CYD18S72V18-167BBXI [CYPRESS]

Dual-Port SRAM, 256KX72, 4ns, CMOS, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, LEAD FREE, PLASTIC, BGA-484;
CYD18S72V18-167BBXI
型号: CYD18S72V18-167BBXI
厂家: CYPRESS    CYPRESS
描述:

Dual-Port SRAM, 256KX72, 4ns, CMOS, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, LEAD FREE, PLASTIC, BGA-484

静态存储器
文件: 总52页 (文件大小:1327K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FullFlex  
FullFlexTM Synchronous SDR  
Dual Port SRAM  
FullFlexSynchronous SDR Dual Port SRAM  
Features  
Functional Description  
True dual port memory enables simultaneous access to the  
shared array from each port  
The FullFlex™ dual port SRAM families consist of 2-Mbit, 9-Mbit,  
18-Mbit, and 36-Mbit synchronous, true dual port static RAMs  
that are high speed, low power 1.8 V or 1.5 V CMOS. Two ports  
are provided, enabling simultaneous access to the array.  
Simultaneous access to a location triggers deterministic access  
control. For FullFlex72 these ports operate independently with  
72-bit bus widths and each port is independently configured for  
two pipelined stages. Each port is also configured to operate in  
pipelined or flow through mode.  
Synchronous pipelined operation with single data rate (SDR)  
operation on each port  
SDR interface at 200 MHz  
Up to 28.8 Gb/s bandwidth (200 MHz × 72-bit × 2 ports)  
Selectable pipelined or flow-through mode  
1.5 V or 1.8 V core power supply  
The advanced features include the following:  
Commercial and Industrial temperature  
IEEE 1149.1 JTAG boundary scan  
Built in deterministic access control to manage address  
collisions during simultaneous access to the same memory  
location  
Available in 484-ball PBGA (× 72) and 256-ball FBGA (× 36  
and × 18) packages  
Variable Impedance Matching (VIM) to improve data  
transmission by matching the output driver impedance to the  
line impedance  
FullFlex72 family  
36-Mbit: 512 K × 72 (CYD36S72V18)  
18-Mbit: 256 K × 72 (CYD18S72V18)  
9-Mbit: 128 K × 72 (CYD09S72V18)  
Echo clocks to improve data transfer  
To reduce the static power consumption, chip enables power  
down the internal circuitry. The number of latency cycles before  
a change in CE0 or CE1 enables or disables the databus  
matches the number of cycles of read latency selected for the  
device. For a valid write or read to occur, activate both chip  
enable inputs on a port.  
FullFlex36 family  
36-Mbit: 1 M × 36 (CYD36S36V18)  
18-Mbit: 512 K × 36 (CYD18S36V18)  
9-Mbit: 256 K × 36 (CYD09S36V18)  
2-Mbit: 64 K × 36 (CYD02S36V18)  
Each port contains an optional burst counter on the input address  
register. After externally loading the counter with the initial  
address, the counter increments the address internally.  
FullFlex18 family  
36-Mbit: 2 M × 18 (CYD36S18V18)  
18-Mbit: 1 M × 18 (CYD18S18V18)  
9-Mbit: 512 K × 18 (CYD09S18V18)  
Additional device features include a mask register and a mirror  
register to control counter increments and wrap around. The  
counter interrupt (CNTINT) flags notify the host that the counter  
reaches maximum count value on the next clock cycle. The host  
reads the burst counter internal address, mask register address,  
and busy address on the address lines. The host also loads the  
counter with the address stored in the mirror register by using the  
retransmit functionality. Mailbox interrupt flags are used for  
message passing, and JTAG boundary scan and asynchronous  
Master Reset (MRST) are also available. The Logic Block  
Diagram on page 2 shows these features.  
Built in deterministic access control to manage address  
collisions  
Deterministic flag output upon collision detection  
Collision detection on back-to-back clock cycles  
First busy address readback  
Advanced features for improved high speed data transfer and  
flexibility  
Variable impedance matching (VIM)  
Echo clocks  
Selectable LVTTL (3.3 V), Extended HSTL (1.4 V to 1.9 V),  
1.8 V LVCMOS, or 2.5 V LVCMOS IO on each port  
Burst counters for sequential memory access  
Mailbox with interrupt flags for message passing  
Dual chip enables for easy depth expansion  
The FullFlex72 is offered in a 484-ball plastic BGA package. The  
FullFlex36 and FullFlex18 are available in 256-ball fine pitch  
BGA package except the 36-Mbit devices which are offered in  
484-ball plastic BGA package.  
Cypress Semiconductor Corporation  
Document Number: 38-06082 Rev. *K  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised May 31, 2011  
[+] Feedback  
FullFlex  
Logic Block Diagram  
The Logic Block Diagram for FullFlex72, FullFlex36, and FullFlex18 family follows: [1, 2, 3]  
FTSEL  
L
FTSEL  
CQEN  
R
CQEN  
L
R
CONFIG Block  
CONFIG Block  
PORTSTD[1:0]  
PORTSTD[1:0]  
L
R
DQ [71:0]  
R
DQ[71:0]  
L
BE [7:0]  
BE [7:0]  
R
L
CE  
CE1  
OE  
0
CE  
0
L
R
R
IO  
Control  
IO  
Control  
CE1  
OE  
L
R
L
R/  
W
R/  
W
L
R
CQ1  
L
L
CQ1  
CQ1  
CQ0  
R
CQ1  
CQ0  
R
R
L
CQ0  
CQ0  
L
R
Dual Port Array  
BUSY  
Collision Detection Logic  
BUSY  
L
R
A [20:0]  
A [20:0]  
L
R
CNT/MSK  
CNT/MSK  
L
R
ADS  
ADS  
L
R
CNTEN  
CNTEN  
L
R
Address &  
Counter Logic  
Address &  
Counter Logic  
CNTRST  
CNTRST  
L
R
RET  
RET  
R
L
CNTINT  
L
CNTINT  
R
C
C
L
R
WRP  
L
WRP  
R
TRST  
TMS  
TDI  
Mailboxes  
INT  
INT  
R
L
JTAG  
TDO  
TCK  
ZQ0  
ZQ0  
ZQ1  
R
L
ZQ1  
R
L
RESET  
LOGIC  
MRST  
READY  
READY  
L
R
LowSPD  
LowSPD  
R
L
Notes  
1. The CYD36S18V18 device has 21 address bits. The CYD36S36V18 and CYD18S18V18 devices have 20 address bits. The CYD36S72V18, CYD18S36V18, and  
CYD09S18V18 devices have 19 address bits. The CYD18S72V18 and CYD09S36V18 devices have 18 address bits. The CYD09S72V18 device has 17 address bits.  
The CYD02S36V18 has 16 address bits.  
2. The FullFlex72 family of devices has 72 data lines. The FullFlex36 family of devices has 36 data lines. The FullFlex18 family of devices has 18 data lines.  
3. The FullFlex72 family of devices has eight byte enables. The FullFlex36 family of devices has four byte enables. The FullFlex18 family of devices has two byte enables.  
Document Number: 38-06082 Rev. *K  
Page 2 of 52  
[+] Feedback  
FullFlex  
Contents  
Selection Guide ................................................................9  
Pin Definitions ..................................................................9  
Selectable IO Standard .............................................11  
Clocking .....................................................................11  
Selectable Pipelined or Flow through Mode ..............11  
DLL ............................................................................11  
Echo Clocking ...........................................................11  
Deterministic Access Control ....................................11  
Variable Impedance Matching .......................................12  
Address Counter and Mask Register Operations ......13  
Counter Load Operation ............................................13  
Mask Load Operation ................................................13  
Counter Readback Operation ....................................13  
Mask Readback Operation ........................................13  
Counter Reset Operation ..........................................13  
Mask Reset Operation ...............................................13  
Increment Operation ..................................................15  
Hold Operation ..........................................................15  
Retransmit .................................................................15  
Counter Interrupt .......................................................15  
Counting by Two .......................................................15  
Counting by Four .......................................................15  
Mailbox Interrupts ......................................................15  
Master Reset .............................................................18  
IEEE 1149.1 Serial Boundary Scan (JTAG) ..................18  
Maximum Ratings ...........................................................19  
Operating Range .............................................................19  
Power Supply Requirements .........................................19  
Electrical Characteristics ...............................................19  
Electrical Characteristics ...............................................21  
Electrical Characteristics ...............................................24  
AC Test Load and Waveforms .......................................25  
Switching Characteristics ..............................................26  
Switching Waveforms ....................................................29  
Ordering Information ......................................................43  
512 K × 72 (36-Mbit) 1.8 V/1.5 V Synchronous  
CYD36S72V18 Dual Port SRAM ......................................43  
256 K × 72 (18-Mbit) 1.8 V/1.5 V Synchronous  
CYD18S72V18 Dual Port SRAM ......................................43  
128 K × 72 (9-Mbit) 1.8 V/1.5 V Synchronous  
CYD09S72V18 Dual Port SRAM ......................................43  
1024 K × 36 (36-Mbit) 1.8 V/1.5 V Synchronous  
CYD36S36V18 Dual Port SRAM ......................................43  
512 K × 36 (18-Mbit) 1.8 V/1.5 V Synchronous  
CYD18S36V18 Dual Port SRAM ......................................43  
256 K × 36 (9-Mbit) 1.8 V/1.5 V Synchronous  
CYD09S36V18 Dual Port SRAM ......................................44  
64 K × 36 (2-Mbit) 1.8 V or 1.5 V Synchronous  
CYD02S36V18 Dual Port SRAM ......................................44  
2048 K × 18 (36-Mbit) 1.8 V/1.5 V Synchronous  
CYD36S18V18 Dual Port SRAM ......................................45  
1024 K × 18 (18-Mbit) 1.8 V/1.5 V Synchronous  
CYD18S18V18 Dual Port SRAM ......................................45  
512 K × 18 (9-Mbit) 1.8 V/1.5 V Synchronous  
CYD09S18V18 Dual Port SRAM ......................................45  
Ordering Code Definitions .........................................45  
Package Diagrams ..........................................................46  
Acronyms ........................................................................48  
Document Conventions .................................................48  
Units of Measure .......................................................48  
Document History Page .................................................49  
Sales, Solutions, and Legal Information ......................52  
Worldwide Sales and Design Support .......................52  
Products ....................................................................52  
PSoC Solutions .........................................................52  
Document Number: 38-06082 Rev. *K  
Page 3 of 52  
[+] Feedback  
FullFlex  
Figure 1. FullFlex72 SDR 484-ball BGA Pinout (Top View)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
DNU DQ61L DQ59L DQ57L DQ54L DQ51L DQ48L DQ45L DQ42L  
DQ63L DQ62L DQ60L DQ58L DQ55L DQ52L DQ49L DQ46L DQ43L  
DQ39L DQ36L DQ36R DQ39R  
DQ40L DQ37L DQ37R DQ40R  
DQ41L DQ38L DQ38R DQ41R  
DQ42R DQ45R DQ48R DQ51R DQ54R DQ57R DQ59R DQ61R DNU  
DQ43R DQ46R DQ49R DQ52R DQ55R DQ58R DQ60R DQ62R DQ63R  
A
B
C
D
E
DQ65L DQ64L  
DQ67L DQ66L  
VSS  
VSS  
VSS  
DQ56L DQ53L DQ50L DQ47L DQ44L  
LOWSPDL  
DQ44R DQ47R DQ50R DQ53R DQ56R VSS  
VSS  
VSS  
DQ64R DQ65R  
DQ66R DQ67R  
[4]  
PORTSTD0L  
PORTSTD1L  
ZQ0L  
VSS  
VSS  
CQ1L  
CQ1L  
VSS  
BUSYL CNTINTL  
VTTL  
DNU  
CQ1R  
CQ1R  
VSS  
VSS  
VSS  
DQ69L DQ68L VDDIOL  
DQ71L DQ70L CE1L  
VSS  
VSS VDDIOL VDDIOL VDDIOL VDDIOL VDDIOL VTTL VTTL  
VDDIOR VDDIOR VDDIOR VDDIOR DNU  
VDDIOR DQ68R DQ69R  
VCORE  
CE0L VDDIOL VDDIOL VDDIOL VDDIOL VDDIOL VCORE  
VCORE VCORE VDDIOR VDDIOR VDDIOR VDDIOR VDDIOR CE0R  
CE1R  
RETR  
WRPR  
DQ70R DQ71R  
F
A0L  
A2L  
A4L  
A6L  
A8L  
A1L  
A3L  
RETL  
BE4L VDDIOL VDDIOL VREFL  
BE5L VDDIOL VDDIOL VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCORE  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VREFR VDDIOR VDDIOR BE4R  
VSS VDDIOR VDDIOR BE5R  
A1R  
A3R  
A0R  
A2R  
G
H
J
WRPL  
A5L READYL BE6L VDDIOL VDDIOL VSS  
[4, 5]  
VSS VDDIOR VDDIOR BE6R READYR A5R  
[4, 5]  
A4R  
A7L ZQ1L  
BE7L  
VTTL VCORE  
VTTL VCORE  
VTTL VCORE  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCORE VDDIOR BE7R ZQ1R  
A7R  
A6R  
K
L
A9L  
CL  
VSS  
OEL  
VCORE VTTL  
VCORE VTTL  
VCORE VTTL  
OER  
BE3R  
BE2R  
CR  
VSS  
A9R  
A8R  
A10L A11L  
A12L A13L  
A14L A15L  
BE3L  
A11R  
A13R  
A15R  
A10R  
A12R  
A14R  
M
N
P
ADSL  
BE2L VDDIOL VCORE  
ADSR  
CNT/MSKR  
CNT/MSKL  
BE1L VDDIOL VDDIOL VSS  
VSS VDDIOR VDDIOR BE1R  
[8]  
[7]  
[7]  
[8]  
A16L A17L  
CNTENL BE0L VDDIOL VDDIOL VSS  
VSS VDDIOR VDDIOR BE0R CNTENR A17R  
A16R  
R
T
[6]  
[6]  
CNTRSTR  
A18L  
DNU CNTRSTL INTL VDDIOL VDDIOL VREFL  
VREFR VDDIOR VDDIOR INTR  
DNU A18R  
DQ35L DQ34L R/WL  
DQ33L DQ32L FTSELL  
CQENL VDDIOL VDDIOL VDDIOL VDDIOL VDDIOL VCORE  
VCORE VCORE VDDIOR VDDIOR VDDIOR VDDIOR VDDIOR CQENR R/WR  
DQ34R DQ35R  
U
V
VDDIOL  
MRST  
VSS  
VDDIOR  
TDI  
DNU VDDIOL VDDIOL VDDIOL VDDIOL  
VTTL  
CNTINTR  
DQ5L  
VTTL VTTL VDDIOR VDDIOR VDDIOR VDDIOR VDDIOR TRST  
FTSELR DQ32R DQ33R  
[4]  
PORTSTD1R  
PORTSTD0R  
BUSYR  
LOWSPDR  
DQ31L DQ30L  
DQ29L DQ28L  
VSS  
VSS  
VSS  
CQ0L  
CQ0L  
DNU  
ZQ0R  
VSS  
CQ0R  
CQ0R  
VSS  
TDO  
TCK  
DQ30R DQ31R  
DQ28R DQ29R  
W
Y
DQ20L DQ17L DQ14L DQ11L  
DQ8L  
DQ7L  
DQ6L  
DQ2L DQ2R  
DQ1L DQ1R  
DQ0L DQ0R  
DQ5R  
DQ4R  
DQ3R  
DQ8R DQ11R DQ14R DQ17R DQ20R TMS  
DQ27L DQ26L DQ24L DQ22L DQ19L DQ16L DQ13L DQ10L  
DNU DQ25L DQ23L DQ21L DQ18L DQ15L DQ12L DQ9L  
DQ4L  
DQ7R  
DQ10R DQ13R DQ16R DQ19R DQ22R DQ24R DQ26R DQ27R  
DQ9R DQ12R DQ15R DQ18R DQ21R DQ23R DQ25R DNU  
AA  
AB  
DQ3L  
DQ6R  
Notes  
4. Leave this ball unconnected to disable VIM.  
5. This ball is applicable only for 36-Mbit and DNU for 18-Mbit and lower densities.  
6. Leave this Ball unconnected for CYD18S72V18 and CYD09S72V18.  
7. Leave this Ball unconnected for CYD09S72V18.  
8. Leave this Ball unconnected for CYD04S72V18.  
Document Number: 38-06082 Rev. *K  
Page 4 of 52  
[+] Feedback  
FullFlex  
Figure 2. FullFlex36 SDR 484-ball BGA Pinout (Top View)[9]  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21 22  
DNU DNU  
DNU DNU  
DNU DNU  
DNU DNU  
DNU DNU  
DNU DNU  
DNU DNU  
DNU DNU  
DNU  
DNU  
VSS  
VSS  
DNU  
DNU  
VSS  
VSS  
VSS  
DNU  
DNU  
DNU  
VSS  
DQ33L DQ30L DQ27L DQ24L  
DQ34L DQ31L DQ28L DQ25L  
DQ35L DQ32L DQ29L DQ26L  
DQ21L DQ18L DQ18R DQ21R  
DQ22L DQ19L DQ19R DQ22R  
DQ23L DQ20L DQ20R DQ23R  
DQ24R DQ27R DQ30R DQ33R  
DQ25R DQ28R DQ31R DQ34R  
DNU  
DNU  
DNU  
VSS  
DNU  
DNU  
VSS  
VSS  
VSS  
DNU  
DNU  
VSS  
VSS  
A
B
C
D
E
DQ26R DQ29R DQ32R DQ35R  
[10]  
PORTSTD0L  
PORTSTD1L  
LOWSPDL  
CQ1L  
CQ1L  
VSS  
ZQ0L  
BUSYL CNTINTL  
VTTL VTTL  
DNU  
CQ1R  
CQ1R  
DNU DNU VDDIOL  
DNU DNU CE1L  
VSS VDDIOL VDDIOR VDDIOR VDDIOR VDDIOR VTTL  
VDDIOL VDDIOL VDDIOL VDDIOL DNU  
VDDIOR DNU DNU  
CE1R DNU DNU  
CE0L VDDIOL VDDIOL VDDIOR VDDIOR VDDIOR VCORE VCORE VCORE VCORE VDDIOL VDDIOL VDDIOL VDDIOR VDDIOR CE0R  
F
A0L A1L  
RETL  
BE2L VDDIOL VDDIOL VREFL  
BE3L VDDIOL VDDIOL VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VREFR VDDIOR VDDIOR BE2R  
VSS VDDIOR VDDIOR BE3R  
RETR  
A1R A0R  
G
H
J
A2L A3L WRPL  
WRPR A3R A2R  
A4L A5L READYL DNU VDDIOL VDDIOL VSS  
[10]  
VSS VDDIOR VDDIOR DNU READYR A5R A4R  
[10]  
A6L A7L ZQ1L  
DNU  
OEL  
DNU  
VTTL VCORE  
VTTL VCORE  
VTTL VCORE  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCORE VDDIOR DNU  
ZQ1R  
A7R A6R  
A9R A8R  
A11R A10R  
K
L
A8L A9L  
CL  
VCORE VTTL  
VCORE VTTL  
VCORE VTTL  
OER  
DNU  
DNU  
CR  
A10L A11L  
VSS  
VSS  
M
N
P
A12L A13L ADSL  
DNU VDDIOL VCORE  
ADSR A13R A12R  
CNT/MSKR  
CNT/MSKL  
A14L A15L  
BE1L VDDIOL VDDIOL VSS  
VSS VDDIOR VDDIOR BE1R  
VSS VDDIOR VDDIOR BE0R CNTENR A17R A16R  
CNTRSTR  
A15R A14R  
A16L A17L CNTENL BE0L VDDIOL VDDIOL VSS  
R
T
CNTRSTL  
A18L A19L  
INTL VDDIOL VDDIOL VREFL  
VREFR VDDIOR VDDIOR INTR  
A19R A18R  
DNU DNU R/WL CQENL VDDIOL VDDIOL VDDIOR VDDIOR VDDIOR VCORE VCORE VCORE VCORE VDDIOL VDDIOL VDDIOL VDDIOR VDDIOR CQENR R/WR DNU DNU  
U
V
DNU DNU FTSELL VDDIOL DNU VDDIOR VDDIOR VDDIOR VDDIOR  
VTTL  
VTTL  
VTTL  
VDDIOL VDDIOL VDDIOL VDDIOL VDDIOR TRST VDDIOR FTSELR DNU DNU  
[10]  
PORTSTD1R  
PORTSTD0R  
LOWSPDR  
DQ8R  
DNU DNU  
DNU DNU  
DNU DNU  
DNU DNU  
VSS  
VSS  
DNU  
DNU  
MRST  
VSS  
VSS  
DNU  
DNU  
DNU  
CQ0L  
CQ0L  
DNU  
CNTINTR BUSYR ZQ0R  
VSS  
CQ0R  
CQ0R  
VSS  
DNU  
DNU  
DNU  
TDI  
TDO  
TCK  
DNU  
DNU  
DNU DNU  
DNU DNU  
DNU DNU  
DNU DNU  
W
Y
DQ17L DQ14L DQ11L  
DQ16L DQ13L DQ10L  
DQ15L DQ12L DQ9L  
DQ8L  
DQ7L  
DQ6L  
DQ5L  
DQ4L  
DQ3L  
DQ2L  
DQ1L  
DQ0L  
DQ2R  
DQ5R  
DQ4R  
DQ3R  
DQ11R DQ14R DQ17R  
DQ10R DQ13R DQ16R  
DQ9R DQ12R DQ15R  
TMS  
DNU  
DNU  
DNU  
DNU  
DQ1R  
DQ0R  
DQ7R  
AA  
AB  
DQ6R  
Notes  
9. Use this pinout only for device CYD36S36V18 of the FullFlex36 family.  
10. Leave this ball unconnected to disable VIM.  
Document Number: 38-06082 Rev. *K  
Page 5 of 52  
[+] Feedback  
FullFlex  
Figure 3. FullFlex18 SDR 484-ball BGA Pinout (Top View)[11]  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21 22  
DNU DNU  
DNU DNU  
DNU DNU  
DNU DNU  
DNU DNU  
DNU DNU  
DNU DNU  
DNU DNU  
DNU  
DNU  
VSS  
VSS  
DNU  
DNU  
VSS  
VSS  
VSS  
DNU  
DNU  
DNU  
VSS  
DNU  
DNU  
DNU  
CQ1L  
DNU  
DNU  
DNU  
CQ1L  
DNU  
DNU  
DNU  
VSS  
DQ15L  
DQ16L  
DQ17L  
LOWSPDL  
DQ12L  
DQ9L  
DQ9R  
DQ12R  
DQ15R  
DQ16R  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
CQ1R  
DNU  
DNU  
DNU  
CQ1R  
DNU  
DNU  
DNU  
VSS  
DNU  
DNU  
VSS  
VSS  
VSS  
DNU  
DNU  
VSS  
VSS  
A
B
C
D
E
DQ13L DQ10L DQ10R DQ13R  
DQ14L  
DQ11L DQ11R DQ14R  
[12]  
DQ17R  
PORTSTD0L  
PORTSTD1L  
ZQ0L  
BUSYL CNTINTL  
DNU DNU VDDIOL  
VSS VDDIOL VDDIOR VDDIOR VDDIOR VDDIOR VTTL  
VTTL  
VTTL  
VDDIOL VDDIOL VDDIOL VDDIOL DNU  
VDDIOR DNU DNU  
DNU DNU  
A0L A1L  
A2L A3L  
CE1L  
RETL  
WRPL  
CE0L VDDIOL VDDIOL VDDIOR VDDIOR VDDIOR VCORE VCORE VCORE VCORE VDDIOL VDDIOL VDDIOL VDDIOR VDDIOR CE0R  
CE1R  
RETR  
DNU DNU  
A1R A0R  
F
BE1L VDDIOL VDDIOL VREFL  
DNU VDDIOL VDDIOL VSS  
DNU VDDIOL VDDIOL VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VREFR VDDIOR VDDIOR BE1R  
VSS VDDIOR VDDIOR DNU  
G
H
J
WRPR A3R A2R  
A4L A5L READYL  
VSS VDDIOR VDDIOR DNU READYR A5R A4R  
[12]  
[12]  
A6L A7L ZQ1L  
DNU  
OEL  
DNU  
VTTL VCORE  
VTTL VCORE  
VTTL VCORE  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCORE VDDIOR DNU  
ZQ1R  
A7R A6R  
A9R A8R  
A11R A10R  
K
L
A8L A9L  
CL  
VCORE VTTL  
VCORE VTTL  
VCORE VTTL  
OER  
DNU  
DNU  
CR  
A10L A11L  
VSS  
VSS  
M
N
P
A12L A13L ADSL  
CNT/MSKL  
DNU VDDIOL VCORE  
ADSR A13R A12R  
CNT/MSKR  
A15R A14R  
A14L A15L  
DNU VDDIOL VDDIOL VSS  
VSS VDDIOR VDDIOR DNU  
VSS VDDIOR VDDIOR BE0R CNTENR A17R A16R  
A16L A17L CNTENL BE0L VDDIOL VDDIOL VSS  
A18L A19L CNTRSTL INTL VDDIOL VDDIOL VREFL  
R
T
CNTRSTR  
R/WR  
VREFR VDDIOR VDDIOR INTR  
A19R A18R  
DNU A20R  
A20L DNU  
R/WL  
CQENL VDDIOL VDDIOL VDDIOR VDDIOR VDDIOR VCORE VCORE VCORE VCORE VDDIOL VDDIOL VDDIOL VDDIOR VDDIOR CQENR  
U
V
DNU DNU FTSELL VDDIOL DNU VDDIOR VDDIOR VDDIOR VDDIOR  
VTTL  
VTTL  
VTTL  
VDDIOL VDDIOL VDDIOL VDDIOL VDDIOR TRST VDDIOR FTSELR DNU DNU  
[12]  
PORTSTD1R  
PORTSTD0R  
LOWSPDR  
DQ8R  
DNU DNU  
DNU DNU  
DNU DNU  
DNU DNU  
VSS  
VSS  
DNU  
DNU  
MRST  
VSS  
VSS  
DNU  
DNU  
DNU  
CQ0L  
DNU  
DNU  
DNU  
CQ0L  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
CNTINTR BUSYR ZQ0R  
VSS  
DNU  
DNU  
DNU  
CQ0R  
DNU  
DNU  
DNU  
CQ0R  
DNU  
DNU  
DNU  
VSS  
DNU  
DNU  
DNU  
TDI  
TDO  
TCK  
DNU  
DNU  
DNU DNU  
DNU DNU  
DNU DNU  
DNU DNU  
W
Y
DQ8L  
DQ7L  
DQ6L  
DQ5L  
DQ4L  
DQ3L  
DQ2L  
DQ1L  
DQ0L  
DQ2R  
DQ5R  
DQ4R  
DQ3R  
TMS  
DNU  
DNU  
DNU  
DNU  
DQ1R  
DQ0R  
DQ7R  
AA  
AB  
DQ6R  
Notes  
11. Use this pinout only for device CYD36S18V18 of the FullFlex18 family.  
12. Leave this ball unconnected to disable VIM.  
Document Number: 38-06082 Rev. *K  
Page 6 of 52  
[+] Feedback  
FullFlex  
Figure 4. FullFlex36 SDR 256-ball BGA (Top View)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
DQ32L  
DQ30L  
DQ28L  
DQ26L  
DQ24L  
DQ22L  
DQ20L  
DQ18L  
DQ18R  
DQ20R  
DQ22R  
DQ24R  
DQ26R  
DQ28R  
DQ30R  
DQ32R  
A
B
C
D
E
F
DQ33L  
DQ34L  
A0L  
DQ31L  
DQ35L  
A1L  
DQ29L  
RETL  
DQ27L  
INTL  
DQ25L  
CQ1L  
DQ23L  
CQ1L  
LOWSPDL  
VDDIOL  
VSS  
DQ21L  
DNU  
DQ19L  
TRST  
VTTL  
VCORE  
VSS  
DQ19R  
MRST  
VTTL  
VCORE  
VSS  
DQ21R  
DQ23R  
CQ1R  
LOWSPDR  
VDDIOR  
VSS  
DQ25R  
CQ1R  
DQ27R  
INTR  
DQ29R  
RETR  
DQ31R  
DQ35R  
A1R  
DQ33R  
DQ34R  
A0R  
[13]  
ZQ0R  
VSS  
WRPL  
CE0L  
VREFL  
CE1L  
FTSELL  
VDDIOL  
VDDIOL  
VSS  
FTSELR  
VDDIOR  
VDDIOR  
VDDIOR  
VCORE  
VCORE  
VDDIOR  
VDDIOR  
VDDIOR  
VREFR  
CE1R  
WRPR  
CE0R  
A2L  
A3L  
VDDIOL  
VSS  
VDDIOR  
VSS  
A3R  
A2R  
A4L  
A5L  
CNTINTL  
BUSYL  
CL  
BE3L  
BE3R  
CNTINTR  
BUSYR  
CR  
A5R  
A4R  
[13]  
A6L  
A7L  
BE2L  
ZQ0L  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
BE2R  
A7R  
A6R  
G
H
J
A8L  
A9L  
VTTL  
VCORE  
VCORE  
VDDIOL  
VDDIOL  
VDDIOL  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VTTL  
A9R  
A8R  
A10L  
A12L  
A14L  
A11L  
A13L  
A15L  
VSS  
PORTSTD1L  
BE1L  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
PORTSTD1R  
BE1R  
VSS  
A11R  
A13R  
A15R  
A10R  
A12R  
A14R  
OEL  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
OER  
K
L
ADSL  
BE0L  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
BE0R  
ADSR  
[16]  
[15]  
[15]  
[16]  
A16L  
A17L  
R/WL  
CQENL  
VREFL  
CNTRSTL  
DQ9L  
VDDIOL  
VDDIOL  
DNU  
VCORE  
VTTL  
TMS  
VCORE  
VTTL  
TDO  
VDDIOR  
DNU  
VDDIOR  
CQENR  
VREFR  
CNTRSTR  
DQ9R  
R/WR  
A17R  
A16R  
M
N
P
R
T
[14]  
[14]  
A18L  
DNU  
CNT/MSKL  
CNTENL  
DQ11L  
DQ10L  
PORTSTD0L READYL  
READYR PORTSTD0R  
CNT/MSKR  
CNTENR  
DQ11R  
DQ10R  
DNU  
A18R  
DQ16L  
DQ15L  
DQ14L  
DQ17L  
DQ13L  
DQ12L  
CQ0L  
DQ7L  
DQ6L  
CQ0L  
DQ5L  
DQ4L  
TCK  
TDI  
CQ0R  
DQ5R  
DQ4R  
CQ0R  
DQ7R  
DQ6R  
DQ17R  
DQ13R  
DQ12R  
DQ16R  
DQ15R  
DQ14R  
DQ3L  
DQ2L  
DQ1L  
DQ0L  
DQ1R  
DQ0R  
DQ3R  
DQ2R  
DQ8L  
DQ8R  
Notes  
13. Leave this ball unconnected to disable VIM.  
14. Leave this ball unconnected for CYD09S36V18 and CYD02S36V18.  
15. Leave this ball unconnected for CYD02S36V18.  
16. Leave this ball unconnected for CYD02S36V18.  
Document Number: 38-06082 Rev. *K  
Page 7 of 52  
[+] Feedback  
FullFlex  
Figure 5. FullFlex18 SDR 256-ball BGA (Top View)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
DNU  
DNU  
DNU  
DQ17L  
DQ16L  
DQ13L  
DQ12L  
DQ9L  
DQ9R  
DQ12R  
DQ13R  
DQ16R  
DQ17R  
DNU  
DNU  
DNU  
A
B
C
D
E
F
DNU  
DNU  
A0L  
DNU  
DNU  
A1L  
DNU  
RETL  
DNU  
INTL  
DQ15L  
CQ1L  
DQ14L  
CQ1L  
LOWSPDL  
VDDIOL  
VSS  
DQ11L  
DNU  
DQ10L  
TRST  
VTTL  
VCORE  
VSS  
DQ10R  
MRST  
VTTL  
VCORE  
VSS  
DQ11R  
DQ14R  
CQ1R  
LOWSPDR  
VDDIOR  
VSS  
DQ15R  
CQ1R  
DNU  
INTR  
DNU  
RETR  
WRPR  
CE0R  
CNTINTR  
BUSYR  
CR  
DNU  
DNU  
A1R  
DNU  
DNU  
A0R  
[17]  
ZQ0R  
VSS  
WRPL  
CE0L  
VREFL  
CE1L  
FTSELL  
VDDIOL  
VDDIOL  
VSS  
FTSELR  
VDDIOR  
VDDIOR  
VDDIOR  
VCORE  
VCORE  
VDDIOR  
VDDIOR  
VDDIOR  
VREFR  
CE1R  
A2L  
A3L  
VDDIOL  
VSS  
VDDIOR  
VSS  
A3R  
A2R  
A4L  
A5L  
CNTINTL  
BUSYL  
CL  
DNU  
DNU  
A5R  
A4R  
[17]  
A6L  
A7L  
DNU  
ZQ0L  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DNU  
A7R  
A6R  
G
H
J
A8L  
A9L  
VTTL  
VCORE  
VCORE  
VDDIOL  
VDDIOL  
VDDIOL  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VTTL  
A9R  
A8R  
A10L  
A12L  
A14L  
A16L  
A11L  
A13L  
A15L  
A17L  
VSS  
PORTSTD1L  
BE1L  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
PORTSTD1R  
BE1R  
VSS  
A11R  
A13R  
A15R  
A17R  
A10R  
A12R  
A14R  
A16R  
OEL  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
OER  
K
L
ADSL  
R/WL  
BE0L  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
BE0R  
ADSR  
R/WR  
CQENL  
VREFL  
CNTRSTL  
DNU  
VDDIOL  
VDDIOL  
DNU  
VCORE  
VTTL  
TMS  
VCORE  
VTTL  
TDO  
VDDIOR  
DNU  
VDDIOR  
CQENR  
VREFR  
CNTRSTR  
DNU  
M
N
P
R
T
[19]  
[18]  
[18]  
[19]  
A18L  
A19L  
CNT/MSKL  
CNTENL  
DNU  
PORTSTD0L READYL  
READYR PORTSTD0R  
CNT/MSKR A19R  
A18R  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
CQ0L  
DQ6L  
DQ7L  
CQ0L  
DQ5L  
DQ4L  
TCK  
TDI  
CQ0R  
DQ5R  
DQ4R  
CQ0R  
DQ6R  
DQ7R  
CNTENR  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DQ2L  
DQ3L  
DQ1L  
DQ0L  
DQ1R  
DQ0R  
DQ2R  
DQ3R  
DNU  
DQ8L  
DQ8R  
DNU  
Notes  
17. Leave this ball unconnected to disable VIM.  
18. Leave this ball unconnected for CYD09S18V18.  
19. Leave this ball unconnected for CYD04S18V18.  
Document Number: 38-06082 Rev. *K  
Page 8 of 52  
[+] Feedback  
FullFlex  
Selection Guide  
Parameter  
-200  
200  
-167  
167  
Unit  
MHz  
ns  
[21]  
fMAX  
Maximum access time (clock to data)  
Typical operating current ICC  
3.3  
4.0  
800[20]  
210[20]  
700[20]  
210[20]  
mA  
mA  
Typical standby current for ISB3 (both ports CMOS level)  
Pin Definitions  
Left Port  
A[20:0]L  
Right Port  
A[20:0]R  
Description  
Address inputs.[22]  
DQ[71:0]L  
BE[7:0]L  
DQ[71:0]R  
BE[7:0]R  
Data bus input and output.[23]  
Byte select inputs.[24] Asserting these signals enables read and write operations to the  
corresponding bytes of the memory array.  
BUSYL  
BUSYR  
Port busy output. When there is an address match and both chip enables are active for both  
ports, an external BUSY signal is asserted on the fifth clock cycles from when the collision occurs.  
CL  
CR  
Clock signal. Maximum clock input rate is fMAX  
.
CE0L  
CE1L  
CQENL  
CQ0L  
CE0R  
CE1R  
CQENR  
CQ0R  
Active LOW chip enable input.  
Active HIGH chip enable input.  
Echo clock enable input. Assert HIGH to enable echo clocking on respective port.  
Echo clock signal output for DQ[35:0] for FullFlex72 devices. Echo clock signal output for  
DQ[17:0] for FullFlex36 devices. Echo clock signal output for DQ[8:0] for FullFlex18 devices.  
CQ0L  
CQ0R  
Inverted echo clock signal output for DQ[35:0] for FullFlex72 devices. Inverted echo clock  
signal output for DQ[17:0] for FullFlex36 devices. Inverted echo clock signal output for DQ[8:0]  
for FullFlex18 devices.  
CQ1L  
CQ1L  
CQ1R  
CQ1R  
Echo clock signal output for DQ[71:36] for FullFlex72 devices. Echo clock signal output for  
DQ[35:18] for FullFlex36 devices. Echo clock signal output for DQ[17:9] for FullFlex18 devices.  
Inverted echo clock signal output for DQ[71:36] for FullFlex72 devices. Inverted echo clock  
signal output for DQ[35:18] for FullFlex36 devices. Inverted echo clock signal output for DQ[17:9]  
for FullFlex18 devices.  
ZQ[1:0]L  
ZQ[1:0]R  
VIM output impedance matching input.[25] To use, connect a calibrating resistor between ZQ  
and ground. The resistor must be five times larger than the intended line impedance driven by  
the dual port. Assert HIGH or leave DNU to disable VIM.  
OEL  
INTL  
OER  
INTR  
Output enable input. This asynchronous signal must be asserted LOW to enable the DQ data  
pins during read operations.  
Mailbox interrupt flag output. The mailbox permits communications between ports. The upper  
two memory locations are used for message passing. INTL is asserted LOW when the right port  
writes to the mailbox location of the left port, and vice versa. An interrupt to a port is deasserted  
HIGH when it reads the contents of its mailbox.  
LowSPDL  
LowSPDR  
Port low speed select input. Assert this pin LOW to disable the DLL. In flow through mode,  
this pin needs to be asserted low.  
Notes  
20. For 18 Mbit x72 commercial configuration only, refer to Electrical Characteristics on page 19 for complete information.  
21. SDR mode with two pipelined stages.  
22. The CYD36S18V18 device has 21 address bits. The CYD36S36V18 and CYD18S18V18 devices have 20 address bits. The CYD36S72V18, CYD18S36V18, and  
CYD09S18V18 devices have 19 address bits. The CYD18S72V18 and CYD09S36V18 devices have 18 address bits. The CYD09S72V18 device has 17 address  
bits. The CYD02S36V18 has 16 address bits.  
23. The FullFlex72 family of devices has 72 data lines. The FullFlex36 family of devices has 36 data lines. The FullFlex18 family of devices has 18 data lines.  
24. The FullFlex72 family of devices has eight byte enables. The FullFlex36 family of devices has four byte enables. The FullFlex18 family of devices has two byte enables.  
25. The pin ZQ[1] is applicable only for 36 Mbit devices. This pin is DNU for 18 Mbit and lower density devices.  
Document Number: 38-06082 Rev. *K  
Page 9 of 52  
[+] Feedback  
FullFlex  
Pin Definitions (continued)  
Left Port  
Right Port  
Description  
[26]  
[26]  
PORTSTD[1:0]L  
PORTSTD[1:0]R  
Port clock/Address/Control/Data/Echo clock/I/O standard select input. Assert these pins  
LOW/LOW for LVTTL, LOW/HIGH for HSTL, HIGH/LOW for 2.5 V LVCMOS, and HIGH/HIGH  
for 1.8 V LVCMOS, respectively. These pins are driven by VTTL referenced levels.  
R/WL  
R/WR  
Read/Write enable input. Assert this pin LOW to write to, or HIGH to read from the dual port  
memory array.  
READYL  
READYR  
Port DLL ready output. This signal is asserted LOW when the DLL and variable impedance  
matching circuits complete calibration. This is a wired OR capable output.  
CNT/MSKL  
ADSL  
CNT/MSKR  
ADSR  
Port counter/Mask select input. Counter control input.  
Port counter address load strobe input. Counter control input.  
Port counter enable input. Counter control input.  
Port counter reset input. Counter control input.  
CNTENL  
CNTRSTL  
CNTINTL  
CNTENR  
CNTRSTR  
CNTINTR  
Port counter interrupt output. This pin is asserted LOW one cycle before the unmasked portion  
of the counter is incremented to all “1s”.  
WRPL  
RETL  
WRPR  
RETR  
Port counter wrap input. When the burst counter reaches the maximum count, on the next  
counter increment WRP is set LOW to load the unmasked counter bits to 0. It is set HIGH to load  
the counter with the value stored in the mirror register.  
Port counter retransmit input. Assert this pin LOW to reload the initial address for repeated  
access to the same segment of memory.  
VREFL  
VREFR  
VDDIOR  
FTSELR  
Port external HSTL IO reference input. This pin is left DNU when HSTL is not used.  
Port data IO power supply.  
VDDIOL  
FTSELL  
Port flow through mode select input. Assert this pin LOW to select flow through mode. Assert  
this pin HIGH to select Pipelined mode.  
MRST  
Master reset input. MRST is an asynchronous input signal and affects both ports. Asserting  
MRST LOW performs all of the reset functions as described in the text. A MRST operation is  
required at power up. This pin is driven by a VDDIOL referenced signal.  
TMS  
TDI  
JTAG test mode select input. It controls the advance of JTAG TAP state machine. State  
machine transitions occur on the rising edge of TCK. Operation for LVTTL or 2.5 V LVCMOS.  
JTAG test data input. Data on the TDI input is shifted serially into selected registers. Operation  
for LVTTL or 2.5 V LVCMOS.  
TRST  
TCK  
JTAG reset input. Operation for LVTTL or 2.5 V LVCMOS.  
JTAG test clock input. Operation for LVTTL or 2.5 V LVCMOS.  
TDO  
JTAG test data output. TDO transitions occur on the falling edge of TCK. TDO is normally  
tri-stated except when captured data is shifted out of the JTAG TAP. Operation for LVTTL or 2.5 V  
LVCMOS.  
VSS  
Ground inputs.  
VCORE  
VTTL  
Device core power supply.  
LVTTL power supply.  
Note  
26. PORTSTD[1:0] and PORTSTD[1:0] have internal pull-down resistors.  
L
R
Document Number: 38-06082 Rev. *K  
Page 10 of 52  
[+] Feedback  
FullFlex  
LowSPD pins are used to reset the DLLs for a single port  
independent of all other circuitry. MRST is used to reset all DLLs  
on the chip. For more information on DLL lock and reset time,  
see Master Reset on page 18.  
Selectable IO Standard  
The FullFlex device families offer the option to choose one of the  
four port standards for the device. Each port independently  
selects standards from single ended HSTL class I, single ended  
LVTTL, 2.5 V LVCMOS, or 1.8 V LVCMOS. The selection of the  
standard is determined by the PORTSTD pins for each port.  
These pins must be connected to an LVTTL power suppy. This  
determines the input clock, address, control, data, and Echo  
clock standard for each port as shown in Table 1.  
Echo Clocking  
As the speed of data increases, on-board delays caused by  
parasitics make it extremely difficult to provide accurate clock  
trees. To counter this problem, the FullFlex families incorporate  
Echo Clocks. Echo Clocks are enabled on a per port basis. The  
dual port receives input clocks that are used to clock in the  
address and control signals for a read operation. The dual port  
retransmits the input clocks relative to the data output. The  
buffered clocks are provided on the CQ1/CQ1 and CQ0/CQ0  
outputs. Each port has a pair of Echo clocks. Each clock is  
associated with half the data bits. The output clock matches the  
corresponding ports IO configuration.  
Table 1. Port Standard Selection  
PORTSTD1  
VSS  
PORTSTD0  
VSS  
I/O Standard  
LVTTL  
VSS  
VTTL  
HSTL  
VTTL  
VSS  
2.5 V LVCMOS  
1.8 V LVCMOS  
VTTL  
VTTL  
To enable echo clock outputs, tie CQEN HIGH. To disable echo  
clock outputs, tie CQEN LOW.  
Clocking  
Figure 6. SDR Echo Clock Delay  
Separate clocks synchronize the operations on each port. Each  
port has one clock input C. In this mode, all the transactions on  
the address, control, and data are on the C rising edge. All  
transactions on the address, control, data input, output, and byte  
enables occur on the C rising edge.  
Input Clock  
Data Out  
Echo Clock  
Echo Clock  
Table 2. Data Pin Assignment  
BE Pin Name  
BE[7]  
Data Pin Name  
DQ[71:63]  
DQ[62:54]  
DQ[53:45]  
DQ[44:36]  
DQ[35:27]  
DQ[26:18]  
DQ[17:9]  
Deterministic Access Control  
BE[6]  
Deterministic Access Control is provided for ease of design. The  
circuitry detects when both ports access the same location and  
provides an external BUSY flag to the port on which data is  
corrupted. The collision detection logic saves the address in  
conflict (Busy Address) to a readable register. In the case of  
multiple collisions, the first busy address is written to the busy  
address register.  
BE[5]  
BE[4]  
BE[3]  
BE[2]  
BE[1]  
If both ports access the same location at the same time and only  
one port is doing a write, if tCCS is met, then the data written to  
and read from the address is valid data. For example, if the right  
port is reading and the left port is writing and the left ports clock  
meets tCCS, then the data read from the address by the right port  
is the old data. In the same case, if the right ports clock meets  
BE[0]  
DQ[8:0]  
Selectable Pipelined or Flow through Mode  
To meet data rate and throughput requirements, the FullFlex  
families offer selectable pipelined or flow through mode. Echo  
clocks are not supported in flow through mode and the DLL must  
be disabled.  
t
CCS, then the data read out of the address from the right port is  
the new data. In the above case, if tCCS is violated by the either  
ports clock with respect to the other port and the right port gets  
the external BUSY flag, the data from the right port is corrupted.  
Table 3 on page 12 shows the tCCS timing that must be met to  
guarantee the data.  
Flow through mode is selected by the FTSEL pin. Strapping this  
pin HIGH selects pipelined mode. Strapping this pin LOW selects  
flow through mode.  
Table 4 on page 12 shows that, in the case of the left port writing  
and the right port reading, when an external BUSY flag is  
asserted on the right port, the data read out of the device is not  
guaranteed.  
DLL  
The FullFlex familes of devices have an on-chip DLL. Enabling  
the DLL reduces the clock to data valid (tCD) time enabling more  
setup time for the receiving device. In flow through mode, the  
DLL must be disabled. This is selectable by strapping LowSPD  
low.  
The value in the busy address register is read back to the  
address lines. The required input control signals for this function  
are shown in Table 7 on page 14. The value in the busy address  
register is read out to the address lines tCA after the same  
amount of latency as a data read operation. After an initial  
address match, the BUSY flag is asserted and the address under  
contention is saved in the busy address register. All the following  
Whenever the operating frequency is altered beyond the Clock  
Input Cycle to Cycle Jitter specification, reset the DLL, followed  
by 1024 clocks before any valid operation.  
Document Number: 38-06082 Rev. *K  
Page 11 of 52  
[+] Feedback  
FullFlex  
address matches enable to generate the BUSY flag. However,  
none of the addresses are saved into the busy address register.  
When a busy readback is performed, the address of the first  
match that happens at least two clocks cycles after the busy  
readback is saved into the busy address register.  
Table 3. tCCS Timing for All Operating Modes  
Port A—Early Arriving Port  
Port B—Late Arriving Port  
tCCS  
Unit  
Mode  
Active Edge  
Mode  
Active Edge  
C Rise to Opposite C Rise Setup Time for Non Corrupt Data  
SDR  
C
SDR  
C
tCYC(min) – 0.5  
ns  
Table 4. Deterministic Access Control Logic  
Left Port  
Read  
Right Port  
Read  
Left Clock  
Right Clock  
BUSYL  
BUSYR  
Description  
No collision  
X
X
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
L
Write  
Read  
> tCCS  
0
0
> tCCS  
0
Read OLD data  
Read NEW data  
Read OLD data  
< tCCS  
Data not guaranteed  
Read NEW data  
Data Not guaranteed  
Read NEW data  
Read OLD data  
0
< tCCS  
H
L
Read  
Write  
Write  
> tCCS  
0
0
> tCCS  
0
H
H
H
H
H
H
L
< tCCS  
Read NEW data  
Data Not guaranteed  
Read OLD data  
0
< tCCS  
H
L
Data not guaranteed  
Array data corrupted  
Write  
0
0
> –tCCS & < tCCS  
L
> tCCS  
0
L
H
L
Array stores right port data  
Array stores left port data  
> tCCS  
H
Table 5. Variable Impedance Matching Parameters  
Variable Impedance Matching  
Parameter  
RQ value  
Min  
100  
20  
Max  
275  
55  
Unit  
Tolerance  
Each port contains a variable impedance matching circuit to set  
the impedance of the IO driver to match the impedance of the  
on-board traces. The impedance is set for all outputs except  
JTAG and is done by port. To take advantage of the VIM feature,  
connect a calibrating resistor (RQ) that is five times the value of  
the intended line impedance from the ZQ[1:0][27] pin to VSS. The  
output impedance is then adjusted to account for drifts in supply  
voltage and temperature every 1024 clock cycles. If a port’s clock  
is suspended, the VIM circuit retains its last setting until the clock  
is restarted. On restart, it then resumes periodic adjustment. In  
the case of a significant change in device temperature or supply  
voltage, recalibration happens every 1024 clock cycles. A master  
reset initializes the VIM circuitry. Table 5 shows the VIM  
parameters and Table 6 describes the VIM operation modes.  
±2%  
±15%  
Output impedance  
Reset time  
1024 Cycles  
1024 Cycles  
Update time  
Table 6. Variable Impedance Matching Operation  
RQ Connection Output Configuration  
100 –275 to VSS Output driver impedance = RQ/5 ± 15%  
at Vout = VDDIO/2  
ZQto VDDIO  
VIM disabled. Rout < 20 at Vout =  
VDDIO/2  
To disable VIM, connect the ZQ pin to VDDIO of the relative  
supply for the IOs before a Master Reset.  
Note  
27. The pin ZQ[1] is applicable only for 36 Mbit devices. This pin is DNU for 18 Mbit and lower density devices.  
Document Number: 38-06082 Rev. *K  
Page 12 of 52  
[+] Feedback  
FullFlex  
Address Counter and Mask Register Operations [28]  
Counter Load Operation [28]  
Each port of the FullFlex family contains a programmable burst  
address counter. The burst counter contains four registers: a  
counter register, a mask register, a mirror register, and a busy  
address register.  
For both non-burst and burst read or write accesses, the external  
address is loaded through counter load operation as shown in  
Table 7 on page 14. The address counter and mirror registers are  
loaded with the address value presented on the address lines.  
This value ranges from 0 to 1FFFFF.  
The counter register contains the address used to access the  
RAM array. It is changed only by the master reset (MRST),  
counter reset, counter load, retransmit, and counter increment  
operations.  
Mask Load Operation [28]  
The mask register is loaded with the address value presented on  
the address bus. This value ranges from 0 to 1FFFFF though not  
all values permit correct increment operations. Permitted values  
are in the form of 2n–1, 2n–2, or 2n–4. The counter register is only  
segmented up to three regions. From the most significant bit to  
the least significant bit, permitted values have zero or more 0s,  
one or more 1s, and the least significant two bits are 11, 10, or  
00. Thus 1FFFFE, 07FFFF, and 003FFC are permitted values  
but 02FFFF, 003FFA, and 07FFE4 are not.  
The mask register value affects the counter increment and  
counter reset operations by preventing the corresponding bits of  
the counter register from changing. It also affects the counter  
interrupt output (CNTINT). The mask register is only changed by  
mask reset, mask load, and MRST. The mask load operation  
loads the value of the address bus into the mask register. The  
mask register defines the counting range of the counter register.  
The mask register is divided into two or three consecutive  
regions. Zero or more 0s define the masked region and one or  
more 1s define the unmasked portion of the counter register. The  
counter register may be divided up to three regions. The region  
containing the least significant bits must be no more than two 0s.  
Bits one and zero may be 10 respectively, masking the least  
significant counter bit and causing the counter to increment by  
two instead of one. If bits one and zero are 00, the two least  
significant bits are masked and the counter increments by four  
instead of one. For example, in the case of a 256 K × 72  
configuration, a mask register value of 003FC divides the mask  
register into three regions. With bit 0 being the least significant  
bit and bit 17 being the most significant bit, the two least  
significant bits are masked, the next eight bits are unmasked,  
and the remaining bits are masked.  
Counter Readback Operation  
The internal value of the counter register is read out on the  
address lines. The address is valid tCA after the selected number  
of latency cycles configured by FTSEL. The data bus (DQ) is  
tri-stated on the cycle that the address is presented on the  
address lines. Figure 7 on page 16 shows a block diagram of this  
logic.  
Mask Readback Operation  
The internal value of the mask register is read out on the address  
lines. The address is valid tCA after the selected number of  
latency cycles configured by FTSEL. The data bus (DQ) is  
tri-stated on the cycle that the address is presented on the  
address lines. Figure 7 on page 16 shows a block diagram of the  
operation.  
The mirror register reloads a counter register on retransmit  
operations (see Retransmit on page 15) and wrap functions (see  
Counter Interrupt on page 15 below). The last value loaded into  
the counter register is stored in the mirror register. The mirror  
register is only changed by master reset (MRST), counter reset,  
and counter load.  
Counter Reset Operation  
All unmasked bits of the counter and mirror registers are reset to  
‘0’. All masked bits remain unchanged. A mask reset followed by  
a counter reset resets the counter and mirror registers to 00000.  
Table 7 on page 14 summarizes the operations of these registers  
and the required input control signals. All signals except MRST  
are synchronized to the ports clock.  
Mask Reset Operation  
The mask register is reset to all 1s, that unmasks every bit of the  
burst counter.  
Note  
28. The CYD36S18V18 device has 21 address bits. The CYD36S36V18 and CYD18S18V18 devices have 20 address bits. The CYD36S72V18, CYD18S36V18, and  
CYD09S18V18 devices have 19 address bits. The CYD18S72V18 and CYD09S36V18 devices have 18 address bits. The CYD09S72V18 device has 17 address bits.  
The CYD02S36V18 has 16 address bits.  
Document Number: 38-06082 Rev. *K  
Page 13 of 52  
[+] Feedback  
FullFlex  
Table 7. Burst Counter and Mask Register Control Operations  
The burst counter and mask register control operation for any port follows. [29, 30]  
C
MRST CNTRST CNT/MSK CNTEN ADS RET  
Operation  
Master reset  
Description  
X
L
X
X
X
X
X
Reset address counter to all 0s, mask  
register to all 1s, and busy address to all 0s.  
H
L
H
X
X
X
Counter reset  
Mask reset  
Reset counter and mirror unmasked portion  
to all 0s.  
H
H
L
L
X
L
X
L
X
X
Reset mask register to all 1s.  
H
H
Counter  
load  
for Load burst counter and mirror with external  
burst/external address address value presented on address lines.  
load for non-burst  
H
H
L
L
L
X
Mask load  
Load mask register with value presented on  
the address lines.  
H
H
H
H
H
H
H
H
H
L
L
H
H
H
L
H
H
Retransmit  
Load counter with value in the mirror register.  
Internally increment address counter value.  
Counter increment  
Counter hold  
H
Constantly hold the address value for  
multiple clock cycles.  
H
H
H
H
H
H
H
L
L
H
H
H
L
L
H
H
L
Counter readback  
Mask readback  
Read out counter internal value on address  
lines.  
Read out mask register value on address  
lines.  
H
Busy  
address Read out first busy address after last busy  
address readback.  
readback  
H
H
H
H
H
H
H
H
H
H
L
L
L
H
H
H
H
H
L
X
L
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
L
H
L
H
L
H
H
H
L
Notes  
29. “X” = Don’t Care, “H” = HIGH, “L” = LOW.  
30. Counter operation and mask register operation is independent of chip enables.  
Document Number: 38-06082 Rev. *K  
Page 14 of 52  
[+] Feedback  
FullFlex  
Increment Operation[31]  
mirror register stores the address counter value last loaded.  
While RET is asserted low, the counter continues to wrap back  
to the value in the mirror register independent of the state of  
WRP.  
After the address counter is initially loaded with an external  
address, the counter can internally increment the address value  
and address the entire memory array. Only the unmasked bits of  
the counter register are incremented. For a counter bit to  
change, the corresponding bit in the mask register must be 1. If  
the two least significant bits of the mask register are 11, the burst  
counter increments by one. If the two least significant bits are 10,  
the burst counter increments by two, and if they are 00, the burst  
counter increments by four. If all unmasked counter bits are  
incremented to 1 and WRP is deasserted, the next increment l  
wraps the counter back to the initially loaded value. The cycle  
before the increment that results in all unmasked counter bits to  
become 1s, a counter interrupt flag (CNTINT) is asserted if the  
counter is incremented again. This increment causes the counter  
to reach its maximum value and the next increment returns the  
counter register to its initial value that was stored in the mirror  
register if WRP is deasserted. If WRP is asserted, the unmasked  
portion of the counter is filled with 0 instead. The example shown  
Counter Interrupt  
The counter interrupt (CNTINT) is asserted LOW one clock cycle  
before an increment operation that results in the unmasked  
portion of the counter register being all 1s. It is deasserted by  
counter reset, counter load, counter increment, mask reset,  
mask load, and MRST.  
Counting by Two  
When the two least significant bits of the mask register are 10,  
the counter increments by two.  
Counting by Four  
When the two least significant bits of the mask register are 00,  
the counter increments by four.  
in Figure  
8 on page 17 shows an example of the  
CYDD36S18V18 device with the mask register loaded with a  
mask value of 00007F unmasking the seven least significant bits.  
Setting the mask register to this value enables the counter to  
access the entire memory space. The address counter is then  
loaded with an initial value of 000005 assuming WRP is  
deasserted. The masked bits, the seventh address through the  
twenty-first address, do not increment in an increment operation.  
The counter address starts at address 000005 and increments  
its internal address value until it reaches the mask register value  
of 00007F. The counter wraps around the memory block to  
location 000005 at the next count. CNTINT is issued when the  
counter reaches the maximum –1 count.  
Mailbox Interrupts  
Use the upper two memory locations for message passing and  
permit communications between ports. Table 8 on page 17  
shows the interrupt operation for both ports. The highest memory  
location is the mailbox for the right port and the maximum  
address – 1 is the mailbox for the left port.  
When one port writes to the other port’s mailbox, the INT flag of  
the port that the mailbox belongs to is asserted LOW. The INT  
flag remains asserted until the mailbox location is read by the  
other port. When a port reads its mailbox, the INT flag is  
deasserted high after one cycle of latency with respect to the  
input clock of the port to which the mailbox belongs and is  
independent of OE.  
Hold Operation  
The value of all three registers is constantly maintained  
unchanged for an unlimited number of clock cycles. This  
operation is useful in applications where wait states are needed  
or when address is available a few cycles ahead of data in a  
shared bus interface.  
As shown in Table 8 on page 17, to set the INTR flag, a write  
operation by the left port to address 1FFFFF asserts INTR LOW.  
A valid read of the 1FFFFF location by the right port resets INTR  
HIGH after one cycle of latency with respect to the right port’s  
clock. You must activate at least one byte enable to set or reset  
the mailbox interrupt.  
Retransmit  
Retransmit enables repeated access to the same block of  
memory without the need to reload the initial address. An internal  
Note  
31. The CYD36S18V18 device has 21 address bits. The CYD36S36V18 and CYD18S18V18 devices have 20 address bits. The CYD36S72V18, CYD18S36V18, and  
CYD09S18V18 devices have 19 address bits. The CYD18S72V18 and CYD09S36V18 devices have 18 address bits. The CYD09S72V18 device has 17 address bits.  
The CYD02S36V18 has 16 address bits.  
Document Number: 38-06082 Rev. *K  
Page 15 of 52  
[+] Feedback  
FullFlex  
Figure 7. Counter, Mask, and Mirror Logic Block Diagram  
Figure 7 shows the counter, mask, and mirror logic block diagram. [32]  
CNT/MSK  
CNTEN  
A
Decode  
Logic  
CNTRST  
RET  
MRST  
A
C
Mask  
Register  
Counter/  
Address  
Register  
RAM  
Array  
Address  
Decode  
Load/Increment  
20  
20  
From  
Address  
Lines  
Counter  
Mirror  
To Readback  
and Address  
Decode  
1
0
1
0
From  
Mask  
Register  
Increment  
Logic  
20  
Wrap  
20  
20  
20  
From  
Mask  
Bit 0  
and 1  
From  
Counter  
+1  
+2  
+4  
Wrap  
Detect  
Wrap  
1
0
20  
1
0
To Coun-  
ter  
Note  
32. The CYD36S18V18 device has 21 address bits. The CYD36S36V18 and CYD18S18V18 devices have 20 address bits. The CYD36S72V18, CYD18S36V18, and  
CYD09S18V18 devices have 19 address bits. The CYD18S72V18 and CYD09S36V18 devices have 18 address bits. The CYD09S72V18 device has 17 address bits.  
The CYD02S36V18 has 16 address bits.  
Document Number: 38-06082 Rev. *K  
Page 16 of 52  
[+] Feedback  
FullFlex  
Figure 8. Programmable Counter-Mask Register Operation with WRP deasserted  
Figure 8 shows the programmable counter-mask operation with WRP deasserted. [36, 38]  
CNTINT  
Example:  
Load  
Counter-Mask  
Register = 00007F  
H
0
0
0s  
1
1
1
1
1
1
1
0
220 219  
Masked Address  
26 25 24 23 22 21 20  
27  
Mask  
Register  
LSB  
Unmasked Address  
Load  
Address  
Counter = 000005  
H
L
X
X
Xs  
Xs  
Xs  
0
0
0
0
1
0
1
X
X
220 219  
26 25 24 23 22 21 20  
Address  
Counter  
LSB  
27  
27  
27  
Max  
Address  
Value  
X
X
1
1
1
1
1
1
1
220 219  
26 25 24 23 22 21 20  
Max + 1  
Address  
Value  
H
X
X
0
0
0
0
1
0
1
X
220 219  
26 25 24 23 22 21 20  
Table 8. Interrupt Operation Example  
Table 8 shows the interrupt operation example. [33, 34, 35, 37, 38]  
Left Port  
Function  
Right Port  
R/WL  
CEL  
L
A0L–20L  
INTL  
X
R/WR  
CER  
X
A0R–20R  
INTR  
L
Set Right INTR Flag  
Reset Right INTR Flag  
Set Left INTL Flag  
L
X
X
H
Max Address  
X
H
L
X
X
X
X
L
Max Address  
Max Address–1  
X
H
X
X
L
L
X
Reset Left INTL Flag  
L
Max Address–1  
H
X
X
X
Notes  
33. CE is internal signal. CE = LOW if CE = LOW and CE = HIGH. For a single read operation, CE only needs to be asserted once at the rising edge of the C and is  
0
1
deasserted after that. Data is out after the following C edge and is tri-stated after the next C edge.  
34. OE is “Don’t Care” for mailbox operation.  
35. At least one of BE0, BE1, BE2, BE3, BE4, BE5, BE6, or BE7 must be LOW.  
36. The “X” in this diagram represents the counter’s upper bits.  
37. “X” = Don’t Care, “H” = HIGH, “L” = LOW.  
38. The CYD36S18V18 device has 21 address bits. The CYD36S36V18 and CYD18S18V18 devices have 20 address bits. The CYD36S72V18, CYD18S36V18, and  
CYD09S18V18 devices have 19 address bits. The CYD18S72V18 and CYD09S36V18 devices have 18 address bits. The CYD09S72V18 device has 17 address bits.  
The CYD02S36V18 has 16 address bits.  
Document Number: 38-06082 Rev. *K  
Page 17 of 52  
[+] Feedback  
FullFlex  
one output connection required by the test logic defined by the  
standard.  
Master Reset  
The FullFlex family of Dual Ports undergoes a complete reset  
when MRST is asserted. MRST must be driven by VDDIOL  
referenced levels. The MRST is asserted asynchronously to the  
clocks and must remain asserted for at least tRS. When asserted  
MRST deasserts READY, initializes the internal burst counters,  
internal mirror registers, and internal busy addresses to zero. It  
also initializes the internal mask register to all 1s. All mailbox  
interrupts (INT), busy address outputs (BUSY), and burst  
counter interrupts (CNTINT) are deasserted upon master reset.  
Additionally, do not release MRST until all power supplies  
including VREF are fully ramped and all port clocks and mode  
select inputs (LOWSPD, ZQ, CQEN, FTSEL, and PORTSTD)  
are valid and stable. This begins calibration of the DLL and VIM  
circuits. READY is asserted within 1024 clock cycles. READY is  
a wired OR capable output with a strong pull up and weak pull  
down. Up to four outputs may be connected together. For faster  
pull down of the signal, connect a 250 Ohm resistor to VSS. If  
the DLL and VIM circuits are disabled for a port, the port is  
operational within five clock cycles. However, the READY is  
asserted within 160 clock cycles.  
Table 9. JTAG IDCODE Register Definitions  
Part Number  
CYD36S72V18  
CYD36S36V18  
CYD36S18V18  
CYD18S72V18  
CYD18S36V18  
CYD18S18V18  
CYD09S72V18  
CYD09S36V18  
CYD09S18V18  
CYD02S36V18  
Configuration  
512 K × 72  
1024 K × 36  
2048 K × 18  
256 K × 72  
512 K × 36  
1024 K × 18  
128 K × 72  
256 K × 36  
512 K × 18  
64 K × 36  
Value  
0C026069h (×2)  
0C023069h  
0C024069h  
0C025069h  
0C026069h  
0C027069h  
0C028069h  
0C029069h  
0C02A069h  
0C030069h  
Table 10. Scan Registers Sizes  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
Register Name  
Instruction  
Bit Size  
The FullFlex families incorporate an IEEE 1149.1 serial  
boundary scan test access port (TAP). The TAP operates using  
JEDEC-standard 3.3 V or 2.5 V IO logic levels depending on the  
VTTL power supply. It is composed of four input connections and  
4
1
Bypass  
Identification  
Boundary Scan  
32  
n[39]  
Table 11. Instruction Identification Codes  
Instruction  
EXTEST  
Code  
0000  
1111  
1011  
0111  
Description  
Captures the input and output ring contents. Places the BSR between the TDI and TDO.  
Places the BYR between TDI and TDO.  
BYPASS  
IDCODE  
HIGHZ  
Loads the IDR with the vendor ID code and places the register between TDI and TDO.  
Places BYR between TDI and TDO. Forces all FullFlex72 and FullFlex36 output drivers to a  
High Z state.  
CLAMP  
0100  
1000  
Controls boundary to 1 or 0. Places BYR between TDI and TDO.  
SAMPLE/PRELOAD  
RESERVED  
Captures the input and output ring contents. Places BSR between TDI and TDO.  
All other Other combinations are reserved. Do not use other than the mentioned combinations.  
codes  
Note  
39. Details of the boundary scan length is found in the BSDL file for the device.  
Document Number: 38-06082 Rev. *K  
Page 18 of 52  
[+] Feedback  
FullFlex  
Maximum Ratings  
Operating Range  
Ambient  
Temperature  
Exceeding maximum ratings may impair the useful life of the  
device. User guidelines are not tested.  
Range  
VCORE  
Commercial  
0 °C to +70 °C  
1.8 V 100 mV  
1.5 V 80 mV  
Storage temperature............................... –65 °C to + 150 °C  
Ambient temperature with  
power applied .......................................... –55 °C to + 125 °C  
Industrial  
–40 °C to +85 °C  
1.8 V 100 mV  
1.5 V 80 mV  
Supply voltage to ground potential ..............–0.5 V to + 4.1 V  
DC voltage applied to  
outputs in high Z State...................... –0.5 V to VDDIO + 0.5 V  
Power Supply Requirements  
DC input voltage...............................0.5 V to VDDIO + 0.5 V  
Output current into outputs (LOW) ............................. 20 mA  
Static discharge voltage...........................................> 2200 V  
(JEDEC JESD8-6, JESD8-B)  
Min  
Typ  
Max  
3.6 V  
2.7 V  
1.9 V  
1.9 V  
3.6 V  
2.7 V  
LVTTL VDDIO  
2.5 V LVCMOS VDDIO  
HSTL VDDIO  
3.0 V  
2.3 V  
1.4 V  
1.7 V  
3.0 V  
2.3 V  
3.3 V  
2.5 V  
1.5 V  
1.8 V  
3.3 V  
2.5 V  
Latch-up current .....................................................> 200 mA  
1.8 V LVCMOS VDDIO  
3.3 V VTTL  
2.5 V VTTL  
HSTL VREF  
0.68 V 0.75 V 0.95 V  
Electrical Characteristics  
Over the Operating Range  
All Speed Bins  
Unit  
Max  
Parameter  
Description  
Configuration  
Min  
Typ  
VOH  
Output HIGH voltage  
(VDDIO = Min, IOH = –8 mA)  
LVTTL  
2.4[40]  
V
(VDDIO = Min, IOH = –4 mA)  
(VDDIO = Min, IOH = –4 mA)  
(VDDIO = Min, IOH = –6 mA)  
(VDDIO = Min, IOH = –4 mA)  
HSTL (DC)[41]  
HSTL (AC)[41]  
2.5 V LVCMOS  
1.8 V LVCMOS  
LVTTL  
VDDIO – 0.4[40]  
VDDIO – 0.5[40]  
1.7[40]  
V
V
V
V
V
VDDIO – 0.45[40]  
VOL  
Output HIGH voltage  
0.4[40]  
(VDDIO = Min, IOL = 8 mA)  
(VDDIO = Min, IOL = 4 mA)  
(VDDIO = Min, IOL = 4 mA)  
(VDDIO = Min, IOL = 6 mA)  
(VDDIO = Min, IOL = 4 mA)  
Input HIGH voltage  
HSTL(DC)[41]  
HSTL (AC)[41]  
2.5 V LVCMOS  
1.8 V LVCMOS  
LVTTL  
HSTL(DC)[41]  
2.5 V LVCMOS  
1.8 V LVCMOS  
LVTTL  
0.4[40]  
0.5[40]  
0.7[40]  
V
V
V
V
V
V
V
V
V
V
V
V
0.45[40]  
VIH  
2
VDDIO + 0.3  
VDDIO + 0.3  
VREF + 0.1  
1.7  
0.65 × VDDIO  
VIL  
Input LOW voltage  
–0.3  
–0.3  
0.8  
VREF – 0.1  
0.7  
HSTL(DC)[41]  
2.5 V LVCMOS  
1.8 V LVCMOS  
0.35 × VDDIO  
Notes  
40. These parameters are met with VIM disabled.  
41. The DC specifications are measured under steady state conditions. The AC specifications are measured while switching at speed. AC VIH/VIL in HSTL mode  
are measured with 1 V/ns input edge rates.  
Document Number: 38-06082 Rev. *K  
Page 19 of 52  
[+] Feedback  
FullFlex  
Electrical Characteristics (continued)  
Over the Operating Range  
All Speed Bins  
Unit  
Parameter  
Description  
Configuration  
Min  
Typ  
Max  
Output HIGH voltage  
(VDDIO = Min, IOH = –24 mA)  
LVTTL  
2.7[42]  
V
READY  
VOH  
(VDDIO = Min, IOH = –12 mA)  
(VDDIO = Min, IOH = –12 mA)  
(VDDIO = Min, IOH = –15 mA)  
(VDDIO = Min, IOH = –12 mA)  
HSTL(DC)[43]  
HSTL (AC)[43]  
2.5 V LVCMOS  
1.8 V LVCMOS  
LVTTL  
VDDIO – 0.4[42]  
VDDIO – 0.5[42]  
2.0[42]  
V
V
V
V
V
VDDIO – 0.45[42]  
Output HIGH voltage  
0.4[42]  
READY  
VOL  
(VDDIO = Min, IO = 0.12 mA)  
(VDDIO = Min, IOL = 0.12 mA)  
(VDDIO = Min, IOL = 0.12 mA)  
(VDDIO = Min, IOL = 0.15 mA)  
(VDDIO = Min, IOL = 0.08 mA)  
Output leakage current  
HSTL(DC)[43]  
HSTL (AC)[43]  
2.5 V LVCMOS  
1.8 V LVCMOS  
0.4[42]  
0.5[42]  
0.7[42]  
V
V
V
0.45[42]  
V
IOZ  
IIX1  
–10  
–10  
10  
A  
A  
Input leakage current except  
TDI, TMS, MRST, PORTSTD  
10  
IIX2  
IIX3  
Input leakage current TDI,  
TMS, MRST  
–300  
–10  
10  
A  
A  
Input leakage current  
PORTSTD  
300  
Notes  
42. These parameters are met with VIM disabled.  
43. The DC specifications are measured under steady state conditions. The AC specifications are measured while switching at speed. AC VIH/VIL in HSTL mode are  
measured with 1 V/ns input edge rates.  
Document Number: 38-06082 Rev. *K  
Page 20 of 52  
[+] Feedback  
FullFlex  
Electrical Characteristics  
Over the Operating Range  
-200  
-167  
Parameter  
ICC  
Description  
Configuration  
Unit  
Typ  
1440  
Max  
1800  
Typ  
1280  
1330  
1050  
1110  
1000  
1060  
700  
730  
570  
590  
540  
570  
560  
580  
470  
490  
480  
500  
Max  
Operating current  
(VCORE = Max, IOUT = 0 mA)  
outputs disabled  
512 K × 72 Commercial  
Industrial  
1620  
1730  
1350  
1470  
1290  
1410  
880  
930  
720  
780  
690  
750  
700  
740  
570  
600  
580  
610  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
1024 K × 36 Commercial  
Industrial  
1180  
1500  
2048 K × 18 Commercial  
Industrial  
1130  
1430  
256 K × 72 Commercial  
Industrial  
800  
820  
640  
670  
610  
640  
640  
660  
540  
550  
550  
570  
980  
1030  
800  
860  
770  
830  
790  
830  
640  
670  
660  
690  
512 K × 36 Commercial  
Industrial  
1024 K × 18 Commercial  
Industrial  
128 K × 72 Commercial  
Industrial  
256 K × 36 Commercial  
Industrial  
512 K × 18 Commercial  
Industrial  
64 K × 36 Commercial  
Industrial  
Document Number: 38-06082 Rev. *K  
Page 21 of 52  
[+] Feedback  
FullFlex  
Electrical Characteristics (continued)  
Over the Operating Range  
-200  
-167  
Parameter  
Description  
Standby current  
(both ports TTL Level)  
CEL and CER VIH, f = fMAX  
Configuration  
Unit  
Typ  
1000  
Max  
1250  
Typ  
920  
970  
820  
880  
810  
860  
460  
490  
410  
440  
410  
430  
360  
380  
340  
360  
350  
370  
Max  
ISB1  
512 K × 72 Commercial  
Industrial  
1160  
1260  
1050  
1160  
1030  
1140  
580  
630  
530  
580  
520  
570  
450  
490  
400  
430  
410  
440  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
1024 K × 36 Commercial  
Industrial  
910  
1140  
2048 K × 18 Commercial  
Industrial  
890  
1110  
256 K × 72 Commercial  
Industrial  
500  
530  
460  
480  
450  
470  
400  
420  
380  
390  
390  
410  
630  
680  
570  
630  
560  
610  
490  
540  
440  
470  
460  
480  
512 K × 36 Commercial  
Industrial  
1024 K × 18 Commercial  
Industrial  
128 K × 72 Commercial  
Industrial  
256 K × 36 Commercial  
Industrial  
512 K × 18 Commercial  
Industrial  
64 K × 36 Commercial  
Industrial  
Document Number: 38-06082 Rev. *K  
Page 22 of 52  
[+] Feedback  
FullFlex  
Electrical Characteristics (continued)  
Over the Operating Range  
-200  
-167  
Parameter  
Description  
Standby current  
(one port TTL or CMOS level)  
CEL | CER VIH, f = fMAX  
Configuration  
Unit  
Typ  
1300  
Max  
1570  
Typ  
1160  
1210  
980  
1030  
930  
980  
580  
610  
490  
520  
470  
490  
460  
480  
400  
430  
410  
430  
Max  
ISB2  
512 K × 72 Commercial  
Industrial  
1410  
1520  
1210  
1330  
1160  
1270  
710  
760  
610  
670  
580  
640  
560  
610  
470  
500  
480  
510  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
1024 K × 36 Commercial  
Industrial  
1090  
1330  
2048 K × 18 Commercial  
Industrial  
1040  
1270  
256 K × 72 Commercial  
Industrial  
650  
680  
550  
570  
520  
550  
520  
550  
460  
480  
460  
480  
790  
840  
670  
730  
640  
690  
630  
670  
530  
560  
530  
560  
512 K × 36 Commercial  
Industrial  
1024 K × 18 Commercial  
Industrial  
128 K × 72 Commercial  
Industrial  
256 K × 36 Commercial  
Industrial  
512 K × 18 Commercial  
Industrial  
64 K × 36 Commercial  
Industrial  
Document Number: 38-06082 Rev. *K  
Page 23 of 52  
[+] Feedback  
FullFlex  
Electrical Characteristics  
Over the Operating Range  
All Speed Bins  
Typ Max  
Parameter  
ISB3  
Description  
Configuration  
Commercial  
Unit  
Standby current  
512 K × 72  
1024 K × 36  
2048 K × 18  
256 K × 72  
512 K × 36  
1024 K × 18  
128 K × 72  
256 K × 36  
512 K × 18  
410  
460  
410  
460  
410  
460  
210  
230  
210  
230  
210  
230  
150  
170  
150  
170  
150  
170  
590  
700  
590  
700  
590  
700  
300  
350  
300  
350  
300  
350  
200  
220  
200  
220  
200  
220  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
(both ports CMOS level)  
CEL and CER VCORE – 0.2 V, f = 0  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Table 12. Capacitance  
Signals  
Packages  
CYD18S72V18  
CYD09S72V18  
CYD18S36V18  
CYD09S36V18  
CYD02S36V18  
CYD18S18V18  
CYD09S18V18  
CYD36S72V18  
CYD36S36V18  
CYD36S18V18  
OE  
12 pF  
10 pF  
10 pF  
12 pF  
18 pF  
10 pF  
20 pF  
16 pF  
16 pF  
20 pF  
30 pF  
16 pF  
BE, DQ  
All other signals  
Document Number: 38-06082 Rev. *K  
Page 24 of 52  
[+] Feedback  
FullFlex  
AC Test Load and Waveforms  
Figure 9. Output Test Load for LVTTL/CMOS  
VTH = 1.5V for LVTTL  
VTH = 50% VDDIO for 2.5V CMOS  
VTH = 50% VDDIO for 1.8V CMOS  
VREF = NC  
VREF  
Output  
50 Ohm  
50 Ohm  
Test Point  
R=250 Ohm  
VTH  
READY ZQ  
Device under  
test  
C = 10pF  
RQ=250 Ohm  
Figure 10. Output Test Load for HSTL  
VTH = 50% VDDIO  
VREF = 0.75V  
VREF  
50 Ohm  
50 Ohm  
Output  
R=250 Ohm  
Test Point  
VTH  
READY ZQ  
C= 10pF for SDR  
Device under  
test  
RQ=250 Ohm  
Figure 11. HSTL Input Waveform  
Document Number: 38-06082 Rev. *K  
Page 25 of 52  
[+] Feedback  
FullFlex  
Switching Characteristics  
Over the Operating Range  
Table 13. SDR Mode, Signals Affected by DLL  
Description  
Parameter  
DLL ON (LOWSPD=1)[46]  
-200 -167  
DLL OFF (LOWSPD=0)[46]  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
3.30[45, 48]  
4.00[45, 48]  
6.00[45, 48]  
ns  
[49]  
tCD2  
C rise to DQ valid for pipelined  
mode  
[49]  
tCCQ  
C rise to CQ rise  
1.00  
1.00  
3.30 [48]  
3.30[45, 48]  
1.00  
1.00  
4.00[48]  
4.00[45, 48]  
1.00  
1.00  
6.00[48]  
6.00[45, 48]  
ns  
ns  
[44, 49]  
tCKHZ2  
C rise to DQ output high Z in  
pipelined mode  
[44, 49]  
tCKLZ2  
C rise to DQ output low Z in  
pipelined mode  
1.00  
1.00  
1.00  
ns  
Table 14. SDR Mode  
Parameter  
-200  
-167  
Description  
Unit  
Min  
Max  
Min  
Max  
fMAX  
Maximum operating frequency for pipelined mode  
100  
200  
100  
167  
MHz  
(PIPELINED)  
fMAX (FLOW Maximum operating frequency for flow through mode  
THROUGH)  
77  
10.00  
66.7  
10.00  
MHz  
ns  
tCYC  
C clock cycle time for pipelined mode  
5.00[48]  
13.00[48]  
6.00[48]  
15.00[48]  
(PIPELINED)  
tCYC (FLOW X C clock cycle time for flow through mode  
THROUGH)  
ns  
tCKD  
tSD  
C clock duty time  
45  
55  
45  
55  
%
Data input setup time to C HSTL  
rise  
1.50[45, 48]  
1.70[45, 48]  
ns  
1.8 V LVCMOS  
2.5 V LVCMOS  
3.3 V LVTTL  
1.75[45, 48]  
1.95[45, 48]  
ns  
[47]  
tHD  
Data input hold time after C rise  
0.5  
0.5  
ns  
ns  
tSAC  
Address and control input HSTL  
1.50[45, 47, 48]  
1.70[45, 47, 48]  
setup time to C rise  
1.8 V L VCMOS  
2.5 V LVCMOS  
3.3 V LVTTL  
1.75[45, 47, 48]  
1.95[45, 47, 48]  
ns  
[47]  
tHAC  
tOE  
Address and control input hold time after C rise  
Output enable to data valid  
OE to low Z  
0.50  
4.40[45, 48]  
0.60  
5.00[45, 48]  
ns  
ns  
ns  
[44]  
tOLZ  
1.00  
1.00  
Notes  
44. Parameters specified with the load capacitance in Figure 9 on page 25 and Figure 10 on page 25.  
45. For the x18 devices, add 200 ps to this parameter in Table 14.  
46. Test conditions assume a signal transition time of 2 V/ns.  
47. Add 300 ps to this timing for 36M devices.  
48. Add 15% to this parameter if a VCORE of 1.5 V is used.  
49. This parameter assumes input clock cycle to cycle jitter of ± 0ps.  
Document Number: 38-06082 Rev. *K  
Page 26 of 52  
[+] Feedback  
FullFlex  
Table 14. SDR Mode (continued)  
-200  
-167  
Parameter  
Description  
Unit  
Min  
1.00  
Max  
Min  
1.00  
Max  
5.00[51, 52]  
11.00[51, 52] ns  
[50]  
tOHZ  
tCD1  
OE to high Z  
4.40[51, 52]  
9.00[51, 52]  
ns  
C rise to DQ valid for flow through mode  
(LowSPD = 0)  
tCA1  
tCA2  
C rise to address readback valid for flow through mode  
C rise to address readback valid for pipelined mode  
DQ output hold after C rise  
9.00[52]  
5.00[52]  
11.00[52]  
6.00[52]  
ns  
ns  
ns  
ps  
ns  
[53]  
tDC  
1.00  
1.00  
tJIT  
Clock input cycle to cycle jitter  
+/- 200  
0.70[51]  
+/- 200  
0.80[51]  
[53]  
[53]  
tCQHQV  
Echo clock (CQ) high to  
output valid  
HSTL  
1.8 V LVCMOS  
2.5 V LVCMOS  
3.3 V LVTTL  
0.80[51]  
0.90[51]  
ns  
ns  
ns  
tCQHQX  
Echo clock (CQ) high to  
output hold  
HSTL  
1.8 V LVCMOS  
–0.70  
–0.85  
–0.80  
–0.95  
2.5 V LVCMOS 3.3 V  
LVTTL  
[50]  
tCKHZ1  
C rise to DQ output high Z in flow through mode  
C rise to DQ output low Z in flow through mode  
Address output hold after C rise  
C rise to address output high Z for flow through mode  
C rise to address output high Z for pipelined mode  
C rise to address output low Z  
C rise to CNTINT low  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
0.50  
0.50  
1.00  
9.00[51, 52]  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
0.50  
0.50  
1.00  
11.00[51, 52] ns  
[50]  
tCKLZ1  
tAC  
tCKHZA1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
9.00[52]  
5.00[52]  
3.30[52]  
3.30[52]  
7.00[52]  
7.00[52]  
3.30[52]  
11.00[52]  
6.00[52]  
[50]  
[50]  
tCKHZA2  
[50]  
tCKLZA  
tSCINT  
tRCINT  
tSINT  
4.00[52]  
4.00[52]  
8.00[52]  
8.00[52]  
4.00[52]  
C rise to CNTINT high  
C rise to INT low  
tRINT  
C rise to INT high  
tBSY  
C rise to BUSY valid  
Notes  
50. Parameters specified with the load capacitance in Figure 9 on page 25 and Figure 10 on page 25.  
51. For the x18 devices, add 200 ps to this parameter in Table 14.  
52. Add 15% to this parameter if a VCORE of 1.5 V is used.  
53. This parameter assumes input clock cycle to cycle jitter of ± 0ps.  
Document Number: 38-06082 Rev. *K  
Page 27 of 52  
[+] Feedback  
FullFlex  
Table 15. Master Reset Timing  
Parameter  
-200  
-167  
Description  
Unit  
Min  
1
Max  
Min  
1
Max  
tPUP  
tRS  
Power-up time  
ms  
cycles  
cycles  
ns  
Master reset pulse width  
5
5
tRSR  
tRSF  
tRDY  
Master reset recovery time  
Master reset to outputs inactive/Hi Z  
Master reset release to port ready  
C rise to port ready  
5
5
15  
18  
[54]  
[55]  
1024  
1024  
11[56]  
cycles  
ns  
tCORDY  
9.5[56]  
Table 16. JTAG Timing  
Parameter  
-200  
-167  
Description  
Unit  
Min  
Max  
20  
Min  
Max  
20  
fJTAG  
tTCYC  
tTH  
JTAG TAP controller frequency  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCK cycle time  
50  
20  
20  
10  
10  
10  
10  
50  
20  
20  
10  
10  
10  
10  
TCK high time  
tTL  
TCK low time  
tTMSS  
tTMSH  
tTDIS  
tTDIH  
tTDOV  
tTDOX  
tJXZ  
TMS setup to TCK rise  
TMS hold to TCK rise  
TDI setup to TCK rise  
TDI hold to TCK rise  
TCK low to TDO valid  
TCK low to TDO invalid  
TCK low to TDO high Z  
TCK low to TDO active  
TCK low to TDO active  
10  
10  
0
0
15  
15  
15  
15  
15  
15  
tJZX  
tJZX  
.
Notes  
54. READY is a wired OR capable output with a weak pull-down. For a decreased falling delay, connect a 250-resistor to VSS.  
55. Add this propagation delay after t for all Master Reset Operations.  
RDY  
56. Add 15% to this parameter if a VCORE of 1.5 V is used.  
Document Number: 38-06082 Rev. *K  
Page 28 of 52  
[+] Feedback  
FullFlex  
Switching Waveforms  
Figure 12. JTAG Timing  
tTH  
tTL  
Test Clock  
TCK  
tTCYC  
tTMSS  
tTMSH  
Test Mode Select  
TMS  
tTDIS  
tTDIH  
Test Data-In  
TDI  
Test Data-Out  
TDO  
tTDOX  
tTDOV  
Figure 13. Master Reset [57]  
~
V
CORE  
t
t
RS  
PUP  
~
~
MRST  
C
t
t
RDY  
CORDY  
~
~
READY  
t
RSF  
All Address  
& Data  
t
RSR  
All Other  
Inputs  
~
Note  
57. READY is a wired OR capable output with a weak pull-down. For a decreased falling delay, connect a 250-resistor to VSS.  
Document Number: 38-06082 Rev. *K  
Page 29 of 52  
[+] Feedback  
FullFlex  
Switching Waveforms (continued)  
Figure 14. READ Cycle for Pipelined Mode  
t
CYC  
C
CE  
OE  
t
t
HAC  
SAC  
R/W  
A
A
A
A
A
A
A
n+6  
A
n
n+1  
x
n+2  
n
n+3  
n+4  
n+5  
2 Pipelined stages  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
n+4  
x-1  
n+1  
n+2  
n+3  
DQ  
t
DC  
t
CD2  
Figure 15. WRITE Cycle for Pipelined and Flow through Modes  
t
CYC  
C
CE  
R/W  
A
A
A
A
A
A
A
n+6  
A
n
n+1  
n+2  
n+3  
n+4  
n+5  
2 Pipelined stages  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
n+6  
n
n+1  
n+2  
n+3  
n+4  
n+5  
DQ  
tSD tHD  
Document Number: 38-06082 Rev. *K  
Page 30 of 52  
[+] Feedback  
FullFlex  
Switching Waveforms (continued)  
Figure 16. READ with Address Counter Advance for Pipelined Mode  
t
CYC  
C
A
A
n
Internal  
Address  
A
A
A
A
n+1  
n+2  
n+3  
n
ADS  
CNTEN  
DQ  
DQ  
DQ  
DQ  
DQ  
n+1  
x-1  
x
n
DQ  
DQ  
n+3  
n+2  
Figure 17. READ with Address Counter Advance for Flow through Mode  
tCYC  
C
tSAC tHAC  
A
An  
ADS  
CNTEN  
DQ  
tSAC tHAC  
tCD1  
DQx  
DQn  
DQn + 1  
DQn + 2  
DQn + 3  
DQn + 4  
tDC  
READ EXTERNAL ADDRESS  
READ W ITH COUNTER  
COUNTER HOLD  
READ W ITH COUNTER  
Document Number: 38-06082 Rev. *K  
Page 31 of 52  
[+] Feedback  
FullFlex  
Switching Waveforms (continued)  
Figure 18. Port-to-Port WRITE–READ for Pipelined Mode  
t
CYC  
Left Port  
C
L
A
A
n
L
R/WL  
DQ  
DQ  
L
n
Right Port  
t
CCS  
C
R
t
CYC  
A
R
A
n
R/WR  
t
t
SAC HAC  
DQ  
R
DQ  
n
t
t
DC  
CD2  
Figure 19. Chip Enable READ for Pipelined Mode  
t
CYC  
C
CE0  
CE1  
R/W  
A
t
t
SAC HAC  
A
A
A
A
A
A
A
n+6  
n
n+1  
n+2  
n+3  
n+4  
n+5  
DQ  
DQ  
DQ  
n+3  
n
t
t
DC  
t
CD2  
CKLZ2  
Document Number: 38-06082 Rev. *K  
Page 32 of 52  
[+] Feedback  
FullFlex  
Switching Waveforms (continued)  
Figure 20. OE Controlled WRITE for Pipelined Mode  
t
CYC  
C
A
A
A
A
A
A
A
A
n+3  
x+1  
x+2  
x+3  
n
n+1  
n+2  
R/W  
OE  
tOHZ  
DQ  
x+1  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
n+3  
DQ  
x-1  
x
n
n+1  
n+2  
Figure 21. OE Controlled WRITE for Flow through Mode  
t
CYC  
C
A
A
A
A
A
A
A
A
n+3  
x+1  
x+2  
x+3  
n
n+1  
n+2  
R/W  
OE  
tOHZ  
DQ  
x+2  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
n+3  
DQ  
x
x+1  
n
n+1  
n+2  
Document Number: 38-06082 Rev. *K  
Page 33 of 52  
[+] Feedback  
FullFlex  
Switching Waveforms (continued)  
Figure 22. Byte-Enable READ for Pipelined Mode  
tCYC  
C
A
A
A
A
A
n
n+1  
n+2  
n+3  
R/W  
BE7  
BE6  
BE5  
BE4  
BE3  
BE2  
BE1  
BE0  
tCKLZ2  
tCKHZ2  
DQn+1(63:71)  
DQ  
63:71  
54:62  
DQn+1(54:62)  
DQ  
DQ  
DQ  
DQn+2(45:53)  
45:53  
36:44  
DQn+2(36:44)  
DQn+1(27:35)  
DQ  
DQ  
27:35  
18:26  
DQn+2(18:26)  
DQn+3(9:17)  
DQ  
DQ  
9:17  
0:8  
DQn+3(0:8)  
Document Number: 38-06082 Rev. *K  
Page 34 of 52  
[+] Feedback  
FullFlex  
Switching Waveforms (continued)  
Figure 23. Port-to-Port WRITE-to-READ for Flow through Mode  
CL  
R/W L  
AL  
tSAC  
tHAC  
NO MATCH  
MATCH  
tSD  
tHD  
VALID  
DQL  
tCCS  
CR  
tCD1  
R/W R  
tHAC  
tSAC  
NO MATCH  
AR  
MATCH  
tCD1  
DQR  
VALID  
VALID  
tDC  
tDC  
Document Number: 38-06082 Rev. *K  
Page 35 of 52  
[+] Feedback  
FullFlex  
Switching Waveforms (continued)  
Figure 24. Busy Address Readback for Pipelined and Flow through Modes, CNT/MSK = RET = LOW[58]  
t
CYC  
~
~
C
Internal  
Address  
Amatch+2  
Amatch+3  
Amatch+4  
BUSY  
~
~
CNTEN  
ADS  
~
~
External  
Address  
Amatch  
Pipelined  
tAC  
tCA2  
External  
Address  
~
Amatch  
Flow through  
tAC  
tCA1  
Figure 25. Read Cycle for Flow through Mode  
tCYC  
C
CE0  
CE1  
tSAC  
tHAC  
BEn  
R/W  
A
tSAC  
tHAC  
An  
An + 1  
An + 2  
An + 3  
tCKHZ1  
tCD1  
tDC  
DQ  
OE  
DQn  
DQn + 1  
DQn + 2  
tDC  
tCKLZ1  
tOLZ  
tOHZ  
tOE  
Note  
58. A  
is the matching address that is reported on the address bus of the losing port. The counter operation selected for reporting the address is “Busy Address  
match  
Readback.”  
Document Number: 38-06082 Rev. *K  
Page 36 of 52  
[+] Feedback  
FullFlex  
Switching Waveforms (continued)  
Figure 26. READ-to-WRITE for Pipelined Mode (OE = VIL)[59, 60, 61]  
tCYC  
tCL  
C
A
tCH  
A
A
x
A
A
n+2  
n
n+1  
tSAC tHAC  
tSAC tHAC  
R/W  
DQ  
t
CKLZ2  
DQ  
DQ  
DQ  
x
DQ  
x-2  
x-1  
DQ  
n+2  
DQ  
n+1  
n
tDC  
tCD2  
tCKHZ2  
tSD tHD  
Figure 27. READ-to-WRITE for Pipelined Mode (OE Controlled)[62, 63]  
tCYC  
C
A
A
A
A
A
A
A
A
n+3  
x
x+1  
x+2  
n
n+1  
n+2  
tSAC tHAC  
R/W  
OE  
tOHZ  
tSD tHD  
DQ  
x
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
n+3  
DQ  
x-2  
x-1  
n
n+1  
n+2  
Notes  
59. When OE = V , the last read operation is enabled to complete before the DQ bus is tri-stated and the user is enabled to drive write data.  
IL  
60. Two dummy writes are issued to accomplish bus turnaround. The third instruction is the first valid write.  
61. Chip enable or all byte enables are held inactive during the two dummy writes to avoid data corruption.  
62. OE is deasserted and t  
enabled to elapse before the first write operation is issued.  
OHZ  
63. Any write scheduled to complete after OE is deasserted is pre-empted.  
Document Number: 38-06082 Rev. *K  
Page 37 of 52  
[+] Feedback  
FullFlex  
Switching Waveforms (continued)  
Figure 28. Read-to-Write-to-Read for Flow through Mode (OE = LOW)  
tCYC  
C
tSAC tHAC  
CE0  
CE1  
BEn  
tSAC  
tHAC  
R/W  
A
An  
An + 1  
An + 2  
An + 2  
An + 3  
An + 4  
tSD  
tHD  
DQIN  
DQn + 2  
tCD1  
tCD1  
tCD1  
tCD1  
DQn  
tDC  
DQOUT  
DQn + 1  
DQn + 3  
tCKHZ1  
tCKLZ1  
tDC  
READ  
NOP  
W RITE  
READ  
Document Number: 38-06082 Rev. *K  
Page 38 of 52  
[+] Feedback  
FullFlex  
Switching Waveforms (continued)  
Figure 29. Read-to-Write-to-Read for Flow through Mode (OE Controlled)  
tCYC  
C
tHAC  
tSAC  
CE0  
CE1  
BEn  
tHAC  
tSAC  
R/W  
A
An  
An + 1  
An + 2  
tHD  
An + 3  
An + 4  
An + 5  
tSD  
DQIN  
DQn + 2  
DQn + 3  
tOE  
tCD1  
tCD1  
tDC  
tCD1  
DQOUT  
DQn  
DQn + 4  
tDC  
tCKLZ1  
tOHZ  
OE  
READ  
W RITE  
READ  
Document Number: 38-06082 Rev. *K  
Page 39 of 52  
[+] Feedback  
FullFlex  
Switching Waveforms (continued)  
Figure 30. BUSY Timing, WRITE-WRITE Collision for Pipelined and Flow through Modes, Clock Timing Violates tCCS  
(Flag Both Ports)  
.
Port A  
C
A
R/W  
BUSY  
C
tBSY  
tBSY  
< tCCS  
Port B  
A
R/W  
tBSY  
tBSY  
BUSY  
Figure 31. BUSY Timing, WRITE-WRITE Collision for Pipelined and Flow through Modes, Clock Timing Meets tCCS  
(Flag Losing Port)  
.
Losing Port  
C
A
R/W  
tccs  
tBSY  
BUSY  
tBSY  
Winning Port  
C
A
Match  
R/W  
BUSY  
Document Number: 38-06082 Rev. *K  
Page 40 of 52  
[+] Feedback  
FullFlex  
Switching Waveforms (continued)  
Figure 32. Read with Echo Clock for Pipelined Mode (CQEN = HIGH)  
C
tSAC  
tHAC  
R/W  
An  
An+1  
An+2  
An+3  
An+4  
An+5  
An+6  
A
CQ0  
CQ0  
CQ1  
tCCQ  
CQ1  
DQ  
tCQHQX  
tCQHQV  
DQn  
DQn+1  
DQn+2  
DQn+3  
DQn+4  
DQx-1  
DQx  
Document Number: 38-06082 Rev. *K  
Page 41 of 52  
[+] Feedback  
FullFlex  
Switching Waveforms (continued)  
Figure 33. Mailbox Interrupt Output  
t
CYC  
C
L
A
MAX  
A
L
R/WL  
DQ  
L
INT  
R
t
SINT  
t
RINT  
C
R
A
MAX  
A
R
R/WR  
DQ  
MAX  
DQ  
R
Document Number: 38-06082 Rev. *K  
Page 42 of 52  
[+] Feedback  
FullFlex  
Ordering Information  
512 K  
×
72 (36-Mbit) 1.8 V/1.5 V Synchronous CYD36S72V18 Dual Port SRAM  
Package  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Package Type  
Diagram  
200 CYD36S72V18-200BGXC  
167 CYD36S72V18-167BGXI  
001-07825 484-ball Ball Grid Array 27 mm × 27 mm with 1.0 mm pitch (Pb-free) Commercial  
001-07825 484-ball Ball Grid Array 27 mm × 27 mm with 1.0 mm pitch (Pb-free) Industrial  
256 K  
× 72 (18-Mbit) 1.8 V/1.5 V Synchronous CYD18S72V18 Dual Port SRAM  
Package  
Diagram  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Package Type  
200 CYD18S72V18-200BGXI  
200 CYD18S72V18-200BGI  
167 CYD18S72V18-167BGXC  
167 CYD18S72V18-167BGC  
167 CYD18S72V18-167BGI  
51-85218 484-ball Ball Grid Array 23 mm × 23 mm with 1.0 mm pitch (Pb-free) Industrial  
51-85218 484-ball Ball Grid Array 23 mm × 23 mm with 1.0 mm pitch Industrial  
51-85218 484-ball Ball Grid Array 23 mm × 23 mm with 1.0 mm pitch (Pb-free) Commercial  
51-85218 484-ball Ball Grid Array 23 mm × 23 mm with 1.0 mm pitch  
51-85218 484-ball Ball Grid Array 23 mm × 23 mm with 1.0 mm pitch  
Commercial  
Industrial  
128 K  
× 72 (9-Mbit) 1.8 V/1.5 V Synchronous CYD09S72V18 Dual Port SRAM  
Package  
Diagram  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Package Type  
200 CYD09S72V18-200BGXI  
167 CYD09S72V18-167BBXC  
51-85218 484-ball Ball Grid Array 23 mm × 23 mm with 1.0 mm pitch (Pb-free) Industrial  
51-85218 484-ball Ball Grid Array 23 mm × 23 mm with 1.0 mm pitch (Pb-free) Commercial  
1024 K  
× 36 (36-Mbit) 1.8 V/1.5 V Synchronous CYD36S36V18 Dual Port SRAM  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
Package Type  
200 CYD36S36V18-200BGXC  
167 CYD36S36V18-167BGXC  
167 CYD36S36V18-167BGXI  
001-07825 484-ball Ball Grid Array 27 mm × 27 mm with 1.0 mm pitch (Pb-free) Commercial  
001-07825 484-ball Ball Grid Array 27 mm × 27 mm with 1.0 mm pitch (Pb-free) Commercial  
001-07825 484-ball Ball Grid Array 27 mm × 27 mm with 1.0 mm pitch (Pb-free) Industrial  
512 K  
× 36 (18-Mbit) 1.8 V/1.5 V Synchronous CYD18S36V18 Dual Port SRAM  
Package  
Diagram  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Package Type  
200 CYD18S36V18-200BBAXI  
167 CYD18S36V18-167BBAI  
51-85108 256-ball Ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (Pb-free) Industrial  
51-85108 256-ball Ball Grid Array 17 mm × 17 mm with 1.0 mm pitch  
Industrial  
Document Number: 38-06082 Rev. *K  
Page 43 of 52  
[+] Feedback  
FullFlex  
Ordering Information (continued)  
256 K  
×
36 (9-Mbit) 1.8 V/1.5 V Synchronous CYD09S36V18 Dual Port SRAM  
Package  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Package Type  
Diagram  
200 CYD09S36V18-200BBXC  
200 CYD09S36V18-200BBXI  
167 CYD09S36V18-167BBXC  
51-85108 256-ball Ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (Pb-free) Commercial  
51-85108 256-ball Ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (Pb-free) Industrial  
51-85108 256-ball Ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (Pb-free) Commercial  
64 K  
× 36 (2-Mbit) 1.8 V or 1.5 V Synchronous CYD02S36V18 Dual Port SRAM  
Package  
Diagram  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Package Type  
200 CYD02S36V18-200BBC  
51-85108 256-ball Ball Grid Array 17 mm × 17 mm with 1.0 mm pitch  
Commercial  
Document Number: 38-06082 Rev. *K  
Page 44 of 52  
[+] Feedback  
FullFlex  
Ordering Information (continued)  
2048 K  
×
18 (36-Mbit) 1.8 V/1.5 V Synchronous CYD36S18V18 Dual Port SRAM  
Package  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Package Type  
Diagram  
200 CYD36S18V18-200BGXC  
167 CYD36S18V18-167BGXC  
167 CYD36S18V18-167BGXI  
001-07825 484-ball Ball Grid Array 27 mm × 27 mm with 1.0 mm pitch (Pb-free) Commercial  
001-07825 484-ball Ball Grid Array 27 mm × 27 mm with 1.0 mm pitch (Pb-free) Commercial  
001-07825 484-ball Ball Grid Array 27 mm × 27 mm with 1.0 mm pitch (Pb-free) Industrial  
1024 K  
× 18 (18-Mbit) 1.8 V/1.5 V Synchronous CYD18S18V18 Dual Port SRAM  
Package  
Diagram  
Speed  
MHz)  
Operating  
Range  
Ordering Code  
Package Type  
200 CYD18S18V18-200BBAXI  
200 CYD18S18V18-200BBAXC  
167 CYD18S18V18-167BBAXI  
51-85108 256-ball Ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (Pb-free) Industrial  
51-85108 256-ball Ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (Pb-free) Commercial  
51-85108 256-ball Ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (Pb-free) Industrial  
512 K  
× 18 (9-Mbit) 1.8 V/1.5 V Synchronous CYD09S18V18 Dual Port SRAM  
Package  
Diagram  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Package Type  
200 CYD09S18V18-200BBXC  
200 CYD09S18V18-200BBXI  
167 CYD09S18V18-167BBXI  
51-85108 256-ball Ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (Pb-free) Commercial  
51-85108 256-ball Ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (Pb-free) Industrial  
51-85108 256-ball Ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (Pb-free) Industrial  
Ordering Code Definitions  
CY DXX SXX V18 - XXX XXXX  
X
Temperature Range: X = C or I  
C = Commercial; I = Industrial  
Package Type: (XXXX = BG or BB or BBA or BGX or BBX or BBAX)  
BG, BB, BBA = Ball Grid Array  
BGX, BBX, BBAX = Ball Grid Array (Pb-free)  
Speed Grade: XXX = 167 MHz / 200 MHz  
V18 = 1.8 V  
SXX = Data Width  
DXX = Density in Mb  
CY = Cypress  
Document Number: 38-06082 Rev. *K  
Page 45 of 52  
[+] Feedback  
FullFlex  
Package Diagrams  
Figure 34. 256-ball FPBGA (17 × 17 mm), 51-85108  
51-85108 *H  
Document Number: 38-06082 Rev. *K  
Page 46 of 52  
[+] Feedback  
FullFlex  
Package Diagrams  
Figure 35. 484-ball PBGA (23 mm × 23 mm × 2.03 mm), 51-85218  
51-85218 *A  
Document Number: 38-06082 Rev. *K  
Page 47 of 52  
[+] Feedback  
FullFlex  
Package Diagrams  
Figure 36. 484-ball PBGA (27 mm × 27 mm × 2.33 mm), 001-07825  
001-07825 *A  
Acronyms  
Document Conventions  
Units of Measure  
Acronym  
Description  
BGA  
CMOS  
DLL  
ball grid array  
Symbol  
°C  
Unit of Measure  
complementary metal oxide semiconductor  
delay lock loop  
degree Celcius  
Mega Hertz  
micro Amperes  
milli Amperes  
milli seconds  
milli Volts  
MHz  
µA  
mA  
ms  
mV  
ns  
FPBGA  
HSTL  
I/O  
fine pitch ball gird array  
high speed transceiver logic  
input/output  
SDR  
SRAM  
TCK  
single data rate  
static random access memory  
test clock  
nano seconds  
pico Farad  
Volts  
pF  
V
TDI  
test data in  
TDO  
TMS  
VIM  
test data out  
test mode select  
W
Watts  
variable impedance matching  
Document Number: 38-06082 Rev. *K  
Page 48 of 52  
[+] Feedback  
FullFlex  
Document History Page  
Document Title: FullFlex™ Synchronous SDR Dual Port SRAM  
Document Number: 38-06082  
Submission Orig. of  
REV.  
ECN NO.  
Description of Change  
Date  
Change  
**  
302411  
334036  
See ECN  
See ECN  
YDT  
New data sheet  
*A  
YDT  
Corrected typo on page 1  
Reproduced PDF file to fix formatting errors  
*B  
395800  
See ECN  
SPN  
Added statement about no echo clocks for flow through mode  
Updated electrical characteristics  
Added note 16 and 17 (1.5 V timing)  
Added note 33 (timing for x18 devices)  
Updated input edge rate (note 34)  
Updated table 5 on deterministic access control logic  
Added description of busy readback in deterministic access control section  
Changed dummy write descriptions  
Updated ZQ pins connection details  
Updated note 24, B0 to BE0  
Added power supply requirements to MRST and VC_SEL  
Added note 4 (VIM disable)  
Updated supply voltage to ground potential to 4.1 V  
Updated parameters on table 15  
Updated and added parameters to table 16  
Updated x72 pinout to SDR only pinout  
Updated 484 PBGA pin diagram  
Updated the pin definition of MRST  
Updated the pin definition of VC_SEL  
Updated READY description to include Wired OR note  
Updated master reset to include wired OR note for READY  
Updated minimum VOH value for the 1.8 V LVCMOS configuration  
Updated electrical characteristics to include IOH and IOL values  
Updated electrical characteristics to include READY  
Added IIX3  
Updated maximum input capacitance  
Added Notes 33 and 34Removed Notes 15 and 17  
Updated Pin Definitions for CQ0, CQ0, CQ1, and CQ1  
Removed -100 Speed bin from Table.1 Selection Guide  
Changed voltage name from VDDQ to VDDIO  
Changed voltage name from VDD to VCORE  
Moved the Mailbox Interrupt Timing Diagram to be the final timing diagram  
Updated the Package Type for the CYD36S18V18 parts  
Updated the Package Type for the CYD36S18V18 parts  
Updated the Package Type for the CYD18S18V18 parts  
Updated the Package Type for the CYD18S36V18 parts  
Included the Package Diagram for the 256-Ball FBGA (19 x 19 mm) BW256  
Included an OE Controlled Write for Flow through Mode Switching Waveform  
Included a Read with Echo Clock Switching Waveform  
Updated Figure 5 and Figure 6  
Updated Electrical Characteristics for READY VOH and READY V  
Updated Electrical Characteristics for VOH and VOL for the -167 and -133 speeds  
Included a Unit column for Table 5  
Removed Switching Characteristic tCA from chart  
Included tOHZ in Switching Waveform OE Controlled Write for Pipelined Mode  
Included tCKLZ2 in Waveform Read-to-Write-to-Read for Flow through Mode  
Document Number: 38-06082 Rev. *K  
Page 49 of 52  
[+] Feedback  
FullFlex  
Document History Page (continued)  
Document Title: FullFlex™ Synchronous SDR Dual Port SRAM  
Document Number: 38-06082  
Submission Orig. of  
REV.  
ECN NO.  
Description of Change  
Updated AC Test Load and Waveforms  
Date  
Change  
*C  
402238  
SEE ECN  
KGH  
Included FullFlex36 SDR 484-Ball BGA Pinout (Top View)  
Included FullFlex18 SDR 484-Ball BGA Pinout (Top View)  
Included Timing Parameter tCORDY  
*D  
458131  
SEE ECN  
YDT  
Changed ordering information with Pb-free part numbers  
Removed VC_SEL  
Added IO and core voltage adders  
Removed references to bin drop for LVTTL/2.5 V LVCMOS and 1.5 V core modes  
Updated Cin and Cout  
Updated ICC, ISB1, ISB2 and ISB3 tables  
Updated busy address read back timing diagram  
Added HTSL input waveform  
Removed HSTL (AC) from DC tables  
Added 484-ball 27 mmx27 mmx2.33 mm PBGA package  
*E  
470031  
SEE ECN  
YDT  
Changed VOL of 1.8 V LVCMOS to 0.45 V  
Updated tRSF  
VREF is DNU when HSTL is not used  
Formatted pin description table  
Changed VDDIO pins for 36M x 36 and 36M x 18 pinouts  
Changed 36Mx72 JTAG IDCODE  
*F  
500001  
627539  
SEE ECN  
SEE ECN  
YDT  
QSL  
DLL Change, added Clock Input Cycle to Cycle Jitter  
Modified DLL description  
Changed Input Capacitance Table  
Changed tCCS number  
Added note 31  
*G  
change all NC to DNU  
corrected switching waveform for (CQEN = High) from both Pipeline and Flow  
through mode to only pipeline mode  
Modified master reset description  
Modified switching characteristics tables, extracted signals effected by the DLL  
into one table and combine all other signals into one table  
updated package name  
Added footnote for tHD, tHAC and tSAC  
changed note 26 description  
Document Number: 38-06082 Rev. *K  
Page 50 of 52  
[+] Feedback  
FullFlex  
Document History Page (continued)  
Document Title: FullFlex™ Synchronous SDR Dual Port SRAM  
Document Number: 38-06082  
Submission Orig. of  
REV.  
ECN NO.  
Description of Change  
Date  
Change  
*H  
2505003  
See ECN  
VKN/  
Modified footnote #1  
AESA Removed 250 MHz speed bin  
Added 2-Mbit part and it’s related information  
Changed ball name ZQ1 to DNU for 18M and lesser density devices  
Added 256-Ball (17 x 17 mm) BGA package for 18M  
Made PORTSTD[1:0] left and right pins driven only by LVTTL reference level  
For 1.8V LVCMOS level, Changed VIH(min) from 1.26V to 0.65 times VDDIO and  
Changed VIL(max) from 0.36V to 0.35 times VDDIO  
Changed tHD, tHAC specs for 36M from 0.6 ns/0.7 ns to 0.8 ns (See footnote# 32)  
Updated Ordering Information table  
*I  
2898491 07/01/2010  
RAME Modified “Counter Load Operation” section on page 12 and in Table7. on page 13.  
Corrected typo in Table 14. by making LowSPD = 0 for tCD1 spec in the description.  
Modified figure 16. on page 30.  
Removed inactive parts from Ordering Information.  
Updated Packaging Information.  
Corrected “ Counter Interrupt operation” Section in Page 14 of the datasheet  
Updated ordering information with the parts, CYD02S36V18-200BBC and  
CYD36S72V18-167BGI.  
*J  
2995098 07/28/2010  
RAME Updated Ordering Information and added Ordering Code Definitions.  
Added Acronyms and Units of Measure.  
Minor edits.  
*K  
3267210  
05/26/2011  
ADMU Updated Electrical Characteristics on page 21 (Removed 133 MHz speed bin).  
Updated Switching Characteristics on page 26 (Removed 133 MHz speed bin).  
Removed information for 4Mb devices.  
Updated Ordering Information.  
Document Number: 38-06082 Rev. *K  
Page 51 of 52  
[+] Feedback  
FullFlex  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
Products  
Automotive  
cypress.com/go/automotive  
cypress.com/go/clocks  
cypress.com/go/interface  
cypress.com/go/powerpsoc  
cypress.com/go/plc  
PSoC Solutions  
Clocks & Buffers  
Interface  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 5  
Lighting & Power Control  
Memory  
cypress.com/go/memory  
cypress.com/go/image  
cypress.com/go/psoc  
Optical & Image Sensing  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/go/touch  
cypress.com/go/USB  
cypress.com/go/wireless  
© Cypress Semiconductor Corporation, 2005-2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 38-06082 Rev. *K  
Revised May 31, 2011  
Page 52 of 52  
All products and company names mentioned in this document may be the trademarks of their respective holders.  
[+] Feedback  

相关型号:

CYD18S72V18-167BGC

FullFlex Synchronous SDR Dual Port SRAM Commercial and Industrial temperature
CYPRESS

CYD18S72V18-167BGC

256KX72 DUAL-PORT SRAM, 4ns, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, PLASTIC, BGA-484
ROCHESTER

CYD18S72V18-167BGI

FullFlex Synchronous SDR Dual Port SRAM Commercial and Industrial temperature
CYPRESS

CYD18S72V18-167BGI

256KX72 DUAL-PORT SRAM, 4ns, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, PLASTIC, BGA-484
ROCHESTER

CYD18S72V18-167BGXC

FullFlex Synchronous SDR Dual Port SRAM Commercial and Industrial temperature
CYPRESS

CYD18S72V18-167BGXI

Dual-Port SRAM, 256KX72, 11ns, CMOS, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, LEAD FREE, PLASTIC, BGA-484
CYPRESS

CYD18S72V18-200BBC

Dual-Port SRAM, 256KX72, 3.3ns, CMOS, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, PLASTIC, BGA-484
CYPRESS
CYPRESS

CYD18S72V18-200BBXI

Dual-Port SRAM, 256KX72, 3.3ns, CMOS, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, LEAD FREE, PLASTIC, BGA-484
CYPRESS

CYD18S72V18-200BGI

FullFlex Synchronous SDR Dual Port SRAM Commercial and Industrial temperature
CYPRESS

CYD18S72V18-200BGI

256KX72 DUAL-PORT SRAM, 3.3ns, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, PLASTIC, BGA-484
ROCHESTER

CYD18S72V18-200BGXC

Dual-Port SRAM, 256KX72, 9ns, CMOS, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, LEAD FREE, PLASTIC, BGA-484
CYPRESS