CYD04S36V [CYPRESS]

FLEx36 3.3V 32K/64K/128K/256K/512 x 36 Synchronous Dual-Port RAM; FLEx36 3.3V 32K / 64K / 128K / 256K / 512 ×36同步双端口RAM
CYD04S36V
型号: CYD04S36V
厂家: CYPRESS    CYPRESS
描述:

FLEx36 3.3V 32K/64K/128K/256K/512 x 36 Synchronous Dual-Port RAM
FLEx36 3.3V 32K / 64K / 128K / 256K / 512 ×36同步双端口RAM

文件: 总28页 (文件大小:472K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CYD01S36V  
CYD02S36V/CYD04S36V  
CYD09S36V/CYD18S36V  
PRELIMINARY  
TM  
FLEx36 3.3V 32K/64K/128K/256K/512 x 36  
Synchronous Dual-Port RAM  
Functional Description  
Features  
• True dual-ported memory cells that allow simultaneous  
access of the same memory location  
The FLEx36 family includes 1-Mbit, 2-Mbit, 4-Mbit, 9-Mbit and  
18-Mbit pipelined, synchronous, true dual-port static RAMs  
that are high-speed, low-power 3.3V CMOS. Two ports are  
provided, permitting independent, simultaneous access to any  
location in memory. A particular port can write to a certain  
location while another port is reading that location. The result  
of writing to the same location by more than one port at the  
same time is undefined. Registers on control, address, and  
data lines allow for minimal set-up and hold time.  
• Synchronous pipelined operation  
• Family of 1-Mbit, 2-Mbit, 4-Mbit, 9-Mbit and 18-Mbit  
devices  
• Pipelined output mode allows fast operation  
• 0.18-micron CMOS for optimum speed and power  
• High-speed clock to data access  
During a Read operation, data is registered for decreased  
cycle time. Each port contains a burst counter on the input  
address register. After externally loading the counter with the  
initial address, the counter will increment the address inter-  
nally (more details to follow). The internal Write pulse width is  
independent of the duration of the R/W input signal. The  
internal Write pulse is self-timed to allow the shortest possible  
cycle times.  
• 3.3V low power  
— Active as low as 225 mA (typ.)  
— Standby as low as 55 mA (typ.)  
• Mailbox function for message passing  
• Global master reset  
• Separate byte enables on both ports  
• Commercial and industrial temperature ranges  
• IEEE 1149.1-compatible JTAG boundary scan  
• 256-ball FBGA (1-mm pitch)  
A HIGH on CE0 or LOW on CE1 for one clock cycle will power  
down the internal circuitry to reduce the static power  
consumption. One cycle with chip enables asserted is required  
to reactivate the outputs.  
Additional features include: readback of burst-counter internal  
address value on address lines, counter-mask registers to  
control the counter wrap-around, counter interrupt (CNTINT)  
flags, readback of mask register value on address lines,  
retransmit functionality, interrupt flags for message passing,  
JTAG for boundary scan, and asynchronous Master Reset  
(MRST).  
• Counter wrap around control  
— Internal mask register controls counter wrap-around  
— Counter-interrupt flags to indicate wrap-around  
— Memory block retransmit operation  
• Counter readback on address lines  
• Mask register readback on address lines  
The CYD18S36V devices in this family has limited features.  
Please see Address Counter and Mask Register Opera-  
tions[18] on page 5 for details.  
• Dual Chip Enables on both ports for easy depth  
expansion  
Seamless Migration to Next-Generation Dual-Port Family  
• Seamless migration to next-generation dual-port family  
Cypress offers a migration path for all devices in this family to  
the next-generation devices in the Dual-Port family with a  
compatible footprint. Please contact Cypress Sales for more  
details.  
Table 1. Product Selection Guide  
Density  
1 Mbit  
(32K x 36)  
2 Mbit  
(64K x 36)  
4 Mbit  
(128K x 36)  
9 Mbit  
(256K x 36)  
18 Mbit  
(512K x 36)  
Part Number  
CYD01S36V  
CYD02S36V  
CYD04S36V  
CYD09S36V  
CYD18S36V  
Max. Speed (MHz)  
167  
4.0  
167  
4.0  
167  
4.0  
167  
4.0  
133  
5.0  
Max. Access Time – Clock to Data  
(ns)  
Typical Operating Current (mA)  
Package  
225  
225  
225  
270  
315  
256 FBGA  
256 FBGA  
256 FBGA  
256 FBGA  
256 FBGA  
(17 mm x 17 mm) (17 mm x 17 mm) (17 mm x 17 mm) (17 mm x 17 mm) (23 mm x 23 mm)  
Cypress Semiconductor Corporation  
Document #: 38-06076 Rev. *B  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Revised January 27, 2005  
CYD01S36V  
CYD02S36V/CYD04S36V  
CYD09S36V/CYD18S36V  
PRELIMINARY  
Logic Block Diagram[1]  
FTSEL  
L
FTSEL  
R
CONFIG Block  
CONFIG Block  
PORTSTD[1:0]  
PORTSTD[1:0]  
L
R
DQ [35:0]  
R
DQ [35:0]  
L
BE [3:0]  
BE [3:0]  
R
L
CE0  
CE1  
CE0  
R
L
IO  
Control  
IO  
Control  
CE1  
R
L
OE  
OE  
R
L
R/W  
R/W  
R
L
Dual Ported Array  
Arbitration Logic  
BUSY  
BUSY  
L
R
A [18:0]  
A [18:0]  
L
R
CNT/MSK  
CNT/MSK  
L
R
ADS  
ADS  
L
R
CNTEN  
CNTEN  
R
L
Address &  
Counter Logic  
Address &  
Counter Logic  
CNTRST  
CNTRST  
L
R
RET  
RET  
R
L
CNTINT  
L
CNTINT  
R
C
C
L
R
WRP  
L
WRP  
R
TRST  
TMS  
TDI  
Mailboxes  
INT  
INT  
R
L
JTAG  
TDO  
TCK  
MRST  
READY  
LowSPD  
RESET  
LOGIC  
READY  
L
R
R
LowSPD  
L
Note:  
1. 18-Mbit device has 19 address bits, 9-Mbit device has 18 address bits, 4-Mbit device has 17 address bits, 2-Mbit device has 16 address bits, and 1-Mbit device  
has 15 address bits.  
Document #: 38-06076 Rev. *B  
Page 2 of 28  
CYD01S36V  
CYD02S36V/CYD04S36V  
CYD09S36V/CYD18S36V  
PRELIMINARY  
Pin Configurations  
256-ball FBGA  
(Top View)  
CYD01S36V/CYD02S36V/CYD04S36V/CYD09S36V/CYD18S36V  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
DQ32L  
DQ30L  
DQ28L  
DQ26L  
DQ24L  
DQ22L  
DQ20L  
DQ18L  
DQ18R  
DQ20R  
DQ22R  
DQ24R  
DQ26R  
DQ28R  
DQ30R  
DQ32R  
A
B
C
D
E
F
DQ33L  
DQ34L  
A0L  
DQ31L  
DQ35L  
A1L  
DQ29L  
DQ27L  
INTL  
DQ25L  
DQ23L  
DQ21L  
DQ19L  
DQ19R  
MRST  
VTTL  
VCORE  
VSS  
DQ21R  
VSS  
DQ23R  
DQ25R  
DQ27R  
INTR  
DQ29R  
DQ31R  
DQ35R  
A1R  
DQ33R  
DQ34R  
A0R  
NC  
[2,5]  
NC  
[2,5]  
NC  
[2,5]  
NC  
[2,5]  
RETL [2,3]  
REVL [2,4] TRST [2,5]  
RETR [2,3]  
WRPR [2,3]  
CE0R [11]  
LOWSPDL  
[2,4]  
LOWSPDR  
[2,4]  
WRPL  
[2,3]  
VREFL  
[2,4]  
FTSELL  
[2,3]  
FTSELR  
[2,3]  
VREFL  
[2,4]  
VSS  
VDDIOL  
VSS  
VTTL  
VCORE  
VSS  
VSS  
A2L  
A3L  
CE0L [11] CE1L [10]  
VDDIOL  
VDDIOL  
VDDIOL  
VCORE  
VCORE  
VDDIOL  
VDDIOL  
VDDIOL  
VDDIOL  
VSS  
VDDIOR  
VSS  
VDDIOR  
VSS  
VDDIOR  
VDDIOR  
VDDIOR  
VCORE  
VCORE  
VDDIOR  
VDDIOR  
VDDIOR  
CE1R [10]  
BE3R  
A3R  
A2R  
CNTINTL  
BE3L  
CNTINTR  
[12]  
A4L  
A5L  
A5R  
A4R  
[12]  
BUSYR  
[2,5]  
BUSYL  
BE2L  
[2,5]  
A6L  
A7L  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
BE2R  
A7R  
A6R  
G
H
J
A8L  
A9L  
CL  
VTTL  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VTTL  
CR  
A9R  
A8R  
PORTSTD1  
L[2,4]  
PORTSTD1  
R[2,4]  
A10L  
A12L  
A14L  
A11L  
A13L  
VSS  
OEL  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
OER  
A11R  
A13R  
A10R  
A12R  
A14R  
BE1L  
BE0L  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
BE1R  
BE0R  
K
L
A15L  
[6]  
ADSL  
[11]  
ADSR  
[11]  
A15R  
[6]  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A16L  
[7]  
A17L  
[8]  
A17R  
[8]  
A16R  
[7]  
R/WL  
REVL [2,4]  
VDDIOL  
VDDIOL  
REVL [2,3]  
TCK  
VCORE  
VTTL  
TMS  
VCORE  
VTTL  
TDO  
VDDIOR  
REVR [2,3]  
TDI  
VDDIOR  
REVR [2,4]  
R/WR  
M
N
P
R
T
CNT/MSKL  
[10]  
READYL  
[2,5]  
READYR  
[2,5]  
CNT/MSKR  
[10]  
A18L  
[9]  
A19L  
[2,5]  
VREFL  
[2,4]  
PortSTD0L  
[2,4]  
PortSTD0R  
[2,4]  
VREFR  
[2,4]  
A18R  
[9]  
A19R [2,5]  
DQ17R  
CNTENL  
[11]  
CNTRSTL  
[10]  
CNTRSTR  
[10]  
CNTENR  
[11]  
NC  
[2,5]  
NC  
[2,5]  
NC  
[2,5]  
NC  
[2,5]  
DQ16L  
DQ15L  
DQ14L  
DQ17L  
DQ13L  
DQ12L  
DQ16R  
DQ15R  
DQ14R  
DQ11L  
DQ10L  
DQ9L  
DQ8L  
DQ7L  
DQ6L  
DQ5L  
DQ4L  
DQ3L  
DQ2L  
DQ1L  
DQ0L  
DQ1R  
DQ0R  
DQ3R  
DQ2R  
DQ5R  
DQ4R  
DQ7R  
DQ6R  
DQ9R  
DQ8R  
DQ11R  
DQ10R  
DQ13R  
DQ12R  
Notes:  
2. This ball will represent a next generation Dual-Port feature. For more information about this feature, contact Cypress Sales.  
3. Connect this ball to VDDIO. For more information about this next generation Dual-Port feature contact Cypress Sales.  
4. Connect this ball to VSS. For more information about this next generation Dual-Port feature, contact Cypress Sales.  
5. Leave this ball unconnected. For more information about this feature, contact Cypress Sales.  
6. Leave this ball unconnected for 32K x 36configuration.  
7. Leave this ball unconnected for a 64K x 36, 32K x 36 configurations.  
8. Leave this ball unconnected for a 128K x 36, 64K x 36 and 32K x 36 configurations.  
9. Leave this ball unconnected for a 256K x 36, 128K x 36, 64K x 36, and 32K x 36 configurations.  
10. These balls are not applicable for CYD18S36V device. They need to be tied to VDDIO.  
11. These balls are not applicable for CYD18S36V device. They need to be tied to VSS.  
12. These balls are not applicable for CYD18S36V device. They need to be no connected.  
Document #: 38-06076 Rev. *B  
Page 3 of 28  
CYD01S36V  
CYD02S36V/CYD04S36V  
CYD09S36V/CYD18S36V  
PRELIMINARY  
Pin Definitions  
Left Port  
Right Port  
Description  
A0L–A18L  
A0R–A18R  
Address Inputs.  
BE0L–BE3L  
BE0R–BE3R  
Byte Enable Inputs. Asserting these signals enables Read and Write operations  
to the corresponding bytes of the memory array.  
[2,5]  
[2,5]  
BUSYL  
BUSYR  
Port Busy Output. When the collision is detected, a BUSY is asserted.  
CL  
CR  
Input Clock Signal.  
[11]  
[11]  
CE0L  
CE0R  
Active Low Chip Enable Input.  
[10]  
[10]  
CE1L  
CE1R  
Active High Chip Enable Input.  
DQ0L–DQ35L  
OEL  
DQ0R–DQ35R  
OER  
Data Bus Input/Output.  
Output Enable Input. This asynchronous signal must be asserted LOW to enable  
the DQ data pins during Read operations.  
INTL  
INTR  
Mailbox Interrupt Flag Output. The mailbox permits communications between  
ports. The upper two memory locations can be used for message passing. INTL is  
asserted LOW when the right port writes to the mailbox location of the left port, and  
vice versa. An interrupt to a port is deasserted HIGH when it reads the contents of  
its mailbox.  
[2,4]  
[2,4]  
Port Low Speed Select Input.  
LowSPDL  
LowSPDR  
[2,4]  
[2,4]  
Port Address/Control/Data I/O Standard Select Inputs.  
PORTSTD[1:0]L  
R/WL  
PORTSTD[1:0]R  
R/WR  
Read/Write Enable Input. Assert this pin LOW to write to, or HIGH to Read from  
the dual port memory array.  
[2,5]  
[2,5]  
READYL  
READYR  
Port Ready Output. This signal will be asserted when a port is ready for normal  
operation.  
[10]  
[10]  
CNT/MSKL  
CNT/MSKR  
Port Counter/Mask Select Input. Counter control input.  
Port Counter Address Load Strobe Input. Counter control input.  
Port Counter Enable Input. Counter control input.  
Port Counter Reset Input. Counter control input.  
[11]  
[11]  
ADSL  
ADSR  
[11]  
[11]  
CNTENL  
CNTENR  
[10]  
[10]  
CNTRSTL  
CNTRSTR  
[12]  
[12]  
CNTINTL  
CNTINTR  
Port Counter Interrupt Output. This pin is asserted LOW when the unmasked  
portion of the counter is incremented to all “1s”.  
[2,3]  
[2,3]  
WRPL  
WRPR  
Port Counter Wrap Input. The burst counter wrap control input.  
[2,3]  
[2,3]  
RETL  
RETR  
Port Counter Retransmit Input. Counter control input.  
[2,3]  
[2,3]  
FTSELL  
FTSELR  
Flow-Through Select. Use this pin to select Flow-Through mode. When is  
de-asserted, the device is in pipelined mode.  
[2,4]  
[2,4]  
VREFL  
VREFR  
Port External High-Speed IO Reference Input.  
VDDIOL  
VDDIOR  
Port IO Power Supply.  
[2, 3, 4]  
[2, 3, 4]  
REVL  
REVR  
Reserved pins for future features.  
MRST  
Master Reset Input. MRST is an asynchronous input signal and affects both ports.  
A maser reset operation is required at power-up.  
TRST[2,5]  
TMS  
JTAG Reset Input.  
JTAG Test Mode Select Input. It controls the advance of JTAG TAP state machine.  
State machine transitions occur on the rising edge of TCK.  
TDI  
JTAG Test Data Input. Data on the TDI input will be shifted serially into selected  
registers.  
Document #: 38-06076 Rev. *B  
Page 4 of 28  
CYD01S36V  
CYD02S36V/CYD04S36V  
CYD09S36V/CYD18S36V  
PRELIMINARY  
Pin Definitions (continued)  
Left Port  
Right Port  
Description  
TCK  
TDO  
JTAG Test Clock Input.  
JTAG Test Data Output. TDO transitions occur on the falling edge of TCK. TDO  
is normally three-stated except when captured data is shifted out of the JTAG TAP.  
VSS  
VCORE  
VTTL  
Ground Inputs.  
Core Power Supply.  
LVTTL Power Supply for JTAG IOs  
shows that in order to set the INTR flag, a Write operation by  
the left port to address 7FFFF will assert INTR LOW. At least  
Master Reset  
The FLEx36 family devices undergo a complete reset by  
taking its MRST input LOW. The MRST input can switch  
asynchronously to the clocks. An MRST initializes the internal  
burst counters to zero, and the counter mask registers to all  
ones (completely unmasked). MRST also forces the Mailbox  
Interrupt (INT) flags and the Counter Interrupt (CNTINT) flags  
HIGH. MRST must be performed on the FLEx36 family  
devices after power-up.  
one byte has to be active for a Write to generate an interrupt.  
A valid Read of the 7FFFF location by the right port will reset  
INTR HIGH. At least one byte has to be active in order for a  
Read to reset the interrupt. When one port Writes to the other  
port’s mailbox, the INT of the port that the mailbox belongs to  
is asserted LOW. The INT is reset when the owner (port) of the  
mailbox Reads the contents of the mailbox. The interrupt flag  
is set in a flow-thru mode (i.e., it follows the clock edge of the  
writing port). Also, the flag is reset in a flow-thru mode (i.e., it  
follows the clock edge of the reading port).  
Mailbox Interrupts  
Each port can read the other port’s mailbox without resetting  
the interrupt. And each port can write to its own mailbox  
without setting the interrupt. If an application does not require  
message passing, INT pins should be left open.  
The upper two memory locations may be used for message  
passing and permit communications between ports. Table 2  
shows the interrupt operation for both ports of CYD18S36V.  
The highest memory location, 7FFFF is the mailbox for the  
right port and 7FFFE is the mailbox for the left port. Table 2  
Table 2. Interrupt Operation Example [1, 13, 14, 15, 16, 17]  
Left Port  
Right Port  
Function  
Set Right INTR Flag  
Reset Right INTR Flag  
Set Left INTL Flag  
R/WL  
CEL  
L
A0L–18L  
7FFFF  
X
INTL  
X
R/WR  
CER  
X
A0R–18R  
X
INTR  
L
L
X
X
H
X
H
L
X
X
L
7FFFF  
7FFFE  
X
H
X
X
L
L
X
Reset Left INTL Flag  
L
7FFFE  
H
X
X
X
interrupt output (CNTINT). The mask register is changed only  
by the Mask Load and Mask Reset operations, and by the  
MRST. The mask register defines the counting range of the  
counter register. It divides the counter register into two  
regions: zero or more “0s” in the most significant bits define  
the masked region, one or more “1s” in the least significant bits  
define the unmasked region. Bit 0 may also be “0,” masking  
the least significant counter bit and causing the counter to  
increment by two instead of one.  
Address Counter and Mask Register  
Operations[18]  
This section describes the features only apply to 1Mbit, 2 Mbit,  
4 Mbit and 9 Mbit devices. It does not apply to 18Mbit device.  
Each port of these devices has a programmable burst address  
counter. The burst counter contains three registers: a counter  
register, a mask register, and a mirror register.  
The counter register contains the address used to access the  
RAM array. It is changed only by the Counter Load, Increment,  
Counter Reset, and by master reset (MRST) operations.  
The mirror register is used to reload the counter register on  
increment operations (see “retransmit,” below). It always  
contains the value last loaded into the counter register, and is  
changed only by the Counter Load, and Counter Reset opera-  
tions, and by the MRST.  
The mask register value affects the Increment and Counter  
Reset operations by preventing the corresponding bits of the  
counter register from changing. It also affects the counter  
Notes:  
13. CE is internal signal. CE = LOW if CE = LOW and CE = HIGH. For a single Read operation, CE only needs to be asserted once at the rising edge of the CLK  
0
1
and can be deasserted after that. Data will be out after the following CLK edge and will be three-stated after the next CLK edge.  
14. OE is “Don’t Care” for mailbox operation.  
15. At least one of BE0, BE1, BE2, or BE3 must be LOW.  
16. A17x is a NC for CYD04S36V, therefore the Interrupt Addresses are 1FFFF and 1FFFE. A17x and A16x are NC for CYD02S36V, therefore the Interrupt Addresses  
are FFFF and FFFE; A17x, A16x and A15x are NC for CYD01S36V, therefore the Interrupt Addresses are 7FFF and 7FFE.  
17. “X” = “Don’t Care,” “H” = HIGH, “L” = LOW.  
Document #: 38-06076 Rev. *B  
Page 5 of 28  
CYD01S36V  
CYD02S36V/CYD04S36V  
CYD09S36V/CYD18S36V  
PRELIMINARY  
Table 3 summarizes the operation of these registers and the  
required input control signals. The MRST control signal is  
asynchronous. All the other control signals in Table 3  
(CNT/MSK, CNTRST, ADS, CNTEN) are synchronized to the  
port’s CLK. All these counter and mask operations are  
independent of the port’s chip enable inputs (CE0 and CE1).  
is deasserted. The counter can address the entire memory  
array, and will loop back to the start. Counter reset (CNTRST)  
is used to reset the unmasked portion of the burst counter to  
0s. A counter-mask register is used to control the counter  
wrap.  
Counter Reset Operation  
Counter enable (CNTEN) inputs are provided to stall the  
operation of the address input and utilize the internal address  
generated by the internal counter for fast, interleaved memory  
applications. A port’s burst counter is loaded when the port’s  
address strobe (ADS) and CNTEN signals are LOW. When the  
port’s CNTEN is asserted and the ADS is deasserted, the  
address counter will increment on each LOW to HIGH  
transition of that port’s clock signal. This will Read/Write one  
word from/into each successive address location until CNTEN  
All unmasked bits of the counter and mirror registers are reset  
to “0.” All masked bits remain unchanged. A Mask Reset  
followed by a Counter Reset will reset the counter and mirror  
registers to 00000, as will master reset (MRST).  
Counter Load Operation  
The address counter and mirror registers are both loaded with  
the address value presented at the address lines.  
Table 3. Address Counter and Counter-Mask Register Control Operation (Any Port) [17, 19]  
CLK MRST CNT/MSK  
CNTRST  
ADS  
CNTEN  
Operation  
Description  
X
L
X
X
X
X
Master Reset  
Reset address counter to all 0s and mask  
register to all 1s.  
H
H
H
H
L
X
L
X
L
Counter Reset  
Counter Load  
Reset counter unmasked portion to all 0s.  
H
Load counter with external address value  
presented on address lines.  
H
H
H
L
H
Counter Readback Read out counter internal value on address  
lines.  
H
H
H
H
H
H
H
H
L
Counter Increment Internally increment address counter value.  
H
Counter Hold  
Constantly hold the address value for  
multiple clock cycles.  
H
H
L
L
L
X
L
X
L
Mask Reset  
Mask Load  
Reset mask register to all 1s.  
H
Load mask register with value presented on  
the address lines.  
H
H
L
L
H
H
L
H
X
Mask Readback  
Reserved  
Read out mask register value on address  
lines.  
H
Operation undefined  
Notes:  
18. This section describes the CYD09S36V, CYD04S36V, CYD02S36V, and CYD01S36V which have 18, 17, 16 and 15 address bits.  
19. Counter operation and mask register operation is independent of chip enables.  
Document #: 38-06076 Rev. *B  
Page 6 of 28  
CYD01S36V  
CYD02S36V/CYD04S36V  
CYD09S36V/CYD18S36V  
PRELIMINARY  
Counter Increment Operation  
valid tCA2 after the next rising edge of the port’s clock. If  
address readback occurs while the port is enabled (CE0 LOW  
and CE1 HIGH), the data lines (DQs) will be three-stated.  
Figure 1 shows a block diagram of the operation.  
Once the address counter register is initially loaded with an  
external address, the counter can internally increment the  
address value, potentially addressing the entire memory array.  
Only the unmasked bits of the counter register are incre-  
mented. The corresponding bit in the mask register must be  
a “1” for a counter bit to change. The counter register is incre-  
mented by 1 if the least significant bit is unmasked, and by 2  
if it is masked. If all unmasked bits are “1,” the next increment  
will wrap the counter back to the initially loaded value. If an  
Increment results in all the unmasked bits of the counter being  
“1s,” a counter interrupt flag (CNTINT) is asserted. The next  
Increment will return the counter register to its initial value,  
which was stored in the mirror register. The counter address  
can instead be forced to loop to 00000 by externally  
connecting CNTINT to CNTRST.[20] An increment that results  
in one or more of the unmasked bits of the counter being “0”  
will de-assert the counter interrupt flag. The example in  
Figure 2 shows the counter mask register loaded with a mask  
value of 0003Fh unmasking the first 6 bits with bit “0” as the  
LSB and bit “16” as the MSB. The maximum value the mask  
register can be loaded with is 3FFFFh. Setting the mask  
register to this value allows the counter to access the entire  
memory space. The address counter is then loaded with an  
initial value of 8h. The base address bits (in this case, the 6th  
address through the 16th address) are loaded with an address  
value but do not increment once the counter is configured for  
increment operation. The counter address will start at address  
8h. The counter will increment its internal address value till it  
reaches the mask register value of 3Fh. The counter wraps  
around the memory block to location 8h at the next count.  
CNTINT is issued when the counter reaches its maximum  
value.  
Retransmit  
Retransmit is a feature that allows the Read of a block of  
memory more than once without the need to reload the initial  
address. This eliminates the need for external logic to store  
and route data. It also reduces the complexity of the system  
design and saves board space. An internal “mirror register” is  
used to store the initially loaded address counter value. When  
the counter unmasked portion reaches its maximum value set  
by the mask register, it wraps back to the initial value stored in  
this “mirror register.” If the counter is continuously configured  
in increment mode, it increments again to its maximum value  
and wraps back to the value initially stored into the “mirror  
register.” Thus, the repeated access of the same data is  
allowed without the need for any external logic.  
Mask Reset Operation  
The mask register is reset to all “1s,” which unmasks every bit  
of the counter. Master reset (MRST) also resets the mask  
register to all “1s.”  
Mask Load Operation  
The mask register is loaded with the address value presented  
at the address lines. Not all values permit correct increment  
operations. Permitted values are of the form 2n – 1 or 2n – 2.  
From the most significant bit to the least significant bit,  
permitted values have zero or more “0s,” one or more “1s,” or  
one “0.” Thus 7FFFF, 003FE, and 00001 are permitted values,  
but 7F0FF, 003FC, and 00000 are not.  
Counter Hold Operation  
Mask Readback Operation  
The value of all three registers can be constantly maintained  
unchanged for an unlimited number of clock cycles. Such  
operation is useful in applications where wait states are  
needed, or when address is available a few cycles ahead of  
data in a shared bus interface.  
The internal value of the mask register can be read out on the  
address lines. Readback is pipelined; the address will be valid  
tCM2 after the next rising edge of the port’s clock. If mask  
readback occurs while the port is enabled (CE0 LOW and CE1  
HIGH), the data lines (DQs) will be three-stated. Figure 1  
shows a block diagram of the operation.  
Counter Interrupt  
Counting by Two  
The counter interrupt (CNTINT) is asserted LOW when an  
increment operation results in the unmasked portion of the  
counter register being all “1s.” It is deasserted HIGH when an  
Increment operation results in any other value. It is also  
de-asserted by Counter Reset, Counter Load, Mask Reset  
and Mask Load operations, and by MRST.  
When the least significant bit of the mask register is “0,” the  
counter increments by two. This may be used to connect the  
x36 devices as a 72-bit single port SRAM in which the counter  
of one port counts even addresses and the counter of the other  
port counts odd addresses. This even-odd address scheme  
stores one half of the 72-bit data in even memory locations,  
and the other half in odd memory locations.  
Counter Readback Operation  
The internal value of the counter register can be read out on  
the address lines. Readback is pipelined; the address will be  
Note:  
20. CNTINT and CNTRST specs are guaranteed by design to operate properly at speed grade operating frequency when tied together.  
Document #: 38-06076 Rev. *B  
Page 7 of 28  
CYD01S36V  
CYD02S36V/CYD04S36V  
CYD09S36V/CYD18S36V  
PRELIMINARY  
CNT/MSK  
CNTEN  
ADS  
Decode  
Logic  
CNTRST  
MRST  
Bidirectional  
Address  
Lines  
Mask  
Register  
Counter/  
Address  
Register  
Address  
Decode  
RAM  
Array  
CLK  
Load/Increment  
17  
17  
From  
Address  
Lines  
Mirror  
Counter  
To Readback  
and Address  
Decode  
1
0
1
0
From  
Increment  
Logic  
Mask  
Register  
17  
Wrap  
17  
17  
17  
Bit 0  
From  
Mask  
From  
Counter  
+1  
+2  
Wrap  
Detect  
Wrap  
To  
1
0
17  
1
0
Counter  
Figure 1. Counter, Mask, and Mirror Logic Block Diagram[1]  
Document #: 38-06076 Rev. *B  
Page 8 of 28  
CYD01S36V  
CYD02S36V/CYD04S36V  
CYD09S36V/CYD18S36V  
PRELIMINARY  
CNTINT  
H
Example:  
Load  
Counter-Mask  
Register = 3F  
0
0
0s  
0
1
1
1
1
1
1
216 215  
26 25 24 23 22 21 20  
Unmasked Address  
Mask  
Register  
bit-0  
Masked Address  
Load  
Address  
Counter = 8  
H
L
X
X
Xs  
Xs  
Xs  
X
0
0
1
0
0
0
216 215  
26 25 24 23 22 21 20  
Address  
Counter  
bit-0  
Max  
Address  
Register  
X
X
X
1
1
1
1 1  
1
216 215  
26 25 24 23 22 21 20  
Max + 1  
Address  
Register  
H
X
X
X
0
0
1
0
0
0
216 215  
26 25 24 23 22 21 20  
Figure 2. Programmable Counter-Mask Register Operation[1, 21]  
IEEE 1149.1 Serial Boundary Scan (JTAG)[22]  
Boundary Scan Hierarchy for 9-Mbit and 18-Mbit Devices  
Internally, the devices have multiple DIEs. Each DIE contains  
all the circuitry required to support boundary scan testing. The  
circuitry includes the TAP, TAP controller, instruction register,  
and data registers. The circuity and operation of the DIE  
boundary scan are described in detail below.  
The FLEx36 family devices incorporate an IEEE 1149.1 serial  
boundary scan test access port (TAP). The TAP controller  
functions in a manner that does not conflict with the operation  
of other devices using 1149.1-compliant TAPs. The TAP  
operates using JEDEC-standard 3.3V I/O logic levels. It is  
composed of three input connections and one output  
connection required by the test logic defined by the standard.  
The scan chain for 9-Mbit and 18-Mbit devices uses a hierar-  
chical approach as shown in Figure 3 and Figure 4. TMS and  
TCK are connected in parallel to each DIE to drive all 2- or  
4-TAP controllers in unison. In many cases, each DIE will be  
supplied with the same instruction. In other cases, it might be  
useful to supply different instructions to each DIE. One  
example would be testing the device ID of one DIE while  
bypassing the rest.  
Performing a TAP Reset  
A reset is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This reset does not affect the operation of the  
devices, and may be performed while the device is operating.  
An MRST must be performed on the devices after power-up.  
Each pin of the devices is typically connected to multiple DIEs.  
For connectivity testing with the EXTEST instruction, it is  
desirable to check the internal connections between DIEs as  
well as the external connections to the package. This can be  
accomplished by merging the netlist of the devices with the  
netlist of the user’s circuit board. To facilitate boundary scan  
testing of the devices, Cypress provides the BSDL file for each  
DIE, the internal netlist of the device, and a description of the  
device scan chain. The user can use these materials to easily  
integrate the devices into the board’s boundary scan  
environment. Further information can be found in the Cypress  
application note Using JTAG Boundary Scan For System in a  
Package (SIP) Dual-Port SRAMs.  
Performing a Pause/Restart  
When a SHIFT-DR PAUSE-DR SHIFT-DR is performed the  
scan chain will output the next bit in the chain twice. For  
example, if the value expected from the chain is 1010101, the  
device will output a 11010101. This extra bit will cause some  
testers to report an erroneous failure for the devices in a scan  
test. Therefore the tester should be configured to never enter  
the PAUSE-DR state.  
Notes:  
21. The “X” in this diagram represents the counter upper bits.  
22. Boundary scan is IEEE 1149.1-compatible. See “Performing a Pause/Restart” for deviation from strict 1149.1 compliance.  
Document #: 38-06076 Rev. *B  
Page 9 of 28  
CYD01S36V  
CYD02S36V/CYD04S36V  
CYD09S36V/CYD18S36V  
PRELIMINARY  
TDO  
TDO  
D4  
TDI  
TDO  
D2  
TDI  
TDO  
D3  
TDI  
TDO  
D1  
TDI  
TDI  
Figure 3. Scan Chain for 18-Mbit Device  
TDO  
TDO  
D2  
TDI  
TDO  
D1  
TDI  
TDI  
Figure 4. Scan Chain for 9-Mbit Device  
Table 4. Identification Register Definitions  
Instruction Field  
Revision Number (31:28)  
Cypress Device ID (27:12)  
Value  
Description  
0h  
Reserved for version number.  
C002h  
C001h  
C092h  
034h  
1
Defines Cypress part number for CYD04S36V, CYD09S36V and CYD18S36V  
Defines Cypress part number for CYD02S36V  
Defines Cypress part number for CYD01S36V  
Cypress JEDEC ID (11:1)  
ID Register Presence (0)  
Allows unique identification of the DP family device vendor.  
Indicates the presence of an ID register.  
Table 5. Scan Register Sizes  
Register Name  
Instruction  
Bit Size  
4
1
Bypass  
Identification  
Boundary Scan  
32  
n[23]  
Note:  
23. See details in the device BSDL files.  
Document #: 38-06076 Rev. *B  
Page 10 of 28  
CYD01S36V  
CYD02S36V/CYD04S36V  
CYD09S36V/CYD18S36V  
PRELIMINARY  
Table 6. Instruction Identification Codes  
Instruction Code  
EXTEST  
Description  
0000  
1111  
1011  
0111  
0100  
Captures the Input/Output ring contents. Places the BSR between the TDI and TDO.  
Places the BYR between TDI and TDO.  
BYPASS  
IDCODE  
HIGHZ  
Loads the IDR with the vendor ID code and places the register between TDI and TDO.  
Places BYR between TDI and TDO. Forces all device output drivers to a High-Z state.  
Controls boundary to 1/0. Places BYR between TDI and TDO.  
CLAMP  
SAMPLE/PRELOAD 1000  
Captures the input/output ring contents. Places BSR between TDI and TDO.  
Resets the non-boundary scan logic. Places BYR between TDI and TDO.  
NBSRST  
1100  
RESERVED  
All other codes Other combinations are reserved. Do not use other than the above.  
Document #: 38-06076 Rev. *B  
Page 11 of 28  
CYD01S36V  
CYD02S36V/CYD04S36V  
CYD09S36V/CYD18S36V  
PRELIMINARY  
DC Input Voltage .............................. –0.5V to VDD + 0.5V[25]  
Output Current into Outputs (LOW)............................. 20 mA  
Static Discharge Voltage...........................................> 2000V  
(JEDEC JESD22-A114-2000B)  
Maximum Ratings[24]  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Storage Temperature ................................. –65°C to +150°C  
Ambient Temperature with  
Latch-up Current.....................................................> 200 mA  
Power Applied.............................................55°C to +125°C  
Supply Voltage to Ground Potential............... –0.5V to +4.6V  
Operating Range  
DC Voltage Applied to  
Outputs in High-Z State...........................–0.5V to VDD +0.5V  
Ambient  
Temperature  
Range  
VDDIO/VTTL  
VCORE  
Commercial 0°C to +70°C 3.3V±165 mV 1.8V±100 mV  
Industrial  
–40°C to +85°C 3.3V±165 mV 1.8V±100 mV  
Electrical Characteristics Over the Operating Range  
Pa-  
-167  
-133  
-100  
rame-  
ter  
Description  
Output HIGH Voltage (VDD = Min., IOH= –4.0 mA)  
Output LOW Voltage (VDD = Min., IOL= +4.0 mA)  
Input HIGH Voltage  
Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit  
VOH  
2.4  
2.4  
2.4  
V
V
VOL  
VIH  
VIL  
0.4  
0.8  
0.4  
0.4  
2.0  
2.0  
2.0  
V
Input LOW Voltage  
0.8  
10  
10  
0.8  
10  
10  
V
IOZ  
IIX1  
IIX2  
ICC  
Output Leakage Current  
–10  
–10  
–1.0  
10 –10  
10 –10  
0.1 –1.0  
–10  
–10  
uA  
uA  
Input Leakage Current Except TDI, TMS, MRST  
Input Leakage Current TDI, TMS, MRST  
0.1 –1.0  
225 300  
0.1 mA  
mA  
Operating Current for  
(VDD = Max.,IOUT = 0 mA), Outputs  
Disabled  
CYD01S36V  
CYD02S36V/  
CYD04S36V  
225 300  
CYD09S36V  
CYD18S36V  
450 600  
370 540  
410 580  
315 450  
[26]  
[26]  
[26]  
[26]  
ISB1  
ISB2  
ISB3  
ISB4  
ISB5  
Standby Current (Both Ports TTL Level)  
CEL and CER Š VIH, f = fMAX  
90 115  
160 210  
90  
160 210  
55 75  
115  
mA  
mA  
Standby Current (One Port TTL Level)  
CEL | CER Š VIH, f = fMAX  
Standby Current (Both Ports CMOS Level)  
CEL and CER Š VDD – 0.2V, f = 0  
55  
75  
mA  
Standby Current (One Port CMOS Level)  
CEL | CER Š VIH, f = fMAX  
160 210  
160 210  
75  
mA  
Operating Current (VDDIO  
=Max,Iout=0mA,f=0) Outputs Disabled  
CYD18S36V  
75 mA  
ICORE Core Operating Current for (VDD = Max.,IOUT = 0 mA),  
Outputs Disabled  
0
0
0
0
0
0
mA  
Capacitance[27]  
Part Number  
Parameter  
CIN  
Description  
Test Conditions  
Max.  
Unit  
CYD01S36/  
CYD02S36V/  
CYD04S36V  
Input Capacitance  
TA = 25°C, f = 1 MHz,  
VDD = 3.3V  
13  
pF  
COUT  
CIN  
Output Capacitance  
Input Capacitance  
Output Capacitance  
10  
22  
10[28]  
pF  
pF  
pF  
CYD09S36V  
COUT  
Note:  
24. The voltage on any input or I/O pin can not exceed the power pin during power-up.  
25. Pulse width < 20 ns.  
26. I  
, I  
, I  
and I  
are not applicable for CYD18S36V because it cannot be powered down by using chip enable pins.  
SB1 SB2 SB3  
SB4  
27. C  
also references C  
.
OUT  
I/O  
28. Except INT and CNTINT which are 20 pF.  
Document #: 38-06076 Rev. *B  
Page 12 of 28  
CYD01S36V  
CYD02S36V/CYD04S36V  
CYD09S36V/CYD18S36V  
PRELIMINARY  
Capacitance[27]  
Part Number  
Parameter  
CIN  
COUT  
Description  
Test Conditions  
Max.  
40  
Unit  
pF  
CYD18S36V  
Input Capacitance  
Output Capacitance  
20  
pF  
AC Test Load and Waveforms  
3.3V  
Z0 = 50  
R = 50Ω  
OUTPUT  
R1 = 590 Ω  
R2 = 435 Ω  
OUTPUT  
C = 10 pF  
C = 5 pF  
VTH = 1.5V  
(a) Normal Load (Load 1)  
(b) Three-state Delay (Load 2)  
3.0V  
90%  
10%  
90%  
10%  
ALL INPUT PULSES  
Vss  
< 2 ns  
< 2 ns  
Switching Characteristics Over the Operating Range  
-167  
-133  
-100  
CYD01S36V  
CYD02S36V  
CYD04S36V  
CYD09S36V  
CYD01S36V  
CYD02S36V  
CYD04S36V  
CYD09S36V  
CYD18S36V  
CYD18S36V  
Parameter  
fMAX2  
Description  
Maximum Operating Frequency  
Clock Cycle Time  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
167  
133  
133  
100  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCYC2  
6.0  
2.7  
2.7  
7.5  
3.0  
3.0  
7.5  
3.4  
3.4  
10.0  
4.5  
tCH2  
Clock HIGH Time  
tCL2  
Clock LOW Time  
4.5  
[29]  
tR  
Clock Rise Time  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
3.0  
3.0  
[29]  
tF  
Clock Fall Time  
tSA  
Address Set-up Time  
Address Hold Time  
Byte Select Set-up Time  
Byte Select Hold Time  
Chip Enable Set-up Time  
Chip Enable Hold Time  
R/W Set-up Time  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.2  
1.0  
2.2  
1.0  
NA  
NA  
2.2  
1.0  
2.2  
1.0  
NA  
NA  
NA  
NA  
NA  
NA  
2.7  
1.0  
2.7  
1.0  
NA  
NA  
2.7  
1.0  
2.7  
1.0  
NA  
NA  
NA  
NA  
NA  
NA  
tHA  
tSB  
tHB  
tSC  
tHC  
tSW  
tHW  
tSD  
R/W Hold Time  
Input Data Set-up Time  
Input Data Hold Time  
ADS Set-up Time  
tHD  
tSAD  
tHAD  
tSCN  
tHCN  
tSRST  
tHRST  
ADS Hold Time  
CNTEN Set-up Time  
CNTEN Hold Time  
CNTRST Set-up Time  
CNTRST Hold Time  
Document #: 38-06076 Rev. *B  
Page 13 of 28  
CYD01S36V  
CYD02S36V/CYD04S36V  
CYD09S36V/CYD18S36V  
PRELIMINARY  
Switching Characteristics Over the Operating Range (continued)  
-167  
-133  
CYD01S36V  
-100  
CYD01S36V  
CYD02S36V  
CYD04S36V  
CYD09S36V  
CYD02S36V  
CYD04S36V  
CYD09S36V  
CYD18S36V  
CYD18S36V  
Parameter  
tSCM  
Description  
CNT/MSK Set-up Time  
CNT/MSK Hold Time  
Min.  
2.3  
Max.  
Min.  
2.5  
Max.  
Min.  
NA  
Max.  
Min.  
NA  
Max.  
Unit  
ns  
tHCM  
0.6  
0.6  
NA  
NA  
ns  
tOE  
Output Enable to Data Valid  
4.0  
4.4  
5.5  
5.5  
ns  
Note:  
29. Except JTAG signals (t and t < 10 ns [max.]).  
r
f
[30, 31]  
tOLZ  
OE to Low Z  
0
0
0
0
0
0
0
0
ns  
ns  
ns  
ns  
ns  
[30, 31]  
tOHZ  
tCD2  
tCA2  
tCM2  
OE to High Z  
4.0  
4.0  
4.0  
4.0  
4.4  
4.4  
4.4  
4.4  
5.5  
5.0  
NA  
NA  
5.5  
5.2  
NA  
NA  
Clock to Data Valid  
Clock to Counter Address Valid  
Clock to Mask Register Readback  
Valid  
tDC  
Data Output Hold After Clock HIGH  
Clock HIGH to Output High Z  
Clock HIGH to Output Low Z  
Clock to INT Set Time  
1.0  
0
1.0  
0
1.0  
0
1.0  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[30, 31]  
tCKHZ  
4.0  
4.0  
6.7  
6.7  
5.0  
5.0  
4.4  
4.4  
7.5  
7.5  
5.7  
5.7  
4.7  
4.7  
7.5  
7.5  
NA  
NA  
5.0  
5.0  
[30, 31]  
tCKLZ  
tSINT  
tRINT  
1.0  
0.5  
0.5  
0.5  
0.5  
1.0  
0.5  
0.5  
0.5  
0.5  
1.0  
0.5  
0.5  
NA  
NA  
1.0  
0.5  
0.5  
NA  
NA  
10.0  
10.0  
NA  
Clock to INT Reset Time  
tSCINT  
tRCINT  
Clock to CNTINT Set Time  
Clock to CNTINT Reset time  
NA  
Port to Port Delays  
tCCS  
Clock to Clock Skew  
5.2  
6.0  
5.7  
8.0  
ns  
Master Reset Timing  
tRS  
Master Reset Pulse Width  
5.0  
6.0  
5.0  
5.0  
6.0  
5.0  
5.0  
6.0  
5.0  
5.0  
8.5  
5.0  
cycles  
ns  
tRS  
Master Reset Set-up Time  
tRSR  
tRSF  
tRSINT  
Master Reset Recovery Time  
Master Reset to Outputs Inactive  
cycles  
ns  
10.0  
10.0  
10.0  
10.0  
10.0  
NA  
10.0  
NA  
Master Reset to Counter and Mailbox  
Interrupt Flag Reset Time  
ns  
JTAG Timing  
167/133/100  
Parameter  
Description  
Min.  
Max.  
10  
Unit  
MHz  
ns  
fJTAG  
tTCYC  
tTH  
Maximum JTAG TAP Controller Frequency  
TCK Clock Cycle Time  
100  
40  
40  
10  
10  
10  
10  
TCK Clock HIGH Time  
ns  
tTL  
TCK Clock LOW Time  
ns  
tTMSS  
tTMSH  
tTDIS  
tTDIH  
tTDOV  
tTDOX  
TMS Set-up to TCK Clock Rise  
TMS Hold After TCK Clock Rise  
TDI Set-up to TCK Clock Rise  
TDI Hold After TCK Clock Rise  
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
ns  
ns  
ns  
ns  
30  
ns  
0
ns  
Document #: 38-06076 Rev. *B  
Page 14 of 28  
CYD01S36V  
CYD02S36V/CYD04S36V  
CYD09S36V/CYD18S36V  
PRELIMINARY  
JTAG Timing  
Notes:  
30. This parameter is guaranteed by design, but it is not production tested.  
31. Test conditions used are Load 2.  
JTAG Switching Waveform  
tTH  
tTL  
Test Clock  
TCK  
tTCYC  
tTMSS  
tTMSH  
Test Mode Select  
TMS  
tTDIS  
tTDIH  
Test Data-In  
TDI  
Test Data-Out  
TDO  
tTDOV  
tTDOX  
Switching Waveforms  
Master Reset  
tRS  
MRST  
tRSF  
ALL  
ADDRESS/  
DATA  
tRSS  
INACTIVE  
LINES  
tRSR  
ALL  
OTHER  
INPUTS  
ACTIVE  
TMS  
tRSINT  
CNTINT  
INT  
TDO  
Document #: 38-06076 Rev. *B  
Page 15 of 28  
CYD01S36V  
CYD02S36V/CYD04S36V  
CYD09S36V/CYD18S36V  
PRELIMINARY  
Switching Waveforms (continued)  
Read Cycle[13, 32, 33, 34, 35]  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
tSC  
tHC  
tSC  
tHC  
tSB  
tHB  
BE0–BE3  
R/W  
tSW  
tSA  
tHW  
tHA  
ADDRESS  
DATAOUT  
An  
An+1  
An+2  
An+3  
tDC  
1 Latency  
tCD2  
Qn  
Qn+1  
Qn+2  
tOHZ  
tCKLZ  
tOLZ  
OE  
t
OE  
Notes:  
32. OE is asynchronously controlled; all other inputs (excluding MRST and JTAG) are synchronous to the rising clock edge.  
33. ADS = CNTEN = LOW, and MRST = CNTRST = CNT/MSK = HIGH.  
34. The output is disabled (high-impedance state) by CE = V following the next rising edge of the clock.  
IH  
35. Addresses do not have to be accessed sequentially since ADS = CNTEN = V with CNT/MSK = V constantly loads the address on the rising edge of the CLK.  
IL  
IH  
Numbers are for reference only.  
Document #: 38-06076 Rev. *B  
Page 16 of 28  
CYD01S36V  
CYD02S36V/CYD04S36V  
CYD09S36V/CYD18S36V  
PRELIMINARY  
Switching Waveforms (continued)  
Bank Select Read[36, 37]  
tCYC2  
tCH2  
tCL2  
CLK  
tHA  
tSA  
A3  
A4  
ADDRESS(B1)  
A5  
A0  
A1  
A2  
tHC  
tSC  
CE(B1)  
tCD2  
tCD2  
tCD2  
tCKHZ  
tHC  
tCKHZ  
tSC  
Q0  
Q3  
Q1  
DATAOUT(B1)  
ADDRESS(B2)  
tHA  
tSA  
tDC  
A2  
tDC  
A3  
tCKLZ  
A4  
A5  
A0  
A1  
tHC  
tSC  
CE(B2)  
tCD2  
tCKHZ  
tCD2  
tSC  
tHC  
DATAOUT(B2)  
Q4  
Q2  
tCKLZ  
tCKLZ  
Read-to-Write-to-Read (OE = LOW)[35, 38, 39, 40, 41]  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
tSC  
tHC  
tSW  
tHW  
R/W  
tSW  
tHW  
An  
An+1  
An+2  
An+2  
An+2  
tSD tHD  
Dn+2  
An+3  
ADDRESS  
DATAIN  
tSA  
tHA  
tCD2  
tDC  
tCKHZ  
Qn  
DATAOUT  
READ  
NO OPERATION  
WRITE  
Notes:  
36. In this depth-expansion example, B1 represents Bank #1 and B2 is Bank #2; each bank consists of one Cypress FLEx36 device from this data sheet. ADDRESS  
(B1)  
= ADDRESS  
.
(B2)  
37. ADS = CNTEN= BE0 – BE3 = OE = LOW; MRST = CNTRST = CNT/MSK = HIGH.  
38. Output state (HIGH, LOW, or high-impedance) is determined by the previous cycle control signals.  
39. During “No Operation,” data in memory at the selected address may be corrupted and should be rewritten to ensure data integrity.  
40. CE = OE = BE0 – BE3 = LOW; CE = R/W = CNTRST = MRST = HIGH.  
0
1
41. CE = BE0 – BE3 = R/W = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH. When R/W first switches low, since OE = LOW, the Write operation cannot be  
0
1
completed (labelled as no operation). One clock cycle is required to three-state the I/O for the Write operation on the next rising edge of CLK.  
Document #: 38-06076 Rev. *B  
Page 17 of 28  
CYD01S36V  
CYD02S36V/CYD04S36V  
CYD09S36V/CYD18S36V  
PRELIMINARY  
Switching Waveforms (continued)  
Read-to-Write-to-Read (OE Controlled)[35, 38, 40, 41]  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
tSC  
tHC  
tHW  
tSW  
R/W tSW  
tHW  
An  
An+1  
An+2  
An+3  
An+4  
An+5  
ADDRESS  
tSA  
tHA  
tSD tHD  
Dn+2  
DATAIN  
Dn+3  
tCD2  
tCD2  
DATAOUT  
Qn  
Qn+4  
tOHZ  
OE  
READ  
WRITE  
READ  
Read with Address Counter Advance[40]  
tCYC2  
tCH2  
tCL2  
CLK  
tSA  
tHA  
ADDRESS  
An  
tSAD  
tHAD  
ADS  
tSAD  
tHAD  
CNTEN  
tSCN  
tHCN  
tSCN  
tHCN  
tCD2  
Qx–1  
Qx  
tDC  
Qn  
Qn+1  
COUNTER HOLD  
Qn+2  
DATAOUT  
Qn+3  
READ  
READ WITH COUNTER  
READ WITH COUNTER  
EXTERNAL  
ADDRESS  
Document #: 38-06076 Rev. *B  
Page 18 of 28  
CYD01S36V  
CYD02S36V/CYD04S36V  
CYD09S36V/CYD18S36V  
PRELIMINARY  
Switching Waveforms (continued)  
Write with Address Counter Advance [41]  
tCYC2  
tCH2  
tCL2  
CLK  
tSA  
tHA  
An  
ADDRESS  
INTERNAL  
ADDRESS  
An  
An+1  
An+2  
An+3  
An+4  
tSAD  
tHAD  
ADS  
CNTEN  
DATAIN  
tSCN  
tHCN  
Dn  
Dn+1  
Dn+1  
Dn+2  
Dn+3  
Dn+4  
tSD  
tHD  
WRITE EXTERNAL  
ADDRESS  
WRITE WITH WRITE COUNTER  
COUNTER HOLD  
WRITE WITH COUNTER  
Document #: 38-06076 Rev. *B  
Page 19 of 28  
CYD01S36V  
CYD02S36V/CYD04S36V  
CYD09S36V/CYD18S36V  
PRELIMINARY  
Switching Waveforms (continued)  
Counter Reset [42, 43]  
tCYC2  
tCH2 tCL2  
CLK  
tHA  
Am  
tSA  
Ap  
An  
ADDRESS  
INTERNAL  
Ax  
Ap  
An  
1
0
Am  
ADDRESS  
tHW  
tSW  
R/W  
ADS  
CNTEN  
CNTRST  
tHRST  
tSRST  
tHD  
tSD  
DATAIN  
D0  
tCD2  
tCD2  
[55]  
DATAOUT  
Q0  
Qn  
Q1  
tCKLZ  
READ  
ADDRESS 1  
READ  
ADDRESS An  
COUNTER  
RESET  
WRITE  
ADDRESS 0  
READ  
ADDRESS 0  
READ  
ADDRESS Am  
Notes:  
42. CE = BE0 – BE3 = LOW; CE = MRST = CNT/MSK = HIGH.  
0
1
43. No dead cycle exists during counter reset. A Read or Write cycle may be coincidental with the counter reset.  
Document #: 38-06076 Rev. *B  
Page 20 of 28  
CYD01S36V  
CYD02S36V/CYD04S36V  
CYD09S36V/CYD18S36V  
PRELIMINARY  
Switching Waveforms (continued)  
Readback State of Address Counter or Mask Register[44, 45, 46, 47]  
tCYC2  
tCH2 tCL2  
CLK  
tCA2 or tCM2  
tSA  
tHA  
EXTERNAL  
An*  
An  
ADDRESS  
A0–A16  
INTERNAL  
ADDRESS  
An+4  
An+1  
An+2  
An+3  
An  
tSAD  
tHAD  
ADS  
CNTEN  
tSCN  
tHCN  
tCD2  
tCKHZ  
Qn  
tCKLZ  
DATAOUT  
Qn+1  
Qx-1  
Qn+2  
Qx-2  
Q
n+3  
LOAD  
EXTERNAL  
ADDRESS  
READBACK  
COUNTER  
INTERNAL  
ADDRESS  
INCREMENT  
Notes:  
44. CE = OE = BE0 – BE3 = LOW; CE = R/W = CNTRST = MRST = HIGH.  
0
1
45. Address in output mode. Host must not be driving address bus after t  
in next clock cycle.  
CKLZ  
46. Address in input mode. Host can drive address bus after t  
.
CKHZ  
47. An * is the internal value of the address counter (or the mask register depending on the CNT/MSK level) being Read out on the address lines.  
Document #: 38-06076 Rev. *B  
Page 21 of 28  
CYD01S36V  
CYD02S36V/CYD04S36V  
CYD09S36V/CYD18S36V  
PRELIMINARY  
Switching Waveforms (continued)  
Left_Port (L_Port) Write to Right_Port (R_Port) Read[48, 49, 50]  
tCYC2  
tCH2  
tCL2  
CLKL  
tHA  
tSA  
L_PORT  
ADDRESS  
An  
tSW  
tHW  
R/WL  
tCKHZ  
tSD  
tHD  
tCKLZ  
L_PORT  
DATAIN  
Dn  
tCCS  
tCYC2  
tCL2  
CLKR  
tCH2  
tSA  
tHA  
R_PORT  
ADDRESS  
An  
R/WR  
tCD2  
R_PORT  
DATAOUT  
Qn  
tDC  
Notes:  
48. CE = OE = ADS = CNTEN = BE0 – BE3 = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH.  
0
1
49. This timing is valid when one port is writing, and other port is reading the same location at the same time. If t  
is violated, indeterminate data will be Read out.  
CCS  
50. If t  
< minimum specified value, then R_Port will Read the most recent data (written by L_Port) only (2 * t  
+ t  
) after the rising edge of R_Port's clock. If  
CCS  
CYC2  
CD2  
t
> minimum specified value, then R_Port will Read the most recent data (written by L_Port) (t  
+ t  
) after the rising edge of R_Port's clock.  
CCS  
CYC2  
CD2  
Document #: 38-06076 Rev. *B  
Page 22 of 28  
CYD01S36V  
CYD02S36V/CYD04S36V  
CYD09S36V/CYD18S36V  
PRELIMINARY  
Switching Waveforms (continued)  
Counter Interrupt and Retransmit[16, 51, 52, 53, 54, 55]  
tCYC2  
tCH2  
tCL2  
CLK  
tSCM  
tHCM  
CNT/MSK  
ADS  
CNTEN  
COUNTER  
INTERNAL  
ADDRESS  
3FFFE  
tSCINT  
3FFFC  
Last_Loaded  
3FFFD  
3FFFF  
tRCINT  
Last_Loaded +1  
CNTINT  
Notes:  
51. CE = OE = BE0 – BE3 = LOW; CE = R/W = CNTRST = MRST = HIGH.  
0
1
52. CNTINT is always driven.  
53. CNTINT goes LOW when the unmasked portion of the address counter is incremented to the maximum value.  
54. The mask register assumed to have the value of 3FFFFh.  
55. Retransmit happens if the counter remains in increment mode after it wraps to initially loaded value.  
Document #: 38-06076 Rev. *B  
Page 23 of 28  
CYD01S36V  
CYD02S36V/CYD04S36V  
CYD09S36V/CYD18S36V  
PRELIMINARY  
Switching Waveforms (continued)  
MailBox Interrupt Timing[56, 57, 58, 59, 60]  
tCYC2  
tCH2  
tCL2  
CLKL  
tSA tHA  
7FFFF  
L_PORT  
ADDRESS  
An+1  
An  
An+2  
An+3  
tSINT  
tRINT  
INTR  
tCYC2  
tCL2  
tCH2  
CLKR  
tSA tHA  
Am  
R_PORT  
ADDRESS  
Am+1  
7FFFF  
Am+3  
Am+4  
Table 7. Read/Write and Enable Operation (Any Port)[1, 17, 61, 62, 63]  
Inputs  
Outputs  
OE  
CLK  
CE0  
CE1  
R/W  
DQ0 DQ35  
Operation  
X
H
X
X
High-Z  
Deselected  
Deselected  
Write  
X
X
L
X
L
L
L
L
H
H
H
X
L
High-Z  
DIN  
H
DOUT  
High-Z  
Read  
H
X
X
Outputs Disabled  
Notes:  
56. CE = OE = ADS = CNTEN = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH.  
0
1
57. Address “7FFFF” is the mailbox location for R_Port of the 9-Mbit device.  
58. L_Port is configured for Write operation, and R_Port is configured for Read operation.  
59. At least one byte enable (BE0 – BE3) is required to be active during interrupt operations.  
60. Interrupt flag is set with respect to the rising edge of the Write clock, and is reset with respect to the rising edge of the Read clock.  
61. OE is an asynchronous input signal.  
62. When CE changes state, deselection and Read happen after one cycle of latency.  
63. CE = OE = LOW; CE = R/W = HIGH.  
0
1
Document #: 38-06076 Rev. *B  
Page 24 of 28  
CYD01S36V  
CYD02S36V/CYD04S36V  
CYD09S36V/CYD18S36V  
PRELIMINARY  
Ordering Information  
512K  
×
36 (18-Mbit) 3.3V Synchronous CYD18S36V Dual-Port SRAM  
Package  
Speed(  
MHz)  
Operating  
Ordering Code  
Name  
BB256  
BB256  
BB256  
Package Type  
Range  
256-ball Grid Array 23 mm × 23 mm with 1.0-mm pitch (BGA) Commercial  
256-ball Grid Array 23 mm × 23 mm with 1.0-mm pitch (BGA) Commercial  
256-ball Grid Array 23 mm × 23 mm with 1.0-mm pitch (BGA) Industrial  
133 CYD18S36V-133BBC  
100 CYD18S36V-100BBC  
CYD18S36V-100BBI  
256K  
×
36 (9-Mbit) 3.3V Synchronous CYD09S36V Dual-Port SRAM  
Package  
Speed(  
MHz)  
Operating  
Range  
Ordering Code  
Name  
BB256  
BB256  
BB256  
Package Type  
167 CYD09S36V-167BBC  
133 CYD09S36V-133BBC  
CYD09S36V-133BBI  
256-ball Grid Array 17 mm × 17 mm with 1.0-mm pitch (BGA) Commercial  
256-ball Grid Array 17 mm × 17 mm with 1.0-mm pitch (BGA) Commercial  
256-ball Grid Array 17 mm × 17 mm with 1.0-mm pitch (BGA) Industrial  
128K  
×
36 (4-Mbit) 3.3V Synchronous CYD04S36V Dual-Port SRAM  
Package  
Speed(  
MHz)  
Operating  
Range  
Ordering Code  
Name  
BB256  
BB256  
BB256  
Package Type  
167 CYD04S36V-167BBC  
133 CYD04S36V-133BBC  
CYD04S36V-133BBI  
256-ball Grid Array 17 mm × 17 mm with 1.0-mm pitch (BGA) Commercial  
256-ball Grid Array 17 mm × 17 mm with 1.0-mm pitch (BGA) Commercial  
256-ball Grid Array 17 mm × 17 mm with 1.0-mm pitch (BGA) Industrial  
64K  
× 36 (2-Mbit) 3.3V Synchronous CYD02S36V Dual-Port SRAM  
Speed(  
MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
Package Type  
167 CYD02S36V-167BBC  
133 CYD02S36V-133BBC  
CYD02S36V-133BBI  
BB256  
BB256  
BB256  
256-ball Grid Array 17 mm × 17 mm with 1.0-mm pitch (BGA) Commercial  
256-ball Grid Array 17 mm × 17 mm with 1.0-mm pitch (BGA) Commercial  
256-ball Grid Array 17 mm × 17 mm with 1.0-mm pitch (BGA) Industrial  
32K  
× 36 (1-Mbit) 3.3V Synchronous CYD01S36V Dual-Port SRAM  
Speed(  
MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
Package Type  
167 CYD01S36V-167BBC  
133 CYD01S36V-133BBC  
CYD01S36V-133BBI  
BB256  
BB256  
BB256  
256-ball Grid Array 17 mm × 17 mm with 1.0-mm pitch (BGA) Commercial  
256-ball Grid Array 17 mm × 17 mm with 1.0-mm pitch (BGA) Commercial  
256-ball Grid Array 17 mm × 17 mm with 1.0-mm pitch (BGA) Industrial  
Document #: 38-06076 Rev. *B  
Page 25 of 28  
CYD01S36V  
CYD02S36V/CYD04S36V  
CYD09S36V/CYD18S36V  
PRELIMINARY  
Package Diagrams  
256-Ball FBGA (17 x 17 mm) BB256  
TOP VIEW  
BOTTOM VIEW  
Ø0.05 M C  
Ø0.25 M C A B  
PIN 1 CORNER  
Ø0.45 0.05(256X)ꢀCPꢁD DEVICES (37K & 39K)  
PIN 1 CORNER  
+0.10  
Ø0.50 (256X)ꢀAꢁꢁ OTHER DEVICES  
ꢀ0.05  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
A
B
C
D
E
F
F
G
H
J
G
H
J
K
K
M
N
P
R
T
M
N
P
R
T
1.00  
B
7.50  
15.00  
A
17.00 0.10  
A
SEATING PꢁANE  
0.20(4X)  
A1  
C
REFERENCE JEDEC MOꢀ192  
A1 0.36 0.56  
1.40 MAX. 1.70 MAX.  
A
51-85108-*F  
Document #: 38-06076 Rev. *B  
Page 26 of 28  
CYD01S36V  
CYD02S36V/CYD04S36V  
CYD09S36V/CYD18S36V  
PRELIMINARY  
Package Diagrams (continued)  
256-ball FBGA (23 mm x 23 mm x 1.7 mm) BB256B  
51-85201-**  
FLEx36 is a trademark of Cypress Semiconductor Corporation. All product and company names mentioned in this document are  
the trademarks of their respective holders.  
Document #: 38-06076 Rev. *B  
Page 27 of 28  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
CYD01S36V  
CYD02S36V/CYD04S36V  
CYD09S36V/CYD18S36V  
PRELIMINARY  
Document History Page  
Document Title: FLEx363.3V 32K/64K/128K/256K/512 x 36 Synchronous Dual-Port RAM  
Document Number: 38-06076  
Orig. of  
Issue Date Change  
REV. ECN NO.  
Description of Change  
**  
232012  
244232  
See ECN  
See ECN  
WWZ New data sheet  
*A  
WWZ Changed pinout  
Changed FTSEL# to FTSEL in the block diagram  
*B  
313156  
See ECN  
YDT  
Changed pinout D10 from NC to VSS to reflect test mode pin swap, C10 from  
rev[2,4] to VSS to reflect SC removal.  
Changed tRSCNTINT to tRSINT  
Added tRSINT to the master reset timing diagram  
Added CYD01S36V to datasheet  
Added ISB5 and changed IIX2  
Document #: 38-06076 Rev. *B  
Page 28 of 28  

相关型号:

CYD04S36V-133BBC

FLEx36 3.3V 32K/64K/128K/256K/512 x 36 Synchronous Dual-Port RAM
CYPRESS

CYD04S36V-133BBI

FLEx36 3.3V 32K/64K/128K/256K/512 x 36 Synchronous Dual-Port RAM
CYPRESS

CYD04S36V-167BBC

FLEx36 3.3V 32K/64K/128K/256K/512 x 36 Synchronous Dual-Port RAM
CYPRESS

CYD04S36V18

18-Mb/9-Mb/4-Mb x36/x18 FullFlex⑩ Dual-Ports
CYPRESS

CYD04S36V18-167BBC

Dual-Port SRAM, 128KX36, 11ns, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, MO-192, FBGA-256
CYPRESS

CYD04S36V18-167BBI

Dual-Port SRAM, 128KX36, 11ns, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, MO-192, FBGA-256
CYPRESS

CYD04S36V18-167BBXC

Dual-Port SRAM, 128KX36, 11ns, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, LEAD FREE, MO-192, FBGA-256
CYPRESS

CYD04S36V18-167BBXI

Dual-Port SRAM, 128KX36, 11ns, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, LEAD FREE, MO-192, FBGA-256
CYPRESS

CYD04S36V18-200BBC

Dual-Port SRAM, 128KX36, 9ns, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, MO-192, FBGA-256
CYPRESS

CYD04S36V18-200BBI

Dual-Port SRAM, 128KX36, 9ns, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, MO-192, FBGA-256
CYPRESS

CYD04S36V18-200BBXI

Dual-Port SRAM, 128KX36, 9ns, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, LEAD FREE, MO-192, FBGA-256
CYPRESS

CYD04S36V18-250BBC

Dual-Port SRAM, 128KX36, 7.2ns, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, MO-192, FBGA-256
CYPRESS