CYUSB3014-FBXCT [CYPRESS]

EZ-USB® FX3: SuperSpeed USB Controller; EZ - USB® FX3 :超高速USB控制器
CYUSB3014-FBXCT
型号: CYUSB3014-FBXCT
厂家: CYPRESS    CYPRESS
描述:

EZ-USB® FX3: SuperSpeed USB Controller
EZ - USB® FX3 :超高速USB控制器

控制器
文件: 总45页 (文件大小:568K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CYUSB301X  
EZ-USB® FX3: SuperSpeed USB Controller  
Ultra low-power in core power-down mode  
Less than 60 µA with VBATT on and 20 µA with VBATT off  
Features  
Universal serial bus (USB) integration  
USB 3.0 and USB 2.0 peripherals compliant with USB 3.0  
specification 1.0  
5-Gbps USB 3.0 PHY compliant with PIPE 3.0  
High-speed On-The-Go (HS-OTG) host and peripheral  
compliant with OTG Supplement Version 2.0  
Thirty-two physical endpoints  
Support for battery charging Spec 1.1 and accessory charger  
adaptor (ACA) detection  
Independent power domains for core and I/O  
Core operation at 1.2 V  
I2S, UART, and SPI operation at 1.8 to 3.3 V  
I2C operation at 1.2 V  
Package option  
121-ball, 10- × 10-mm, 0.8-mm pitch Pb-free ball grid array  
(BGA)  
131-ball, 4.7- × 5.1-mm, 0.4-mm pitch wafer-level chip scale  
package (WLCSP)  
EZ-USB® software and development kit (DVK) for easy code  
development  
General Programmable Interface (GPIF™ II)  
Programmable 100-MHz GPIF II enables connectivity to a  
wide range of external devices  
8-, 16-, and 32-bit data bus  
As many as16 configurable control signals  
Applications  
Fully accessible 32-bit CPU  
ARM926EJ core with 200-MHz operation  
512-KB or 256-KB embedded SRAM  
Digital video camcorders  
Digital still cameras  
Printers  
Additional connectivity to the following peripherals  
I2C master controller at 1 MHz  
Scanners  
I2S master (transmitter only) at sampling frequencies of  
Video capture cards  
Test and measurement equipment  
Surveillance cameras  
Personal navigation devices  
Medical imaging devices  
Video IP phones  
32 kHz, 44.1 kHz, and 48 kHz  
UART support of up to 4 Mbps  
SPI master at 33 MHz  
Selectable clock input frequencies  
19.2, 26, 38.4, and 52 MHz  
19.2-MHz crystal input support  
Portable media players  
Industrial cameras  
Cypress Semiconductor Corporation  
Document Number: 001-52136 Rev. *N  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised May 31, 2013  
CYUSB301X  
Logic Block Diagram  
FSLC[0]  
FSLC[1]  
FSLC[2]  
CLKIN  
JTAG  
CLKIN_32  
XTALIN  
Embedded  
SRAm  
(512kB/  
256KB)  
ARM926EJ -S  
XTALOUT  
HS/FS/LS  
OTG Host  
OTG_ID  
DQ[31:0]/  
DQ[15:0]  
SSRX -  
SSRX +  
SSTX -  
SSTX +  
SS  
Peripheral  
CTL[12:0]  
32  
EPs  
PMODE[2:0  
]
GPIF™ II  
HS/FS  
Peripheral  
D+  
D-  
INT#  
RESET #  
EZ-Dtect™  
UART  
SPI  
I2S  
I2C  
Document Number: 001-52136 Rev. *N  
Page 2 of 45  
CYUSB301X  
Contents  
Functional Overview ..........................................................4  
Pin Description .................................................................15  
Absolute Maximum Ratings ............................................22  
Operating Conditions .......................................................22  
DC Specifications .............................................................22  
Application Examples ....................................................4  
USB Interface ......................................................................5  
OTG ...............................................................................5  
ReNumeration ...............................................................6  
EZ-Dtect ........................................................................6  
VBUS Overvoltage Protection .......................................6  
Carkit UART Mode ........................................................6  
AC Timing Parameters .....................................................24  
GPIF II Timing .............................................................24  
Slave FIFO Interface ...................................................27  
Synchronous Slave FIFO  
Write Sequence Description ...............................................28  
Asynchronous Slave FIFO  
Read Sequence Description ...............................................29  
Asynchronous Slave FIFO  
Write Sequence Description ...............................................30  
Serial Peripherals Timing ............................................33  
GPIF II ..................................................................................7  
CPU ......................................................................................7  
JTAG Interface ....................................................................8  
Other Interfaces ..................................................................8  
UART Interface ..............................................................8  
I2C Interface ..................................................................8  
I2S Interface ..................................................................8  
SPI Interface ..................................................................8  
Reset Sequence ................................................................38  
Package Diagram ..............................................................39  
Boot Options .......................................................................9  
Ordering Information ........................................................41  
Reset ....................................................................................9  
Hard Reset ....................................................................9  
Soft Reset ......................................................................9  
Ordering Code Definitions ...........................................41  
Acronyms ..........................................................................42  
Document Conventions ...................................................42  
Clocking ..............................................................................9  
Units of Measure .........................................................42  
32-kHz Watchdog Timer Clock Input ...........................10  
Document History Page ...................................................43  
Power .................................................................................10  
Sales, Solutions, and Legal Information ........................45  
Worldwide Sales and Design Support .........................45  
Products ......................................................................45  
PSoC Solutions ...........................................................45  
Power Modes ..............................................................10  
Configuration Options .....................................................13  
Digital I/Os .........................................................................13  
GPIOs .................................................................................13  
System-level ESD .............................................................13  
Pin Configurations ...........................................................13  
Document Number: 001-52136 Rev. *N  
Page 3 of 45  
CYUSB301X  
FX3 contains 512 KB or 256 KB of on-chip SRAM (see Ordering  
Information on page 41) for code and data. EZ-USB FX3 also  
provides interfaces to connect to serial peripherals such as  
UART, SPI, I2C, and I2S.  
Functional Overview  
Cypress’s EZ-USB FX3 is the next-generation USB 3.0  
peripheral controller, providing integrated and flexible features.  
FX3 comes with application development tools. The software  
development kit comes with application examples for  
accelerating time to market.  
FX3 has a fully configurable, parallel, general programmable  
interface called GPIF II, which can connect to any processor,  
ASIC, or FPGA. GPIF II is an enhanced version of the GPIF in  
FX2LP, Cypress’s flagship USB 2.0 product. It provides easy and  
glueless connectivity to popular interfaces, such as  
asynchronous SRAM, asynchronous and synchronous address  
data multiplexed interfaces, and parallel ATA.  
FX3 complies with the USB 3.0 v1.0 specification and is also  
backward compatible with USB 2.0. It also complies with the  
Battery Charging Specification v1.1 and USB 2.0 OTG  
Specification v2.0.  
FX3 has integrated the USB 3.0 and USB 2.0 physical layers  
(PHYs) along with a 32-bit ARM926EJ-S microprocessor for  
powerful data processing and for building custom applications. It  
implements an architecture that enables 375-MBps data transfer  
from GPIF II to the USB interface.  
Application Examples  
In a typical application (see Figure 1), FX3 functions as a copro-  
cessor and connects to an external processor, which manages  
system-level functions. Figure 2 shows a typical application  
diagram when FX3 functions as the main processor.  
An integrated USB 2.0 OTG controller enables applications in  
which FX3 may serve dual roles; for example, EZ-USB FX3 may  
function as an OTG Host to MSC as well as HID-class devices.  
Figure 1. EZ-USB FX3 as a Coprocessor  
Power  
Subsystem  
*
Crystal  
External Processor  
(Example: MCU/CPU/  
EZ- USB FX3  
(ARM9 Core)  
USB  
Port  
GPIF II  
USB Host  
ASIC/FPGA)  
Serial Interfaces  
( example:I2C)  
External Serial Peripheral  
(Example::  
*
A clock input may be provided on the  
CLKIN pin instead of a crystal input  
)
EEPROM  
Note  
1. Assuming that GPIF II is configured for a 32-bit data bus (available with certain part numbers; see Ordering Information on page 41), synchronous interface operating  
at 100 MHz. This number also includes protocol overheads.  
Document Number: 001-52136 Rev. *N  
Page 4 of 45  
CYUSB301X  
Figure 2. EZ-USB FX3 as Main Processor  
*
Crystal  
External Slave Device  
(Example: Image sensor)  
EZ-USB FX3  
(ARM9 Core)  
USB  
Port  
GPIF II  
USB Host  
I2C  
*
A clock input may be provided on the  
CLKIN pin instead of a crystal input  
EEPROM  
Figure 3. USB Interface Signals  
USB Interface  
EZ-USB FX3  
FX3 complies with the following specifications and supports the  
following features:  
VBATT  
Supports USB peripheral functionality compliant with USB 3.0  
Specification Revision 1.0 and is also backward compatible  
with the USB 2.0 Specification.  
VBUS  
OTG_ID  
SSRX-  
SSRX+  
SSTX-  
SSTX+  
D-  
Complies with OTG Supplement Revision 2.0. It supports  
High-Speed, Full-Speed, andLow-SpeedOTGdual-roledevice  
capability. As a peripheral, FX3 is capable of SuperSpeed,  
High-Speed, and Full-Speed. As a host, it is capable of  
High-Speed, Full-Speed, and Low-Speed.  
D+  
Supports Carkit Pass-Through UART functionality on USB  
D+/D– lines based on the CEA-936A specification.  
OTG  
FX3 is compliant with the OTG Specification Revision 2.0. In  
OTG mode, FX3 supports both A and B device modes and  
supports Control, Interrupt, Bulk, and Isochronous data  
transfers.  
Supports up to 16 IN and 16 OUT endpoints.  
Supports the USB 3.0 Streams feature. It also supports USB  
Attached SCSI (UAS) device-class to optimize mass-storage  
access performance.  
FX3 requires an external charge pump (either standalone or  
integrated into a PMIC) to power VBUS in the OTG A-device  
mode.  
As a USB peripheral, FX3 supports UAS, USB Video Class  
(UVC), Mass Storage Class (MSC), and Media Transfer  
Protocol (MTP) USB peripheral classes. As a USB peripheral,  
all other device classes are supported only in pass-through  
mode when handled entirely by a host processor external to  
the device.  
The Target Peripheral List for OTG host implementation consists  
of MSC- and HID-class devices.  
FX3 does not support Attach Detection Protocol (ADP).  
As an OTG host, FX3 supports MSC and HID device classes.  
Note When the USB port is not in use, disable the PHY and  
transceiver to save power.  
Document Number: 001-52136 Rev. *N  
Page 5 of 45  
CYUSB301X  
OTG Connectivity  
VBUS Overvoltage Protection  
In OTG mode, FX3 can be configured to be an A, B, or dual-role  
device. It can connect to the following:  
The maximum input voltage on FX3's VBUS pin is 6 V. A charger  
can supply up to 9 V on VBUS. In this case, an external  
overvoltage protection (OVP) device is required to protect FX3  
from damage on VBUS. Figure 4 shows the system application  
diagram with an OVP device connected on VBUS. Refer to  
Table 7 for the operating range of VBUS and VBATT.  
ACA device  
Targeted USB peripheral  
SRP-capable USB peripheral  
HNP-capable USB peripheral  
OTG host  
Figure 4. System Diagram with OVP Device For VBUS  
POWER SUBSYSTEM  
HNP-capable host  
OTG device  
ReNumeration  
Because of FX3's soft configuration, one chip can take on the  
identities of multiple distinct USB devices.  
EZ-USB FX3  
When first plugged into USB, FX3 enumerates automatically with  
the Cypress Vendor ID (0x04B4) and downloads firmware and  
USB descriptors over the USB interface. The downloaded  
firmware executes an electrical disconnect and connect. FX3  
enumerates again, this time as a device defined by the  
downloaded information. This patented two-step process, called  
ReNumeration, happens instantly when the device is plugged in.  
VBUS  
OTG_ID  
1
2
OVP device  
SSRX-  
SSRX+  
SSTX-  
SSTX+  
D-  
3
4
5
6
7
8
9
D+  
GND  
EZ-Dtect  
FX3 supports USB Charger and accessory detection (EZ-Dtect).  
The charger detection mechanism complies with the Battery  
Charging Specification Revision 1.1. In addition to supporting  
this version of the specification, FX3 also provides hardware  
support to detect the resistance values on the ID pin.  
Carkit UART Mode  
The USB interface supports the Carkit UART mode (UART over  
D+/D–) for non-USB serial data transfer. This mode is based on  
the CEA-936A specification.  
FX3 can detect the following resistance ranges:  
Less than 10  
In the Carkit UART mode, the output signaling voltage is 3.3 V.  
When configured for the Carkit UART mode, TXD of UART  
(output) is mapped to the D– line, and RXD of UART (input) is  
mapped to the D+ line.  
Less than 1 k  
65 kto 72 k  
35 kto 39 k  
In the Carkit UART mode, FX3 disables the USB transceiver and  
D+ and D– pins serve as pass-through pins to connect to the  
UART of the host processor. The Carkit UART signals may be  
routed to the GPIF II interface or to GPIO[48] and GPIO[49], as  
shown in Figure 5 on page 7.  
99.96 kto 104.4 k(102 k2%)  
119 kto 132 k  
Higher than 220 k  
In this mode, FX3 supports a rate of up to 9600 bps.  
431.2 kto 448.8 k(440 k2%)  
FX3's charger detects a dedicated wall charger, Host/Hub  
charger, and Host/Hub.  
Document Number: 001-52136 Rev. *N  
Page 6 of 45  
CYUSB301X  
Figure 5. Carkit UART Pass-through Block Diagram  
Carkit UART Pass-through  
UART_TXD  
UART_RXD  
TXD  
RXD  
RXD(DP)  
TXD(DM)  
(
)
Carkit UART Pass-through  
Interface on GPIF II  
DP  
USB PHY  
DM  
GPIO[48]  
(UART_TX)  
Carkit UART Pass-through  
Interface on GPIOs  
GPIO[49]  
(UART_RX)  
Note Access to all 32 buffers is also supported over the slave  
FIFO interface. For details, contact Cypress Applications  
Support.  
GPIF II  
The high-performance GPIF II interface enables functionality  
similar to, but more advanced than, FX2LP’s GPIF and Slave  
FIFO interfaces.  
Figure 6. Slave FIFO Interface  
SLCS#  
PKTEND  
FLAGB  
FLAGA  
The GPIF II is a programmable state machine that enables a  
flexible interface that may function either as a master or slave in  
industry-standard or proprietary interfaces. Both parallel and  
serial interfaces may be implemented with GPIF II.  
A[1:0]  
External  
Processor  
D[31:0]  
SLWR#  
SLRD#  
Here are a list of GPIF II features:  
EZ-USB FX3  
Functions as master or slave  
Provides 256 firmware programmable states  
Supports 8-bit, 16-bit, and 32-bit parallel data bus  
Enables interface frequencies up to 100 MHz  
SLOE#  
Note: Multiple Flags may be configured.  
Supports 14 configurable control pins when a 32- bit data bus  
is used. All control pins can be either input/output or bidirec-  
tional.  
CPU  
FX3 has an on-chip 32-bit, 200-MHz ARM926EJ-S core CPU.  
The core has direct access to 16 kB of Instruction Tightly  
Coupled Memory (TCM) and 8 kB of Data TCM. The  
ARM926EJ-S core provides a JTAG interface for firmware  
debugging.  
Supports 16 configurable control pins when a 16/8 data bus is  
used. Allcontrolpins can be either input/outputor bi-directional.  
GPIF II state transitions are based on control input signals. The  
control output signals are driven as a result of the GPIF II state  
transitions. The INT# output signal can be controlled by GPIF II.  
Refer to the GPIFII Designer tool. The GPIF II state machine’s  
behavior is defined by a GPIF II descriptor. The GPIF II  
descriptor is designed such that the required interface specifica-  
tions are met. 8 kB of memory (separate from the 512 kB of  
embedded SRAM) is dedicated to the GPIF II waveform where  
the GPIF II descriptor is stored in a specific format.  
FX3 offers the following advantages:  
Integrates 512 KB of embedded SRAM for code and data and  
8 kB of Instruction cache and Data cache.  
ImplementsefficientandflexibleDMAconnectivitybetweenthe  
various peripherals (such as, USB, GPIF II, I2S, SPI, UART),  
requiring firmware only to configure data accesses between  
peripherals, which are then managed by the DMA fabric.  
Cypress’s GPIFII Designer Tool enables fast development of  
GPIF II descriptors and includes examples for common inter-  
faces.  
Allows easy application development on industry-standard  
development tools for ARM926EJ-S.  
Example implementations of GPIF II are the asynchronous slave  
FIFO and synchronous slave FIFO interfaces.  
Examples of the FX3 firmware are available with the Cypress  
EZ-USB FX3 Development Kit. Software APIs that can be ported  
to an external processor are available with the Cypress EZ-USB  
FX3 Software Development Kit.  
Slave FIFO interface  
The Slave FIFO interface signals are shown in Figure 6. This  
interface allows an external processor to directly access up to  
four buffers internal to FX3. Further details of the Slave FIFO  
interface are described on page 27.  
Document Number: 001-52136 Rev. *N  
Page 7 of 45  
CYUSB301X  
2
I C Interface  
JTAG Interface  
FX3’s I2C interface is compatible with the I2C Bus Specification  
Revision 3. This I2C interface is capable of operating only as I2C  
master; therefore, it may be used to communicate with other I2C  
slave devices. For example, FX3 may boot from an EEPROM  
connected to the I2C interface, as a selectable boot option.  
FX3’s I2C Master Controller also supports multi-master mode  
functionality.  
The power supply for the I2C interface is VIO5, which is a  
separate power domain from the other serial peripherals. This  
gives the I2C interface the flexibility to operate at a different  
voltage than the other serial interfaces.  
The I2C controller supports bus frequencies of 100 kHz,  
400 kHz, and 1 MHz. When VIO5 is 1.2 V, the maximum  
operating frequency supported is 100 kHz. When VIO5 is 1.8 V,  
2.5 V, or 3.3 V, the operating frequencies supported are 400 kHz  
and 1 MHz. The I2C controller supports the clock-stretching  
feature to enable slower devices to exercise flow control.  
FX3’s JTAG interface has a standard five-pin interface to connect  
to a JTAG debugger in order to debug firmware through the  
CPU-core's on-chip-debug circuitry.  
Industry-standard debugging tools for the ARM926EJ-S core  
can be used for the FX3 application development.  
Other Interfaces  
FX3 supports the following serial peripherals:  
UART  
I2C  
I2S  
SPI  
The SPI, UART, and I2S interfaces are multiplexed on the serial  
peripheral port.  
The I2C interface’s SCL and SDA signals require external pull-up  
resistors. The pull-up resistors must be connected to VIO5.  
The CYUSB3012 and CYUSB3014 Pin List (GPIF II with 32-bit  
Data Bus Width) on page 15 shows details of how these inter-  
faces are multiplexed. Note that when GPIF II is configured for a  
32-bit data bus width (CYUSB3012 and CYUSB3014), only the  
UART interface is available on GPIO[53] to GPIO[56].  
2
I S Interface  
FX3 has an I2S port to support external audio codec devices.  
FX3 functions as I2S Master as transmitter only. The I2S interface  
consists of four signals: clock line (I2S_CLK), serial data line  
(I2S_SD), word select line (I2S_WS), and master system clock  
(I2S_MCLK). FX3 can generate the system clock as an output  
on I2S_MCLK or accept an external system clock input on  
I2S_MCLK.  
UART Interface  
The UART interface of FX3 supports full-duplex communication.  
It includes the signals noted in Table 1.  
Table 1. UART Interface Signals  
The sampling frequencies supported by the I2S interface are  
32 kHz, 44.1 kHz, and 48 kHz.  
Signal  
TX  
Description  
Output signal  
Input signal  
Flow control  
Flow control  
RX  
SPI Interface  
CTS  
RTS  
FX3 supports an SPI Master interface on the Serial Peripherals  
port. The maximum operation frequency is 33 MHz.  
The SPI controller supports four modes of SPI communication  
(see SPI Timing Specification on page 36 for details on the  
The UART is capable of generating a range of baud rates, from  
300 bps to 4608 Kbps, selectable by the firmware. If flow control  
is enabled, then FX3's UART only transmits data when the CTS  
input is asserted. In addition to this, FX3’s UART asserts the RTS  
output signal, when it is ready to receive data.  
modes) with the Start-Stop clock. This controller is  
a
single-master controller with a single automated SSN control. It  
supports transaction sizes ranging from 4 bits to 32 bits.  
Document Number: 001-52136 Rev. *N  
Page 8 of 45  
CYUSB301X  
Boot Options  
Clocking  
FX3 can load boot images from various sources, selected by the  
configuration of the PMODE pins. Following are the FX3 boot  
options:  
FX3 allows either a crystal to be connected between the XTALIN  
and XTALOUT pins or an external clock to be connected at the  
CLKIN pin. The XTALIN, XTALOUT, CLKIN, and CLKIN_32 pins  
can be left unconnected if they are not used.  
Boot from USB  
Boot from I2C  
Crystal frequency supported is 19.2 MHz, while the external  
clock frequencies supported are 19.2, 26, 38.4, and 52 MHz.  
Boot from SPI (SPI devices supported are M25P16 (16 Mbit),  
M25P80 (8 Mbit), and M25P40 (4 Mbit)) or their equivalents  
FX3 has an on-chip oscillator circuit that uses an external  
19.2-MHz (±100 ppm) crystal (when the crystal option is used).  
An appropriate load capacitance is required with a crystal. Refer  
to the specification of the crystal used to determine the appro-  
priate load capacitance. The FSLC[2:0] pins must be configured  
appropriately to select the crystal- or clock-frequency option. The  
configuration options are shown in Table 3.  
Boot from GPIF II ASync ADMux mode  
Boot from GPIF II Sync ADMux mode  
Boot from GPIF II ASync SRAM mode  
Clock inputs to FX3 must meet the phase noise and jitter require-  
ments specified in Table 4 on page 10.  
Table 2. FX3 Booting Options  
PMODE[2:0] [2]  
Boot From  
Sync ADMux (16-bit)  
The input clock frequency is independent of the clock and data  
rate of the FX3 core or any of the device interfaces (including  
P-Port and S-Port). The internal PLL applies the appropriate  
clock multiply option depending on the input frequency.  
F00  
F01  
F11  
F0F  
F1F  
1FF  
0F1  
Async ADMux (16-bit)  
USB boot  
Async SRAM (16-bit)  
I2C, On Failure, USB Boot is Enabled  
I2C only  
Table 3. Crystal/Clock Frequency Selection  
Crystal/Clock  
FSLC[2]  
FSLC[1]  
FSLC[0]  
SPI, On Failure, USB Boot is Enabled  
Frequency  
0
1
1
1
1
0
0
0
1
1
0
0
1
0
1
19.2-MHz crystal  
19.2-MHz input CLK  
26-MHz input CLK  
38.4-MHz input CLK  
52-MHz input CLK  
Reset  
Hard Reset  
A hard reset is initiated by asserting the Reset# pin on FX3. The  
specific reset sequence and timing requirements are detailed in  
Figure 19 on page 38 and Table 16 on page 38. All I/Os are  
tristated during a hard reset.  
Soft Reset  
In a soft reset, the processor sets the appropriate bits in the  
PP_INIT control register. There are two types of Soft Reset:  
CPU Reset – The CPU Program Counter is reset. Firmware  
does not need to be reloaded following a CPU Reset.  
Whole Device Reset – This reset is identical to Hard Reset.  
The firmware must be reloaded following a Whole Device  
Reset.  
Note  
2. F indicates Floating.  
Document Number: 001-52136 Rev. *N  
Page 9 of 45  
CYUSB301X  
Table 4. FX3 Input Clock Specifications  
Parameter  
Specification  
Description  
Units  
Min  
Max  
–75  
–104  
–120  
–128  
–130  
150  
70  
Phase noise  
100-Hz offset  
1- kHz offset  
dB  
dB  
dB  
dB  
dB  
ppm  
%
10-kHz offset  
100-kHz offset  
1-MHz offset  
Maximum frequency deviation  
Duty cycle  
30  
Overshoot  
3
%
Undershoot  
–3  
%
Rise time/fall time  
3
ns  
CVDDQ: Clock  
32-kHz Watchdog Timer Clock Input  
VDD: This is the supply voltage for the logic core. The nominal  
supply-voltage level is 1.2 V. This supplies the core logic  
circuits. The same supply must also be used for the following:  
• AVDD: This is the 1.2-V supply for the PLL, crystal oscilla-  
tor, and other core analog circuits  
U3TXVDDQ/U3RXVDDQ: These are the 1.2-V supply volt-  
ages for the USB 3.0 interface.  
FX3 includes a watchdog timer. The watchdog timer can be used  
to interrupt the ARM926EJ-S core, automatically wake up the  
FX3 in Standby mode, and reset the ARM926EJ-S core. The  
watchdog timer runs a 32-kHz clock, which may be optionally  
supplied from an external source on a dedicated FX3 pin.  
The firmware can disable the watchdog timer.  
Requirements for the optional 32-kHz clock input are listed in  
Table 5.  
VBATT/VBUS: This is the 3.2-V to 6-V battery power supply  
for the USB I/O and analog circuits. This supply powers the  
USB transceiver through FX3's internal voltage regulator.  
VBATT is internally regulated to 3.3 V.  
Table 5. 32-kHz Clock Input Requirements  
Parameter  
Duty cycle  
Min  
40  
Max  
60  
Units  
%
Power Modes  
Frequency deviation  
Rise time/fall time  
±200  
200  
ppm  
ns  
FX3 supports the following power modes:  
Normal mode: This is the full-functional operating mode. The  
internal CPU clock and the internal PLLs are enabled in this  
mode.  
Normal operating power consumption does not exceed the  
sum of ICC Core max and ICC USB max (see Table 7 for  
current consumption specifications).  
Power  
FX3 has the following power supply domains:  
IO_VDDQ: This is a group of independent supply domains for  
digitalI/Os.Thevoltagelevelonthesesuppliesis1.8 Vto3.3 V.  
FX3 provides six independent supply domains for digital I/Os  
listed as follows (see Table 7 for details on each of the power  
domain signals):  
VIO1: GPIF II I/O  
VIO2: IO2  
The I/O power supplies VIO2, VIO3, VIO4, and VIO5 can be  
turned off when the corresponding interface is not in use.  
VIO1 cannot be turned off at any time if the GPIF II interface  
is used in the application.  
Low-power modes (see Table 6 on page 11):  
Suspend mode with USB 3.0 PHY enabled (L1)  
Suspend mode with USB 3.0 PHY disabled (L2)  
Standby mode (L3)  
VIO3: IO3  
VIO4: UART-/SPI/I2S  
VIO5: I2C and JTAG (supports 1.2 V to 3.3 V)  
Core power-down mode (L4)  
Document Number: 001-52136 Rev. *N  
Page 10 of 45  
CYUSB301X  
Table 6. Entry and Exit Methods for Low-Power Modes  
Low-Power Mode Characteristics  
Suspend Mode with Thepowerconsumptioninthismodedoes Firmware executing on  
Methods of Entry  
Methods of Exit  
D+ transitioning to low  
or high  
USB 3.0 PHY  
Enabled (L1)  
not exceed ISB1  
ARM926EJ-S core can put FX3 into  
suspend mode. For example, on  
USB suspend condition, firmware  
may decide to put FX3 into suspend  
mode  
USB3.0PHYisenabledandisinU3mode  
(one of the suspend modes defined by the  
USB 3.0 specification). This one block  
alone is operational with its internal clock  
while all other clocks are shut down  
D- transitioning to low  
or high  
Impedance change on  
OTG_ID pin  
External Processor, through the use  
of mailbox registers, can put FX3 into  
suspend mode  
Resume condition on  
SSRX±  
All I/Os maintain their previous state  
Power supply for the wakeup source and  
core power must be retained. All other  
power domains can be turned on/off  
individually  
Detection of VBUS  
Level detect on  
UART_CTS (program-  
mable polarity)  
The states of the configuration registers,  
buffer memory, and all internal RAM are  
maintained  
GPIF II interface  
assertion of CTL[0]  
All transactions must be completed before  
FX3 enters Suspend mode (state of  
outstanding transactions are not  
preserved)  
Assertion of RESET#  
The firmware resumes operation from  
where it was suspended (except when  
woken up by RESET# assertion) because  
the program counter does not reset  
Suspend Mode with Thepowerconsumptioninthismodedoes Firmware executing on  
D+ transitioning to low  
or high  
USB 3.0 PHY  
Disabled (L2)  
not exceed ISB2  
ARM926EJ-S core can put FX3 into  
suspend mode. For example, on  
USB suspend condition, firmware  
may decide to put FX3 into suspend  
mode  
USB 3.0 PHY is disabled and the USB  
D- transitioning to low  
or high  
interface is in suspend mode  
The clocks are shut off. The PLLs are  
Impedance change on  
disabled  
OTG_ID pin  
External Processor, through the use  
of mailbox registers can put FX3 into  
suspend mode  
All I/Os maintain their previous state  
Resume condition on  
SSRX±  
USB interface maintains the previous  
state  
Detection of VBUS  
Power supply for the wakeup source and  
core power must be retained. All other  
power domains can be turned on/off  
individually  
Level detect on  
UART_CTS  
(programmable  
polarity)  
The states of the configuration registers,  
buffer memory and all internal RAM are  
maintained  
GPIF II interface  
assertion of CTL[0]  
Assertion of RESET#  
All transactions must be completed before  
FX3 enters Suspend mode (state of  
outstanding transactions are not  
preserved)  
The firmware resumes operation from  
where it was suspended (except when  
woken up by RESET# assertion) because  
the program counter does not reset  
Document Number: 001-52136 Rev. *N  
Page 11 of 45  
CYUSB301X  
Table 6. Entry and Exit Methods for Low-Power Modes (continued)  
Low-Power Mode Characteristics  
Standby Mode (L3) Thepowerconsumptioninthismodedoes Firmware executing on  
Methods of Entry  
Methods of Exit  
Detection of VBUS  
not exceed ISB3  
ARM926EJ-S core or external  
processorconfigurestheappropriate  
register  
Level detect on  
UART_CTS  
(Programmable  
Polarity)  
All configuration register settings and  
program/data RAM contents are  
preserved. However, data in the buffers or  
other parts of the data path, if any, is not  
guaranteed. Therefore, the external  
processor should take care that the data  
needed is read before putting FX3 into this  
Standby Mode  
GPIF II interface  
assertion of CTL[0]  
Assertion of RESET#  
The program counter is reset after waking  
up from Standby  
GPIO pins maintain their configuration  
Crystal oscillator is turned off  
Internal PLL is turned off  
USB transceiver is turned off  
ARM926EJ-S core is powered down.  
Upon wakeup, the core re-starts and runs  
the program stored in the program/data  
RAM  
Power supply for the wakeup source and  
core power must be retained. All other  
power domains can be turned on/off  
individually  
Core Power Down Thepowerconsumptioninthismodedoes Turn off VDD  
Reapply VDD  
Mode (L4)  
not exceed ISB4  
Assertion of RESET#  
Core power is turned off  
All buffer memory, configuration registers,  
and the program RAM do not maintain  
state. After exiting this mode, reload the  
firmware  
In this mode, all other power domains can  
be turned on/off individually  
Document Number: 001-52136 Rev. *N  
Page 12 of 45  
CYUSB301X  
Similarly, any unused pins on the serial peripheral interfaces may  
be configured as GPIOs. See Pin Configurations for pin  
configuration options.  
Configuration Options  
Configuration options are available for specific usage models.  
Contact Cypress Applications or Marketing for details.  
All GPIF II and GPIO pins support an external load of up to 16 pF  
for every pin.  
Digital I/Os  
EMI  
FX3 has internal firmware-controlled pull-up or pull-down  
resistors on all digital I/O pins. An internal 50-kresistor pulls  
the pins high, while an internal 10-kresistor pulls the pins low  
to prevent them from floating. The I/O pins may have the  
following states:  
FX3 meets EMI requirements outlined by FCC 15B (USA) and  
EN55022 (Europe) for consumer electronics. FX3 can tolerate  
reasonable EMI, conducted by the aggressor, outlined by these  
specifications and continue to function as expected.  
Tristated (High-Z)  
System-level ESD  
Weak pull-up (via internal 50 k)  
FX3 has built-in ESD protection on the D+, D–, and GND pins on  
the USB interface. The ESD protection levels provided on these  
ports are:  
Pull-down (via internal 10 k)  
Hold (I/O hold its value) when in low-power modes  
±2.2-KV human body model (HBM) based on JESD22-A114  
Specification  
The JTAG TDI, TMC, and TRST# signals have fixed 50-k  
internal pull-ups, and the TCK signal has a fixed 10-k  
pull-down resistor.  
±6-KV contact discharge and ±8-KV air gap discharge based  
on IEC61000-4-2 level 3A  
All unused I/Os should be pulled high by using the internal  
pull-up resistors. All unused outputs should be left floating. All  
I/Os can be driven at full-strength, three-quarter strength,  
half-strength, or quarter-strength. These drive strengths are  
configured separately for each interface.  
± 8-KV Contact Discharge and ±15-KV Air Gap Discharge  
based on IEC61000-4-2 level 4C.  
This protection ensures the device continues to function after  
ESD events up to the levels stated in this section.  
GPIOs  
The SSRX+, SSRX–, SSTX+, and SSTX– pins only have up to  
±2.2-KV HBM internal ESD protection.  
EZ-USB enables a flexible pin configuration both on the GPIF II  
and the serial peripheral interfaces. Any unused control pins  
(except CTL[15]) on the GPIF II interface can be used as GPIOs.  
Pin Configurations  
Figure 7. FX3 121-ball BGA Ball Map (Top View)  
1
2
3
4
5
6
7
8
9
10  
11  
NC  
U3VSSQ  
VIO4  
U3RXVDDQ  
FSLC[0]  
GPIO[ 55]  
GPIO[51]  
VSS  
SSRXM  
R_USB3  
VDD  
SSRXP  
SSTXP  
SSTXM  
AVDD  
VSS  
VSS  
DP  
DM  
A
B
C
D
E
F
G
H
J
FSLC[1]  
GPIO[ 57]  
GPIO[53]  
GPIO[49]  
GPIO[ 41]  
GPIO[30]  
GPIO[ 31]  
GPIO[34]  
VSS  
U3TXVDDQ  
RESET#  
GPIO[56]  
GPIO[48]  
GPIO[ 46]  
GPIO[25]  
GPIO[ 29]  
GPIO[28]  
GPIO[27]  
VDD  
CVDDQ  
XTALIN  
CLKIN_32  
FSLC[2]  
TCK  
AVSS  
XTALOUT  
CLKIN  
VSS  
VDD  
TDO  
TRST#  
VIO5  
O[60]  
VBUS  
VDD  
GPIO[ 54]  
GPIO[50]  
GPIO[ 47]  
VIO2  
R_USB2  
VSS  
OTG_ID  
GPIO[52]  
VIO3  
I2C_GPIO[58] I2C_GPIO[59]  
TDI  
TMS  
VDD  
GPIO[ 1]  
GPIO[4]  
GPIO[ 7]  
GPIO[9]  
GPIO[13]  
VIO1  
VBATT  
GPIO[ 0]  
GPIO[3]  
GPIO[ 6]  
GPIO[8]  
GPIO[12]  
GPIO[11]  
GPIO[ 45]  
GPIO[42]  
GPIO[ 39]  
GPIO[36]  
GPIO[33]  
VSS  
GPIO[ 44]  
GPIO[43]  
GPIO[ 40]  
GPIO[37]  
VSS  
GPIO[ 2]  
GPIO[21]  
GPIO[ 20]  
GPIO[19]  
GPIO[18]  
VDD  
GPIO[ 5]  
GPIO[15]  
GPIO[ 24]  
GPIO[14]  
GPIO[17]  
INT#  
VSS  
GPIO[22]  
GPIO[ 26]  
GPIO[16]  
GPIO[23]  
VSS  
VSS  
VDD  
VIO1  
VDD  
GPIO[38]  
GPIO[35]  
VSS  
GPIO[10]  
VSS  
K
L
VSS  
GPIO[32]  
Document Number: 001-52136 Rev. *N  
Page 13 of 45  
CYUSB301X  
Figure 8. FX3 131-Ball CSP Ball Map (Bottom View)  
12  
11  
10  
9
8
7
6
5
4
3
2
1
VSS  
VSS  
VIO4  
VIO3  
SSRXM  
SSTXM  
FSLC[0]  
FSLC[2]  
CVDDQ  
AVSS  
AVDD  
DP  
NC  
VSS  
VSS  
DM  
NC  
VDD  
VDD  
TRST#  
A
B
C
GPIO[55]  
GPIO[56]  
SSRXP  
R_USB3  
U3VSSQ  
SSTXP  
XTALIN  
CLKIN_32  
XTALOUT  
CLKIN  
R_USB2  
OTG_ID  
U3RXVDDQ  
U3TXVDDQ  
TDO  
I2C_GPIO[58  
]
I2C_GPIO[59  
]
GPIO[49]  
GPIO[50]  
GPIO[53]  
GPIO[54]  
RESET#  
VDD  
TMS  
VIO5  
TCK  
VSS  
D
E
F
G
H
J
GPIO[57]  
VSS  
GPIO[48]  
GPIO[46]  
GPIO[43]  
GPIO[40]  
GPIO[38]  
GPIO[34]  
VSS  
GPIO[51]  
GPIO[47]  
GPIO[44]  
GPIO[41]  
GPIO[37]  
GPIO[33]  
VDD  
GPIO[52]  
FSLC[1]  
O[60]  
TDI  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
GPIO[3]  
GPIO[4]  
GPIO[7]  
GPIO[12]  
GPIO[15]  
GPIO[24]  
GPIO[17]  
VBATT  
GPIO[1]  
VBUS  
GPIO[0]  
GPIO[2]  
VIO1  
VIO2  
GPIO[45]  
GPIO[42]  
GPIO[36]  
GPIO[32]  
GPIO[30]  
VSS  
VSS  
VDD  
VSS  
GPIO[9]  
GPIO[14]  
GPIO[19]  
INT#  
GPIO[6]  
GPIO[8]  
GPIO[10]  
GPIO[11]  
GPIO[13]  
VSS  
GPIO[39]  
GPIO[31]  
GPIO[28]  
GPIO[29]  
VSS  
GPIO[20]  
GPIO[25]  
GPIO[16]  
GPIO[23]  
GPIO[18]  
GPIO[22]  
GPIO[21]  
VSS  
VIO2  
GPIO[27]  
GPIO[26]  
VIO1  
GPIO[5]  
VSS  
GPIO[35]  
VDD  
K
L
VIO1  
VSS  
Note No ball is populated at location A9  
Document Number: 001-52136 Rev. *N  
Page 14 of 45  
CYUSB301X  
Pin Description  
Table 7. CYUSB3012 and CYUSB3014 Pin List (GPIF II with 32-bit Data Bus Width)  
BGA  
WLCSP  
I/O  
Name  
Description  
GPIF II (VIO1 Power Domain)  
GPIF II Interface  
DQ[0]  
Slave FIFO Interface  
F10  
F9  
F1  
F2  
G1  
E3  
F3  
J1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
CVDDQ  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
GPIO[0]  
GPIO[1]  
GPIO[2]  
GPIO[3]  
GPIO[4]  
GPIO[5]  
GPIO[6]  
GPIO[7]  
GPIO[8]  
GPIO[9]  
GPIO[10]  
GPIO[11]  
GPIO[12]  
GPIO[13]  
GPIO[14]  
GPIO[15]  
GPIO[16]  
GPIO[17]  
GPIO[18]  
GPIO[19]  
GPIO[20]  
GPIO[21]  
GPIO[22]  
GPIO[23]  
GPIO[24]  
GPIO[25]  
GPIO[26]  
GPIO[27]  
GPIO[28]  
GPIO[29]  
GPIO[30]  
GPIO[31]  
GPIO[32]  
INT#  
DQ[0]  
DQ[1]  
DQ[1]  
F7  
DQ[2]  
DQ[2]  
G10  
G9  
F8  
DQ[3]  
DQ[3]  
DQ[4]  
DQ[4]  
DQ[5]  
DQ[5]  
H10  
H9  
J10  
J9  
G2  
G3  
H2  
G4  
J2  
DQ[6]  
DQ[6]  
DQ[7]  
DQ[7]  
DQ[8]  
DQ[8]  
DQ[9]  
DQ[9]  
K11  
L10  
K10  
K9  
J8  
DQ[10]  
DQ[11]  
DQ[12]  
DQ[13]  
DQ[14]  
DQ[15]  
PCLK  
DQ[10]  
DQ[11]  
DQ[12]  
DQ[13]  
DQ[14]  
DQ[15]  
CLK  
K2  
H3  
L2  
H4  
J3  
G8  
J6  
K6  
L3  
H5  
J4  
K8  
K7  
J7  
CTL[0]  
SLCS#  
SLWR#  
SLOE#  
SLRD#  
FLAGA  
FLAGB  
GPIO  
CTL[1]  
CTL[2]  
H7  
G7  
G6  
K6  
H8  
G5  
H6  
K5  
J5  
H6  
K5  
J5  
CTL[3]  
CTL[4]  
CTL[5]  
L6  
K3  
J6  
CTL[6]  
CTL[7]  
PKTEND#  
GPIO  
CTL[8]  
K7  
J7  
CTL[9]  
GPIO  
CTL[10]  
CTL[11]  
CTL[12]  
PMODE[0]  
PMODE[1]  
PMODE[2]  
INT#/CTL[15]  
RESET#  
GPIO  
K8  
L8  
L9  
J8  
A1  
H5  
G4  
H4  
L4  
A0  
PMODE[0]  
PMODE[1]  
PMODE[2]  
CTL[15]  
RESET#  
K9  
K4  
D8  
L8  
C5  
RESET#  
Note  
3. When GPIF II is configured for the 32-bit data bus width, GPIO[50]-GPIO[52] may be configured as GPIOs or I2S, and GPIO[53] to GPIO[56] may be configured as  
GPIOs or UART interface only.  
Document Number: 001-52136 Rev. *N  
Page 15 of 45  
CYUSB301X  
Table 7. CYUSB3012 and CYUSB3014 Pin List (GPIF II with 32-bit Data Bus Width) (continued)  
BGA  
WLCSP  
I/O  
Name  
Description  
IO2 (VIO2 Power Domain)  
GPIF II (32-bit data mode)  
K2  
J4  
K10  
K11  
K12  
J9  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO[33]  
GPIO[34]  
GPIO[35]  
GPIO[36]  
GPIO[37]  
GPIO[38]  
GPIO[39]  
GPIO[40]  
GPIO[41]  
GPIO[42]  
GPIO[43]  
GPIO[44]  
GPIO[45]  
DQ[16]  
DQ[17]  
DQ[18]  
DQ[19]  
DQ[20]  
DQ[21]  
DQ[22]  
DQ[23]  
DQ[24]  
DQ[25]  
DQ[26]  
DQ[27]  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
K1  
J2  
J3  
J10  
J11  
H8  
J1  
H2  
H3  
F4  
G2  
G3  
F3  
F2  
H11  
H10  
H9  
G11  
G10  
G09  
GPIO  
IO3 (VIO3 Power Domain)  
GPIO + SPI  
GPIO  
GPIO + UART  
GPIO  
GPIO  
only  
GPIF II - 32b +  
GPIO +  
I2S  
UART +  
I2S + UART[3]  
DQ[28]  
SPI + I2S  
F5  
E1  
F11  
F10  
VIO3  
VIO3  
I/O  
I/O  
GPIO[46]  
GPIO[47]  
GPIO  
GPIO  
UART_RT  
S
GPIO  
GPIO  
GPIO  
DQ[29]  
GPIO  
UART_CT  
S
E5  
E4  
E11  
D12  
VIO3  
VIO3  
I/O  
I/O  
GPIO[48]  
GPIO[49]  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
DQ[30]  
DQ[31]  
GPIO  
GPIO  
UART_TX  
UART_R  
X
D1  
D2  
D3  
D11  
E10  
E9  
VIO3  
VIO3  
VIO3  
I/O  
I/O  
I/O  
GPIO[50]  
GPIO[51]  
GPIO[52]  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
I2S_CLK  
I2S_SD  
I2S_WS  
GPIO  
GPIO  
GPIO  
I2S_CLK  
I2S_SD  
I2S_WS  
IO4 (VIO4) Power Domain  
D4  
C1  
C2  
D10  
D9  
VIO4  
VIO4  
VIO4  
I/O  
I/O  
I/O  
GPIO[53]  
GPIO[54]  
GPIO[55]  
SPI_SCK  
SPI_SSN  
SPI_MISO  
UART_RTS  
UART_CTS  
UART_TX  
GPIO  
GPIO  
GPIO  
UART_RTS  
GPIO  
I2S_CLK  
I2S_SD  
SPI_SCK  
SPI_SSN  
UART_CTS  
UART_TX  
B12  
SPI_MIS  
O
D5  
C4  
C12  
E12  
VIO4  
VIO4  
I/O  
I/O  
GPIO[56]  
GPIO[57]  
SPI_MOSI  
GPIO  
UART_RX  
GPIO  
GPIO  
GPIO  
UART_RX  
I2S_MCLK  
I2S_WS  
SPI_MOS  
I
I2S_MCL  
K
I2S_MCL  
K
USB Port (VBATT/VBUS Power Domain)  
C9  
C3  
VBUS/  
VBATT  
I
OTG_ID  
OTG_ID  
USB Port (U3TXVDDQ/U3RXVDDQ Power Domain)  
A3  
A4  
A6  
A5  
A10  
B10  
A8  
U3RXVD  
DQ  
I
SSRXM  
SSRXP  
SSTXM  
SSTXP  
SSRX-  
U3RXVD  
DQ  
I
SSRX+  
SSTX-  
SSTX+  
U3TXVD  
DQ  
O
O
B8  
U3TXVD  
DQ  
Document Number: 001-52136 Rev. *N  
Page 16 of 45  
CYUSB301X  
Table 7. CYUSB3012 and CYUSB3014 Pin List (GPIF II with 32-bit Data Bus Width) (continued)  
BGA  
WLCSP  
I/O  
Name  
Description  
USB Port (VBATT/VBUS Power Domain)  
A9  
A4  
A2  
VBUS/V  
BATT  
I/O  
I/O  
DP  
D+  
A10  
VBUS/V  
BATT  
DM  
D–  
B4  
B2  
NC  
NC  
No connect  
A11  
No connect  
Crystal/Clocks (CVDDQ Power Domain)  
B2  
C6  
C7  
B4  
E6  
D7  
D6  
A7  
B6  
B5  
F9  
B7  
C5  
C6  
CVDDQ  
AVDD  
I
FSLC[0]  
XTALIN  
FSLC[0]  
I/O  
XTALIN  
AVDD  
I/O  
XTALOUT  
FSLC[1]  
FSLC[2]  
CLKIN  
XTALOUT  
CVDDQ  
CVDDQ  
CVDDQ  
CVDDQ  
I
I
I
I
FSLC[1]  
FSLC[2]  
CLKIN  
CLKIN_32  
CLKIN_32  
I2C and JTAG (VIO5 Power Domain)  
D9  
D10  
E7  
D6  
D2  
F8  
C2  
C1  
D5  
D3  
E8  
VIO5  
VIO5  
VIO5  
VIO5  
VIO5  
VIO5  
VIO5  
VIO5  
I/O  
I2C_GPIO[58]  
I2C_GPIO[59]  
TDI  
I2C_SCL  
I/O  
I2C_SDA  
I
O
I
TDI  
C10  
B11  
E8  
TDO  
TDO  
TRST#  
TRST#  
TMS  
I
TMS  
F6  
I
TCK  
TCK  
D11  
O
O[60]  
Charger detect output  
Power  
E10  
B10  
E2  
B1  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VBATT  
VDD  
A1  
VDD  
A1  
E11  
D8  
C9  
U3VSSQ  
VBUS  
VSS  
E1  
C4  
H11  
E2  
H1  
VIO1  
VSS  
K1  
L9  
L4  
VIO1  
VSS  
G1  
L5  
L7  
VIO1  
VSS  
L1  
F1  
J12  
H12  
G12  
C11  
F12  
B11  
A11  
A12  
C7  
VIO2  
VSS  
G11  
VIO2  
E3  
PWR  
VIO3  
L1  
B1  
L6  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VSS  
VIO4  
VSS  
VSS  
B6  
B5  
CVDDQ  
U3TXVDDQ  
U3RXVDDQ  
VIO5  
C8  
A2  
C10  
D4  
C11  
Document Number: 001-52136 Rev. *N  
Page 17 of 45  
CYUSB301X  
Table 7. CYUSB3012 and CYUSB3014 Pin List (GPIF II with 32-bit Data Bus Width) (continued)  
BGA  
L11  
A7  
WLCSP  
A3  
I/O  
Name  
VSS  
AVDD  
AVSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
Description  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
A5  
B7  
A6  
C3  
F4  
B8  
D1  
F5  
E9  
B9  
E4  
F11  
F6  
E5  
GND  
F7  
E6  
GND  
GND  
E7  
H1  
L7  
G6  
D7  
J11  
L5  
L10  
L12  
H7  
G7  
L11  
G8  
G5  
K4  
L3  
K3  
L2  
A8  
Precision Resistors  
C8  
B3  
B3  
B9  
VBUS/V  
BATT  
I/O  
I/O  
R_usb2  
R_usb3  
Precision resistor for USB 2.0 (Connect a 6.04 k±1% resistor between this pin and GND)  
U3TXVD  
DQ  
Precision resistor for USB 3.0 (Connect a 200 ±1% resistor between this pin and GND)  
Table 8. CYUSB3011 and CYUSB3013 Pin List (GPIF II with 16-bit Data Bus Width)  
Pin  
I/O  
Name  
Description  
GPIF II (VIO1 Power Domain)  
GPIF II Interface  
DQ[0]  
Slave FIFO Interface  
F10  
F9  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO[0]  
GPIO[1]  
GPIO[2]  
GPIO[3]  
GPIO[4]  
GPIO[5]  
GPIO[6]  
GPIO[7]  
GPIO[8]  
GPIO[9]  
GPIO[10]  
GPIO[11]  
GPIO[12]  
GPIO[13]  
GPIO[14]  
GPIO[15]  
DQ[0]  
DQ[1]  
DQ[2]  
DQ[3]  
DQ[4]  
DQ[5]  
DQ[6]  
DQ[7]  
DQ[8]  
DQ[9]  
DQ[10]  
DQ[11]  
DQ[12]  
DQ[13]  
DQ[14]  
DQ[15]  
DQ[1]  
F7  
DQ[2]  
G10  
G9  
F8  
DQ[3]  
DQ[4]  
DQ[5]  
H10  
H9  
DQ[6]  
DQ[7]  
J10  
J9  
DQ[8]  
DQ[9]  
K11  
L10  
K10  
K9  
DQ[10]  
DQ[11]  
DQ[12]  
DQ[13]  
DQ[14]  
DQ[15]  
J8  
G8  
Document Number: 001-52136 Rev. *N  
Page 18 of 45  
CYUSB301X  
Table 8. CYUSB3011 and CYUSB3013 Pin List (GPIF II with 16-bit Data Bus Width) (continued)  
Pin  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
Name  
Description  
J6  
K8  
K7  
J7  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
GPIO[16]  
GPIO[17]  
GPIO[18]  
GPIO[19]  
GPIO[20]  
GPIO[21]  
GPIO[22]  
GPIO[23]  
GPIO[24]  
GPIO[25]  
GPIO[26]  
GPIO[27]  
GPIO[28]  
GPIO[29]  
GPIO[30]  
GPIO[31]  
GPIO[32]  
INT#  
PCLK  
CTL[0]  
CLK  
SLCS#  
SLWR#  
SLOE#  
SLRD#  
FLAGA  
FLAGB  
GPIO  
CTL[1]  
CTL[2]  
H7  
G7  
G6  
K6  
H8  
G5  
H6  
K5  
J5  
CTL[3]  
CTL[4]  
CTL[5]  
CTL[6]  
CTL[7]  
PKTEND#  
GPIO  
CTL[8]  
CTL[9]  
GPIO  
CTL[10]  
CTL[11]  
CTL[12]  
PMODE[0]  
PMODE[1]  
PMODE[2]  
INT#/CTL[15]  
RESET#  
GPIO  
A1  
H5  
G4  
H4  
L4  
A0  
PMODE[0]  
PMODE[1]  
PMODE[2]  
CTL[15]  
RESET#  
L8  
C5  
CVDDQ  
RESET#  
IO2 (VIO2 Power Domain)  
K2  
J4  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO[33]  
GPIO[34]  
GPIO[35]  
GPIO[36]  
GPIO[37]  
GPIO[38]  
GPIO[39]  
GPIO[40]  
GPIO[41]  
GPIO[42]  
GPIO[43]  
GPIO[44]  
GPIO[45]  
GPIO  
GPIO  
K1  
J2  
GPIO  
GPIO  
J3  
GPIO  
J1  
GPIO  
H2  
H3  
F4  
G2  
G3  
F3  
F2  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
IO3 (VIO3 Power Domain)  
F5  
E1  
E5  
E4  
D1  
D2  
D3  
VIO3  
VIO3  
VIO3  
VIO3  
VIO3  
VIO3  
VIO3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO[46]  
GPIO[47]  
GPIO[48]  
GPIO[49]  
GPIO[50]  
GPIO[51]  
GPIO[52]  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
I2S_CLK  
I2S_SD  
I2S_WS  
GPIO  
GPIO  
GPIO  
I2S_CLK  
I2S_SD  
I2S_WS  
IO4 (VIO4) Power Domain  
D4  
C1  
C2  
D5  
VIO4  
VIO4  
VIO4  
VIO4  
I/O  
I/O  
I/O  
I/O  
GPIO[53]  
GPIO[54]  
GPIO[55]  
GPIO[56]  
SPI_SCK  
SPI_SSN  
SPI_MISO  
SPI_MOSI  
UART_RTS  
UART_CTS  
UART_TX  
UART_RX  
GPIO  
GPIO  
GPIO  
GPIO  
UART_RTS  
UART_CTS  
UART_TX  
UART_RX  
GPIO  
SPI_SCK  
SPI_SSN  
SPI_MISO  
SPI_MOSI  
I2S_CLK  
UART_TX  
UART_RX  
Document Number: 001-52136 Rev. *N  
Page 19 of 45  
CYUSB301X  
Table 8. CYUSB3011 and CYUSB3013 Pin List (GPIF II with 16-bit Data Bus Width) (continued)  
Pin  
I/O  
Name  
Description  
GPIO I2S_MCLK  
C4  
C9  
VIO4  
I/O  
GPIO[57]  
GPIO  
GPIO  
I2S_MCLK  
I2S_MCLK  
USB Port (VBATT/VBUS Power Domain)  
VBUS/  
VBATT  
I
OTG_ID  
OTG_ID  
USB Port (U3TXVDDQ/U3RXVDDQ Power Domain)  
A3  
A4  
A6  
A5  
U3RXVDDQ  
U3RXVDDQ  
U3TXVDDQ  
U3TXVDDQ  
I
I
SSRXM  
SSRXP  
SSTXM  
SSTXP  
SSRX-  
SSRX+  
O
O
SSTX-  
SSTX+  
USB Port (VBATT/VBUS Power Domain)  
A9  
VBUS/VBATT  
VBUS/VBATT  
I/O  
I/O  
DP  
DM  
NC  
D+  
A10  
A11  
D–  
No connect  
Crystal/Clocks (CVDDQ Power Domain)  
B2  
C6  
C7  
B4  
E6  
D7  
D6  
CVDDQ  
AVDD  
I
FSLC[0]  
XTALIN  
FSLC[0]  
I/O  
XTALIN  
AVDD  
I/O  
XTALOUT  
FSLC[1]  
FSLC[2]  
CLKIN  
XTALOUT  
CVDDQ  
CVDDQ  
CVDDQ  
CVDDQ  
I
I
I
I
FSLC[1]  
FSLC[2]  
CLKIN  
CLKIN_32  
CLKIN_32  
I2C and JTAG (VIO5 Power Domain)  
D9  
D10  
E7  
VIO5  
VIO5  
VIO5  
VIO5  
VIO5  
VIO5  
VIO5  
VIO5  
I/O  
I2C_GPIO[58]  
I2C_GPIO[59]  
TDI  
I2C_SCL  
I/O  
I2C_SDA  
I
O
I
TDI  
C10  
B11  
E8  
TDO  
TDO  
TRST#  
TRST#  
TMS  
I
TMS  
F6  
I
TCK  
TCK  
D11  
O
O[60]  
Charger detect output  
Power  
E10  
B10  
A1  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VBATT  
VDD  
U3VSSQ  
VBUS  
VSS  
E11  
D8  
H11  
E2  
VIO1  
VSS  
L9  
VIO1  
VSS  
G1  
F1  
VIO2  
VSS  
G11  
E3  
PWR  
VIO3  
L1  
B1  
L6  
PWR  
PWR  
PWR  
VSS  
VIO4  
VSS  
Document Number: 001-52136 Rev. *N  
Page 20 of 45  
CYUSB301X  
Table 8. CYUSB3011 and CYUSB3013 Pin List (GPIF II with 16-bit Data Bus Width) (continued)  
Pin  
I/O  
Name  
CVDDQ  
U3TXVDDQ  
U3RXVDDQ  
VIO5  
Description  
B6  
B5  
A2  
C11  
L11  
A7  
B7  
C3  
B8  
E9  
B9  
F11  
H1  
L7  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VSS  
AVDD  
AVSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VDD  
VDD  
J11  
L5  
VDD  
VDD  
K4  
L3  
VSS  
VSS  
K3  
L2  
VSS  
VSS  
A8  
VSS  
Precision Resistors  
C8  
B3  
VBUS/VBATT  
U3TXVDDQ  
I/O  
I/O  
R_usb2  
R_usb3  
Precision resistor for USB 2.0 (Connect a 6.04 k±1% resistor between this pin and GND)  
Precision resistor for USB 3.0 (Connect a 200 ±1% resistor between this pin and GND)  
Document Number: 001-52136 Rev. *N  
Page 21 of 45  
CYUSB301X  
± 6-KV contact discharge, ± 8-KV air gap discharge based on  
IEC61000-4-2 level 3A, ± 8-KV contact discharge, and ± 15-KV  
air gap discharge based on IEC61000-4-2 level 4C  
Absolute Maximum Ratings  
Exceeding maximum ratings may shorten the useful life of the  
device.  
Latch-up current .........................................................> 200 mA  
Storage temperature .................................... –65 °C to +150 °C  
Maximum output short-circuit current  
for all I/O configurations. (Vout = 0 V) ........................ –100 mA  
Ambient temperature with  
power supplied (Industrial) ............................ –40 °C to +85 °C  
Operating Conditions  
Ambient temperature with  
power supplied (Commercial) ............................. 0 °C to +70 °C  
TA (ambient temperature under bias)  
Supply voltage to ground potential  
Industrial ........................................................ –40 °C to +85 °C  
Commercial ....................................................... 0 °C to +70 °C  
VDD, AVDDQ ......................................................................1.25 V  
VIO1,VIO2, VIO3, VIO4, VIO5 ................................................3.6 V  
VDD, AVDDQ, U3TXVDDQ, U3RXVDDQ  
U3TXVDDQ, U3RXVDDQ ...................................................1.25 V  
DC input voltage to any input pin ........................... .VCC + 0.3 V  
Supply voltage ..................................................1.15 V to 1.25 V  
V
BATT supply voltage ...............................................3.2 V to 6 V  
IO1, VIO2, VIO3, VIO4, CVDDQ  
DC voltage applied to  
outputs in high Z state ............................................ VCC + 0.3 V  
V
Supply voltage ......................................................1.7 V to 3.6 V  
IO5 supply voltage ............................................ 1.15 V to 3.6 V  
(VCC is the corresponding I/O voltage)  
V
Static discharge voltage ESD protection levels:  
± 2.2-KV HBM based on JESD22-A114  
Additional ESD protectionlevels on D+, D–, and GND pins, and  
serial peripheral pins  
DC Specifications  
Parameter  
VDD  
Description  
Core voltage supply  
Min  
1.15  
1.15  
1.7  
Max  
1.25  
1.25  
3.6  
3.6  
3.6  
3.6  
6
Units  
V
Notes  
1.2-V typical  
1.2-V typical  
AVDD  
VIO1  
Analog voltage supply  
V
GPIF II I/O power supply domain  
IO2 power supply domain  
IO3 power supply domain  
UART/SPI/I2S power supply domain  
USB voltage supply  
V
1.8-, 2.5-, and 3.3-V typical  
1.8-, 2.5-, and 3.3-V typical  
1.8-, 2.5-, and 3.3-V typical  
1.8-, 2.5-, and 3.3-V typical  
3.7-V typical  
VIO2  
1.7  
V
VIO3  
1.7  
V
VIO4  
1.7  
V
VBATT  
VBUS  
U3TXVDDQ  
3.2  
V
USB voltage supply  
4.0  
6
V
5-V typical  
USB 3.0 1.2-V supply  
1.15  
1.25  
V
1.2-V typical. A 22-µF bypass capacitor is  
required on this power supply.  
U3RXVDDQ  
USB 3.0 1.2-V supply  
1.15  
1.25  
V
1.2-V typical. A 22-µF bypass capacitor is  
required on this power supply.  
CVDDQ  
VIO5  
Clock voltage supply  
I2C and JTAG voltage supply  
1.7  
3.6  
3.6  
V
V
V
1.8-, 3.3-V typical  
1.15  
1.2-, 1.8-, 2.5-, and 3.3-V typical  
VIH1  
Input HIGH voltage 1  
0.625 ×  
VCC  
VCC + 0.3  
For 2.0 V VCC 3.6 V (except USB  
port).VCC is the corresponding I/O  
voltage supply.  
VIH2  
Input HIGH voltage 2  
VCC – 0.4 VCC + 0.3  
V
For 1.7 V VCC 2.0 V  
(except USB port).VCC is the corre-  
sponding I/O voltage supply.  
VIL  
Input LOW voltage  
–0.3  
0.25 × VCC  
V
V
VCC is the corresponding I/O voltage  
supply.  
VOH  
Output HIGH voltage  
0.9 × VCC  
IOH (max) = –100 µA tested at quarter  
drive strength. VCC is the corresponding  
I/O voltage supply.  
Document Number: 001-52136 Rev. *N  
Page 22 of 45  
CYUSB301X  
DC Specifications (continued)  
Parameter  
VOL  
Description  
Min  
Max  
Units  
Notes  
Output LOW voltage  
0.1 × VCC  
V
IOL (min) = +100 µA tested at quarter  
drive strength. VCC is the corresponding  
I/O voltage supply.  
IIX  
Input leakage current for all pins except  
SSTXP/SSXM/SSRXP/SSRXM  
–1  
1
µA All I/O signals held at VDDQ  
(For I/Os with a pull-up or pull-down  
resistor connected, the leakage current  
increases by VDDQ/Rpu or VDDQ/RPD  
IOZ  
Output High-Z leakage current for all pins  
except SSTXP/ SSXM/ SSRXP/SSRXM  
–1  
1
µA All I/O signals held at VDDQ  
mA Total current through AVDD, VDD  
mA  
ICC Core  
Core and analog voltage operating  
current  
200  
ICC USB  
ISB1  
USB voltage supply operating current  
60  
Total suspend current during suspend  
mode with USB 3.0 PHY enabled (L1)  
mA Core current: 1.5 mA  
I/O current: 20 µA  
USB current: 2 mA  
For typical PVT (typical silicon, all power  
supplies at their respective nominal  
levels at 25 °C.)  
ISB2  
ISB3  
ISB4  
Total suspend current during suspend  
mode with USB 3.0 PHY disabled (L2)  
mA Core current: 250 µA  
I/O current: 20 µA  
USB current: 1.2 mA  
For typical PVT (Typical silicon, all power  
supplies at their respective nominal  
levels at 25 °C.)  
Total standby current during standby  
mode (L3)  
µA Core current: 60 µA  
I/O current: 20 µA  
USB current: 40 µA  
For typical PVT (typical silicon, all power  
supplies at their respective nominal  
levels at 25 °C.)  
Total standby current during core  
power-down mode (L4)  
µA Core current: 0 µA  
I/O current: 20 µA  
USB current: 40 µA  
For typical PVT (typical silicon, all power  
supplies at their respective nominal  
levels at 25 °C.)  
VRAMP  
VN  
Voltage ramp rate on core and I/O  
supplies  
0.2  
50  
100  
20  
V/ms Voltage ramp must be monotonic  
Noise level permitted on VDD and I/O  
supplies  
mV Max p-p noise level permitted on all  
supplies except AVDD  
VN_AVDD  
Noise level permitted on AVDD supply  
mV Max p-p noise level permitted on AVDD  
Document Number: 001-52136 Rev. *N  
Page 23 of 45  
CYUSB301X  
AC Timing Parameters  
GPIF II Timing  
Figure 9. GPIF II Timing in Synchronous Mode  
tCLKH tCLKL  
CLK  
tCLK  
tCO  
tHZ  
tDOH  
tCOE  
tDS tDH  
tDOH  
tLZ  
tLZ  
Data1  
( OUT)  
Data2  
( OUT)  
DQ- [31:0]  
Data(IN)  
tS tH  
CTL(IN)  
tCTLO  
tCOH  
CTL( OUT)  
Table 9. GPIF II Timing Parameters in Synchronous Mode [4]  
Parameter Description  
Frequency  
Min  
Max  
100  
Units  
MHz  
ns  
Interface clock frequency  
Interface clock period  
Clock high time  
tCLK  
tCLKH  
tCLKL  
tS  
10  
4
ns  
Clock low time  
4
ns  
CTL input to clock setup time  
CTL input to clock hold time  
Data in to clock setup time  
Data in to clock hold time  
2
ns  
tH  
0.5  
2
ns  
tDS  
ns  
tDH  
tCO  
0.5  
ns  
Clock to data out propagation delay when DQ bus is already in  
output direction  
8
ns  
tCOE  
Clock to data out propagation delay when DQ lines change to  
output from tristate and valid data is available on the DQ bus  
-
9
tCTLO  
tDOH  
tCOH  
tHZ  
Clock to CTL out propagation delay  
Clock to data out hold  
Clock to CTL out hold  
Clock to high-Z  
2
0
0
8
8
ns  
ns  
ns  
ns  
ns  
tLZ  
Clock to low-Z  
Note  
4. All parameters guaranteed by design and validated through characterization.  
Document Number: 001-52136 Rev. *N  
Page 24 of 45  
CYUSB301X  
Figure 10. GPIF II Timing in Asynchronous Mode  
tAH  
tDH/  
tDS/ tAS  
DATA/ ADDR  
DATA IN  
tCHZ  
tCTLassert_DQlatch  
tCTLdeassert_DQlatch  
CTL#  
(I/P, ALE/ DLE)  
tAA/tDO  
tCHZ/tOEHZ  
tCLZ/ tOELZ  
DATA OUT  
DATA OUT  
CTL#  
(I/P, non ALE/ DLE  
tCTLdeassert  
tCTLassert  
tCTLalpha  
tCTLbeta  
ALPHA  
O/P  
BETA  
O/P  
1
1
tCTLassert  
tCTLdeassert  
tCTL#  
(O/P)  
1. n is an integer >= 0  
tDST  
tDHT  
DATA/  
ADDR  
tCTLdeassert_DQassert  
tCTLassert_DQassert  
CTL#  
I/P (non DLE/ALE)  
Figure 11. GPIF II Timing in Asynchronous DDR Mode  
tDS  
tCTLdeassert_DqlatchDDR  
tCTLassert_DQlatchDDR  
CTL#  
(I/P)  
tDS  
tDH  
tDH  
DATA IN  
Document Number: 001-52136 Rev. *N  
Page 25 of 45  
CYUSB301X  
[5, 6]  
Table 10. GPIF II Timing in Asynchronous Mode  
Note The following parameters assume one state transition  
Parameter Description  
Min  
2.3  
2
Max  
Units  
ns  
tDS  
tDH  
tAS  
tAH  
Data In to DLE setup time. Valid in DDR async mode.  
Data In to DLE hold time. Valid in DDR async mode.  
Address In to ALE setup time  
ns  
2.3  
2
ns  
Address In to ALE hold time  
ns  
tCTLassert  
CTL I/O asserted width for CTRL inputs without DQ input association  
and for outputs.  
7
ns  
tCTLdeassert  
CTL I/O deasserted width for CTRL inputs without DQ input associ-  
ation and for outputs.  
7
ns  
ns  
tCTLassert_DQassert  
CTL asserted pulse width for CTL inputs that signify DQ inputs valid  
at the asserting edge but do not employ in-built latches (ALE/DLE) for  
those DQ inputs.  
20  
tCTLdeassert_DQassert  
tCTLassert_DQdeassert  
CTL deasserted pulse width for CTL inputs that signify DQ input valid  
at the asserting edge but do not employ in-built latches (ALE/DLE) for  
those DQ inputs.  
7
7
ns  
ns  
ns  
ns  
ns  
CTL asserted pulse width for CTL inputs that signify DQ inputs valid  
at the deasserting edge but do not employ in-built latches (ALE/DLE)  
for those DQ inputs.  
tCTLdeassert_DQdeassert CTL deasserted pulse width for CTL inputs that signify DQ inputs valid  
at the deasserting edge but do not employ in-built latches (ALE/DLE)  
for those DQ inputs.  
20  
7
tCTLassert_DQlatch  
CTL asserted pulse width for CTL inputs that employ in-built latches  
(ALE/DLE) to latch the DQ inputs. In this non-DDR case, in-built  
latches are always close at the deasserting edge.  
tCTLdeassert_DQlatch  
tCTLassert_DQlatchDDR  
CTL deasserted pulse width for CTL inputs that employ in-built latches  
(ALE/DLE) to latch the DQ inputs. In this non-DDR case, in-built  
latches always close at the deasserting edge.  
10  
CTL asserted pulse width for CTL inputs that employ in-built latches  
(DLE) to latch the DQ inputs in DDR mode.  
10  
10  
ns  
ns  
ns  
tCTLdeassert_DQlatchDDR CTL deasserted pulse width for CTL inputs that employ in-built latches  
(DLE) to latch the DQ inputs in DDR mode.  
tAA  
DQ/CTL input to DQ output time when DQ change or CTL change  
needs to be detected and affects internal updates of input and output  
DQ lines.  
30  
tDO  
CTL to data out when the CTL change merely enables the output flop  
update whose data was already established.  
0
25  
ns  
ns  
tOELZ  
CTL designated as OE to low-Z. Time when external devices should  
stop driving data.  
tOEHZ  
tCLZ  
CTL designated as OE to high-Z  
8
0
8
ns  
ns  
CTL (non-OE) to low-Z. Time when external devices should stop  
driving data.  
tCHZ  
CTL (non-OE) to high-Z  
30  
30  
25  
30  
ns  
ns  
ns  
ns  
ns  
tCTLalpha  
tCTLbeta  
tDST  
CTL to alpha change at output  
CTL to beta change at output  
Addr/data setup when DLE/ALE not used  
Addr/data hold when DLE/ALE not used  
2
tDHT  
20  
Notes  
5. All parameters guaranteed by design and validated through characterization.  
6. "alpha" output corresponds to "early output" and "beta" corresponds to "delayed output". Please refer to the GPIFII Designer Tool for the use of these outputs.  
Document Number: 001-52136 Rev. *N  
Page 26 of 45  
CYUSB301X  
PCLK), the new data value is present. N is the first data value  
read from the FIFO. To have data on the FIFO data bus, SLOE  
must also be asserted.  
Slave FIFO Interface  
Synchronous Slave FIFO Sequence Description  
The same sequence of events is shown for a burst read.  
FIFO address is stable and SLCS is asserted  
Note For burst mode, the SLRD# and SLOE# are asserted  
during the entire duration of the read. When SLOE# is asserted,  
the data bus is driven (with data from the previously addressed  
FIFO). For each subsequent rising edge of PCLK, while the  
SLRD# is asserted, the FIFO pointer is incremented and the next  
data value is placed on the data bus.  
SLOE is asserted. SLOE is an output-enable only, whose sole  
function is to drive the data bus.  
SLRD is asserted  
The FIFO pointer is updated on the rising edge of the PCLK,  
while the SLRD is asserted. This starts the propagation of data  
from the newly addressed location to the data bus. After a  
propagation delay of tco (measured from the rising edge of  
Figure 12. Synchronous Slave FIFO Read Mode  
Synchronous Read Cycle Timing  
tCYC  
PCLK  
tCH tCL  
2-cycle latency  
from SLRD to data  
cycle latency  
3-  
from addr to data  
SLCS  
t
AS tAH  
FIFO ADDR  
An  
Am  
tRDH  
tRDS  
SLRD  
SLOE  
2
cycle latency from  
tCFLG  
SLRD to FLAG  
FLAGA  
(dedicated thread Flag for An)  
( 1 = Not Empty0 = Empty)  
tCFLG  
FLAGB  
(dedicated thread Flag for Am)  
( 1 = Not Empty0= Empty)  
tCDH  
tOEZ  
tOELZ  
tOEZ  
tCO  
tOELZ  
High-Z  
Data  
driven:DN(An)  
DN+2(Am)  
DN+1(Am)  
DN+1(An)  
DN(Am)  
Data Out  
SLWR (HIGH)  
Document Number: 001-52136 Rev. *N  
Page 27 of 45  
CYUSB301X  
edge of PCLK. The FIFO pointer is updated on each rising edge  
of PCLK.  
Synchronous Slave FIFO Write Sequence Description  
FIFO address is stable and the signal SLCS# is asserted  
External master or peripheral outputs the data to the data bus  
SLWR# is asserted  
Short Packet: A short packet can be committed to the USB host  
by using the PKTEND#. The external device or processor should  
be designed to assert the PKTEND# along with the last word of  
data and SLWR# pulse corresponding to the last word. The  
FIFOADDR lines must be held constant during the PKTEND#  
assertion.  
While the SLWR# is asserted, data is written to the FIFO and  
on the rising edge of the PCLK, the FIFO pointer is incremented  
Zero-Length Packet: The external device or processor can  
signal a Zero-Length Packet (ZLP) to FX3 simply by asserting  
PKTEND#, without asserting SLWR#. SLCS# and address must  
be driven as shown in Figure 13 on page 28.  
The FIFO flag is updated after a delay of t  
edge of the clock  
from the rising  
WFLG  
The same sequence of events is also shown for burst write  
Note For the burst mode, SLWR# and SLCS# are asserted for  
the entire duration, during which all the required data values are  
written. In this burst write mode, after the SLWR# is asserted, the  
data on the FIFO data bus is written to the FIFO on every rising  
FLAG Usage: The FLAG signals are monitored for flow control  
by the external processor. FLAG signals are outputs from FX3  
that may be configured to show empty, full, or partial status for a  
dedicated thread or the current thread that is addressed.  
Figure 13. Synchronous Slave FIFO Write Mode  
Synchronous Write Cycle Timing  
tCYC  
PCLK  
tCH tCL  
SLCS  
tAH  
tAS  
Am  
An  
tWRS  
FIFO ADDR  
SLWR  
tWRH  
tCFLG  
3 cycle latency from SLWR# to FLAG  
FLAGA  
dedicated thread FLAG for An  
(1 = Not Full 0= Full)  
tCFLG  
3 cycle latency from SLWR # to FLAG  
FLAGB  
current thread FLAG for Am  
(1 = Not Full 0= Full)  
tDS tDH  
tDS tDH  
DN(Am) DN+1(Am) DN+2(Am)  
tPES  
tDH  
DN(An)  
Data IN  
High-Z  
tPEH  
PKTEND  
SLOE  
(HIGH)  
Synchronous ZLP Write Cycle Timing  
tCYC  
PCLK  
tCH tCL  
SLCS  
tAH  
tAS  
An  
FIFO ADDR  
SLWR  
(HIGH)  
t
PES tPEH  
PKTEND  
tCFLG  
FLAGA  
dedicated thread FLAG for An  
(1 = Not Full 0= Full)  
FLAGB  
current thread FLAG for Am  
(1 = Not Full 0= Full)  
High-Z  
Data IN  
SLOE  
(HIGH)  
Document Number: 001-52136 Rev. *N  
Page 28 of 45  
CYUSB301X  
[7]  
Table 11. Synchronous Slave FIFO Parameters  
Parameter  
Description  
Min  
Max  
100  
Units  
MHz  
ns  
FREQ  
tCYC  
tCH  
Interface clock frequency  
Clock period  
10  
4
Clock high time  
ns  
tCL  
Clock low time  
4
ns  
tRDS  
tRDH  
tWRS  
tWRH  
tCO  
SLRD# to CLK setup time  
SLRD# to CLK hold time  
SLWR# to CLK setup time  
SLWR# to CLK hold time  
Clock to valid data  
2
ns  
0.5  
2
ns  
ns  
0.5  
ns  
8
ns  
tDS  
Data input setup time  
CLK to data input hold  
2
ns  
tDH  
0.5  
2
ns  
tAS  
Address to CLK setup time  
CLK to address hold time  
SLOE# to data low-Z  
ns  
tAH  
0.5  
0
ns  
tOELZ  
tCFLG  
tOEZ  
tPES  
tPEH  
tCDH  
ns  
CLK to flag output propagation delay  
SLOE# deassert to Data Hi Z  
PKTEND# to CLK setup  
CLK to PKTEND# hold  
8
ns  
8
ns  
2
ns  
0.5  
2
CLK to data output hold  
ns  
Note Three-cycle latency from ADDR to DATA/FLAGS  
In Figure 14, data N is the first valid data read from the FIFO. For  
data to appear on the data bus during the read cycle, SLOE#  
must be in an asserted state. SLRD# and SLOE# can also be  
tied.  
Asynchronous Slave FIFO Read Sequence  
Description  
FIFO address is stable and the SLCS# signal is asserted.  
SLOE# is asserted. This results in driving the data bus.  
SLRD # is asserted.  
The same sequence of events is also shown for a burst read.  
Note In the burst read mode, during SLOE# assertion, the data  
bus is in a driven state (data is driven from a previously  
addressed FIFO). After assertion of SLRD# data from the FIFO  
is driven on the data bus (SLOE# must also be asserted). The  
FIFO pointer is incremented after deassertion of SLRD#.  
Data from the FIFO is driven after assertion of SLRD#. This  
data is valid after a propagation delay of tRDO from the falling  
edge of SLRD#.  
FIFO pointer is incremented on deassertion of SLRD#  
Note  
7. All parameters guaranteed by design and validated through characterization.  
Document Number: 001-52136 Rev. *N  
Page 29 of 45  
CYUSB301X  
Figure 14. Asynchronous Slave FIFO Read Mode  
SLCS  
tAS  
tAH  
An  
Am  
FIFO ADDR  
tRDl tRDh  
SLRD  
SLOE  
tFLG  
tRFLG  
FLAGA  
dedicated thread Flag for An  
(1=Not empty 0 = Empty)  
FLAGB  
dedicated thread Flag for Am  
(1=Not empty 0 = Empty)  
tRDO  
tRDO  
tOH  
tOE  
tLZ  
tOE  
tRDO  
tOH  
DN(An)  
DN(An)  
DN(Am)  
DN+1(Am)  
DN+2(Am)  
Data Out  
High-Z  
SLWR  
(HIGH)  
Short Packet: A short packet can be committed to the USB host  
by using the PKTEND#. The external device or processor should  
be designed to assert the PKTEND# along with the last word of  
data and SLWR# pulse corresponding to the last word. The  
FIFOADDR lines must be held constant during the PKTEND#  
assertion.  
Asynchronous Slave FIFO Write Sequence  
Description  
FIFO address is driven and SLCS# is asserted  
SLWR# is asserted. SLCS# must be asserted with SLWR# or  
before SLWR# is asserted  
Zero-Length Packet: The external device or processor can  
signal a zero-length packet (ZLP) to FX3 simply by asserting  
PKTEND#, without asserting SLWR#. SLCS# and the address  
must be driven as shown in Figure 15 on page 31.  
Data must be present on the tWRS bus before the deasserting  
edge of SLWR#  
Deassertion of SLWR# causes the data to be written from the  
data bus to the FIFO, and then the FIFO pointer is incremented  
FLAG Usage: The FLAG signals are monitored by the external  
processor for flow control. FLAG signals are FX3 outputs that  
can be configured to show empty, full, and partial status for a  
dedicated address or the current address.  
The FIFO flag is updated after the tWFLG from the deasserting  
edge of SLWR.  
The same sequence of events is shown for a burst write.  
Note that in the burst write mode, after SLWR# deassertion, the  
data is written to the FIFO, and then the FIFO pointer is incre-  
mented.  
Document Number: 001-52136 Rev. *N  
Page 30 of 45  
CYUSB301X  
Figure 15. Asynchronous Slave FIFO Write Mode  
Asynchronous Write Cycle Timing  
SLCS  
tAS  
tAH  
An  
FIFO ADDR  
Am  
tWRl  
tWRh  
SLWR  
tFLG  
tWFLG  
FLAGA  
dedicated thread Flag for An  
(1=Not Full 0 = Full)  
tWFLG  
FLAGB  
dedicated thread Flag for Am  
(1=Not Full 0 = Full)  
tWR  
tWR  
tWRH  
tWRH  
S
S
High-Z  
DN(An)  
DN(Am)  
DN+1(Am)  
DN+2(Am)  
DATA In  
tWRPE  
tPEh  
PKTEND  
SLOE  
(HIGH)  
tWRPE: SLWR# de-assert to PKTEND deassert = 2ns min (This means that PKTEND should not be be deasserted before SLWR#)  
Note: PKTEND must be asserted at the same time as SLWR#.  
Asynchronous ZLP Write Cycle Timing  
SLCS  
tAS  
tAH  
An  
FIFO ADDR  
SLWR  
(HIGH)  
tPEl  
tPEh  
PKTEND  
tWFLG  
FLAGA  
dedicated thread Flag for An  
(1=Not Full 0 = Full)  
FLAGB  
dedicated thread Flag for Am  
(1=Not Full 0 = Full)  
High-Z  
DATA In  
SLOE  
(HIGH)  
Document Number: 001-52136 Rev. *N  
Page 31 of 45  
CYUSB301X  
[8]  
Table 12. Asynchronous Slave FIFO Parameters  
Parameter  
Description  
Min  
20  
10  
7
Max  
Units  
ns  
tRDI  
SLRD# low  
SLRD# high  
tRDh  
tAS  
ns  
Address to SLRD#/SLWR# setup time  
SLRD#/SLWR#/PKTEND to address hold time  
SLRD# to FLAGS output propagation delay  
ADDR to FLAGS output propagation delay  
SLRD# to data valid  
ns  
tAH  
2
ns  
tRFLG  
tFLG  
tRDO  
tOE  
35  
22.5  
25  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
OE# low to data valid  
tLZ  
OE# low to data low-Z  
0
tOH  
SLOE# deassert data output hold  
SLWR# low  
22.5  
tWRI  
tWRh  
tWRS  
tWRH  
tWFLG  
tPEI  
20  
10  
7
SLWR# high  
Data to SLWR# setup time  
SLWR# to Data Hold time  
2
SLWR#/PKTEND to Flags output propagation delay  
PKTEND low  
35  
20  
7.5  
2
tPEh  
tWRPE  
PKTEND high  
SLWR# deassert to PKTEND deassert  
Note  
8. All parameters guaranteed by design and validated through characterization.  
Document Number: 001-52136 Rev. *N  
Page 32 of 45  
CYUSB301X  
Serial Peripherals Timing  
I2C Timing  
Figure 16. I2C Timing Definition  
Document Number: 001-52136 Rev. *N  
Page 33 of 45  
CYUSB301X  
[9]  
Table 13. I2C Timing Parameters  
Parameter  
Description  
Min  
Max  
Units  
I2C Standard Mode Parameters  
fSCL  
SCL clock frequency  
0
4
100  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
tHD:STA  
tLOW  
Hold time START condition  
LOW period of the SCL  
HIGH period of the SCL  
4.7  
4
tHIGH  
tSU:STA  
tHD:DAT  
tSU:DAT  
tr  
Setup time for a repeated START condition  
Data hold time  
4.7  
0
Data setup time  
250  
Rise time of both SDA and SCL signals  
Fall time of both SDA and SCL signals  
Setup time for STOP condition  
Bus free time between a STOP and START condition  
Data valid time  
1000  
300  
tf  
tSU:STO  
tBUF  
4
4.7  
tVD:DAT  
tVD:ACK  
tSP  
3.45  
3.45  
n/a  
Data valid ACK  
Pulse width of spikes that must be suppressed by input filter  
I2C Fast Mode Parameters  
n/a  
fSCL  
SCL clock frequency  
0
0.6  
1.3  
0.6  
0.6  
0
400  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
ns  
tHD:STA  
tLOW  
Hold time START condition  
LOW period of the SCL  
tHIGH  
tSU:STA  
tHD:DAT  
tSU:DAT  
tr  
HIGH period of the SCL  
Setup time for a repeated START condition  
Data hold time  
Data setup time  
100  
Rise time of both SDA and SCL signals  
Fall time of both SDA and SCL signals  
Setup time for STOP condition  
Bus free time between a STOP and START condition  
Data valid time  
300  
300  
tf  
tSU:STO  
tBUF  
0.6  
1.3  
tVD:DAT  
tVD:ACK  
tSP  
0.9  
0.9  
50  
Data valid ACK  
Pulse width of spikes that must be suppressed by input filter  
0
Note  
9. All parameters guaranteed by design and validated through characterization.  
Document Number: 001-52136 Rev. *N  
Page 34 of 45  
CYUSB301X  
[9]  
Table 13. I2C Timing Parameters (continued)  
Parameter  
Description  
I2C Fast Mode Plus Parameters (Not supported at I2C_VDDQ=1.2 V)  
SCL clock frequency  
Min  
Max  
Units  
fSCL  
0
0.26  
0.5  
0.26  
0.26  
0
1000  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
ns  
tHD:STA  
tLOW  
Hold time START condition  
LOW period of the SCL  
tHIGH  
tSU:STA  
tHD:DAT  
tSU:DAT  
tr  
HIGH period of the SCL  
Setup time for a repeated START condition  
Data hold time  
Data setup time  
50  
Rise time of both SDA and SCL signals  
Fall time of both SDA and SCL signals  
Setup time for STOP condition  
Bus-free time between a STOP and START condition  
Data valid time  
120  
120  
tf  
tSU:STO  
tBUF  
0.26  
0.5  
tVD:DAT  
tVD:ACK  
tSP  
0.45  
0.55  
50  
Data valid ACK  
Pulse width of spikes that must be suppressed by input filter  
0
I2S Timing Diagram  
Figure 17. I2S Transmit Cycle  
tT  
tTR tTF  
tTH  
tTL  
SCK  
tThd  
SA,  
WS (output)  
tTd  
[10]  
Table 14. I2S Timing Parameters  
Parameter  
Description  
Min  
Ttr  
Max  
Units  
2
tT  
I S transmitter clock cycle  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
tTL  
tTH  
tTR  
tTF  
tThd  
tTd  
I S transmitter cycle LOW period  
0.35 Ttr  
2
I S transmitter cycle HIGH period  
0.35 Ttr  
2
I S transmitter rise time  
0
0.15 Ttr  
0.15 Ttr  
2
I S transmitter fall time  
2
I S transmitter data hold time  
2
I S transmitter delay time  
0.8tT  
Note tT is selectable through clock gears. Max Ttr is designed for 96-kHz codec at 32 bits to be 326 ns (3.072 MHz).  
Note  
10. All parameters guaranteed by design and validated through characterization.  
Document Number: 001-52136 Rev. *N  
Page 35 of 45  
CYUSB301X  
SPI Timing Specification  
Figure 18. SPI Timing  
SSN  
(output)  
tssnh  
tsck  
tlag  
tlead  
SCK  
(CPOL=0,  
Output)  
trf  
twsck  
twsck  
SCK  
(CPOL=1,  
Output)  
tsdi  
thoi  
LSB  
MISO  
(input)  
MSB  
MSB  
td  
tdis  
tsdd  
tdi  
v
MOSI  
(output)  
LSB  
SPI Master Timing for CPHA = 0  
SSN  
(output)  
tssnh  
tsck  
tlag  
tlead  
trf  
SCK  
(CPOL=0,  
Output)  
twsck  
twsck  
SCK  
(CPOL=1,  
Output)  
thoi  
LSB  
tsdi  
MISO  
(input)  
MSB  
MSB  
tdis  
tdi  
tdv  
MOSI  
(output)  
LSB  
SPI Master Timing for CPHA = 1  
Document Number: 001-52136 Rev. *N  
Page 36 of 45  
CYUSB301X  
[11]  
Table 15. SPI Timing Parameters  
Parameter  
Description  
Min  
0
Max  
33  
Units  
MHz  
ns  
fop  
Operating frequency  
tsck  
twsck  
tlead  
tlag  
trf  
Cycle time  
30  
Clock high/low time  
SSN-SCK lead time  
Enable lag time  
Rise/fall time  
13.5  
ns  
[12 ]  
[12]  
1/2 tsck  
-5  
1.5 tsck + 5  
ns  
[12]  
0.5  
1.5 tsck +5  
ns  
8
5
5
ns  
tsdd  
tdv  
Output SSN to valid data delay time  
Output data valid time  
ns  
ns  
tdi  
Output data invalid  
0
ns  
tssnh  
tsdi  
thoi  
tdis  
Minimum SSN high time  
Data setup time input  
10  
8
ns  
ns  
Data hold time input  
0
ns  
Disable data output on SSN high  
0
ns  
Notes  
11. All parameters guaranteed by design and validated through characterization.  
12. Depends on LAG and LEAD setting in the SPI_CONFIG register.  
Document Number: 001-52136 Rev. *N  
Page 37 of 45  
CYUSB301X  
Reset Sequence  
FX3’s hard reset sequence requirements are specified in this section.  
Table 16. Reset and Standby Timing Parameters  
Parameter  
Definition  
Conditions  
Clock Input  
Crystal Input  
Min (ms)  
Max (ms)  
tRPW  
Minimum RESET# pulse width  
1
1
5
1
5
tRH  
tRR  
Minimum high on RESET#  
Reset recovery time (after which Boot loader begins  
firmware download)  
Clock Input  
Crystal Input  
tSBY  
tWU  
Time to enter standby/suspend (from the time  
MAIN_CLOCK_EN/ MAIN_POWER_EN bit is set)  
1
Time to wakeup from standby  
Clock Input  
Crystal Input  
1
5
5
tWH  
Minimum time before Standby/Suspend source may  
be reasserted  
Figure 19. Reset Sequence  
VDD  
( core )  
xVDDQ  
XTALIN/  
CLKIN  
XTALIN/ CLKIN must be stable  
before exiting Standby/Suspend  
tRh  
tRR  
Mandatory  
Reset Pulse  
Hard Reset  
RESET #  
tWH  
tWU  
tRPW  
tSBY  
Standby/  
Suspend  
Source  
Standby/Suspend source Is asserted  
(MAIN_POWER_EN/ MAIN_CLK_EN bit  
is set)  
Standby/Suspend  
source Is deasserted  
Document Number: 001-52136 Rev. *N  
Page 38 of 45  
CYUSB301X  
Package Diagram  
Figure 20. 121-ball FBGA Package Diagram  
001-54471 *D  
Document Number: 001-52136 Rev. *N  
Page 39 of 45  
CYUSB301X  
Figure 21. 131-ball WLCSP Package Diagram  
1
2
3
4
5
6
7
8
9 10 11 12  
12 11 10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
K
L
K
L
001-62221 *B  
Note Underfill is required on the board design. Contact Cypress Applications for details.  
Document Number: 001-52136 Rev. *N  
Page 40 of 45  
CYUSB301X  
Ordering Information  
Table 17. Ordering Information  
Ordering Code  
CYUSB3011-BZXC  
CYUSB3012-BZXC  
CYUSB3013-BZXC  
CYUSB3014-BZXC  
CYUSB3014-BZXI  
CYUSB3014-FBXCT  
CYUSB3014-FBXIT  
SRAM (kB)  
GPIF II Data Bus Width  
Operating Temperature  
0 °C to +70 °C  
Package Type  
256  
256  
512  
512  
512  
512  
512  
16-bit  
32-bit  
16-bit  
32-bit  
32-bit  
32-bit  
32-bit  
121-ball BGA  
0 °C to +70 °C  
121-ball BGA  
121-ball BGA  
121-ball BGA  
121-ball BGA  
131-ball CSP  
131-ball CSP  
0 °C to +70 °C  
0 °C to +70 °C  
–40°C to +85°C  
0 °C to +70 °C  
–40 °C to +85 °C  
Ordering Code Definitions  
Document Number: 001-52136 Rev. *N  
Page 41 of 45  
CYUSB301X  
Acronyms  
Document Conventions  
Units of Measure  
Acronym  
DMA  
HNP  
Description  
direct memory access  
Symbol  
°C  
Unit of Measure  
host negotiation protocol  
multimedia card  
degree Celsius  
microamperes  
microseconds  
milliamperes  
Megabits per second  
Megabytes per second  
mega hertz  
MMC  
MTP  
µA  
media transfer protocol  
phase locked loop  
power management IC  
secure digital  
µs  
PLL  
mA  
Mbps  
MBps  
MHz  
ms  
ns  
PMIC  
SD  
SD  
secure digital  
SDIO  
SLC  
secure digital input / output  
single-level cell  
milliseconds  
nanoseconds  
ohms  
SLCS  
SLOE  
SLRD  
SLWR  
SPI  
Slave Chip Select  
Slave Output Enable  
Slave Read  
pF  
pico Farad  
V
volts  
Slave Write  
serial peripheral interface  
session request protocol  
universal serial bus  
wafer level chip scale package  
SRP  
USB  
WLCSP  
Document Number: 001-52136 Rev. *N  
Page 42 of 45  
CYUSB301X  
Document History Page  
Document Title: CYUSB301X, EZ-USB® FX3: SuperSpeed USB Controller  
Document Number: 001-52136  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
**  
2669761 VSO/PYRS  
2758370 VSO  
03/06/09  
09/01/09  
New data sheet  
*A  
Updated the part# from CYX01XXBB to CYUSB3011-BZXI  
Changed the title from “ADVANCE” to “ADVANCE INFORMATION”  
In page 1, the second bullet (Flexible Host Interface), add “32-bit, 100 MHz” to  
first sub bullet.  
In page 1, changed the second bullet “Flexible Host Interface” to General  
Programmable Interface”.  
In page 1, the second bullet (Flexible Host Interface), removed "DMA Slave  
Support” and "MMC Slave support with Pass through Boot" sub bullets.  
In page 1, third bullet, changed "50 A with Core Power" to "60 A with Core  
Power"  
In page 1, fifth bullet, added "at 1 MHz"  
In page 1, seventh bullet, added "up to 4MHz" to UART  
In page 1, Applications Section, move “Digital Still Cameras” to second line.  
In page 1, Applications Section, added “Machine Vision” and Industrial  
Cameras”  
Added ™ to GPIF and FX3.  
In page 1, updated Logic Block Diagram.  
In page 2, section of “Functional Overview”, updated the whole section.  
In page 2, removed the section of “Product Interface”  
In page 2, removed the section of “Processor Interface (P-Port)”  
In page 2, removed the section of “USB Interface (U-Port)”  
In page 2, removed the section of “Other Interfaces”  
In page 2, added a section of "GPIF II"  
In page 2, added a section of "CPU"  
In page 2, added a section of "JTAG Interface"  
In page 2, added a section of "Boot Options"  
In page 2, added a section of "ReNumeration"  
In page 2, added a section of "Power"  
In the section of “Package”, replaced “West Bridge USB 3.0 Platform” by FX3.  
In the section of “Package”, added 0.8 mm pitch in front of BGA.  
Added Pin List (Table 1)  
*B  
2779196 VSO/PYRS  
09/29/09  
12/08/09  
Features:  
Added the thrid bullet “Fully accessible 32-bit ARM9 core with 512kB of  
embedded SRAM”  
Added the thrid line “EZ USB™ Software and DVK for easy code development”  
Table 1: Pin 74, corrected to NC - No Connect.  
Changed title to EZ-USB™ FX3: SuperSpeed USB Controller  
*C  
*D  
2823531  
3080927  
OSG  
OSG  
Added data sheet to the USB 3.0 EROS spec 001-51884. No technical  
updates.  
11/08/2010 Changed status from Advance to Preliminary  
Changed part number from CYUSB3011 to CYUSB3014  
Added the following sections: Power, Configuration Options, Digital I/Os,  
System-level ESD, Absolute Maximum Ratings, AC Timing Parameters, Reset  
Sequence, Package Diagram  
Added DC Specifications table  
Updated feature list  
Updated Pin List  
Added support for selectable clock input frequencies.  
Updated block diagram  
Updated part number  
Updated package diagram  
Document Number: 001-52136 Rev. *N  
Page 43 of 45  
CYUSB301X  
Document History Page (continued)  
Document Title: CYUSB301X, EZ-USB® FX3: SuperSpeed USB Controller  
Document Number: 001-52136  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
*E  
3204393  
OSG  
03/24/2011 Updated Slave FIFO protocol and added ZLP signaling protocol  
Changed GPIFII asynchronous tDO parameter  
Changed Async Slave FIFO tOE parameter  
Changed Async Slave FIFO tRDO parameter  
Added tCOE parameter to GPIFII Sync mode timing parameters  
Renamed GPIFII Sync mode tDO to tCO and tDO_ss0 to tCO_ss0  
Modified description of GPIFII Sync tCO (previously tDO) parameter  
Changed tAH(address hold time) parameter in Async Slave FIFO modes to be  
with respect to rising edge of SLWR#/SLRD# instead of falling edge.  
Correspondingly, changed the tAH number.  
Removed 24 bit data bus support for GPIFII.  
*F  
*G  
*H  
3219493  
3235250  
3217917  
OSG  
GSZ  
OSG  
04/07/2011 Minor ECN - Release to web. No content changes.  
04/20/2011 Minor updates in Features.  
04/06/2011 Updated GPIFII Synchronous Timing diagram. Added SPI Boot option.  
Corrected values of R_USB2 and R_USB3. Corrected TCK and TRST#  
pull-up/pull-down configuration. Minor updates to block diagrams.  
Corrected Synchronous Slave FIFO tDH parameter.  
*I  
3305568  
3369042  
DSG  
OSG  
07/07/2011 Minor ECN - Correct ECN number in revision *F. No content changes.  
*J  
12/06/2011 Changed tWRPE parameter to 2ns  
Updated tRR and tRPW for crystal input  
Added clarification regarding I and I  
OZ  
IX  
Updated Sync SLave FIFO Read timing diagram  
Updated SPI timing diagram  
Removed tGRANULARITY parameter  
Updated I2S Timing diagram and tTd parameter  
Updated 121-ball FBGA package diagram.  
Added clarification regarding VCC in DC Specifications table  
In Power Modes description, stated that VIO1 cannot be turned off at any time  
if the GPIFII is used in the application  
Updated Absolute Maximum Ratings  
Added requirement for by-pass capacitor on U3RX  
and U3TX  
VDDQ  
VDDQ  
Updated tPEI parameter in Async Slave FIFO timing table  
Updated Sync Slave FIFO write and read timing diagrams  
Updated I2C interface tVD:ACK parameter for 1MHz operation  
Clarified that CTL[15] is not usable as a GPIO  
Changed datasheet status from Preliminary to Final.  
*K  
*L  
3534275  
3649782  
OSG  
OSG  
02/24/2012 Corrected typo in the block diagram.  
08/16/2012 Changed part number to CYUSB301X.  
Added 256 KB range for embedded SRAM.  
Updated Functional Overview, Other Interfaces, and Clocking sections.  
Added Pin List for CYUSB3011 and CYUSB3013 parts.  
Updated Ordering Information with new part numbers.  
*M  
*N  
3848148  
4016006  
OSG  
OSG  
12/20/2012 Updated 121-ball FBGA package diagram to current revision.  
05/31/2013 Updated Features (Added 131-ball WLCSP under Package option).  
Updated Pin Configurations (Added FX3 131-ball WLCSP Ball Map (Figure 8)).  
Updated Pin Description (Updated Table 7).  
Updated Absolute Maximum Ratings (Included Commercial Temperature  
Range related information).  
Updated Operating Conditions (Included Commercial Temperature Range  
related information).  
Updated Package Diagram (Added 131-ball WLCSP Package Diagram  
(Figure 21)).  
Updated Ordering Information (Updated part numbers).  
Document Number: 001-52136 Rev. *N  
Page 44 of 45  
CYUSB301X  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
Products  
PSoC Solutions  
Automotive  
cypress.com/go/automotive  
cypress.com/go/clocks  
cypress.com/go/interface  
cypress.com/go/powerpsoc  
cypress.com/go/plc  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 5  
Clocks & Buffers  
Interface  
Lighting & Power Control  
Memory  
cypress.com/go/memory  
cypress.com/go/psoc  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/go/touch  
cypress.com/go/USB  
cypress.com/go/wireless  
© Cypress Semiconductor Corporation, 2009-2013. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 001-52136 Rev. *N  
Revised May 31, 2013  
Page 45 of 45  
®
EZ-USB™ is a trademark and West Bridge is a registered trademark of Cypress Semiconductor Corp. All products and company names mentioned in this document may be the trademarks of their  
respective holders.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY