CYDM128B16-55BVXC [CYPRESS]

1.8V 4K/8K/16K x 16 and 8K/16K x 8 MoBL® Dual-Port Static RAM; 1.8V 4K / 8K / 16K ×16和8K / 16K ×8 MoBL㈢双口静态RAM
CYDM128B16-55BVXC
型号: CYDM128B16-55BVXC
厂家: CYPRESS    CYPRESS
描述:

1.8V 4K/8K/16K x 16 and 8K/16K x 8 MoBL® Dual-Port Static RAM
1.8V 4K / 8K / 16K ×16和8K / 16K ×8 MoBL㈢双口静态RAM

存储 内存集成电路 静态存储器
文件: 总24页 (文件大小:549K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CYDM064B16, CYDM128B16, CYDM256B16  
1.8V 4K/8K/16K x 16 and 8K/16K x 8 MoBL®  
Dual-Port Static RAM  
Features  
True dual-ported memory cells that allow simultaneous access  
of the same memory location  
Expandable data bus to 32 bits with Master or Slave chip select  
when using more than one device  
4, 8, or 16K × 16 organization  
On-chip arbitration logic  
Ultra Low operating power  
Active: ICC = 15 mA (typical) at 55 ns  
Standby: ISB3 = 2 μA (typical)  
Semaphores included to permit software handshaking  
between ports  
Input read registers and output drive registers  
INT flag for port-to-port communication  
Separate upper-byte and lower-byte control  
Industrial temperature ranges  
Small footprint: Available in a 6x6 mm 100-pin Pb-free vfBGA  
Port independent 1.8V, 2.5V, and 3.0V IOs  
Full asynchronous operation  
Automatic power down  
Pin select for Master or Slave  
Selection Guide for V = 1.8V  
CC  
CYDM256B16, CYDM128B16, CYDM064B16  
Parameter  
Unit  
(-55)  
Port IO Voltages (P1-P2)  
1.8V -1.8V  
V
Maximum Access Time  
55  
15  
2
ns  
Typical Operating Current  
Typical Standby Current for ISB1  
Typical Standby Current for ISB3  
mA  
μA  
μA  
2
Selection Guide for V = 2.5V  
CC  
CYDM256B16, CYDM128B16, CYDM064B16  
Parameter  
Unit  
(-55)  
Port IO Voltages (P1-P2)  
2.5V-2.5V  
V
Maximum Access Time  
55  
28  
6
ns  
Typical Operating Current  
Typical Standby Current for ISB1  
Typical Standby Current for ISB3  
mA  
μA  
μA  
4
Selection Guide for V = 3.0V  
CC  
CYDM256B16, CYDM128B16, CYDM064B16  
Parameter  
Unit  
(-55)  
Port IO Voltages (P1-P2)  
3.0V-3.0V  
V
Maximum Access Time  
55  
42  
7
ns  
Typical Operating Current  
Typical Standby Current for ISB1  
Typical Standby Current for ISB3  
mA  
μA  
μA  
6
Cypress Semiconductor Corporation  
Document #: 001-00217 Rev. *F  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised July 31, 2008  
[+] Feedback  
CYDM064B16, CYDM128B16, CYDM256B16  
Logic Block Diagram [1, 2]  
IO[15:0]R  
UBR  
IO[15:0]L  
UBL  
LBL  
LBR  
IO  
IO  
Control  
Control  
16K X 16  
Dual Ported Array  
Address Decode  
Address Decode  
A[13:0]L  
CE L  
A [13:0]R  
CE R  
Interrupt  
Arbitration  
Semaphore  
OE L  
R/W L  
SEML  
OE R  
R/W R  
SEMR  
BUSY R  
BUSY L  
M/S  
INTL  
Mailboxes  
INTR  
Input Read  
Register and  
Output Drive  
Register  
CEL  
OEL  
CE R  
OE R  
R/W R  
R/WL  
IRR0 ,IRR1  
ODR0 - ODR4  
SFEN  
Notes  
1. A –A for 4K devices; A –A for 8K devices; A –A for 16K devices.  
0
11  
0
12  
0
13  
2. BUSY is an output in master mode and an input in slave mode.  
Document #: 001-00217 Rev. *F  
Page 2 of 24  
[+] Feedback  
CYDM064B16, CYDM128B16, CYDM256B16  
Pinouts  
Figure 1. Ball Diagram - 100-Ball 0.5 mm Pitch BGA (Top View) [3, 4, 5, 6, 7]  
CYDM064B16, CYDM128B16, CYDM256B16  
1
2
3
4
5
6
7
8
9
10  
A5R  
A3R  
A0R  
A8R  
A4R  
A1R  
A11R  
A7R  
A2R  
UBR  
A9R  
A6R  
VSS SEMR IO15R IO12R IO10R  
CER R/WR OER VDDIOR IO9R  
VSS  
IO6R  
VSS  
IO2R  
VSS  
A
B
C
D
E
F
A
B
C
D
E
F
IRR1[6]  
LBR  
A10R  
VSS  
VCC  
OEL  
CEL  
VCC  
IO14R IO11R IO7R  
[3]  
BUSYR INTR  
IO13R IO8R  
IO4R VDDIOR IO1R  
IO3R  
IO11L IO12L IO14L IO13L  
IO5R  
ODR4 ODR2  
A12R  
VSS  
INTL  
VSS  
VSS  
IO3L  
M/S ODR3  
BUSYL A1L  
IO0R IO15L VDDIOL  
SFEN ODR1  
[3]  
A2L  
A4L  
A7L  
A8L  
2
A5L  
A9L  
A10L  
A11L  
3
G
H
J
ODR0  
A0L  
A3L  
A6L  
1
A12L  
G
H
J
NC[7] NC[7]  
LBL  
IO1L VDDIOL  
IO10L  
IO9L  
IO7L  
10  
IRR0[5]  
VSS  
IO4L  
IO0L  
7
IO6L  
IO2L  
8
IO8L  
IO5L  
9
UBL SEML R/WL  
K
K
4
5
6
Notes  
3. A12L and A12R are NC pins for CYDM064B16.  
4. IRR functionality is not supported for the CYDM256B16 device.  
5. This pin is A13L for CYDM256B16 device.  
6. This pin is A13R for CYDM256B16 device.  
7. Leave this pin unconnected. No trace or power component can be connected to this pin.  
Document #: 001-00217 Rev. *F  
Page 3 of 24  
[+] Feedback  
CYDM064B16, CYDM128B16, CYDM256B16  
Table 1. Pin Definitions - 100-Ball 0.5 mm Pitch BGA (CYDM064B16, CYDM128B16, CYDM256B16)  
Left Port Right Port Description  
CER  
Chip Enable  
CEL  
Read or Write Enable  
Output Enable  
R/WL  
R/WR  
OEL  
OER  
A0L–A13L  
IO0L–IO15L  
A0R–A13R  
IO0R–IO15R  
Address (A0–A11 for 4K devices; A0–A12 for 8K devices; A0–A13 for 16K devices)  
Data Bus Input or Output for x16 devices  
Semaphore Enable  
SEML  
UBL  
SEMR  
UBR  
Upper Byte Select (IO8–IO15  
Lower Byte Select (IO0–IO7)  
Interrupt Flag  
)
LBL  
LBR  
INTL  
INTR  
BUSYR  
Busy Flag  
BUSYL  
IRR0, IRR1  
Input Read Register for CYDM064B16 and CYDM128B16  
A13L and A13R for CYDM256B16.  
ODR0-ODR4  
SFEN  
Output Drive Register. These outputs are Open Drain.  
Special Function Enable  
Master or Slave Select  
M/S  
VCC  
Core Power  
GND  
VDDIOL  
VDDIOR  
NC  
Ground  
Left Port IO Voltage  
Right Port IO Voltage  
No Connect. Leave this pin Unconnected.  
Document #: 001-00217 Rev. *F  
Page 4 of 24  
[+] Feedback  
CYDM064B16, CYDM128B16, CYDM256B16  
Read Operation  
Functional Description  
When reading the device, the user must assert both the OE and  
The CYDM256B16, CYDM128B16, and CYDM064B16 are low  
power CMOS 4K, 8K,16K x 16 dual-port static RAMs. Arbitration  
schemes are included on the devices to handle situations when  
multiple processors access the same piece of data. Two ports  
are provided that permit independent, asynchronous access for  
reads and writes to any location in memory. The devices can be  
used as standalone 16-bit dual-port static RAMs or multiple  
devices can be combined to function as a 32-bit or wider  
master/slave dual-port static RAM. An M/S pin is provided for  
implementing 32-bit or wider memory applications without the  
need for separate master and slave devices or additional  
discrete logic. Application areas include interprocessor or multi-  
processor designs, communications status buffering, and  
dual-port video or graphics memory.  
CE pins. Data is available tACE after CE or tDOE after OE is  
asserted. If the user wishes to access a semaphore flag, then the  
SEM pin must be asserted instead of the CE pin, and OE must  
also be asserted.  
Interrupts  
The upper two memory locations may be used for message  
passing. The highest memory location (FFF for the  
CYDM064B16, 1FFF for the CYDM128B16, 3FFF for the  
CYDM256B16) is the mailbox for the right port and the  
second-highest memory location (FFE for the CYDM064B16,  
1FFE for the CYDM128B16, 3FFE for the CYDM256B16) is the  
mailbox for the left port. When one port writes to the other port’s  
mailbox, an interrupt is generated to the owner. The interrupt is  
reset when the owner reads the contents of the mailbox. The  
message is user-defined.  
Each port has independent control pins: Chip Enable (CE), Read  
or Write Enable (R/W), and Output Enable (OE). Two flags are  
provided on each port (BUSY and INT). BUSY indicates that the  
port is trying to access the same location currently being  
accessed by the other port. The Interrupt flag (INT) permits  
communication between ports or systems through a mail box.  
The semaphores are used to pass a flag or token, from one port  
to the other, to indicate that a shared resource is in use. The  
semaphore logic consists of eight shared latches. Only one side  
can control the latch (semaphore) at any time. Control of a  
semaphore indicates that a shared resource is in use. An  
automatic power down feature is controlled independently on  
each port by a Chip Enable (CE) pin.  
Each port can read the other port’s mailbox without resetting the  
interrupt. The active state of the busy signal (to a port) prevents  
the port from setting the interrupt to the winning port. Also, an  
active busy to a port prevents that port from reading its own  
mailbox and, thus, resetting the interrupt to it.  
If an application does not require message passing, do not  
connect the interrupt pin to the processor’s interrupt request  
input pin. On power up, an initialization program must be run and  
the interrupts for both ports must be read to reset them.  
The operation of the interrupts and their interaction with Busy are  
summarized in Table 3 on page 7.  
The CYDM256B16, CYDM128B16, CYDM064B16 are available  
in 100-ball 0.5 mm pitch Ball Grid Array (BGA) packages.  
Busy  
The CYDM256B16, CYDM128B16, and CYDM064B16 provide  
on-chip arbitration to resolve simultaneous memory location  
access (contention). If both port CEs are asserted and an  
address match occurs within tPS of each other, the busy logic  
determines which port has access. If tPS is violated, one port  
definitely gains permission to the location. However, which port  
gets this permission cannot be predicted. BUSY is asserted tBLA  
after an address match or tBLC after CE is taken LOW.  
Power Supply  
The core voltage (VCC) can be 1.8V, 2.5V, or 3.0V, as long as it  
is lower than or equal to the IO voltage.  
Each port can operate on independent IO voltages. This is  
determined by what is connected to the VDDIOL and VDDIOR pins.  
The supported IO standards are 1.8V or 2.5V LVCMOS and 3.0V  
LVTTL.  
Write Operation  
Master/Slave  
Data must be set up for a duration of tSD before the rising edge  
of R/W to guarantee a valid write. A write operation is controlled  
by either the R/W pin (see Figure 5 on page 18) or the CE pin  
(see Figure 6 on page 18). Required inputs for noncontention  
operations are summarized in Table 2 on page 7.  
An M/S pin is provided to expand the word width by configuring  
the device as either a master or a slave. The BUSY output of the  
master is connected to the BUSY input of the slave. This allows  
the device to interface to a master device with no external  
components. Writing to slave devices must be delayed until after  
the BUSY input has settled (tBLC or tBLA). Otherwise, the slave  
chip may begin a write cycle during a contention situation. When  
tied HIGH, the M/S pin allows the device to be used as a master  
and, as a result, the BUSY line is an output. BUSY can then be  
used to send the arbitration outcome to a slave.  
If a location is being written to by one port and the opposite port  
attempts to read that location, a port-to-port flowthrough delay  
must occur before the data is read on the output. Otherwise, the  
data read is not deterministic. Data is valid on the port tDDD after  
the data is presented on the other port.  
Document #: 001-00217 Rev. *F  
Page 5 of 24  
[+] Feedback  
CYDM064B16, CYDM128B16, CYDM256B16  
Semaphores are accessed by asserting SEM LOW. The SEM  
pin functions as a chip select for the semaphore latches (CE  
must remain HIGH during SEM LOW). A0–2 represents the  
semaphore address. OE and R/W are used in the same manner  
as a normal memory access. When writing or reading a  
semaphore, the other address pins have no effect.  
Input Read Register  
The Input Read Register (IRR) captures the status of two  
external input devices that are connected to the Input Read pins.  
The contents of the IRR read from address x0000 from either  
port. During reads from the IRR, DQ0 and DQ1 are valid bits and  
DQ<15:2> are don’t care. Writes to address x0000 are not  
allowed from either port.  
When writing to the semaphore, only IO0 is used. If a zero is  
written to the left port of an available semaphore, a one appears  
at the same semaphore address on the right port. That  
semaphore can now only be modified by the side showing zero  
(the left port in this case). If the left port now relinquishes control  
by writing a one to the semaphore, the semaphore is set to one  
for both sides. However, if the right port requests the semaphore  
(written a zero) while the left port has control, the right port  
immediately owns the semaphore as soon as the left port  
releases it. Table 6 on page 8 shows sample semaphore  
operations.  
Address x0000 is not available for standard memory accesses  
when SFEN = VIL. When SFEN = VIH, address x0000 is available  
for memory accesses.  
The inputs are 1.8V/2.5V LVCMOS or 3.0V LVTTL, depending  
on the core voltage supply (VCC). Refer to Table 4 on page 8 for  
Input Read Register operation.  
IRR is not available in the CYDM256B16, because the IRR pins  
are used as extra address pins A13L and A13R  
.
Output Drive Register  
When reading a semaphore, all sixteen data lines output the  
semaphore value. The read value is latched in an output register  
to prevent the semaphore from changing state during a write  
from the other port. If both ports attempt to access the  
semaphore within tSPS of each other, the semaphore is definitely  
obtained by one side or the other, but there is no guarantee which  
side controls the semaphore. On power up, both ports must write  
“1” to all eight semaphores.  
The Output Drive Register (ODR) determines the state of up to  
five external binary state devices by providing a path to VSS for  
the external circuit. These outputs are Open Drain.  
The five external devices can operate at different voltages (1.5V  
VDDIO 3.5V) but the combined current cannot exceed 40 mA  
(8 mA max for each external device). The status of the ODR bits  
are set using standard write accesses from either port to address  
x0001 with a “1” corresponding to on and “0” corresponding to  
off.  
Architecture  
The status of the ODR bits can be read with a standard read  
access to address x0001. When SFEN = VIL, the ODR is active  
and address x0001 is not available for memory accesses. When  
SFEN = VIH, the ODR is inactive and address x0001 can be used  
for standard accesses.  
The CYDM256B16, CYDM128B16, and CYDM064B16 consist  
of an array of 4K, 8K, or 16K words of 16 dual-port RAM cells,  
IO and address lines, and control signals (CE, OE, R/W). These  
control pins permit independent access for reads or writes to any  
location in memory. To handle simultaneous writes or reads to  
the same location, a BUSY pin is provided on each port. Two  
Interrupt (INT) pins can be used for port-to-port communication.  
Two Semaphore (SEM) control pins are used to allocate shared  
resources. With the M/S pin, the devices can function as a  
master (BUSY pins are outputs) or as a slave (BUSY pins are  
inputs). The devices also have an automatic power down feature  
controlled by CE. Each port is provided with its own output  
enable control (OE), which allows data to be read from the  
device.  
During reads and writes to ODR DQ<4:0> are valid and  
DQ<15:5> are don’t care. Refer to Table 5 on page 8 for Output  
Drive Register operation.  
Semaphore Operation  
The CYDM256B16, CYDM128B16, and CYDM064B16 provide  
eight semaphore latches, which are separate from the dual-port  
memory locations. Semaphores are used to reserve resources  
that are shared between the two ports. The state of the  
semaphore indicates that a resource is in use. For example, if  
the left port wants to request a given resource, it sets a latch by  
writing a zero to a semaphore location. The left port then verifies  
its success in setting the latch by reading it. After writing to the  
semaphore, SEM or OE must be deasserted for tSOP before  
attempting to read the semaphore. The semaphore value is  
available tSWRD + tDOE after the rising edge of the semaphore  
write. If the left port is successful (reads a zero), it assumes  
control of the shared resource. Otherwise (reads a one), it  
assumes the right port has control and continues to poll the  
semaphore. When the right side has relinquished control of the  
semaphore (by writing a one), the left side succeeds in gaining  
control of the semaphore. If the left side no longer requires the  
semaphore, a one is written to cancel its request.  
Document #: 001-00217 Rev. *F  
Page 6 of 24  
[+] Feedback  
CYDM064B16, CYDM128B16, CYDM256B16  
Table 2. NonContending Read/Write  
Inputs  
Outputs  
Operation  
IO8IO15  
High Z  
IO0IO7  
High Z  
CE  
H
X
L
R/W  
X
OE  
X
X
X
X
X
L
UB  
X
H
L
LB  
X
H
H
L
SEM  
H
H
H
H
H
H
H
H
X
Deselected: Power down  
Deselected: Power down  
Write to Upper Byte Only  
Write to Lower Byte Only  
Write to Both Bytes  
X
High Z  
High Z  
L
Data In  
High Z  
High Z  
L
L
H
L
Data In  
Data In  
High Z  
L
L
L
Data In  
Data Out  
High Z  
L
H
H
H
X
L
H
L
Read Upper Byte Only  
Read Lower Byte Only  
Read Both Bytes  
L
L
H
L
Data Out  
Data Out  
High Z  
L
L
L
Data Out  
High Z  
X
H
X
H
X
L
H
L
X
X
H
X
H
L
X
X
H
X
H
X
L
Outputs Disabled  
H
H
L
Data Out  
Data Out  
Data In  
Data In  
Data Out  
Data Out  
Data In  
Data In  
Read Data in Semaphore Flag  
Read Data in Semaphore Flag  
Write DIN0 into Semaphore Flag  
Write DIN0 into Semaphore Flag  
Not Allowed  
L
L
X
X
X
X
L
L
X
X
L
L
X
L
Not Allowed  
Table 3. Interrupt Operation Example (Assumes BUSYL = BUSYR = HIGH)[8]  
Left Port  
Right Port  
Function  
A0L–13L  
R/WL  
CEL  
OEL  
INTL R/WR  
CER  
OER  
A0R–13R  
INTR  
L
L
X
X
X
X
X
L
X
X
X
Set Right INTR Flag  
Reset Right INTR Flag  
Set Left INTL Flag  
3FFF[11]  
X
L[10]  
3FFF[11]  
H[9]  
X
X
X
X
X
X
L
X
X
L
L
L
L
X
X
L[9]  
3FFE[11]  
X
X
X
X
X
Reset Left INTL Flag  
3FFE[11]  
H[10]  
Notes  
8. See Interrupts Functional Description for specific highest memory locations by device.  
9. If BUSY = L, then no change.  
R
10. If BUSY = L, then no change.  
L
11. See section Functional Description on page 5 for specific addresses by device.  
Document #: 001-00217 Rev. *F  
Page 7 of 24  
[+] Feedback  
CYDM064B16, CYDM128B16, CYDM256B16  
Table 4. Input Read Register Operation[12, 15]  
SFEN  
CE  
L
R/W  
H
OE  
L
UB  
L
LB  
L
ADDR  
x0000-Max  
x0000  
IO0IO1 IO2IO15  
Mode  
Standard Memory Access  
IRR Read  
VALID[13] VALID[13]  
H
L
VALID[14]  
X
L
H
L
X
L
Table 5. Output Drive Register [16]  
SFEN  
CE  
L
R/W  
H
OE  
UB  
LB  
ADDR  
x0000-Max  
x0001  
IO0IO4 IO5IO15  
Mode  
X[17]  
X
L[13]  
X
L[13]  
L
VALID[13] VALID[13]  
H
L
L
Standard Memory Access  
VALID[14]  
X
ODR Write[16, 18]  
ODR Read[16]  
L
L
VALID[14]  
X
L
H
L
X
L
x0001  
Table 6. Semaphore Operation Example  
Function  
No action  
IO0IO15 Left  
IO0IO15 Right  
Status  
1
0
0
1
1
1
Semaphore free  
Left port writes 0 to semaphore  
Right port writes 0 to semaphore  
Left Port has semaphore token  
Nochange. Rightside hasnowrite access  
to semaphore.  
Left port writes 1 to semaphore  
Left port writes 0 to semaphore  
1
1
0
0
Right port obtains semaphore token  
No change. Left port has no write access  
to semaphore.  
Right port writes 1 to semaphore  
Left port writes 1 to semaphore  
Right port writes 0 to semaphore  
Right port writes 1 to semaphore  
Left port writes 0 to semaphore  
Left port writes 1 to semaphore  
0
1
1
1
0
1
1
1
0
1
1
1
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
Notes  
12. SFEN = V for IRR reads  
IL  
13. UB or LB = V . If LB = V , then DQ<7:0> are valid. If UB = V then DQ<15:8> are valid.  
IL  
IL  
IL  
14. LB must be active (LB = V ) for these bits to be valid.  
IL  
15. SFEN active when either CE = V or CE = V . It is inactive when CE = CE = V .  
IH  
L
IL  
R
IL  
L
R
16. SFEN = V for ODR reads and writes.  
IL  
17. Output enable must be low (OE = V ) during reads for valid data to be output.  
IL  
18. During ODR writes data are also written to the memory.  
Document #: 001-00217 Rev. *F  
Page 8 of 24  
[+] Feedback  
CYDM064B16, CYDM128B16, CYDM256B16  
Static Discharge Voltage.......................................... > 2000V  
Latch-up Current ................................................... > 200 mA  
Maximum Ratings  
Exceeding maximum ratings[19] may shorten the useful life of the  
device. User guidelines are not tested.  
Operating Range  
Storage Temperature .................................65°C to +150°C  
Range  
Ambient Temperature  
VCC  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Commercial  
0°C to +70°C  
1.8V ± 100 mV  
2.5V ± 100 mV  
3.0V ± 300 mV  
Supply Voltage to Ground Potential............... –0.5V to +3.3V  
Industrial  
–40°C to +85°C  
1.8V ± 100 mV  
2.5V ± 100 mV  
3.0V ± 300 mV  
DC Voltage Applied to  
Outputs in High-Z State..........................0.5V to VCC + 0.5V  
DC Input Voltage[20]...............................–0.5V to VCC + 0.5V  
Output Current into Outputs (LOW) .............................90 mA  
Electrical Characteristics for V = 1.8V  
CC  
Over the Operating Range  
CYDM256B16, CYDM128B16, CYDM064B16  
-55  
Parameter  
Description  
Unit  
P1 IO Voltage P2 IO Voltage  
1.8V (any port)  
2.5V (any port)  
3.0V (any port)  
1.8V (any port)  
2.5V (any port)  
3.0V (any port)  
1.8V (any port)  
2.5V (any port)  
3.0V (any port)  
1.8V (any port)  
2.5V (any port)  
3.0V (any port)  
1.8V (any port)  
2.5V (any port)  
3.0V (any port)  
Min  
VDDIO – 0.2  
2.0  
Typ.  
Max  
VOH  
Output HIGH Voltage (IOH = –100 μA)  
Output HIGH Voltage (IOH = –2 mA)  
Output HIGH Voltage (IOH = –2 mA)  
Output LOW Voltage (IOL = 100 μA)  
Output HIGH Voltage (IOL = 2 mA)  
Output HIGH Voltage (IOL = 2 mA)  
ODR Output LOW Voltage (IOL = 8 mA)  
V
V
2.1  
V
VOL  
0.2  
V
0.4  
V
0.4  
V
VOL ODR  
0.2  
V
0.2  
V
0.2  
V
VIH  
Input HIGH Voltage  
1.2  
1.7  
2.0  
–0.2  
–0.3  
–0.2  
–1  
VDDIO + 0.2  
V
VDDIO + 0.3  
V
VDDIO + 0.2  
V
VIL  
Input LOW Voltage  
0.4  
0.6  
0.7  
1
V
V
V
IOZ  
Output Leakage Current  
ODR Output Leakage Current.  
1.8V  
2.5V  
3.0V  
1.8V  
2.5V  
3.0V  
1.8V  
2.5V  
3.0V  
1.8V  
2.5V  
3.0V  
1.8V  
2.5V  
3.0V  
1.8V  
2.5V  
3.0V  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
–1  
1
–1  
1
ICEX ODR  
–1  
1
VOUT = VDDIO  
–1  
1
–1  
1
IIX  
Input Leakage Current  
–1  
1
–1  
1
–1  
1
Notes  
19. The voltage on any input or IO pin can not exceed the power pin during power up.  
20. Pulse width < 20 ns.  
Document #: 001-00217 Rev. *F  
Page 9 of 24  
[+] Feedback  
CYDM064B16, CYDM128B16, CYDM256B16  
Electrical Characteristics for V  
Over the Operating Range  
= 1.8V (continued)  
CC  
CYDM256B16, CYDM128B16, CYDM064B16  
-55  
Parameter  
Description  
Unit  
P1 IO Voltage P2 IO Voltage  
Min  
Typ.  
Max  
ICC  
Operating Current (VCC = Max.,  
OUT = 0 mA) Outputs Disabled  
Ind.  
Ind.  
1.8V  
1.8V  
15  
25  
mA  
I
ISB1  
Standby Current (Both Ports TTL  
Level) CEL and CER VCC – 0.2,  
SEML = SEMR = VCC – 0.2, f = fMAX  
1.8V  
1.8V  
2
6
μA  
ISB2  
ISB3  
Standby Current (One Port TTL  
Level) CEL | CER VIH, f = fMAX  
Ind.  
1.8V  
1.8V  
1.8V  
1.8V  
8.5  
2
14  
6
mA  
Standby Current (Both Ports CMOS Ind.  
Level) CEL and CER VCC 0.2V,  
SEML and SEMR > VCC – 0.2V, f = 0  
μA  
ISB4  
Standby Current (One Port CMOS Ind.  
Level) CEL | CER VIH, f = fMAX  
1.8V  
1.8V  
8.5  
14  
mA  
[21]  
Electrical Characteristics for V = 2.5V  
CC  
Over the Operating Range  
CYDM256B16, CYDM128B16, CYDM064B16  
-55  
Parameter  
VOH  
VOL  
Description  
Output HIGH Voltage (IOH = –2 mA)  
Output LOW Voltage (IOL = 2 mA)  
ODR Output LOW Voltage (IOL = 8 mA)  
Input HIGH Voltage  
Unit  
P1 IO Voltage P2 IO Voltage  
2.5V (any port)  
3.0V (any port)  
2.5V (any port)  
3.0V (any port)  
2.5V (any port)  
3.0V (any port)  
2.5V (any port)  
3.0V (any port)  
2.5V (any port)  
3.0V (any port)  
Min  
2.0  
2.1  
Typ.  
Max  
V
V
0.4  
0.4  
V
V
VOL ODR  
0.2  
V
0.2  
V
VIH  
VIL  
IOZ  
1.7  
2.0  
–0.3  
–0.2  
–1  
VDDIO + 0.3  
V
VDDIO + 0.2  
V
Input LOW Voltage  
0.6  
0.7  
1
V
V
Output Leakage Current  
2.5V  
3.0V  
2.5V  
3.0V  
2.5V  
3.0V  
2.5V  
2.5V  
3.0V  
2.5V  
3.0V  
2.5V  
3.0V  
2.5V  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
–1  
1
ICEX ODR  
ODR Output Leakage Current.  
VOUT = VCC  
–1  
1
–1  
1
IIX  
Input Leakage Current  
–1  
1
–1  
1
ICC  
Operating Current (VCC = Max.,  
OUT = 0 mA) Outputs Disabled  
Ind.  
28  
40  
I
Notes  
21. f  
= 1/t = All inputs cycling at f = 1/t (except output enable). f = 0 means no address or control lines change. This applies only to inputs at CMOS level standby I  
.
MAX  
RC  
RC  
SB3  
Document #: 001-00217 Rev. *F  
Page 10 of 24  
[+] Feedback  
CYDM064B16, CYDM128B16, CYDM256B16  
Electrical Characteristics for V  
Over the Operating Range  
= 2.5V (continued)  
CC  
CYDM256B16, CYDM128B16, CYDM064B16  
-55  
Parameter  
ISB1  
Description  
Unit  
P1 IO Voltage P2 IO Voltage  
Min  
Typ.  
Max  
Standby Current (Both Ports TTL  
Level) CEL and CER VCC – 0.2,  
SEML= SEMR = VCC – 0.2, f = fMAX  
Ind.  
Ind.  
2.5V  
2.5V  
6
8
μA  
ISB2  
ISB3  
Standby Current (One Port TTL  
Level) CEL | CER VIH, f = fMAX  
2.5V  
2.5V  
2.5V  
2.5V  
18  
4
25  
6
mA  
Standby Current (Both Ports CMOS Ind.  
Level) CEL and CER VCC 0.2V,  
SEML and SEMR > VCC – 0.2V, f = 0  
μA  
ISB4  
Standby Current (One Port CMOS Ind.  
Level) CEL | CER VIH, f = fMAX  
2.5V  
2.5V  
18  
25  
mA  
[21]  
Electrical Characteristics for 3.0V Over the Operating Range  
CYDM256B16, CYDM128B16, CYDM064B16  
-55  
Parameter  
Description  
Unit  
P1 IO Voltage P2 IO Voltage  
3.0V (any port)  
Min  
Typ.  
Max  
VOH  
VOL  
Output HIGH Voltage (IOH = –2 mA)  
Output LOW Voltage (IOL = 2 mA)  
ODR Output LOW Voltage (IOL = 8 mA)  
Input HIGH Voltage  
2.1  
V
V
3.0V (any port)  
0.4  
VOL ODR  
3.0V (any port)  
0.2  
V
VIH  
VIL  
IOZ  
3.0V (any port)  
2.0  
–0.2  
–1  
VDDIO + 0.2  
V
Input LOW Voltage  
3.0V (any port)  
0.7  
1
V
Output Leakage Current  
3.0V  
3.0V  
3.0V  
3.0V  
μA  
μA  
ICEX ODR  
ODR Output Leakage Current.  
–1  
1
VOUT = VCC  
IIX  
Input Leakage Current  
3.0V  
3.0V  
3.0V  
3.0V  
–1  
1
μA  
ICC  
Operating Current (VCC = Max.,  
IOUT = 0 mA) Outputs Disabled  
Ind.  
Ind.  
42  
7
60  
mA  
ISB1  
Standby Current (Both Ports TTL  
Level) CEL and CER VCC – 0.2,  
SEML = SEMR = VCC – 0.2, f = fMAX  
3.0V  
3.0V  
10  
μA  
ISB2  
ISB3  
Standby Current (One Port TTL  
Level) CEL | CER VIH, f = fMAX  
Ind.  
3.0V  
3.0V  
3.0V  
3.0V  
25  
6
35  
8
mA  
Standby Current (Both Ports CMOS Ind.  
Level) CEL and CER VCC 0.2V,  
SEML and SEMR > VCC – 0.2V, f = 0  
μA  
ISB4  
Standby Current (One Port CMOS Ind.  
Level) CEL | CER VIH, f = fMAX  
3.0V  
3.0V  
25  
35  
mA  
[21]  
Capacitance[22]  
Parameter  
Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
Max  
9
Unit  
pF  
CIN  
TA = 25°C, f = 1 MHz,  
CC = 3.0V  
V
COUT  
10  
pF  
Note  
22. Tested initially and after any design or process changes that may affect these parameters.  
Document #: 001-00217 Rev. *F  
Page 11 of 24  
[+] Feedback  
CYDM064B16, CYDM128B16, CYDM256B16  
AC Test Loads and Waveforms  
3.0V/2.5V/1.8V  
3.0V/2.5V/1.8V  
RTH = 6 kΩ  
R1  
OUTPUT  
C = 30 pF  
OUTPUT  
R1  
OUTPUT  
C = 30 pF  
R2  
C = 5 pF  
R2  
VTH = 0.8V  
(a) Normal Load  
(b) Thévenin Equivalent (Load 1)  
(c) Three-State Delay (Load 2)  
(Used for tLZ, tHZ, tHZWE, and tLZWE  
including scope and jig)  
ALL INPUT PULSES  
3.0V/2.5V  
1022Ω  
1.8V  
1.8V  
GND  
R1  
R2  
13500Ω  
10800Ω  
90%  
90%  
10%  
3 ns  
10%  
792Ω  
3 ns  
Switching Characteristics for V = 1.8V  
CC  
Over the Operating Range[23]  
CYDM256B16, CYDM128B16, CYDM064B16  
-55  
Parameter  
Description  
Unit  
Min  
55  
5
Max  
Read Cycle  
tRC  
Read Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAA  
Address to Data Valid  
Output Hold From Address Change  
CE LOW to Data Valid  
OE LOW to Data Valid  
OE Low to Low Z  
55  
tOHA  
tACE  
tDOE  
[24]  
55  
30  
[25, 26, 27]  
5
5
0
tLZOE  
[25, 26, 27]  
OE HIGH to High Z  
25  
25  
tHZOE  
[25, 26, 27]  
[25, 26, 27]  
CE LOW to Low Z  
tLZCE  
CE HIGH to High Z  
tHZCE  
[27]  
CE LOW to Power up  
CE HIGH to Power down  
Byte Enable Access Time  
tPU  
[27]  
55  
55  
tPD  
[24]  
tABE  
Notes  
23. Test conditions assume signal transition time of 3 ns or less, timing reference levels of V /2, input pulse levels of 0 to V , and output loading of the specified I /I  
CC  
CC  
OI OH  
and 30 pF load capacitance.  
24. To access RAM, CE = L, UB = L, SEM = H. To access semaphore, CE = H and SEM = L. Either condition must be valid for the entire t  
time.  
SCE  
25. At any given temperature and voltage condition for any given device, t  
26. Test conditions used are Load 3.  
is less than t  
and t  
is less than t  
.
HZCE  
LZCE  
HZOE  
LZOE  
27. This parameter is guaranteed but not tested. For information on port-to-port delay through RAM cells from writing port to reading port, refer to Read Timing with Busy  
waveform.  
Document #: 001-00217 Rev. *F  
Page 12 of 24  
[+] Feedback  
CYDM064B16, CYDM128B16, CYDM256B16  
Switching Characteristics for V  
= 1.8V (continued)  
CC  
Over the Operating Range[23]  
CYDM256B16, CYDM128B16, CYDM064B16  
-55  
Parameter  
Description  
Unit  
Min  
Max  
Write Cycle  
tWC  
Write Cycle Time  
55  
45  
45  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[24]  
CE LOW to Write End  
tSCE  
tAW  
tHA  
Address Valid to Write End  
Address Hold From Write End  
Address Setup to Write Start  
Write Pulse Width  
[24]  
tSA  
tPWE  
tSD  
0
40  
30  
0
Data Setup to Write End  
Data Hold From Write End  
R/W LOW to High Z  
tHD  
[26, 27]  
25  
tHZWE  
[26, 27]  
R/W HIGH to Low Z  
0
tLZWE  
[28]  
Write Pulse to Data Delay  
Write Data Valid to Read Data Valid  
80  
80  
tWDD  
[28]  
tDDD  
Busy Timing[29]  
tBLA  
tBHA  
tBLC  
tBHC  
BUSY LOW from Address Match  
BUSY HIGH from Address Mismatch  
BUSY LOW from CE LOW  
45  
45  
45  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY HIGH from CE HIGH  
Port Setup for Priority  
[30]  
5
0
tPS  
tWB  
tWH  
R/W HIGH after BUSY (Slave)  
R/W HIGH after BUSY HIGH (Slave)  
BUSY HIGH to Data Valid  
35  
[31]  
40  
tBDD  
Interrupt Timing[29]  
tINS  
INT Set Time  
45  
45  
ns  
ns  
tINR  
INT Reset Time  
Semaphore Timing  
tSOP  
tSWRD  
tSPS  
SEM Flag Update Pulse (OE or SEM)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
SEM Address Access Time  
15  
10  
10  
ns  
ns  
ns  
ns  
tSAA  
55  
Notes  
28. For information on port-to-port delay through RAM cells from writing port to reading port, refer to Read Timing with Busy waveform.  
29. Test conditions used are Load 2.  
30. Add 2ns to this parameter if V and V  
are <1.8V, and V  
is >2.5V at temperature <0°C.  
CC  
DDIOR  
DDIOL  
31. t  
is a calculated parameter and is the greater of t  
– t  
(actual) or t  
– t (actual).  
DDD SD  
BDD  
WDD  
PWE  
Document #: 001-00217 Rev. *F  
Page 13 of 24  
[+] Feedback  
CYDM064B16, CYDM128B16, CYDM256B16  
Switching Characteristics for V = 2.5V  
CC  
Over the Operating Range  
CYDM256B16, CYDM128B16, CYDM064B16  
Parameter  
Description  
-55  
Unit  
Min  
55  
5
Max  
Read Cycle  
tRC  
Read Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAA  
Address to Data Valid  
Output Hold From Address Change  
CE LOW to Data Valid  
OE LOW to Data Valid  
OE Low to Low Z  
55  
tOHA  
tACE  
tDOE  
[24]  
55  
30  
[25, 26, 27]  
2
2
0
tLZOE  
[25, 26, 27]  
OE HIGH to High Z  
25  
25  
tHZOE  
[25, 26, 27]  
CE LOW to Low Z  
tLZCE  
[25, 26, 27]  
CE HIGH to High Z  
tHZCE  
[27]  
CE LOW to Power up  
CE HIGH to Power down  
Byte Enable Access Time  
tPU  
[27]  
55  
55  
tPD  
[24]  
tABE  
Write Cycle  
tWC  
Write Cycle Time  
55  
45  
45  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[24]  
CE LOW to Write End  
tSCE  
tAW  
Address Valid to Write End  
Address Hold From Write End  
Address Setup to Write Start  
Write Pulse Width  
tHA  
[24]  
0
tSA  
tPWE  
tSD  
40  
30  
0
Data Setup to Write End  
Data Hold From Write End  
R/W LOW to High Z  
tHD  
[26, 27]  
25  
tHZWE  
[26, 27]  
R/W HIGH to Low Z  
0
tLZWE  
[28]  
Write Pulse to Data Delay  
Write Data Valid to Read Data Valid  
80  
80  
tWDD  
[28]  
tDDD  
Busy Timing[29]  
tBLA  
tBHA  
tBLC  
tBHC  
BUSY LOW from Address Match  
BUSY HIGH from Address Mismatch  
BUSY LOW from CE LOW  
45  
45  
45  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY HIGH from CE HIGH  
Port Setup for Priority  
[30]  
5
0
tPS  
tWB  
tWH  
R/W HIGH after BUSY (Slave)  
R/W HIGH after BUSY HIGH (Slave)  
BUSY HIGH to Data Valid  
35  
[31]  
40  
tBDD  
Document #: 001-00217 Rev. *F  
Page 14 of 24  
[+] Feedback  
CYDM064B16, CYDM128B16, CYDM256B16  
Switching Characteristics for V  
Over the Operating Range  
= 2.5V (continued)  
CC  
CYDM256B16, CYDM128B16, CYDM064B16  
-55  
Parameter  
Description  
Unit  
Min  
Max  
Interrupt Timing[29]  
tINS  
tINR  
Semaphore Timing  
INT Set Time  
45  
45  
ns  
ns  
INT Reset Time  
tSOP  
tSWRD  
tSPS  
SEM Flag Update Pulse (OE or SEM)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
SEM Address Access Time  
15  
10  
10  
ns  
ns  
ns  
ns  
tSAA  
55  
Switching Characteristics for V = 3.0V  
CC  
Over the Operating Range  
CYDM256B16, CYDM128B16, CYDM064B16  
-55  
Parameter  
Description  
Unit  
Min  
55  
5
Max  
Read Cycle  
tRC  
Read Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAA  
Address to Data Valid  
Output Hold From Address Change  
CE LOW to Data Valid  
OE LOW to Data Valid  
OE Low to Low Z  
55  
tOHA  
tACE  
tDOE  
[24]  
55  
30  
[25, 26, 27]  
1
1
0
tLZOE  
[25, 26, 27]  
OE HIGH to High Z  
25  
25  
tHZOE  
[25, 26, 27]  
CE LOW to Low Z  
tLZCE  
[25, 26, 27]  
CE HIGH to High Z  
tHZCE  
[27]  
CE LOW to Power up  
CE HIGH to Power down  
Byte Enable Access Time  
tPU  
[27]  
55  
55  
tPD  
[24]  
tABE  
Write Cycle  
tWC  
Write Cycle Time  
55  
45  
45  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[24]  
CE LOW to Write End  
Address Valid to Write End  
Address Hold From Write End  
Address Setup to Write Start  
Write Pulse Width  
tSCE  
tAW  
tHA  
[24]  
0
tSA  
tPWE  
tSD  
40  
30  
0
Data Setup to Write End  
Data Hold From Write End  
tHD  
Document #: 001-00217 Rev. *F  
Page 15 of 24  
[+] Feedback  
CYDM064B16, CYDM128B16, CYDM256B16  
Switching Characteristics for V  
Over the Operating Range  
= 3.0V (continued)  
CC  
CYDM256B16, CYDM128B16, CYDM064B16  
-55  
Parameter  
Description  
Unit  
Min  
Max  
[26, 27]  
R/W LOW to High Z  
25  
ns  
ns  
ns  
ns  
tHZWE  
[26, 27]  
R/W HIGH to Low Z  
0
tLZWE  
[28]  
Write Pulse to Data Delay  
Write Data Valid to Read Data Valid  
80  
80  
tWDD  
[28]  
tDDD  
Busy Timing[29]  
tBLA  
tBHA  
tBLC  
tBHC  
BUSY LOW from Address Match  
BUSY HIGH from Address Mismatch  
BUSY LOW from CE LOW  
45  
45  
45  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY HIGH from CE HIGH  
Port Setup for Priority  
[30]  
5
0
tPS  
tWB  
tWH  
R/W HIGH after BUSY (Slave)  
R/W HIGH after BUSY HIGH (Slave)  
BUSY HIGH to Data Valid  
35  
[31]  
40  
tBDD  
Interrupt Timing[29]  
tINS  
INT Set Time  
45  
45  
ns  
ns  
tINR  
INT Reset Time  
Semaphore Timing  
tSOP  
tSWRD  
tSPS  
SEM Flag Update Pulse (OE or SEM)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
SEM Address Access Time  
15  
10  
10  
ns  
ns  
ns  
ns  
tSAA  
55  
Document #: 001-00217 Rev. *F  
Page 16 of 24  
[+] Feedback  
CYDM064B16, CYDM128B16, CYDM256B16  
Switching Waveforms  
Figure 2. Read Cycle No.1 (Either Port Address Access) [32, 33, 34]  
t
RC  
ADDRESS  
t
AA  
t
t
OHA  
OHA  
DATA OUT  
PREVIOUS DATAVALID  
DATA VALID  
Figure 3. Read Cycle No.2 (Either Port CE/OE Access) [32, 35, 36]  
t
ACE  
CE and  
LB or UB  
t
HZCE  
t
DOE  
OE  
t
HZOE  
t
LZOE  
DATA VALID  
DATA OUT  
ICC  
t
LZCE  
t
PU  
t
PD  
CURRENT  
ISB  
Figure 4. Read Cycle No. 3 (Either Port) [32, 34, 37, 38]  
t
RC  
ADDRESS  
UB or LB  
t
AA  
t
OHA  
t
t
HZCE  
t
t
LZCE  
t
ABE  
CE  
HZCE  
t
ACE  
LZCE  
DATA OUT  
Notes  
32. R/W is HIGH for read cycles.  
33. Device is continuously selected CE = V and UB or LB = V . This waveform cannot be used for semaphore reads.  
IL  
IL  
34. OE = V  
.
IL  
35. Address valid before or coincident with CE transition LOW.  
36. To access RAM, CE = V , UB or LB = V , SEM = V . To access semaphore, CE = V , SEM = V .  
IL  
IL  
IL  
IH  
IH  
37. R/W must be HIGH during all address transitions.  
38. A write occurs during the overlap (t or t ) of a LOW CE or SEM and a LOW UB or LB.  
SCE  
PWE  
Document #: 001-00217 Rev. *F  
Page 17 of 24  
[+] Feedback  
CYDM064B16, CYDM128B16, CYDM256B16  
Switching Waveforms (continued)  
Figure 5. Write Cycle No.1: R/W Controlled Timing [37, 38, 39, 40, 41, 42]  
t
WC  
ADDRESS  
OE  
[43]  
t
HZOE  
t
AW  
[41, 42]  
CE  
[40]  
PWE  
t
t
t
HA  
SA  
R/W  
DATA OUT  
DATA IN  
[43]  
HZWE  
t
t
LZWE  
NOTE 44  
NOTE 44  
t
t
HD  
SD  
Figure 6. Write Cycle No. 2: CE Controlled Timing [37, 38, 39, 44]  
t
WC  
ADDRESS  
t
AW  
[41, 42]  
CE  
t
t
t
HA  
SA  
SCE  
R/W  
t
t
HD  
SD  
DATA IN  
Notes  
39. t is measured from the earlier of CE or R/W or (SEM or R/W) going HIGH at the end of write cycle.  
HA  
40. If OE is LOW during a R/W controlled write cycle, the write pulse width must be the larger of t  
or (t  
+ t ) to allow the IO drivers to turn off and data to be  
PWE  
HZWE SD  
placed on the bus for the required t . If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the  
SD  
specified t  
.
PWE  
41. To access RAM, CE = V , SEM = V  
.
IH  
IL  
42. To access upper byte, CE = V , UB = V , SEM = V .  
IH  
IL  
IL  
To access lower byte, CE = V , LB = V , SEM = V .  
IH  
IL  
IL  
43. Transition is measured ±0 mV from steady state with a 5 pF load (including scope and jig). This parameter is sampled and not 100% tested.  
44. During this period, the IO pins are in the output state, and input signals must not be applied.  
Document #: 001-00217 Rev. *F  
Page 18 of 24  
[+] Feedback  
CYDM064B16, CYDM128B16, CYDM256B16  
Switching Waveforms (continued)  
Figure 7. Semaphore Read After Write Timing (Either Side) [45, 46]  
t
t
OHA  
SAA  
A0–A2  
VALID ADRESS  
VALID ADRESS  
t
AW  
t
ACE  
t
HA  
SEM  
t
t
SOP  
SCE  
t
SD  
IO0  
DATAIN VALID  
DATAOUT VALID  
t
HD  
t
t
PWE  
SA  
R/W  
OE  
t
t
DOE  
SWRD  
t
SOP  
WRITE CYCLE  
READ CYCLE  
Figure 8. Timing Diagram of Semaphore Contention [47, 48]  
A0L–A2L  
MATCH  
R/WL  
SEML  
t
SPS  
A0R–A2R  
MATCH  
R/WR  
SEMR  
Notes  
45. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the high impedance state.  
46. CE = HIGH for the duration of the above timing (both write and read cycle).  
47. IO = IO = LOW (request semaphore); CE = CE = HIGH.  
0R  
0L  
R
L
48. If t  
is violated, the semaphore is definitely obtained by one side or the other, but the side that gets the semaphore cannot be predicted.  
SPS  
Document #: 001-00217 Rev. *F  
Page 19 of 24  
[+] Feedback  
CYDM064B16, CYDM128B16, CYDM256B16  
Switching Waveforms (continued)  
Figure 9. Timing Diagram of Read with BUSY (M/S = HIGH) [49]  
t
WC  
ADDRESSR  
R/WR  
MATCH  
t
PWE  
t
t
HD  
SD  
DATA INR  
VALID  
t
PS  
ADDRESSL  
MATCH  
t
BLA  
t
BHA  
BUSYL  
t
BDD  
t
DDD  
DATAOUTL  
VALID  
t
WDD  
Figure 10. Write Timing with Busy Input (M/S = LOW)  
t
PWE  
R/W  
t
t
WH  
WB  
BUSY  
Note  
49. CE = CE = LOW.  
L
R
Document #: 001-00217 Rev. *F  
Page 20 of 24  
[+] Feedback  
CYDM064B16, CYDM128B16, CYDM256B16  
Switching Waveforms (continued)  
Figure 11. Busy Timing Diagram No.1 (CE Arbitration)  
CEL Valid First[50]  
ADDRESSL,R  
ADDRESS MATCH  
CEL  
CER  
t
PS  
t
t
BHC  
BLC  
BUSYR  
CER Valid First  
ADDRESSL,R  
ADDRESS MATCH  
CER  
CEL  
t
PS  
t
t
BHC  
BLC  
BUSYL  
Figure 12. Busy Timing Diagram No.2 (Address Arbitration) [50]  
Left Address Valid First  
t
or t  
WC  
RC  
ADDRESSL  
ADDRESS MATCH  
ADDRESS MISMATCH  
t
PS  
ADDRESSR  
t
t
BHA  
BLA  
BUSYR  
Right Address Valid First  
t
or t  
WC  
RC  
ADDRESSR  
ADDRESS MATCH  
ADDRESS MISMATCH  
t
PS  
ADDRESSL  
BUSYL  
t
t
BHA  
BLA  
Note  
50. If t is violated, the busy signal is asserted on one side or the other, but there is no guarantee to which side BUSY iS asserted.  
PS  
Document #: 001-00217 Rev. *F  
Page 21 of 24  
[+] Feedback  
CYDM064B16, CYDM128B16, CYDM256B16  
Switching Waveforms (continued)  
Figure 13. Interrupt Timing Diagrams  
Left Side Sets INTR  
t
WC  
ADDRESSL  
CEL  
WRITE 1FFF (OR 1/3FFF)  
[51]  
t
HA  
R/WL  
INTR  
[52]  
t
INS  
Right Side Clears INTR  
t
RC  
READ 1FFF  
(OR 1/3FFF)  
ADDRESSR  
CER  
[52]  
t
INR  
R/WR  
OER  
INTR  
Right Side Sets INTL  
t
WC  
ADDRESSR  
CER  
WRITE 1FFE (OR 1/3FFE)  
[51]  
HA  
t
R/WR  
INTL  
[52]  
INS  
t
Left Side Clears INTL  
t
RC  
READ 1FFE  
OR 1/3FFE)  
ADDRESSL  
CEL  
[52]  
INR  
t
R/WL  
OEL  
INTL  
Notes  
51. t depends on which enable pin (CE or R/W ) is deasserted first.  
HA  
L
L
52. t  
or t  
depends on which enable pin (CE or R/W ) is asserted last.  
INS  
INR L L  
Document #: 001-00217 Rev. *F  
Page 22 of 24  
[+] Feedback  
CYDM064B16, CYDM128B16, CYDM256B16  
Ordering Information  
Table 7. 16K x16 1.8V Asynchronous Dual-Port SRAM  
Speed (ns)  
Ordering Code  
CYDM256B16-55BVXC  
CYDM256B16-55BVXI  
Package Name  
BZ100  
Package Type  
Operating Range  
Commercial  
55  
55  
100-ball Pb-free 0.5 mm Pitch BGA  
100-ball Pb-free 0.5 mm Pitch BGA  
BZ100  
Industrial  
Table 8. 8K x16 1.8V Asynchronous Dual-Port SRAM  
Speed (ns)  
Ordering Code  
CYDM128B16-55BVXC  
CYDM128B16-55BVXI  
Package Name  
BZ100  
Package Type  
Operating Range  
Commercial  
55  
55  
100-ball Pb-free 0.5 mm Pitch BGA  
100-ball Pb-free 0.5 mm Pitch BGA  
BZ100  
Industrial  
Table 9. 4K x16 1.8V Asynchronous Dual-Port SRAM  
Speed (ns)  
Ordering Code  
CYDM064B16-55BVXC  
CYDM064B16-55BVXI  
Package Name  
BZ100  
Package Type  
Operating Range  
Commercial  
55  
55  
100-ball Pb-free 0.5 mm Pitch BGA  
100-ball Pb-free 0.5 mm Pitch BGA  
BZ100  
Industrial  
Package Diagram  
Figure 14. 100 VFBGA (6 x 6 x 1.0 mm) BZ100A  
"/44/- 6)%7  
!ꢀ #/2.%2  
4/0 6)%7  
Œꢁꢂꢁꢃ - #  
Œꢁꢂꢀꢃ - # ! "  
!ꢀ #/2.%2  
Œꢁꢂꢄꢁ¼ꢁꢂꢁꢃꢅꢀꢁꢁ8ꢆ  
ꢈ ꢄ ꢇ ꢃ ꢊ ꢎ ꢉ ꢌ ꢀꢁ  
ꢀꢁ  
ꢎ ꢊ ꢃ ꢇ ꢄ ꢈ ꢀ  
!
!
"
#
$
%
"
#
$
%
&
&
'
'
(
(
*
*
+
+
ꢈꢂꢈꢃ  
!
!
ꢁꢂꢃꢁ  
ꢇꢂꢃꢁ  
"
ꢊꢂꢁꢁ¼ꢁꢂꢀꢁ  
"
ꢊꢂꢁꢁ¼ꢁꢂꢀꢁ  
ꢁꢂꢀꢃꢅꢇ8ꢆ  
2%&%2%.#% *%$%# -/ꢋꢀꢌꢃ#  
0+'7%)'(44"$ ꢅ.%7 0+'ꢂꢆ  
3%!4).' 0,!.%  
#
51-85209 *B  
Document #: 001-00217 Rev. *F  
Page 23 of 24  
[+] Feedback  
CYDM064B16, CYDM128B16, CYDM256B16  
Document History Page  
DocumentTitle:CYDM064B16, CYDM128B16, CYDM256B161.8V4K/8K/16Kx16and8K/16Kx8MoBL® Dual-PortStaticRAM  
Document Number: 001-00217  
Orig. of  
Change  
Submission  
Date  
REV.  
ECN NO.  
Description of Change  
**  
369423  
381721  
YDT  
YDT  
New data sheet  
*A  
Updated 2.5V/3.0V ICC, ISB1, ISB2, ISB4  
Updated VOL ODR to 0.2V  
*B  
*C  
396697  
404777  
KGH  
KGH  
Updated ISB2 and ISB4 typo to mA.  
Updated tINS and tINR for -55 to 31ns.  
Updated IOH and IOL values for the 1.8V, 2.5V and 3.0V parameters VOH and  
VOL  
Replaced -35 speed bin with -40  
Updated Switching Characteristics for VCC = 2.5V and VCC = 3.0V  
Included note 35  
*D  
*E  
426637  
733676  
KGH  
HKH  
Removed part numbers CYDM128B08 and CYDM064B08  
Corrected typo for power supply description in page 4 (3.0V instead of 3.3V)  
Updated tDDD timing value to be consistent with tWDD  
*F  
2545957 OGC/AESA 07/31/2008 Removed all details of -40ns parts. Updated data sheet template.  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at cypress.com/sales.  
Products  
PSoC  
PSoC Solutions  
General  
psoc.cypress.com  
clocks.cypress.com  
wireless.cypress.com  
memory.cypress.com  
image.cypress.com  
psoc.cypress.com/solutions  
psoc.cypress.com/low-power  
psoc.cypress.com/precision-analog  
psoc.cypress.com/lcd-drive  
psoc.cypress.com/can  
Clocks & Buffers  
Wireless  
Low Power/Low Voltage  
Precision Analog  
LCD Drive  
Memories  
Image Sensors  
CAN 2.0b  
USB  
psoc.cypress.com/usb  
© Cypress Semiconductor Corporation, 2005-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document #: 001-00217 Rev. *F  
Revised July 31, 2008  
Page 24 of 24  
MoBL is a registered trademark of Cypress Semiconductor Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.  
[+] Feedback  

相关型号:

CYDM128B16-55BVXI

1.8V 4K/8K/16K x 16 and 8K/16K x 8 MoBL Dual-Port Static RAM
CYPRESS

CYDM128B16-55BVXI

8KX16 DUAL-PORT SRAM, 55ns, PBGA100, 6 X 6 MM, 1 MM HEIGHT, 0.50 MM PITCH, LEAD FREE, MO-195C, VFBGA-100
ROCHESTER
CYPRESS

CYDM256A16

1.8V 4K/8K/16K x 16 and 8K/16K x 8 MoBL㈢ Dual-Port Static RAM
CYPRESS

CYDM256A16-35BVXC

1.8V 4K/8K/16K x 16 and 8K/16K x 8 MoBL㈢ Dual-Port Static RAM
CYPRESS

CYDM256A16-55BVXC

1.8V 4K/8K/16K x 16 and 8K/16K x 8 MoBL㈢ Dual-Port Static RAM
CYPRESS

CYDM256A16-55BVXI

1.8V 4K/8K/16K x 16 and 8K/16K x 8 MoBL㈢ Dual-Port Static RAM
CYPRESS

CYDM256B16

1.8V 4K/8K/16K x 16 MoBL㈢ Dual-Port Static RAM
CYPRESS

CYDM256B16-40BVXC

Dual-Port SRAM, 16KX16, 40ns, CMOS, PBGA100, 6 X 6 MM, 1 MM HEIGHT, 0.50 MM PITCH, LEAD FREE, MO-195C, VFBGA-100
CYPRESS

CYDM256B16-55BVXC

1.8V 4K/8K/16K x 16 and 8K/16K x 8 MoBL Dual-Port Static RAM
CYPRESS

CYDM256B16-55BVXC

16KX16 DUAL-PORT SRAM, 55ns, PBGA100, 6 X 6 MM, 1 MM HEIGHT, 0.50 MM PITCH, LEAD FREE, MO-195C, VFBGA-100
ROCHESTER

CYDM256B16-55BVXI

1.8V 4K/8K/16K x 16 and 8K/16K x 8 MoBL Dual-Port Static RAM
CYPRESS