psoc.  
Specifications are valid for -40oC T 85oC and T 100oC, except where noted.  
A
J
5.25  
4.75  
5.25  
4.75  
SLIMO  
Mode=0  
3.60  
3.00  
SLIMO  
Mode=1  
3.00  
93 kHz  
12 MHz  
24 MHz  
93 kHz  
6 MHz  
12 MHz  
24 MHz  
IMO Frequency  
CPU Frequency  
Figure 3-1a. Voltage versus Operating Frequency  
Figure 3-1b. Voltage versus IMO Frequency  
The following table lists the units of measure that are used in this chapter.  
Table 3-1: Units of Measure  
Symbol  
Unit of Measure  
Symbol  
Unit of Measure  
oC  
dB  
degree Celsius  
µW  
micro watts  
decibels  
mA  
ms  
mV  
nA  
ns  
milli-ampere  
milli-second  
milli-volts  
fF  
femto farad  
hertz  
Hz  
KB  
1024 bytes  
1024 bits  
nano ampere  
nanosecond  
nanovolts  
Kbit  
kHz  
kΩ  
kilohertz  
nV  
kilohm  
ohm  
MHz  
MΩ  
µA  
megahertz  
megaohm  
micro ampere  
micro farad  
micro henry  
microsecond  
micro volts  
pA  
pF  
pp  
ppm  
ps  
pico ampere  
pico farad  
peak-to-peak  
parts per million  
picosecond  
µF  
µH  
µs  
sps  
σ
samples per second  
sigma: one standard deviation  
volts  
µV  
µVrms  
micro volts root-mean-square  
V
June 2004  
Document No. 38-12019 Rev. *B  
15  
CY8C27x66 Preliminary Data Sheet  
3. Electrical Specifications  
3.1  
Absolute Maximum Ratings  
Table 3-2: Absolute Maximum Ratings  
Symbol  
Description  
Min  
-55  
Typ  
Max  
+100  
Units  
oC  
Notes  
TSTG  
Storage Temperature  
Higher storage temperatures will reduce data  
retention time.  
oC  
V
TA  
Ambient Temperature with Power Applied  
-40  
+85  
Vdd  
VIO  
Supply Voltage on Vdd Relative to Vss  
DC Input Voltage  
-0.5  
+6.0  
Vss-0.5  
Vdd+0.5  
V
DC Voltage Applied to Tri-state  
Vss-0.5  
-25  
Vdd+0.5  
+50  
V
IMIO  
Maximum Current into any Port Pin  
mA  
IMAIO  
Maximum Current into any Port Pin Configured as Analog  
Driver  
-50  
+50  
mA  
Static Discharge Voltage  
Latch-up Current  
2000  
V
200  
mA  
3.2  
Operating Temperature  
Table 3-3: Operating Temperature  
Symbol  
TA  
TJ  
Description  
Min  
Typ  
Max  
Units  
Notes  
oC  
oC  
Ambient Temperature  
Junction Temperature  
-40  
+85  
-40  
+100  
The temperature rise from ambient to junction is  
package specific. See “Thermal Impedances”  
on page 37. The user must limit the power con-  
sumption to comply with this requirement.  
June 1, 2004  
Document No. 38-12019 Rev. *B  
16  
CY8C27x66 Preliminary Data Sheet  
3. Electrical Specifications  
3.3  
DC Electrical Characteristics  
3.3.1  
DC Chip-Level Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only or unless otherwise specified.  
Table 3-4: DC Chip-Level Specifications  
Symbol  
Vdd  
Description  
Min  
3.00  
Typ  
Max  
5.25  
Units  
Notes  
Supply Voltage  
Supply Current  
8
V
Conditions are 5.0V, 25 oC, 3 MHz, 48 MHz dis-  
abled. VC1=1.5 MHz, VC2=93.75 kHz,  
VC3=0.366 kHz.  
IDD  
14  
mA  
Conditions are Vdd=3.3V, TA=25 oC, CPU=3  
MHz, 48 MHz=Disabled, VC1=1.5 MHz,  
VC2=93.75 kHz, VC3=0.366 Khz.  
IDD3  
Supply Current  
5
2
9
mA  
Conditions are Vdd=3.3V, TA=25 oC, CPU=3  
IDDP  
Supply current when IMO = 6 MHz  
3
mA  
MHz, 48 MHz=Disabled, VC1=1.5 MHz,  
VC2=93.75 kHz, VC3=0.366 Khz.  
ISB  
Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT,  
and internal slow oscillator active. Lower 3/4 temperature  
range.  
3
4
4
10  
25  
12  
µA  
µA  
µA  
Conditions are with internal slow speed oscilla-  
tor, Vdd = 3.3V, -40 oC <=TA <= 55 oC.  
ISBH  
Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT,  
and internal slow oscillator active. Higher 1/4 temperature  
range (hot).  
Conditions are with internal slow speed oscilla-  
tor, Vdd = 3.3V, 55 oC < TA <= 85 oC.  
ISBXTL  
Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT,  
internal slow oscillator, and 32 kHz crystal oscillator active.  
Lower 3/4 temperature range.  
Conditions are with properly loaded, 1 µW max,  
32.768 kHz crystal. Vdd = 3.3V, -40 oC <= TA <=  
55 oC.  
ISBXTLH  
Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT,  
and 32 kHz crystal oscillator active. Higher 1/4 temperature  
range (hot).  
5
27  
µA  
Conditions are with properly loaded, 1 µW max,  
32.768 kHz crystal. Vdd = 3.3V, 55 oC < TA <=  
85 oC.  
VREF  
Reference Voltage (Bandgap)  
1.28  
1.3  
1.32  
V
Trimmed for appropriate Vdd.  
3.3.2  
DC General Purpose IO Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only or unless otherwise specified.  
Table 3-5: DC GPIO Specifications  
Symbol  
Description  
Min  
Typ  
5.6  
Max  
Units  
kΩ  
Notes  
RPU  
Pull up Resistor  
4
4
8
8
RPD  
VOH  
Pull down Resistor  
High Output Level  
5.6  
kΩ  
Vdd - 1.0  
V
IOH = 10 mA, Vdd = 4.75 to 5.25V (8 IO switch-  
ing, 4 per side)  
VOL  
Low Output Level  
0.75  
0.8  
V
IOL = 25 mA, Vdd = 4.75 to 5.25V (8 IO switch-  
ing, 4 per side)  
VIL  
Input Low Level  
Input High Level  
Input Hysterisis  
V
Vdd = 3.0 to 5.25  
Vdd = 3.0 to 5.25  
VIH  
VH  
2.1  
V
60  
1
mV  
nA  
pF  
pF  
IIL  
Input Leakage (Absolute Value)  
Capacitive Load on Pins as Input  
Capacitive Load on Pins as Output  
Gross tested to 1 µA.  
Package and pin dependent. Temp = 25oC.  
Package and pin dependent. Temp = 25oC.  
CIN  
COUT  
3.5  
3.5  
10  
10  
June 1, 2004  
Document No. 38-12019 Rev. *B  
17  
CY8C27x66 Preliminary Data Sheet  
3. Electrical Specifications  
3.3.3  
DC Operational Amplifier Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only or unless otherwise specified.  
The Operational Amplifier is a component of both the Analog Continuous Time PSoC blocks and the Analog Switched Capacitor  
PSoC blocks. The guaranteed specifications are measured in the Analog Continuous Time PSoC block. Typical parameters apply to  
5V at 25°C and are for design guidance only.  
Table 3-6: 5V DC Operational Amplifier Specifications  
Symbol  
VOSOA  
Description  
Min  
Typ  
1.6  
Max  
Units  
mV  
Notes  
Input Offset Voltage (absolute value) Low Power  
Input Offset Voltage (absolute value) Mid Power  
Input Offset Voltage (absolute value) High Power  
Average Input Offset Voltage Drift  
10  
8
Opamp bias = high.  
1.3  
1.2  
7.0  
mV  
mV  
7.5  
µV/oC  
TCVOSOA  
IEBOA  
35.0  
Input Leakage Current (Port 0 Analog Pins)  
Input Capacitance (Port 0 Analog Pins)  
200  
4.5  
pA  
Gross tested to 1 µA.  
Package and pin dependent. Temp = 25oC.  
CINOA  
9.5  
Vdd  
pF  
V
VCMOA  
Common Mode Voltage Range. All Cases, except high- 0.0  
est.  
Power = High, Opamp Bias = High  
Common Mode Rejection Ratio  
0.5  
Vdd-0.5  
V
CMRROA  
GOLOA  
60  
dB  
Open Loop Gain  
80  
dB  
V
VOHIGHOA  
VOLOWOA  
ISOA  
High Output Voltage Swing (worst case internal load)  
Low Output Voltage Swing (worst case internal load)  
Vdd-.01  
0.1  
V
Supply Current (including associated AGND buffer)  
Power=Low  
150  
300  
600  
1200  
2400  
4600  
200  
400  
800  
1600  
3200  
6400  
µA  
µA  
µA  
µA  
µA  
µA  
dB  
Power=Low, Opamp Bias=High  
Power=Medium  
Power=Medium, Opamp Bias=High  
Power=High  
Power=High, Opamp Bias=High  
Supply Voltage Rejection Ratio  
PSRROA  
60  
Important Note Do not use the combination of Power = High and Opamp Bias = High for 3.3V operations.  
Table 3-7: 3.3V DC Operational Amplifier Specifications  
Symbol  
VOSOA  
Description  
Min  
Typ  
1.65  
Max  
10  
Units  
mV  
Notes  
Input Offset Voltage (absolute value) Low Power  
Input Offset Voltage (absolute value) Mid Power  
High Power is 5 Volt Only  
Opamp bias = high.  
1.32  
8
mV  
µV/oC  
TCVOSOA  
IEBOA  
Average Input Offset Voltage Drift  
7.0  
200  
4.5  
35.0  
Input Leakage Current (Port 0 Analog Pins)  
Input Capacitance (Port 0 Analog Pins)  
Common Mode Voltage Range  
pA  
Gross tested to 1 µA.  
Package and pin dependent. Temp = 25oC.  
CINOA  
9.5  
Vdd  
pF  
V
VCMOA  
0
CMRROA  
GOLOA  
Common Mode Rejection Ratio  
60  
80  
dB  
dB  
V
Open Loop Gain  
VOHIGHOA  
VOLOWOA  
ISOA  
High Output Voltage Swing (worst case internal load)  
Low Output Voltage Swing (worst case internal load)  
Vdd-.01  
0.1  
V
Supply Current (including associated AGND buffer)  
Power=Low  
150  
200  
µA  
µA  
µA  
µA  
µA  
Power=Low, Opamp Bias=High  
Power=Medium  
300  
400  
600  
800  
Power=Medium, Opamp Bias=High  
Power=High  
1200  
2400  
1600  
3200  
PSRROA  
Supply Voltage Rejection Ratio  
50  
dB  
June 1, 2004  
Document No. 38-12019 Rev. *B  
18  
CY8C27x66 Preliminary Data Sheet  
3. Electrical Specifications  
3.3.4  
DC Analog Output Buffer Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only or unless otherwise specified.  
Table 3-8: 5V DC Analog Output Buffer Specifications  
Symbol  
VOSOB  
Description  
Min  
Typ  
Max  
Units  
mV  
Notes  
Input Offset Voltage (Absolute Value)  
3
12  
TCVOSOB  
VCMOB  
Average Input Offset Voltage Drift  
Common-Mode Input Voltage Range  
+6  
µV/°C  
0.5  
Vdd - 1.0  
V
ROUTOB  
Output Resistance  
Power = Low  
1
1
Power = High  
VOHIGHOB  
High Output Voltage Swing (Load = 32 ohms to Vdd/2)  
Power = Low  
0.5 x Vdd + 1.3  
0.5 x Vdd + 1.3  
V
V
Power = High  
VOLOWOB  
Low Output Voltage Swing (Load = 32 ohms to Vdd/2)  
Power = Low  
Power = High  
0.5 x Vdd - 1.3  
0.5 x Vdd - 1.3  
V
V
ISOB  
Supply Current Including Bias Cell (No Load)  
Power = Low  
1.1  
2.6  
2
5
mA  
mA  
dB  
Power = High  
PSRROB  
Supply Voltage Rejection Ratio  
40  
Table 3-9: 3.3V DC Analog Output Buffer Specifications  
Symbol  
VOSOB  
Description  
Min  
Typ  
Max  
Units  
Notes  
Input Offset Voltage (Absolute Value)  
3
12  
mV  
µV/°C  
V
TCVOSOB  
VCMOB  
Average Input Offset Voltage Drift  
Common-Mode Input Voltage Range  
+6  
-
0.5  
Vdd - 1.0  
ROUTOB  
Output Resistance  
Power = Low  
10  
10  
Power = High  
VOHIGHOB  
High Output Voltage Swing (Load = 1K ohms to Vdd/2)  
Power = Low  
Power = High  
0.5 x Vdd + 1.0  
0.5 x Vdd + 1.0  
V
V
VOLOWOB  
Low Output Voltage Swing (Load = 1K ohms to Vdd/2)  
Power = Low  
Power = High  
0.5 x Vdd - 1.0  
0.5 x Vdd - 1.0  
V
V
ISOB  
Supply Current Including Bias Cell (No Load)  
Power = Low  
0.8  
2.0  
1
8
mA  
mA  
dB  
Power = High  
PSRROB  
Supply Voltage Rejection Ratio  
60  
June 1, 2004  
Document No. 38-12019 Rev. *B  
19  
CY8C27x66 Preliminary Data Sheet  
3. Electrical Specifications  
3.3.5  
DC Switch Mode Pump Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only or unless otherwise specified.  
Table 3-10: DC Switch Mode Pump (SMP) Specifications  
Symbol  
Description  
Min  
4.75  
Typ  
5.0  
Max  
5.25  
Units  
Notes  
VPUMP 5V  
5V Output voltage at Vdd from Pump  
V
V
Average, neglecting ripple. Configuration with a 2 µH induc-  
tor, 10 µF capacitor, and Schottky diode (see Figure 3-2).  
SMP trip voltage is set to 5.00V.  
V
PUMP 3V  
3V Output voltage at Vdd from Pump  
Available Output Current  
3.00  
3.25  
3.60  
Average, neglecting ripple. Configuration with a 2 µH induc-  
tor, 10 µF capacitor, and Schottky diode (see Figure 3-2).  
SMP trip voltage is set to 3.25V.  
IPUMP  
Configuration with a 2 µH inductor, 10 µF capacitor, and  
Schottky diode (see Figure 3-2).  
V
BAT= 1.5V, Vo= 3.25V  
8
5
mA  
mA  
VBAT= 1.8V, Vo= 5.0V  
VBAT5V  
VBAT3V  
Input Voltage Range from Battery  
1.8  
5.0  
V
Configuration with a 2 µH inductor, 10 µF capacitor, and  
Schottky diode (see Figure 3-2). SMP trip voltage is set to  
5.00V.  
Input Voltage Range from Battery  
1.0  
3.3  
V
Configuration with a 2 µH inductor, 10 µF capacitor, and  
Schottky diode (see Figure 3-2). SMP trip voltage is set to  
3.25V.  
VBATSTART  
Minimum Input Voltage from Battery to  
Start Pump  
1.1  
V
Configuration with a 2 µH inductor, 10 µF capacitor, and  
Schottky diode (see Figure 3-2).  
VPUMP_Line  
Line Regulation (over VBAT range)  
5
%VO  
%VO  
mVpp  
%
Configuration with a 2 µH inductor, 10 µF capacitor, and  
Schottky diode (see Figure 3-2).  
VPUMP_Load Load Regulation  
5
Configuration with a 2 µH inductor, 10 µF capacitor, and  
Schottky diode (see Figure 3-2).  
VPUMP_Ripple Output Voltage Ripple (depends on cap/  
25  
50  
Configuration with a 2 µH inductor, 10 µF capacitor, load is  
5mA, and Schottky diode (see Figure 3-2).  
load)  
Efficiency  
35  
Configuration with a 2 µH inductor, 10 µF capacitor, load is  
5mA, and Schottky diode (see Figure 3-2). SMP trip voltage  
is set to 3.25V.  
FPUMP  
Switching Frequency  
Switching Duty Cycle  
1.4  
50  
MHz  
%
Configuration with a 2 µH inductor, 10 µF capacitor, and  
Schottky diode (see Figure 3-2).  
DCPUMP  
Configuration with a 2 µH inductor, 10 µF capacitor, and  
Schottky diode (see Figure 3-2).  
D1  
Vdd  
C1  
SMP  
+
VBAT  
TM  
Battery  
PSoC  
Vss  
Figure 3-2. Basic Switch Mode Pump Circuit  
June 1, 2004  
Document No. 38-12019 Rev. *B  
20  
CY8C27x66 Preliminary Data Sheet  
3. Electrical Specifications  
3.3.6  
DC Analog Reference Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only or unless otherwise specified.  
The guaranteed specifications are measured through the Analog Continuous Time PSoC blocks. The power levels for AGND refer to  
the power of the Analog Continuous Time PSoC block. The power levels for RefHi and RefLo refer to the Analog Reference Control  
register. The limits stated for AGND include the offset error of the AGND buffer local to the Analog Continuous Time PSoC block.  
Table 3-11: 5V DC Analog Reference Specifications  
Symbol  
Description  
Bandgap Voltage Reference 5V  
Min  
Typ  
Max  
Units  
VBG5  
1.28  
1.30  
Vdd/2  
2.60  
P2[4]  
1.3  
1.32  
V
V
V
V
V
V
V
V
AGND = Vdd/2a  
Vdd/2 - 0.017  
2.52  
Vdd/2 + 0.017  
2.72  
CT Block Power = High  
AGND = 2*BandGapa  
CT Block Power = High  
AGND = P2[4] (P2[4] = Vdd/2)a  
CT Block Power = High  
P2[4] - 0.013  
1.27  
P2[4] + 0.013  
1.33  
AGND = BandGapa  
CT Block Power = High  
AGND = 1.6*BandGapa  
CT Block Power = High  
2.03  
2.08  
0.000  
2.13  
AGND Column to Column Variation (AGND=Vdd/2)a  
CT Block Power = High  
-0.034  
0.034  
RefHi = Vdd/2 + BandGap  
Ref Control Power = High  
Vdd/2 + 1.218  
3.75  
Vdd/2 + 1.3  
3.9  
Vdd/2 + 1.382  
4.05  
RefHi = 3*BandGap  
Ref Control Power = High  
V
V
V
V
V
V
V
RefHi = 2*BandGap + P2[6] (P2[6] = 1.3V)  
Ref Control Power = High  
P2[6] + 2.478  
P2[4] + 1.218  
P2[4] + P2[6] - 0.058  
2.50  
P2[6] + 2.6  
P2[4] + 1.30  
P2[4] + P2[6]  
2.60  
P2[6] + 2.722  
P2[4] + 1.382  
P2[4] + P2[6] + 0.058  
2.70  
RefHi = P2[4] + BandGap (P2[4] = Vdd/2)  
Ref Control Power = High  
RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V)  
Ref Control Power = High  
RefHi = 2*BandGap  
Ref Control Power = High  
RefHi = 3.2*BandGap  
Ref Control Power = High  
4.02  
4.16  
4.29  
RefLo = Vdd/2 – BandGap  
Ref Control Power = High  
Vdd/2 - 1.369  
1.20  
Vdd/2 - 1.30  
1.30  
Vdd/2 - 1.231  
1.40  
RefLo = BandGap  
Ref Control Power = High  
V
V
V
V
RefLo = 2*BandGap - P2[6] (P2[6] = 1.3V)  
Ref Control Power = High  
2.489 - P2[6]  
P2[4] - 1.368  
P2[4] - P2[6] - 0.042  
2.6 - P2[6]  
P2[4] - 1.30  
P2[4] - P2[6]  
2.711 - P2[6]  
P2[4] - 1.232  
P2[4] - P2[6] + 0.042  
RefLo = P2[4] – BandGap (P2[4] = Vdd/2)  
Ref Control Power = High  
RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V)  
Ref Control Power = High  
a. AGND tolerance includes the offsets of the local buffer in the PSoC block. Bandgap voltage is 1.3V ± 0.02V.  
June 1, 2004  
Document No. 38-12019 Rev. *B  
21  
CY8C27x66 Preliminary Data Sheet  
3. Electrical Specifications  
Table 3-12: 3.3V DC Analog Reference Specifications  
Symbol  
Description  
Bandgap Voltage Reference 3.3V  
Min  
Typ  
Max  
Units  
VBG33  
1.28  
1.30  
1.32  
V
V
AGND = Vdd/2a  
Vdd/2 - 0.017  
Not Allowed  
Vdd/2 - 0.0  
Vdd/2 + 0.017  
CT Block Power = High  
AGND = 2*BandGapa  
CT Block Power = High  
AGND = P2[4] (P2[4] = Vdd/2)  
CT Block Power = High  
P2[4] - 0.009  
1.27  
P2[4] + 0.0  
1.30  
P2[4] + 0.009  
1.33  
V
V
AGND = BandGapa  
CT Block Power = High  
AGND = 1.6*BandGapa  
CT Block Power = High  
2.03  
2.08  
2.13  
V
AGND Column to Column Variation (AGND=Vdd/2)a  
CT Block Power = High  
-0.034  
0.000  
0.034  
mV  
RefHi = Vdd/2 + BandGap  
Not Allowed  
Ref Control Power = High  
RefHi = 3*BandGap  
Not Allowed  
Not Allowed  
Not Allowed  
Ref Control Power = High  
RefHi = 2*BandGap + P2[6] (P2[6] = 0.5V)  
Ref Control Power = High  
RefHi = P2[4] + BandGap (P2[4] = Vdd/2)  
Ref Control Power = High  
RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V)  
Ref Control Power = High  
P2[4] + P2[6] - 0.042  
P2[4] + P2[6] - 0.0  
2.60  
P2[4] + P2[6] + 0.042  
2.70  
V
V
RefHi = 2*BandGap  
Ref Control Power = High  
2.50  
RefHi = 3.2*BandGap  
Not Allowed  
Ref Control Power = High  
RefLo = Vdd/2 - BandGap  
Not Allowed  
Not Allowed  
Not Allowed  
Not Allowed  
Ref Control Power = High  
RefLo = BandGap  
Ref Control Power = High  
RefLo = 2*BandGap - P2[6] (P2[6] = 0.5V)  
Ref Control Power = High  
RefLo = P2[4] – BandGap (P2[4] = Vdd/2)  
Ref Control Power = High  
RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V)  
Ref Control Power = High  
P2[4] - P2[6] - 0.036  
P2[4] - P2[6] + 0.0  
P2[4] - P2[6] + 0.036  
V
a. AGND tolerance includes the offsets of the local buffer in the PSoC block. Bandgap voltage is 1.3V ± 0.02V.  
3.3.7  
DC Analog PSoC Block Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only or unless otherwise specified.  
Table 3-13: DC Analog PSoC Block Specifications  
Symbol  
RCT  
CSC  
Description  
Min  
Typ  
12.24  
80  
Max  
Units  
kΩ  
fF  
Notes  
Resistor Unit Value (Continuous Time)  
Capacitor Unit Value (Switch Cap)  
June 1, 2004  
Document No. 38-12019 Rev. *B  
22  
CY8C27x66 Preliminary Data Sheet  
3. Electrical Specifications  
3.3.8  
DC POR, SMP, and LVD Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only or unless otherwise specified.  
Table 3-14: DC POR, SMP, and LVD Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
Vdd Value for PPOR Trip (positive ramp)  
PORLEV[1:0]=00b  
VPPOR0R  
VPPOR1R  
VPPOR2R  
2.908  
V
V
V
PORLEV[1:0]=01b  
4.394  
4.548  
PORLEV[1:0]=10b  
Vdd Value for PPOR Trip (negative ramp)  
PORLEV[1:0]=00b  
VPPOR0  
VPPOR1  
VPPOR2  
2.816  
4.394  
4.548  
V
V
V
PORLEV[1:0]=01b  
PORLEV[1:0]=10b  
PPOR Hysteresis  
PORLEV[1:0]=00b  
PORLEV[1:0]=01b  
PORLEV[1:0]=10b  
VPH0  
VPH1  
VPH2  
92  
0
mV  
mV  
mV  
0
Vdd Value for LVD Trip  
VM[2:0]=000b  
VM[2:0]=001b  
VM[2:0]=010b  
VM[2:0]=011b  
VM[2:0]=100b  
VM[2:0]=101b  
VM[2:0]=110b  
VM[2:0]=111b  
VLVD0  
VLVD1  
VLVD2  
VLVD3  
VLVD4  
VLVD5  
VLVD6  
VLVD7  
V
V
V
V
V
V
V
V
V
2.863  
2.963  
3.070  
3.920  
4.393  
4.550  
4.632  
4.718  
2.921  
3.023  
3.133  
4.00  
2.979a  
3.083  
3.196  
4.080  
4.573  
4.483  
4.643  
4.727  
4.814  
4.736b  
4.822  
4.910  
Vdd Value for SMP Trip  
VM[2:0]=000b  
VM[2:0]=001b  
VM[2:0]=010b  
VM[2:0]=011b  
VM[2:0]=100b  
VM[2:0]=101b  
VM[2:0]=110b  
VM[2:0]=111b  
VPUMP0  
VPUMP1  
VPUMP2  
VPUMP3  
VPUMP4  
VPUMP5  
VPUMP6  
VPUMP7  
V
V
V
V
V
V
V
V
V
2.963  
3.033  
3.185  
4.110  
4.550  
4.632  
4.719  
4.900  
3.023  
3.095  
3.250  
4.194  
4.643  
4.727  
4.815  
5.000  
3.083  
3.157  
3.315  
4.278  
4.736  
4.822  
4.911  
5.100  
a. Always greater than 50 mV above PPOR (PORLEV=00) for falling supply.  
b. Always greater than 50 mV above PPOR (PORLEV=10) for falling supply.  
June 1, 2004  
Document No. 38-12019 Rev. *B  
23  
CY8C27x66 Preliminary Data Sheet  
3. Electrical Specifications  
3.3.9  
DC Programming Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only or unless otherwise specified.  
Table 3-15: DC Programming Specifications  
Symbol  
ICCP  
Description  
Min  
Typ  
Max  
Units  
mA  
Notes  
Supply Current During Programming or Verify  
10  
30  
0.8  
VILP  
VIHP  
IILP  
Input Low Voltage During Programming or Verify  
Input High Voltage During Programming or Verify  
V
2.2  
V
Input Current when Applying Vilp to P1[0] or P1[1] During  
Programming or Verify  
0.2  
mA  
Driving internal pull-down resistor.  
Driving internal pull-down resistor.  
IIHP  
Input Current when Applying Vihp to P1[0] or P1[1] During  
Programming or Verify  
1.5  
mA  
VOLV  
VOHV  
Output Low Voltage During Programming or Verify  
Output High Voltage During Programming or Verify  
Vss+0.75  
Vdd  
V
V
Vdd - 1.0  
FlashENPB  
FlashENT  
FlashDR  
Flash Endurance (per block)  
50,000  
1,800,000  
10  
Erase/write cycles per block.  
Erase/write cycles.  
Flash Endurance (total)a  
Flash Data Retention  
Years  
a. A maximum of 36 x 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2 blocks of  
25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (and so forth to limit the total number of cycles to 36x50,000 and that no single block ever  
sees more than 50,000 cycles).  
The PSoC devices use an adaptive algorithm to enhance endurance over the industrial temperature range (-40°C to +85°C ambient). Any temperature range within a 50°C  
span between 0°C and 85°C is considered constant with respect to endurance enhancements. For instance, if room temperature (25°C) is the nominal operating tempera-  
ture, then the range from 0°C to 50°C can be approximated by the constant value 25 and a temperature sensor is not needed.  
For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to  
the Flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more information.  
June 1, 2004  
Document No. 38-12019 Rev. *B  
24  
CY8C27x66 Preliminary Data Sheet  
3. Electrical Specifications  
3.4  
AC Electrical Characteristics  
3.4.1  
AC Chip-Level Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only or unless otherwise specified.  
Note See the individual user module data sheets for information on maximum frequencies for user modules.  
Table 3-16: AC Chip-Level Specifications  
Symbol  
FIMO  
Description  
Min  
23.4  
Typ  
Max  
24.6a  
Units  
MHz  
Notes  
Internal Main Oscillator Frequency  
24  
24  
12  
48  
Trimmed. Utilizing factory trim values.  
24.6a,b  
12.3b,c  
49.2a,b,d  
FCPU1  
FCPU2  
F48M  
CPU Frequency (5V Nominal)  
CPU Frequency (3.3V Nominal)  
Digital PSoC Block Frequency  
0.93  
0.93  
0
MHz  
MHz  
MHz  
Refer to the AC Digital Block Specifica-  
tions below.  
24.6b,e,d  
64  
F24M  
F32K1  
F32K2  
Digital PSoC Block Frequency  
Internal Low Speed Oscillator Frequency  
External Crystal Oscillator  
0
24  
32  
MHz  
kHz  
kHz  
15  
32.768  
Accuracy is capacitor and crystal dependent.  
50% duty cycle.  
FPLL  
PLL Frequency  
23.986  
MHz  
A multiple (x732) of crystal frequency.  
Jitter24M2  
TPLLSLEW  
24 MHz Period Jitter (PLL)  
PLL Lock Time  
600  
10  
ps  
0.5  
ms  
TPLLSLEWLOW  
TOS  
PLL Lock Time for Low Gain Setting  
0.5  
50  
ms  
ms  
ms  
External Crystal Oscillator Startup to 1%  
External Crystal Oscillator Startup to 100 ppm  
250  
300  
500  
600f  
TOSACC  
Jitter32k  
TXRST  
32 kHz Period Jitter  
100  
ns  
External Reset Pulse Width  
10  
µs  
DC24M  
24 MHz Duty Cycle  
40  
50  
60  
%
Step24M  
Fout48M  
24 MHz Trim Step Size  
48 MHz Output Frequency  
50  
kHz  
MHz  
49.2a,c  
46.8  
48.0  
Trimmed. Utilizing factory trim values.  
Jitter24M1  
FMAX  
24 MHz Period Jitter (IMO)  
600  
ps  
Maximum frequency of signal on row input or row output.  
12.3  
MHz  
TRAMP  
Supply Ramp Time  
0
µs  
a. 4.75V < Vdd < 5.25V.  
b. Accuracy derived from Internal Main Oscillator with appropriate trim for Vdd range.  
c. 3.0V < Vdd < 3.6V.  
d. See Application Note AN2012 Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation” for information on trimming for 3.3V operation.  
e. 3.0V < 5.25V.  
f. The crystal oscillator frequency is within 100 ppm of its final value by the end of the T  
period. Correct operation assumes a properly loaded 1 uW maximum drive level  
osacc  
o
o
32.768 kHz crystal. 3.0V Vdd 5.5V, -40 C T 85 C.  
A
PLL  
Enable  
T
24 MHz  
PLLSLEW  
FPLL  
PLL  
Gain  
0
Figure 3-3. PLL Lock Timing Diagram  
June 1, 2004  
Document No. 38-12019 Rev. *B  
25  
CY8C27x66 Preliminary Data Sheet  
3. Electrical Specifications  
PLL  
Enable  
T
24 MHz  
PLLSLEWLOW  
FPLL  
PLL  
Gain  
1
Figure 3-4. PLL Lock for Low Gain Setting Timing Diagram  
32K  
Select  
32 kHz  
T
OS  
F32K2  
Figure 3-5. External Crystal Oscillator Startup Timing Diagram  
Jitter24M1  
F24M  
Figure 3-6. 24 MHz Period Jitter (IMO) Timing Diagram  
Jitter32k  
F32K2  
Figure 3-7. 32 kHz Period Jitter (ECO) Timing Diagram  
June 1, 2004  
Document No. 38-12019 Rev. *B  
26  
CY8C27x66 Preliminary Data Sheet  
3. Electrical Specifications  
3.4.2  
AC General Purpose IO Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only or unless otherwise specified.  
Table 3-17: AC GPIO Specifications  
Symbol  
FGPIO  
Description  
GPIO Operating Frequency  
Min  
Typ  
Max  
Units  
MHz  
Notes  
0
12  
TRiseF  
TFallF  
TRiseS  
TFallS  
Rise Time, Normal Strong Mode, Cload = 50 pF  
Fall Time, Normal Strong Mode, Cload = 50 pF  
Rise Time, Slow Strong Mode, Cload = 50 pF  
Fall Time, Slow Strong Mode, Cload = 50 pF  
3
18  
18  
ns  
ns  
ns  
ns  
Vdd = 4.75 to 5.25V, 10% - 90%  
Vdd = 4.75 to 5.25V, 10% - 90%  
Vdd = 3 to 5.25V, 10% - 90%  
Vdd = 3 to 5.25V, 10% - 90%  
2
10  
10  
27  
22  
90%  
10%  
GPIO  
Pin  
TRiseF  
TRiseS  
TFallF  
TFallS  
Figure 3-8. GPIO Timing Diagram  
June 1, 2004  
Document No. 38-12019 Rev. *B  
27  
CY8C27x66 Preliminary Data Sheet  
3. Electrical Specifications  
3.4.3  
AC Operational Amplifier Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only or unless otherwise specified.  
Settling times, slew rates, and gain bandwidth are based on the Analog Continuous Time PSoC block.  
Table 3-18: 5V AC Operational Amplifier Specifications  
Symbol  
TROA  
Description  
Min  
Typ  
Max  
Units  
Notes  
Rising Settling Time to 0.1% for a 1V Step (10 pF load,  
Unity Gain)  
Specification maximums for low power and  
high opamp bias, medium power, and  
medium power and high opamp bias levels  
are between low and high power levels.  
Power = Low  
3.9  
µs  
Power = Low, Opamp Bias = High  
Power = Medium  
µs  
µs  
µs  
µs  
µs  
Power = Medium, Opamp Bias = High  
Power = High  
0.72  
0.62  
Power = High, Opamp Bias = High  
TSOA  
Falling Settling Time to 0.1% for a 1V Step (10 pF load,  
Unity Gain)  
Specification maximums for low power and  
high opamp bias, medium power, and  
medium power and high opamp bias levels  
are between low and high power levels.  
Power = Low  
5.9  
µs  
µs  
µs  
µs  
µs  
µs  
Power = Low, Opamp Bias = High  
Power = Medium  
Power = Medium, Opamp Bias = High  
Power = High  
0.92  
0.72  
Power = High, Opamp Bias = High  
SRROA  
Rising Slew Rate (20% to 80%) of a 1V Step (10 pF load,  
Unity Gain)  
Specification minimums for low power and  
high opamp bias, medium power, and  
medium power and high opamp bias levels  
are between low and high power levels.  
Power = Low  
0.15  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
Power = Low, Opamp Bias = High  
Power = Medium  
Power = Medium, Opamp Bias = High  
Power = High  
1.7  
6.5  
Power = High, Opamp Bias = High  
SRFOA  
Falling Slew Rate (20% to 80%) of a 1V Step (10 pF load,  
Unity Gain)  
Specification minimums for low power and  
high opamp bias, medium power, and  
medium power and high opamp bias levels  
are between low and high power levels.  
Power = Low  
0.01  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
Power = Low, Opamp Bias = High  
Power = Medium  
Power = Medium, Opamp Bias = High  
Power = High  
0.5  
Power = High, Opamp Bias = High  
Gain Bandwidth Product  
4.0  
BWOA  
Specification minimums for low power and  
high opamp bias, medium power, and  
medium power and high opamp bias levels  
are between low and high power levels.  
Power = Low  
0.75  
MHz  
Power = Low, Opamp Bias = High  
Power = Medium  
MHz  
MHz  
Power = Medium, Opamp Bias = High  
Power = High  
3.1  
MHz  
MHz  
Power = High, Opamp Bias = High  
Noise at 1 kHz (Power = Medium, Opamp Bias = High)  
5.4  
MHz  
ENOA  
70  
nV/rt-Hz  
June 1, 2004  
Document No. 38-12019 Rev. *B  
28  
CY8C27x66 Preliminary Data Sheet  
3. Electrical Specifications  
Table 3-19: 3.3V AC Operational Amplifier Specifications  
Symbol  
TROA  
Description  
Min  
Typ  
Max  
Units  
Notes  
Rising Settling Time to 0.1% of a 1V Step (10 pF load, Unity  
Gain)  
Specification maximums for low power and  
high opamp bias, medium power, and  
medium power and high opamp bias levels  
are between low and high power levels.  
Power = Low  
3.92  
µs  
Power = Low, Opamp Bias = High  
Power = Medium  
µs  
µs  
µs  
µs  
Power = Medium, Opamp Bias = High  
Power = High (3.3 Volt High Bias Operation not supported)  
0.72  
Power = High, Opamp Bias = High (3.3 Volt High Power,  
High Opamp Bias not supported)  
µs  
TSOA  
Falling Settling Time to 0.1% of a 1V Step (10 pF load,  
Unity Gain)  
Specification maximums for low power and  
high opamp bias, medium power, and  
medium power and high opamp bias levels  
are between low and high power levels.  
Power = Low  
5.41  
µs  
µs  
µs  
µs  
µs  
Power = Low, Opamp Bias = High  
Power = Medium  
Power = Medium, Opamp Bias = High  
Power = High (3.3 Volt High Bias Operation not supported)  
0.72  
Power = High, Opamp Bias = High (3.3 Volt High Power,  
High Opamp Bias not supported)  
µs  
SRROA  
Rising Slew Rate (20% to 80%) of a 1V Step (10 pF load,  
Unity Gain)  
Specification minimums for low power and  
high opamp bias, medium power, and  
medium power and high opamp bias levels  
are between low and high power levels.  
Power = Low  
0.31  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
Power = Low, Opamp Bias = High  
Power = Medium  
Power = Medium, Opamp Bias = High  
Power = High (3.3 Volt High Bias Operation not supported)  
2.7  
Power = High, Opamp Bias = High (3.3 Volt High Power,  
High Opamp Bias not supported)  
V/µs  
SRFOA  
Falling Slew Rate (20% to 80%) of a 1V Step (10 pF load,  
Unity Gain)  
Specification minimums for low power and  
high opamp bias, medium power, and  
medium power and high opamp bias levels  
are between low and high power levels.  
Power = Low  
0.24  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
Power = Low, Opamp Bias = High  
Power = Medium  
Power = Medium, Opamp Bias = High  
Power = High (3.3 Volt High Bias Operation not supported)  
1.8  
Power = High, Opamp Bias = High (3.3 Volt High Power,  
High Opamp Bias not supported)  
V/µs  
BWOA  
Gain Bandwidth Product  
Specification minimums for low power and  
high opamp bias, medium power, and  
medium power and high opamp bias levels  
are between low and high power levels.  
Power = Low  
0.67  
MHz  
MHz  
MHz  
MHz  
MHz  
Power = Low, Opamp Bias = High  
Power = Medium  
Power = Medium, Opamp Bias = High  
Power = High (3.3 Volt High Bias Operation not supported)  
2.8  
Power = High, Opamp Bias = High (3.3 Volt High Power,  
High Opamp Bias not supported)  
MHz  
ENOA  
Noise at 1 kHz (Power = Medium, Opamp Bias = High)  
70  
nV/rt-Hz  
June 1, 2004  
Document No. 38-12019 Rev. *B  
29  
CY8C27x66 Preliminary Data Sheet  
3. Electrical Specifications  
3.4.4  
AC Digital Block Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only or unless otherwise specified.  
Table 3-20: AC Digital Block Specifications  
Function  
Description  
Maximum Block Clocking Frequency (> 4.75V)  
Maximum Block Clocking Frequency (< 4.75V)  
Capture Pulse Width  
Min  
Typ  
Max  
49.2  
Units  
Notes  
4.75V < Vdd < 5.25V.  
All  
Functions  
Timer  
24.6  
3.0V < Vdd < 4.75V.  
50a  
ns  
Maximum Frequency, No Capture  
Maximum Frequency, With Capture  
Enable Pulse Width  
49.2  
24.6  
MHz  
MHz  
ns  
4.75V < Vdd < 5.25V.  
50a  
Counter  
Maximum Frequency, No Enable Input  
Maximum Frequency, Enable Input  
49.2  
24.6  
MHz  
MHz  
4.75V < Vdd < 5.25V.  
Dead Band Kill Pulse Width:  
Asynchronous Restart Mode  
20  
ns  
ns  
50a  
Synchronous Restart Mode  
Disable Mode  
50a  
ns  
Maximum Frequency  
49.2  
49.2  
MHz  
MHz  
4.75V < Vdd < 5.25V.  
4.75V < Vdd < 5.25V.  
CRCPRS  
Maximum Input Clock Frequency  
(PRS Mode)  
CRCPRS  
Maximum Input Clock Frequency  
24.6  
MHz  
(CRC Mode)  
SPIM  
SPIS  
Maximum Input Clock Frequency  
8.2  
4.1  
MHz  
ns  
Maximum Input Clock Frequency  
50a  
Width of SS_ Negated Between Transmissions  
ns  
Transmitter Maximum Input Clock Frequency  
Receiver Maximum Input Clock Frequency  
16.4  
49.2  
MHz  
MHz  
16  
4.75V < Vdd < 5.25V.  
a. 50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).  
June 1, 2004  
Document No. 38-12019 Rev. *B  
30  
CY8C27x66 Preliminary Data Sheet  
3. Electrical Specifications  
3.4.5  
AC Analog Output Buffer Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only or unless otherwise specified.  
Table 3-21: 5V AC Analog Output Buffer Specifications  
Symbol  
Description  
Rising Settling Time to 0.1%, 1V Step, 100pF Load  
Power = Low  
Min  
Typ  
Max  
Units  
Notes  
TROB  
4
4
µs  
Power = High  
µs  
TSOB  
Falling Settling Time to 0.1%, 1V Step, 100pF Load  
Power = Low  
3.4  
3.4  
µs  
µs  
Power = High  
SRROB  
SRFOB  
BWOB  
Rising Slew Rate (20% to 80%), 1V Step, 100pF Load  
Power = Low  
0.5  
0.5  
V/µs  
V/µs  
Power = High  
Falling Slew Rate (80% to 20%), 1V Step, 100pF Load  
Power = Low  
0.55  
0.55  
V/µs  
V/µs  
Power = High  
Small Signal Bandwidth, 20mVpp, 3dB BW, 100pF Load  
0.8  
0.8  
MHz  
MHz  
Power = Low  
Power = High  
BWOB  
Large Signal Bandwidth, 1Vpp, 3dB BW, 100pF Load  
300  
300  
kHz  
kHz  
Power = Low  
Power = High  
Table 3-22: 3.3V AC Analog Output Buffer Specifications  
Symbol  
Description  
Rising Settling Time to 0.1%, 1V Step, 100pF Load  
Power = Low  
Min  
Typ  
Max  
Units  
Notes  
TROB  
4.7  
4.7  
µs  
µs  
Power = High  
TSOB  
Falling Settling Time to 0.1%, 1V Step, 100pF Load  
Power = Low  
4
4
µs  
µs  
Power = High  
SRROB  
SRFOB  
BWOB  
Rising Slew Rate (20% to 80%), 1V Step, 100pF Load  
Power = Low  
.36  
.36  
V/µs  
V/µs  
Power = High  
Falling Slew Rate (80% to 20%), 1V Step, 100pF Load  
Power = Low  
.4  
.4  
V/µs  
V/µs  
Power = High  
Small Signal Bandwidth, 20mVpp, 3dB BW, 100pF Load  
0.7  
0.7  
MHz  
MHz  
Power = Low  
Power = High  
BWOB  
Large Signal Bandwidth, 1Vpp, 3dB BW, 100pF Load  
200  
200  
kHz  
kHz  
Power = Low  
Power = High  
June 1, 2004  
Document No. 38-12019 Rev. *B  
31  
CY8C27x66 Preliminary Data Sheet  
3. Electrical Specifications  
3.4.6  
AC External Clock Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only or unless otherwise specified.  
Table 3-23: 5V AC External Clock Specifications  
Symbol  
Description  
Min  
Typ  
Max  
24.24  
Units  
MHz  
Notes  
FOSCEXT  
Frequency  
0
High Period  
Low Period  
20.6  
20.6  
150  
ns  
ns  
µs  
Power Up IMO to Switch  
Table 3-24: 3.3V AC External Clock Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
Frequency with CPU Clock divide by 1a  
FOSCEXT  
0
0
12.12  
24.24  
MHz  
MHz  
Frequency with CPU Clock divide by 2 or greaterb  
High Period with CPU Clock divide by 1  
Low Period with CPU Clock divide by 1  
Power Up IMO to Switch  
FOSCEXT  
41.7  
41.7  
150  
ns  
ns  
µs  
a. Maximum CPU frequency is 12 MHz at 3.3V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements.  
b. If the frequency of the external clock is greater than 12 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider will ensure that the fifty per-  
cent duty cycle requirement is met.  
3.4.7  
AC Programming Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only or unless otherwise specified.  
Table 3-25: AC Programming Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
ns  
Notes  
TRSCLK  
Rise Time of SCLK  
Fall Time of SCLK  
1
20  
20  
TFSCLK  
TSSCLK  
THSCLK  
FSCLK  
1
ns  
Data Set up Time to Falling Edge of SCLK  
Data Hold Time from Falling Edge of SCLK  
Frequency of SCLK  
40  
40  
0
ns  
ns  
8
MHz  
ms  
ms  
ns  
TERASEB Flash Erase Time (Block)  
15  
30  
TWRITE  
TDSCLK  
Flash Block Write Time  
Data Out Delay from Falling Edge of SCLK  
45  
June 1, 2004  
Document No. 38-12019 Rev. *B  
32  
CY8C27x66 Preliminary Data Sheet  
3. Electrical Specifications  
2
3.4.8  
AC I C Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only or unless otherwise specified.  
Table 3-26: AC Characteristics of the I2C SDA and SCL Pins  
Standard Mode  
Min Max  
100  
Fast Mode  
Min Max  
Symbol  
Description  
SCL Clock Frequency  
Units  
kHz  
Notes  
FSCLI2C  
0
0
400  
THDSTAI2C Hold Time (repeated) START Condition. After this  
period, the first clock pulse is generated.  
4.0  
0.6  
µs  
TLOWI2C  
THIGHI2C  
LOW Period of the SCL Clock  
HIGH Period of the SCL Clock  
4.7  
4.0  
4.7  
0
1.3  
0.6  
0.6  
0
µs  
µs  
µs  
µs  
ns  
µs  
µs  
ns  
TSUSTAI2C Set-up Time for a Repeated START Condition  
THDDATI2C Data Hold Time  
100a  
0.6  
TSUDATI2C Data Set-up Time  
250  
4.0  
TSUSTOI2C Set-up Time for STOP Condition  
TBUFI2C  
TSPI2C  
Bus Free Time Between a STOP and START Condition 4.7  
1.3  
0
Pulse Width of spikes are suppressed by the input fil-  
ter.  
50  
a. A Fast-Mode I2C-bus device can be used in a Standard-Mode I2C-bus system, but the requirement t  
250 ns must then be met. This will automatically be  
SU;DAT  
the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data  
bit to the SDA line t  
+ t  
= 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.  
rmax SU;DAT  
SDA  
TSPI2C  
TLOWI2C  
TSUDATI2C  
THDSTAI2C  
TBUFI2C  
SCL  
TSUSTOI2C  
TSUSTAI2C  
THDDATI2C  
THDSTAI2C  
THIGHI2C  
S
Sr  
P
S
Figure 3-9. Definition for Timing for Fast/Standard Mode on the I2C Bus  
June 1, 2004  
Document No. 38-12019 Rev. *B  
33  
4. Packaging Information  
4.1  
Packaging Dimensions  
This chapter illustrates the packaging specifications for the CY8C27x66 PSoC device, along with the thermal impedances for each  
package and the typical package capacitance on crystal pins.  
51-85014 - *C  
Figure 4-1. 28-Lead (300-Mil) Molded DIP  
51-85079 - *C  
Figure 4-2. 28-Lead (210-Mil) SSOP  
May 2004  
Document No. 38-12019 Rev. *B  
34  
CY8C27x66 Preliminary Data Sheet  
4. Packaging Information  
51-85026 - *C  
Figure 4-3. 28-Lead (300-Mil) SOIC  
51-85064 - *B  
Figure 4-4. 44-Lead TQFP  
June 1, 2004  
Document No. 38-12019 Rev. *B  
35  
CY8C27x66 Preliminary Data Sheet  
4. Packaging Information  
51-85061 - *C  
Figure 4-5. 48-Lead (300-Mil) SSOP  
51-85152 - *A  
Figure 4-6. 48-Lead (7x7 mm) MLF  
June 1, 2004  
Document No. 38-12019 Rev. *B  
36  
CY8C27x66 Preliminary Data Sheet  
4. Packaging Information  
4.2  
Thermal Impedances  
Table 4-1. Thermal Impedances per Package  
Package  
28 PDIP  
28 SSOP  
Typical θJA  
69 oC/W  
*
96 oC/W  
TBD  
28SOIC  
60 oC/W  
69 oC/W  
28 oC/W  
44 TQFP  
48 SSOP  
48 MLF  
* TJ = TA + POWER x θJA  
4.3  
Capacitance on Crystal Pins  
Table 4-2: Typical Package Capacitance on Crystal Pins  
Package  
28 PDIP  
28 SSOP  
28 SOIC  
44 TQFP  
48 SSOP  
48 MLF  
Package Capacitance  
3.5 pF  
2.8 pF  
TBD  
2.6 pF  
3.3 pF  
1.8 pF  
June 1, 2004  
Document No. 38-12019 Rev. *B  
37  
5. Ordering Information  
The following table lists the CY8C27x66 PSoC Device family’s key package features and ordering codes.  
Table 5-1. CY8C27x66 PSoC Device Family Key Features and Ordering Information  
o
o
28 Pin (300 Mil) DIP  
CY8C27466-24PXI  
CY8C27466-24PVXI  
32  
32  
1K  
1K  
Yes  
Yes  
8
8
12  
12  
24  
24  
12  
12  
4
4
Yes  
Yes  
-40 C to +85 C  
o
o
28 Pin (210 Mil) SSOP  
-40 C to +85 C  
28 Pin (210 Mil) SSOP  
(Tape and Reel)  
o
o
CY8C27466-24PVXIT  
CY8C27466-24SXI  
CY8C27466-24SXIT  
CY8C27566-24AXI  
CY8C27566-24AXIT  
CY8C27666-24PVXI  
CY8C27666-24PVXIT  
CY8C27666-24LFXI  
32  
32  
32  
32  
32  
32  
32  
32  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
8
8
8
8
8
8
8
8
12  
12  
12  
12  
12  
12  
12  
12  
24  
24  
24  
40  
40  
44  
44  
44  
12  
12  
12  
12  
12  
12  
12  
12  
4
4
4
4
4
4
4
4
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-40 C to +85 C  
o
o
28 Pin (300 Mil) SOIC  
-40 C to +85 C  
28 Pin (300 Mil) SOIC  
(Tape and Reel)  
o
o
-40 C to +85 C  
o
o
44 Pin TQFP  
-40 C to +85 C  
44 Pin TQFP  
(Tape and Reel)  
o
o
-40 C to +85 C  
o
o
48 Pin (300 Mil) SSOP  
-40 C to +85 C  
48 Pin (300 Mil) SSOP  
(Tape and Reel)  
o
o
-40 C to +85 C  
o
o
48 Pin MLF  
-40 C to +85 C  
5.1  
Ordering Code Definitions  
CY 8 C 27 xxx-SPxx  
Package Type:  
Thermal Rating:  
C = Commercial  
I = Industrial  
PX = PDIP Pb Free  
SX = SOIC Pb Free  
PVX = SSOP Pb Free  
LFX = MLF Pb Free  
AX = TQFP Pb Free  
E = Extended  
Speed: 24 MHz  
Part Number  
Family Code  
Technology Code: C = CMOS  
Marketing Code: 8 = Cypress MicroSystems  
Company ID: CY = Cypress  
June 1, 2004  
Document No. 38-12019 Rev. *B  
38  
6. Sales and Service Information  
To obtain information about Cypress MicroSystems or PSoC sales and technical support, reference the following information or go to  
the section titled “Getting Started” on page 4 in this document.  
Cypress MicroSystems  
2700 162nd Street SW  
Building D  
Lynnwood, WA 98037  
Phone:  
Facsimile:  
800.669.0557  
425.787.4641  
Web Sites: Company Information – http://www.cypress.com  
Sales – http://www.cypress.com/aboutus/sales_locations.cfm  
Technical Support – http://www.cypress.com/support/login.cfm  
6.1  
Revision History  
Table 6-1. CY8C27x66 Data Sheet Revision History  
Document Title:  
CY8C27466, CY8C27566, and CY8C27666 PSoC Mixed Signal Array Preliminary Data Sheet  
Document Number: 38-12019  
Revision  
**  
ECN #  
133204  
Issue Date  
Origin of Change  
Description of Change  
New silicon and document (Revision **).  
02/09/2004 SFV  
03/15/2004 SFV  
06/01/2004 SFV  
*A  
*B  
209441  
227242  
Changed block diagram on first page to match feature set description.  
Changes to Overview section, deleted 100-pin TQFP, added 28-pin SOIC, and signifi-  
cant changes to the Electrical Specifications section. Title changed to reflect removal of  
CY8C27x866, along with removal or registers x,18h - x,1Fh (in bank 0 and bank 1) from  
Register Reference chapter.  
Distribution: External/Public  
Posting: None  
6.2  
Copyrights  
© Cypress MicroSystems, Inc. 2004. All rights reserved. PSoC™ (Programmable System-on-Chip™) are trademarks of Cypress MicroSystems, Inc. All other trademarks  
or registered trademarks referenced herein are property of the respective corporations.  
The information contained herein is subject to change without notice. Cypress MicroSystems assumes no responsibility for the use of any circuitry other than circuitry  
embodied in a Cypress MicroSystems product. Nor does it convey or imply any license under patent or other rights. Cypress MicroSystems does not authorize its products  
for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of  
Cypress MicroSystems products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Micro-  
Systems against all charges. Cypress MicroSystems products are not warranted nor intended to be used for medical, life-support, life-saving, critical control or safety  
applications, unless pursuant to an express written agreement with Cypress MicroSystems.  
June 2004  
© Cypress MicroSystems, Inc. 2004 — Document No. 38-12019 Rev. *B  
39  

相关型号:

CY8C27466-24SXI

PSoC⑩ Mixed Signal Array
CYPRESS

CY8C27466-24SXIT

PSoC⑩ Mixed Signal Array
CYPRESS

CY8C27466-SPAXC

PSoC⑩ Mixed Signal Array
CYPRESS

CY8C27466-SPAXE

PSoC⑩ Mixed Signal Array
CYPRESS

CY8C27466-SPAXI

PSoC⑩ Mixed Signal Array
CYPRESS

CY8C27466-SPLFXC

PSoC⑩ Mixed Signal Array
CYPRESS

CY8C27466-SPLFXE

PSoC⑩ Mixed Signal Array
CYPRESS

CY8C27466-SPLFXI

PSoC⑩ Mixed Signal Array
CYPRESS

CY8C27466-SPPVXC

PSoC⑩ Mixed Signal Array
CYPRESS

CY8C27466-SPPVXE

PSoC⑩ Mixed Signal Array
CYPRESS

CY8C27466-SPPVXI

PSoC⑩ Mixed Signal Array
CYPRESS

CY8C27466-SPPXC

PSoC⑩ Mixed Signal Array
CYPRESS