GVT71256ZB36-7.5I [CYPRESS]

ZBT SRAM, 256KX36, 7.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100;
GVT71256ZB36-7.5I
型号: GVT71256ZB36-7.5I
厂家: CYPRESS    CYPRESS
描述:

ZBT SRAM, 256KX36, 7.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100

时钟 静态存储器 内存集成电路
文件: 总31页 (文件大小:573K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1357A  
CY7C1355A  
256K x 36/512K x 18 Synchronous Flow-Thru  
SRAM with NoBL™ Architecture  
inputs include all addresses, all data inputs, depth-expansion  
Chip Enables (CE, CE2, and CE3), Cycle Start Input (ADV/LD),  
Clock Enable (CEN), Byte Write Enables (BWa, BWb, BWc,  
and BWd), and read-write control (WEN). BWc and BWd apply  
to CY7C1355A/GVT71256ZB36 only.  
Features  
• Zero Bus Latency, no dead cycles between write and  
read cycles  
• Fast access times: 2.5 ns, 3.0 ns, and 3.5 ns  
• Fast clock speed: 133, 117, and 100 MHz  
• Fast OE access time: 6.5, 7.0, 7.5, and 8.0 ns  
• Internally synchronized registered outputs eliminate  
the need to control OE  
Address and control signals are applied to the SRAM during  
one clock cycle, and one cycle later, its associated data  
occurs, either read or write.  
A
Clock Enable (CEN) pin allows operation of the  
CY7C1355A/CY7C1357A/GVT71256ZB36/GVT71512ZB18  
to be suspended as long as necessary. All synchronous inputs  
are ignored when (CEN) is HIGH and the internal device  
registers will hold their previous values.  
• 3.3V –5% and +5% power supply  
• 3.3V or 2.5V I/O supply  
• Single WEN (READ/WRITE) control pin  
• Positive clock-edge triggered, address, data, and  
control signal registers for fully pipelined applications  
• Interleaved or linear four-word burst capability  
• Individual byte write (BWa–BWd) control (may be tied  
LOW)  
• CEN pin to enable clock and suspend operations  
• Three chip enables for simple depth expansion  
• Automatic Power-down fearture available using ZZ  
mode or CE deselect.  
There are three Chip Enable pins (CE, CE2, CE3) that allow  
the user to deselect the device when desired. If any one of  
these three are not active when ADV/LD is LOW, no new  
memory operation can be initiated and any burst cycle in  
progress is stopped. However, any pending data transfers  
(read or write) will be completed. The data bus will be in  
high-impedance state one cycle after chip is deselected or a  
write cycle is initiated.  
The  
CY7C1355A/GVT71256ZB36  
and  
CY7C1357A/  
GVT71512ZB18 have an on-chip 2-bit burst counter. In the  
burst mode, the CY7C1355A/GVT71256ZB36 and  
CY7C1357A/GVT71512ZB18 provide four cycles of data for a  
single address presented to the SRAM. The order of the burst  
sequence is defined by the MODE input pin. The MODE pin  
selects between linear and interleaved burst sequence. The  
ADV/LD signal is used to load a new external address  
(ADV/LD = LOW) or increment the internal burst counter  
(ADV/LD = HIGH)  
• JTAG boundary scan  
• Low-profile 119-bump, 14-mm × 22-mm BGA (Ball Grid  
Array) and 100-pin TQFP packages  
Functional Description  
The  
CY7C1355A/GVT71256ZB36  
and  
CY7C1357A/  
GVT71512ZB18 SRAMs are designed to eliminate dead  
cycles when transitions from READ to WRITE or vice versa.  
These SRAMs are optimized for 100 percent bus utilization  
and achieves Zero Bus Latency (ZBL). They integrate 262,144  
× 36 and 524,288 × 18 SRAM cells, respectively, with  
advanced synchronous peripheral circuitry and a 2-bit counter  
for internal burst operation. These employ high-speed, low  
power CMOS designs using advanced triple-layer polysilicon,  
double-layer metal technology. Each memory cell consists of  
Six transistors.  
Output Enable (OE), Sleep Enable (ZZ) and burst sequence  
select (MODE) are the asynchronous signals. OE can be used  
to disable the outputs at any given time. ZZ may be tied to  
LOW if it is not used.  
Four pins are used to implement JTAG test capabilities. The  
JTAG circuitry is used to serially shift data to and from the  
device. JTAG inputs use LVTTL/LVCMOS levels to shift data  
during this testing mode of operation.  
All synchronous inputs are gated by registers controlled by a  
positive-edge-triggered Clock Input (CLK). The synchronous  
Selection Guide  
7C1355A-133  
71256ZB36-6.5  
7C1357A-133  
71512ZB18-6.5  
7C1355A-117  
71256ZB36-7  
7C1357A-117  
71512ZB18-7  
7C1355A-100  
71256ZB36-7.5  
7C1357A-100  
71512ZB18-7.5  
7C1355A1-100  
71256ZB36-8  
7C1357A1-100  
71512ZB18-8  
Unit  
ns  
Maximum Access Time  
6.5  
410  
30  
7
7.5  
350  
30  
8
Maximum Operating Current  
Maximum CMOS Standby Current  
385  
30  
350  
30  
mA  
mA  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
Document #: 38-05265 Rev. **  
Revised July 11, 2002  
CY7C1357A  
CY7C1355A  
Functional Block Diagram 256Kx36[1]  
ZZ  
MODE  
Address  
Control  
CEN  
ADV/LD  
WE  
WEN  
BWa, BWb  
BWc, BWd  
Input  
Registers  
CE1, CE2,CE3  
A0, A1, A  
Control Logic  
Sel  
Mux  
CLK  
OE  
Output Buffers  
DQa-DQd  
Functional Block Diagram 512Kx18[1]  
ZZ  
MODE  
Address  
Control  
CEN  
ADV/LD  
WEN  
BWa, BWb  
Input  
Registers  
CE1, CE2,CE3  
A0, A1, A  
Control Logic  
Sel  
Mux  
CLK  
OE  
Output Buffers  
DQa, DQb  
Note:  
1. The Functional Block Diagram illustrates simplified device operation. See Truth Table, pin descriptions and timing diagrams for detailed information.  
Document #: 38-05265 Rev. **  
Page 2 of 31  
CY7C1357A  
CY7C1355A  
Pin Configurations  
100-pin TQFP Packages  
256Kx36CY7C1355A/GVT71256ZB36  
512Kx18CY7C1357A/GVT71512ZB18  
Top View  
Top View  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQc  
DQc  
DQc  
VCCQ  
VSS  
DQc  
DQc  
DQc  
DQc  
VSS  
VCCQ  
DQc  
DQc  
VSS  
VCC  
VCC  
VSS  
DQd  
DQd  
VCCQ  
VSS  
DQd  
DQd  
DQd  
DQd  
VSS  
VCCQ  
DQd  
DQd  
DQd  
DQb  
DQb  
DQb  
VCCQ  
VSS  
DQb  
DQb  
DQb  
DQb  
VSS  
VCCQ  
DQb  
DQb  
VSS  
VSS  
VCC  
ZZ  
DQa  
DQa  
VCCQ  
VSS  
DQa  
DQa  
DQa  
DQa  
VSS  
VCCQ  
DQa  
DQa  
DQa  
NC  
NC  
NC  
VCCQ  
VSS  
NC  
A
NC  
NC  
VCCQ  
VSS  
NC  
2
2
3
3
4
4
5
5
6
6
7
7
NC  
DQa  
DQa  
DQa  
VSS  
VCCQ  
DQa  
DQa  
VSS  
VSS  
VCC  
ZZ  
DQa  
DQa  
VCCQ  
VSS  
DQa  
DQa  
NC  
8
8
DQb  
DQb  
VSS  
VCCQ  
DQb  
DQb  
VSS  
VCC  
VCC  
VSS  
DQb  
DQb  
VCCQ  
VSS  
DQb  
DQb  
DQb  
NC  
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
100-pin TQFP  
100-pin TQFP  
NC  
VSS  
VCCQ  
NC  
NC  
NC  
VSS  
VCCQ  
NC  
NC  
NC  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Document #: 38-05265 Rev. **  
Page 3 of 31  
CY7C1357A  
CY7C1355A  
Pin Configurations (continued)  
119-ball Bump BGA  
256Kx36CY7C1355A/GVT71256ZB36  
Top View  
1
2
3
A
4
NC  
5
6
7
A
B
C
D
E
F
VCCQ  
A
A
A
VCCQ  
NC  
NC  
NC  
CE2  
A
A
ADV/LD  
VCC  
NC  
A
CE3  
A
A
A
NC  
DQc  
DQc  
VCCQ  
DQc  
DQc  
VCCQ  
DQd  
DQd  
VCCQ  
DQd  
DQd  
NC  
DQc  
DQc  
DQc  
DQc  
DQc  
VCC  
DQd  
DQd  
DQd  
DQd  
DQd  
A
VSS  
VSS  
VSS  
BWc  
VSS  
NC  
VSS  
VSS  
VSS  
BWb  
VSS  
NC  
VSS  
BWa  
VSS  
VSS  
VSS  
VSS  
A
DQb  
DQb  
DQb  
DQb  
DQb  
VCC  
DQa  
DQa  
DQa  
DQa  
DQa  
A
DQb  
DQb  
VCCQ  
DQb  
DQb  
VCCQ  
DQa  
DQa  
VCCQ  
DQa  
DQa  
NC  
CE1  
OE  
G
H
J
A
WEN  
VCC  
CLK  
NC  
K
L
VSS  
BWd  
VSS  
VSS  
VSS  
MODE  
A
M
N
P
R
T
CEN  
A1  
A0  
VCC  
A
NC  
NC  
NC  
ZZ  
U
VCCQ  
TMS  
TDI  
TCK  
TDO  
NC  
VCCQ  
512Kx18CY7C1357A/GVT71512ZB18  
Top View  
1
2
3
A
4
NC  
5
6
7
A
B
C
D
E
F
VCCQ  
NC  
A
A
A
VCCQ  
NC  
CE2  
A
A
ADV/LD  
VCC  
NC  
A
CE3  
A
NC  
A
A
NC  
DQb  
NC  
NC  
DQb  
NC  
DQb  
NC  
VCC  
DQb  
NC  
DQb  
NC  
DQb  
A
VSS  
VSS  
VSS  
BWb  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
MODE  
A
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
VSS  
BWa  
VSS  
VSS  
VSS  
NC  
A
DQa  
NC  
DQa  
NC  
DQa  
VCC  
NC  
DQa  
NC  
DQa  
NC  
A
NC  
CE1  
OE  
DQa  
VCCQ  
DQa  
NC  
VCCQ  
NC  
G
H
J
A
DQb  
VCCQ  
NC  
WEN  
VCC  
CLK  
NC  
VCCQ  
DQa  
NC  
K
L
DQb  
VCCQ  
DQb  
NC  
M
N
P
R
T
CEN  
A1  
VCCQ  
NC  
A0  
DQa  
NC  
NC  
VCC  
NC  
NC  
A
A
ZZ  
U
VCCQ  
TMS  
TDI  
TCK  
TDO  
NC  
VCCQ  
Document #: 38-05265 Rev. **  
Page 4 of 31  
CY7C1357A  
CY7C1355A  
Pin Descriptions (CY7C1355A/GVT71256ZB36)  
256K × 36  
256K × 36  
TQFP Pins  
PBGA Pins  
Name  
Type  
Description  
Synchronous Address Inputs: The address register is triggered by  
37,  
36,  
4P  
4N  
A0,  
A1,  
A
Input-  
Synchronous a combination of the rising edge of CLK, ADV/LD LOW, CEN LOW  
and true chip enables. A0 and A1 are the two least significant bits of  
the address field and set the internal burst counter if burst cycle is  
initiated.  
32, 33, 34, 35, 2A, 3A, 5A, 6A,  
44, 45, 46, 47, 3B, 5B, 2C, 3C,  
48, 49, 50, 81, 5C, 6C, 4G, 2R,  
82, 83, 99, 100 6R, 3T, 4T, 5T  
93,  
94,  
95,  
96  
5L  
5G  
3G  
3L  
BWa,  
Input-  
Synchronous Byte Write Enables: Each nine-bit byte has its own  
BWb, Synchronous active LOW byte write enable. On load write cycles (when WEN and  
BWc,  
BWd  
ADV/LD are sampled LOW), the appropriate byte write signal (BWx)  
must be valid. The byte write signal must also be valid on each cycle  
of a burst write. Byte write signals are ignored when WEN is sampled  
HIGH. The appropriate byte(s) of data are written into the device one  
cycle later. BWa controls DQa pins; BWb controls DQb pins; BWc  
controls DQc pins; BWd controls DQd pins. BWx can all be tied LOW  
if always doing a write to the entire 36-bit word.  
87  
88  
4M  
4H  
CEN  
Input-  
Synchronous Clock Enable Input: When CEN is sampled HIGH, all  
Synchronous other synchronous inputs, including clock are ignored and outputs  
remain unchanged. The effect of CEN sampled HIGH on the device  
outputs is as if the LOW-to-HIGH clock transition did not occur. For  
normal operation, CEN must be sampled LOW at rising edge of clock.  
WEN  
CLK  
Input-  
Read Write: WEN signal is a synchronous input that identifies  
Synchronous whether the current loaded cycle and the subsequent burst cycles  
initiated by ADV/LD is a Read or Write operation. The data bus activity  
for the current cycle takes place one clock cycle later.  
89  
4K  
Input-  
Clock  
Clock: This is the clock input to CY7C1355A/GVT71256ZB36.  
Except for OE, ZZ, and MODE, all timing references for the device  
are made with respect to the rising edge of CLK.  
98, 92  
4E, 6B  
CE1,  
CE3  
Input-  
SynchronousActiveLOWChipEnable:CE1 andCE3 areusedwith  
Synchronous CE2 to enable the CY7C1355A/GVT71256ZB36. CE1 or CE3  
sampled HIGH or CE2 sampled LOW, along with ADV/LD LOW at the  
rising edge of clock, initiates a deselect cycle. The data bus will be  
High-Z one clock cycle after chip deselect is initiated.  
97  
86  
2B  
4F  
CE2  
OE  
Input-  
Synchronous Active High Chip Enable: CE2 is used with CE1 and  
Synchronous CE3 to enable the chip. CE2 has inverted polarity but otherwise is  
identical to CE1 and CE3.  
Input  
Asynchronous Output Enable: OE must be LOW to read data.  
Asynchronous When OE is HIGH, the I/O pins are in high-impedance state. OE does  
not need to be actively controlled for read and write cycles. In normal  
operation, OE can be tied LOW.  
85  
4B  
ADV/  
LD  
Input-  
Advance/Load: ADV/LD is a synchronous input that is used to load  
Synchronous the internal registers with new address and control signals when it is  
sampled LOW at the rising edge of clock with the chip is selected.  
When ADV/LD is sampled HIGH, then the internal burst counter is  
advanced for any burst that was in progress. The external addresses  
and WEN are ignored when ADV/LD is sampled HIGH.  
31  
64  
3R  
7T  
MODE  
ZZ  
Input-  
Static  
Burst Mode: When MODE is HIGH or NC, the interleaved burst  
sequence is selected. When MODE is LOW, the linear burst  
sequence is selected. MODE is a static DC input.  
Input-  
Sleep Enable: This active HIGH input puts the device in low power  
Asynchronous consumption standby mode. For normal operation, this input has to  
be either LOW or NC.  
Document #: 38-05265 Rev. **  
Page 5 of 31  
CY7C1357A  
CY7C1355A  
Pin Descriptions (CY7C1355A/GVT71256ZB36) (continued)  
256K × 36  
TQFP Pins  
256K × 36  
PBGA Pins  
Name  
Type  
Description  
51, 52, 53,  
5659, 62, 63 6N, 6M, 6L, 7L, DQb  
(a) 6P, 7P, 7N, DQa  
Input/  
Output  
Data Inputs/Outputs: Both the data input path and data output path  
are registered and triggered by the rising edge of CLK. Byte ais  
68, 69, 7275,  
78, 79, 80  
6K, 7K,  
(b) 7H, 6H, 7G, DQd  
DQc Synchronous DQa pins; Byte bis DQb pins; Byte cis DQc pins; Byte dis DQd  
pins.  
1, 2, 3, 69, 12, 6G, 6F, 6E, 7E,  
13 7D, 6D,  
18, 19, 2225, (c) 2D, 1D, 1E,  
28, 29, 30  
2E, 2F, 1G, 2G,  
1H, 2H,  
(d) 1K, 2K, 1L,  
2L, 2M, 1N, 2N,  
1P, 2P  
38  
39  
43  
2U  
3U  
4U  
TMS  
TDI  
TCK  
Input  
IEEE 1149.1 test inputs: LVTTL-level inputs. If Serial Boundary Scan  
(JTAG) is not used, these pins can be floating (i.e., No Connect) or  
be connected to VCC.  
42  
5U  
TDO  
Output  
Power  
IEEE 1149.1 test output: LVTTL-level output. If Serial Boundary  
Scan (JTAG) is not used, these pins can be floating (i.e., No Connect).  
15, 16, 41, 65, 4C, 2J, 4J, 6J, VCC  
91 4R  
Supply  
Power Supply: +3.3V 5% and +5%.  
Ground: GND.  
5, 10, 14, 17, 3D, 5D, 3E, 5E, VSS  
21, 26, 40, 55, 3F, 5F, 3H, 5H,  
60, 66, 67, 71, 3K,5K,3M,5M,  
Ground  
76, 90  
3N, 5N, 3P, 5P,  
5R  
4,11,20,27,54, 1A, 7A, 1F, 7F, VCCQ  
I/O Power Power Supply for the I/O circuitry.  
Supply  
61, 70, 77  
1J, 7J, 1M, 7M,  
1U, 7U  
84  
4A, 1B, 7B, 1C,  
7C, 4D, 3J, 5J,  
4L, 1R, 7R, 1T,  
2T, 6T, 6U  
NC  
No Connect: These signals are not internally connected. It can be  
left floating or be connected to VCC or to GND.  
Pin Descriptions (CY7C1357A/GVT71512ZB18)  
512K × 18  
TQFP Pins  
512K × 18  
PBGA Pins  
Name  
Type  
Description  
37,  
36,  
4P  
4N  
A0,  
A1,  
A
Input-  
Synchronous Address Inputs: The address register is  
Synchronous triggered by a combination of the rising edge of CLK, ADV/LD  
LOW, CEN LOW and true chip enables. A0 and A1 are the two  
least significant bits of the address field and set the internal burst  
counter if burst cycle is initiated.  
32, 33, 34, 35, 2A, 3A, 5A, 6A,  
44, 45, 46, 47, 3B, 5B, 6B, 2C,  
48, 49, 50, 80, 3C, 5C, 6C, 4G,  
81, 82, 83, 99, 2R, 6R, 2T, 3T,  
100  
5T, 6T  
93,  
94,  
5L  
3G  
BWa,  
BWb  
Input-  
Synchronous Byte Write Enables: Each nine-bit byte has its  
Synchronous own active low byte write enable. On load write cycles (when  
WEN and ADV/LD are sampled LOW), the appropriate byte write  
signal (BWx) must be valid. The byte write signal must also be  
valid on each cycle of a burst write. Byte write signals are ignored  
when WEN is sampled HIGH. The appropriate byte(s) of data are  
written into the device one cycle later. BWa controls DQa pins;  
BWb controls DQb pins. BWx can all be tied LOW if always doing  
write to the entire 18-bit word.  
Document #: 38-05265 Rev. **  
Page 6 of 31  
CY7C1357A  
CY7C1355A  
Pin Descriptions (CY7C1357A/GVT71512ZB18) (continued)  
512K × 18  
512K × 18  
TQFP Pins  
PBGA Pins  
Name  
Type  
Description  
Synchronous Clock Enable Input: When CEN is sampled  
87  
4M  
CEN  
Input-  
Synchronous HIGH, all other synchronous inputs, including clock are ignored  
and outputs remain unchanged. The effect of CEN sampled  
HIGH on the device outputs is as if the LOW-to-HIGH clock  
transition did not occur. For normal operation, CEN must be  
sampled LOW at rising edge of clock.  
88  
89  
4H  
WEN  
CLK  
Input-  
Read Write: WEN signal is a synchronous input that identifies  
Synchronous whether the current loaded cycle and the subsequent burst  
cycles initiated by ADV/LD is a Read or Write operation. The data  
bus activity for the current cycle takes place one clock cycle later.  
4K  
Input-  
Clock  
Clock: This is the clock input to CY7C1357A/GVT71512ZB18.  
Except for OE, ZZ and MODE, all timing references for the device  
are made with respect to the rising edge of CLK.  
98,  
92  
4E, 6B  
CE1,  
CE3  
Input-  
Synchronous Active Low Chip Enable: CE1 and CE3 are used  
Synchronous with CE2 to enable the CY7C1357A/GVT71512ZB18. CE1 or  
CE3 sampled HIGH or CE2 sampled LOW, along with ADV/LD  
LOW at the rising edge of clock, initiates a deselect cycle. The  
data bus will be High-Z one clock cycle after chip deselect is  
initiated.  
97  
86  
2B  
4F  
CE2  
OE  
Input-  
Synchronous Active High Chip Enable: CE2 is used with CE1  
Synchronous and CE3 to enable the chip. CE2 has inverted polarity but  
otherwise is identical to CE1 and CE3.  
Input-  
Asynchronous Output Enable: OE must be LOW to read data.  
Asynchronous When OE is HIGH, the I/O pins are in high-impedance state. OE  
does not need to be actively controlled for read and write cycles.  
In normal operation, OE can be tied LOW.  
85  
4B  
ADV/  
LD  
Input-  
Advance/Load: ADV/LD is a synchronous input that is used to  
Synchronous load the internal registers with new address and control signals  
when it is sampled LOW at the rising edge of clock with the chip  
is selected. When ADV/LD is sampled HIGH, then the internal  
burst counter is advanced for any burst that was in progress. The  
external addresses and WEN are ignored when ADV/LD is  
sampled HIGH.  
31  
64  
3R  
7T  
MODE  
ZZ  
Input  
Burst Mode: When MODE is HIGH or NC, the interleaved burst  
sequence is selected. When MODE is LOW, the linear burst  
sequence is selected. MODE is a static DC input.  
Input  
Sleep Enable: This active HIGH input puts the device in low  
Asynchronous power consumption standby mode. For normal operation, this  
input has to be either LOW or NC.  
58, 59, 62, 63, (a) 6D, 7E, 6F,  
68, 69, 72, 73, 7G, 6H, 7K, 6L,  
DQa  
DQb  
Input/  
Output-  
Data Inputs/Outputs: Both the data input path and data output  
path are registered and triggered by the rising edge of CLK. Byte  
74  
6N, 7P  
Synchronous ais DQa pins; Byte bis DQb pins.  
8, 9, 12, 13, 18, (b) 1D, 2E, 2G,  
19, 22, 23, 24 1H, 2K, 1L, 2M,  
1N, 2P  
38  
39  
43  
2U  
3U  
4U  
TMS  
TDI  
TCK  
Input  
IEEE 1149.1 test inputs: LVTTL-level inputs. If Serial Boundary  
Scan (JTAG) is not used, these pins can be floating (i.e., No  
Connect) or be connected to VCC  
.
42  
5U  
TDO  
Output Power IEEE 1149.1 test output: LVTTL-level output. If Serial Boundary  
Scan (JTAG) is not used, these pins can be floating (i.e., No  
Connect).  
15, 16, 41, 65, 4C, 2J, 4J, 6J,  
91 4R  
VCC  
Supply  
Power Supply: +3.3V 5% and +5%.  
Document #: 38-05265 Rev. **  
Page 7 of 31  
CY7C1357A  
CY7C1355A  
Pin Descriptions (CY7C1357A/GVT71512ZB18) (continued)  
512K × 18  
TQFP Pins  
512K × 18  
PBGA Pins  
Name  
Type  
Description  
5, 10, 14, 17, 21, 3D, 5D, 3E, 5E,  
26, 40, 55, 60, 3F, 5F, 5G, 3H,  
66, 67, 71, 76, 5H, 3K, 5K, 3L,  
VSS  
Ground  
Ground: GND.  
90  
3M, 5M, 3N, 5N,  
3P, 5P  
4, 11, 20, 27, 54, 1A, 7A, 1F, 7F,  
VCCQ  
I/O Power  
Supply  
Power supply for the I/O circuitry.  
61, 70, 77  
1J, 7J, 1M, 7M,  
1U, 7U  
1-3, 6, 7, 25, 4A, 1B, 7B, 1C,  
28-30, 7C, 2D, 4D, 7D,  
NC  
No Connect: These signals are not internally connected. It can  
be left floating or be connected to VCC or to GND.  
51-53, 56, 57, 1E, 6E, 2F, 1G,  
75, 78, 79, 84, 6G, 2H, 7H, 3J,  
95, 96  
5J, 1K, 6K, 2L,  
4L, 7L, 6M, 2N,  
7N, 1P, 6P, 1R,  
7R, 1T, 4T, 6U  
Partial Truth Table for Read/Write[2]  
Function  
WEN  
BWa  
X
BWb  
X
BWc[4]  
BWd[4]  
Read  
H
L
L
L
L
L
L
X
H
H
H
L
X
H
H
H
H
L
No Write  
H
H
Write Byte a (DQa)[3]  
Write Byte b (DQb)[3]  
Write Byte c (DQc)[3]  
Write Byte d (DQd}[3]  
Write all bytes  
L
H
H
L
H
H
H
H
H
L
L
L
L
Sleep Mode  
Interleaved Burst Address Table  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation sleepmode. Two  
clock cycles are required to enter into or exit from this sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the sleepmode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the sleepmode. CEs must remain inactive for the duration of  
tZZREC after the ZZ input returns LOW. CEN needs to active  
before going into the ZZ mode and before you want to come  
back out of the ZZ mode.  
(MODE = V or NC)  
CC  
First  
Address (ex-  
ternal)  
Second  
Address  
(internal)  
Third  
Fourth  
Address  
Address  
(internal)  
(internal)[5]  
A...A00  
A...A01  
A...A10  
A...A11  
A...A01  
A...A00  
A...A11  
A...A10  
A...A10  
A...A11  
A...A00  
A...A01  
A...A11  
A...A10  
A...A01  
A...A00  
Linear Burst Address Table  
(MODE = V  
)
SS  
First  
Address (ex-  
ternal)  
Second  
Address  
(internal)  
Third  
Address  
(internal)  
Fourth  
Address  
(internal)[5]  
A...A00  
A...A01  
A...A10  
A...A01  
A...A10  
A...A11  
A...A00  
A...A10  
A...A11  
A...A00  
A...A01  
A...A11  
A...A00  
A...A01  
A...A10  
A...A11  
Notes:  
2. L means logic LOW. H means logic HIGH. X means Dont Care.”  
3. Multiple bytes may be selected during the same cycle.  
4. BWc and BWd apply to 256K × 36 device only.  
5. Upon completion of the Burst sequence, the counter wraps around to its initial state and continues counting.  
Document #: 38-05265 Rev. **  
Page 8 of 31  
CY7C1357A  
CY7C1355A  
ZZ Mode Electrical Characteristics  
Parameter  
Description  
Test Conditions  
Min.  
Max.  
10  
Unit  
mA  
ns  
IDDZZ  
tZZS  
Sleep mode standby current ZZ > VDD 0.2V  
Device operation to ZZ  
ZZ recovery time  
ZZ > VDD 0.2V  
2tCYC  
tZZREC  
ZZ < 0.2V  
2tCYC  
ns  
Truth Table[9, 10, 11, 12, 13, 14, 15, 16, 17]  
Previous Address  
DQ  
CEN BWx OE (1 cycle later)  
Operation  
Deselect Cycle  
Continue Deselect/NOP[18]  
Cycle  
Used  
WEN ADV/LD  
CE  
H
X
L
X
Deselect  
X
X
X
X
H
X
H
X
L
L
H
L
L
L
L
L
L
L
L
L
L
L
H
X
X
X
X
X
X
L
X
X
X
X
H
H
X
X
X
X
X
High-Z  
High-Z  
Q
X
Read Cycle (Begin Burst)  
External  
Next  
Read Cycle (Continue Burst)[18]  
Dummy Read (Begin Burst)[19]  
Dummy Read (Continue Burst)[18, 19]  
Write Cycle (Begin Burst)  
Write Cycle (Continue Burst)[18]  
Abort Write (Begin Burst)[19]  
Abort Write (Continue Burst)[18, 19]  
Ignore Clock Edge/NOP[20]  
Read  
X
H
L
X
L
Q
External  
Next  
High-Z  
High-Z  
D
Read  
X
H
L
X
L
External  
Next  
Write  
X
X
L
H
L
X
L
L
D
External  
Next  
H
H
X
High-Z  
High-Z  
-
Write  
X
X
X
H
H
X
X
X
Disabling the JTAG Feature  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
It is possible to use this device without using the JTAG feature.  
To disable the TAP controller without interfering with normal  
operation of the device, TCK should be tied LOW (VSS) to  
prevent clocking the device. TDI and TMS are internally pulled  
up and may be unconnected. They may alternately be pulled  
up to VCC through a resistor. TDO should be left unconnected.  
Upon power-up the device will come up in a reset state which  
will not interfere with the operation of the device.  
Overview  
This device incorporates a serial boundary scan access port  
(TAP). This port is designed to operate in a manner consistent  
with IEEE Standard 1149.1-1990 (commonly referred to as  
JTAG), but does not implement all of the functions required for  
IEEE 1149.1 compliance. Certain functions have been  
modified or eliminated because their implementation places  
extra delays in the critical speed path of the device. Never-  
theless, the device supports the standard TAP controller archi-  
tecture (the TAP controller is the state machine that controls  
the TAPs operation) and can be expected to function in a  
manner that does not conflict with the operation of devices with  
IEEE Standard 1149.1-compliant TAPs. The TAP operates  
using LVTTL/ LVCMOS logic level signaling.  
Test Access Port  
TCKTest Clock (INPUT)  
Clocks all TAP events. All inputs are captured on the rising  
edge of TCK and all outputs propagate from the falling edge  
of TCK.  
Notes:  
6. This assumes that CEN, CE, CE2, and CE2 are all True.  
7. All addresses, control and data-in are only required to meet set-up and hold time with respect to the rising edge of clock. Data out is valid after a clock-to-data  
delay from the rising edge of clock.  
8. DQc and DQd apply to 256Kx36 device only.  
9. L means logic LOW. H means logic HIGH. X means Dont Care.High-Z means High Impedance. BWx = L means [BWa*BWb*BWc*BWd] equals LOW. BWx  
= H means [BWa*BWb*BWc*BWd] equals HIGH. BWc and BWd apply to 256K × 36 device only.  
10. CE = H means CE and CE2 are LOW along with CE2 being HIGH. CE = L means CE or CE2 is HIGH or CE2 is LOW. CE = X means CE, CE2, and CE2 are  
Dont Care.”  
11. BWa enables WRITE to byte a(DQa pins). BWb enables WRITE to byte b(DQb pins). BWc enables WRITE to byte c(DQc pins). BWd enables WRITE to  
byte d(DQd pins). DQc, DQd, BWc, and BWd apply to 256K × 36 device only.  
12. The device is not in Sleep Mode, i.e., the ZZ pin is LOW.  
13. During Sleep Mode, the ZZ pin is HIGH and all the address pins and control pins are Dont Care.The Sleep Mode can only be entered one cycle after the  
WRITE cycle, otherwise the WRITE cycle may not be completed.  
14. All inputs, except OE, ZZ, and MODE pins, must meet set-up time and hold time specification against the clock (CLK) LOW-to-HIGH transition edge.  
15. OE may be tied to LOW for all the operation. This device automatically turns off the output driver during WRITE cycle.  
16. Device outputs are ensured to be in High-Z during device power-up.  
17. This device contains a two-bit burst counter. The address counter is incremented for all Continue Burst cycles. Address wraps to the initial address every fourth  
burst cycle.  
18. Continue Burst cycles, whether READ or WRITE, use the same control signals. The type of cycle performed, READ or WRITE, depends upon the WEN control  
signal at the BEGIN BURST cycle. A Continue Deselect cycle can only be entered if a Deselect cycle is executed first.  
19. Dummy Read and Abort WRITE cycles can be entered to set up subsequent READ or WRITE cycles or to increment the burst counter.  
20. When an Ignore Clock Edge cycle enters, the output data (Q) will remain the same if the previous cycle is READ cycle or remain High-Z if the previous cycle is  
WRITE or Deselect cycle.  
Document #: 38-05265 Rev. **  
Page 9 of 31  
CY7C1357A  
CY7C1355A  
TMSTest Mode Select (INPUT)  
Bypass Register  
The TMS input is sampled on the rising edge of TCK. This is  
the command input for the TAP controller state machine. It is  
allowable to leave this pin unconnected if the TAP is not used.  
The pin is pulled up internally, resulting in a logic HIGH level.  
The bypass register is a single-bit register that can be placed  
between TDI and TDO. It allows serial test data to be passed  
through the device TAP to another device in the scan chain  
with minimum delay. The bypass register is set LOW (VSS  
)
when the BYPASS instruction is executed.  
TDITest Data In (INPUT)  
Boundary Scan Register  
The TDI input is sampled on the rising edge of TCK. This is the  
input side of the serial registers placed between TDI and TDO.  
The register placed between TDI and TDO is determined by  
the state of the TAP controller state machine and the  
instruction that is currently loaded in the TAP instruction  
register (refer toFigure 1). It is allowable to leave this pin  
unconnected if it is not used in an application. The pin is pulled  
up internally, resulting in a logic HIGH level. TDI is connected  
to the most significant bit (MSB) of any register. (See  
Figure 2.)  
The Boundary scan register is connected to all the input and  
bidirectional I/O pins (not counting the TAP pins) on the device.  
This also includes a number of NC pins that are reserved for  
future needs. There are a total of 70 bits for x36 device and 51  
bits for x18 device. The boundary scan register, under the  
control of the TAP controller, is loaded with the contents of the  
device I/O ring when the controller is in Capture-DR state and  
then is placed between the TDI and TDO pins when the  
controller is moved to Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE-Z instructions can be used  
to capture the contents of the I/O ring.  
TDOTest Data Out (OUTPUT)  
The TDO output pin is used to serially clock data-out from the  
registers. The output that is active depending on the state of  
the TAP state machine (refer to Figure 1). Output changes in  
response to the falling edge of TCK. This is the output side of  
the serial registers placed between TDI and TDO. TDO is  
connected to the least significant bit (LSB) of any register.  
(See Figure 2.)  
The Boundary Scan Order table describes the order in which  
the bits are connected. The first column defines the bits  
position in the boundary scan register. The MSB of the register  
is connected to TDI, and LSB is connected to TDO. The  
second column is the signal name and the third column is the  
bump number. The third column is the TQFP pin number and  
the fourth column is the BGA bump number.  
Performing a TAP Reset  
Identification (ID) Register  
The TAP circuitry does not have a reset pin (TRST, which is  
optional in the IEEE 1149.1 specification). A RESET can be  
The ID Register is a 32-bit register that is loaded with a device  
and vendor specific 32-bit code when the controller is put in  
Capture-DR state with the IDCODE command loaded in the  
instruction register. The register is then placed between the  
TDI and TDO pins when the controller is moved into Shift-DR  
state. Bit 0 in the register is the LSB and the first to reach TDO  
when shifting begins. The code is loaded from a 32-bit on-chip  
ROM. It describes various attributes of the device as described  
in the Identification Register Definitions table.  
performed for the TAP controller by forcing TMS HIGH (VCC  
)
for five rising edges of TCK and pre-loads the instruction  
register with the IDCODE command. This type of reset does  
not affect the operation of the system logic. The reset affects  
test logic only.  
At power-up, the TAP is reset internally to ensure that TDO is  
in a High-Z state.  
TAP Controller Instruction Set  
Test Access Port Registers  
Overview  
Overview  
There are two classes of instructions defined in the IEEE  
Standard 1149.1-1990; the standard (public) instructions and  
device specific (private) instructions. Some public instructions  
are mandatory for IEEE 1149.1 compliance. Optional public  
instructions must be implemented in prescribed ways.  
The various TAP registers are selected (one at a time) via the  
sequences of ones and zeros input to the TMS pin as the TCK  
is strobed. Each of the TAPs registers are serial shift registers  
that capture serial input data on the rising edge of TCK and  
push serial data out on subsequent falling edge of TCK. When  
a register is selected, it is connected between the TDI and  
TDO pins.  
Although the TAP controller in this device follows the IEEE  
1149.1 conventions, it is not IEEE 1149.1 compliant because  
some of the mandatory instructions are not fully implemented.  
The TAP on this device may be used to monitor all input and  
I/O pads, but can not be used to load address, data, or control  
signals into the device or to preload the I/O buffers. In other  
words, the device will not perform IEEE 1149.1 EXTEST,  
INTEST, or the preload portion of the SAMPLE/PRELOAD  
command.  
Instruction Register  
The instruction register holds the instructions that are  
executed by the TAP controller when it is moved into the run  
test/idle or the various data register states. The instructions  
are three bits long. The register can be loaded when it is  
placed between the TDI and TDO pins. The parallel outputs of  
the instruction register are automatically preloaded with the  
IDCODE instruction upon power-up or whenever the controller  
is placed in the test-logic reset state. When the TAP controller  
is in the Capture-IR state, the two least significant bits of the  
serial instruction register are loaded with a binary 01pattern  
to allow for fault isolation of the board-level serial test data  
path.  
When the TAP controller is placed in Capture-IR state, the two  
least significant bits of the instruction register are loaded with  
01. When the controller is moved to the Shift-IR state the  
instruction is serially loaded through the TDI input (while the  
previous contents are shifted out at TDO). For all instructions,  
the TAP executes newly loaded instructions only when the  
Document #: 38-05265 Rev. **  
Page 10 of 31  
CY7C1357A  
CY7C1355A  
controller is moved to Update-IR state. The TAP instruction  
sets for this device are listed in the following tables.  
this device, so the device TAP controller is not fully IEEE  
1149.1-compliant.  
When the SAMPLE/PRELOAD instruction is loaded in the  
instruction register and the TAP controller is in the Capture-DR  
state, a snap shot of the data in the devices input and I/O  
buffers is loaded into the boundary scan register. Because the  
device system clock(s) are independent from the TAP Clock  
(TCK), it is possible for the TAP to attempt to capture the input  
and I/O ring contents while the buffers are in transition (i.e., in  
a metastable state). Although allowing the TAP to sample  
metastable inputs will not harm the device, repeatable results  
can not be expected. To guarantee that the boundary scan  
register will capture the correct value of a signal, the device  
input signals must be stabilized long enough to meet the TAP  
controllers capture set up plus hold time (tCS plus tCH). The  
device clock input(s) need not be paused for any other TAP  
operation except capturing the input and I/O ring contents into  
the boundary scan register.  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is  
to be executed whenever the instruction register is loaded with  
all 0s. EXTEST is not implemented in this device.  
The TAP controller does recognize an all-0 instruction. When  
an EXTEST instruction is loaded into the instruction register,  
the device responds as if a SAMPLE/PRELOAD instruction  
has been loaded. There is one difference between two instruc-  
tions. Unlike SAMPLE/PRELOAD instruction, EXTEST places  
the device outputs in a High-Z state.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the ID register when the controller is in  
Capture-DR mode and places the ID register between the TDI  
and TDO pins in Shift-DR mode. The IDCODE instruction is  
the default instruction loaded in the instruction upon power-up  
and at any time the TAP controller is placed in the test-logic  
reset state.  
Moving the controller to Shift-DR state then places the  
boundary scan register between the TDI and TDO pins.  
Because the PRELOAD portion of the command is not imple-  
mented in this device, moving the controller to the Update-DR  
state with the SAMPLE/PRELOAD instruction loaded in the  
instruction register has the same effect as the Pause-DR  
command.  
SAMPLE-Z  
If the High-Z instruction is loaded in the instruction register, all  
output pins are forced to a High-Z state and the boundary scan  
register is connected between TDI and TDO pins when the  
TAP controller is in a Shift-DR state.  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP controller is in the Shift-DR state, the  
bypass register is placed between TDI and TDO. This allows  
the board level scan path to be shortened to facilitate testing  
of other devices in the scan path.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is an IEEE 1149.1 mandatory instruction.  
The PRELOAD portion of the command is not implemented in  
Document #: 38-05265 Rev. **  
Page 11 of 31  
CY7C1357A  
CY7C1355A  
TEST-LOGIC  
RESET  
1[21]  
0
1
1
1
REUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
EXIT1-DR  
0
1
EXIT1-IR  
0
1
0
0
PAUSE-DR  
1
PAUSE-IR  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
1
0
0
Figure 1. TAP Controller State Diagram  
Note:  
21. The 0/1 next to each state represents the value at TMS at the rising edge of TCK.  
Document #: 38-05265 Rev. **  
Page 12 of 31  
CY7C1357A  
CY7C1355A  
ZZ  
0
Bypass Register  
Selection  
Circuitry  
Selection  
Circuitry  
2
1
0
TDO  
TDI  
Instruction Register  
29  
Identification Register  
31 30  
.
.
2
1
1
0
0
.
x
.
.
.
2
Boundary Scan Register [22]  
TDI  
TDI  
TAP Controller  
Figure 2. TAP Controller Block Diagram  
TAP Electrical Characteristics Over the Operating Range  
Parameter  
Description  
Test Conditions  
Min.  
2.0  
Max.  
VCC + 0.3  
0.8  
Unit  
V
VIH  
VIl  
Input High (Logic 1) Voltage[23, 24]  
Input Low (Logic 0) Voltage[23, 24]  
Input Leakage Current  
0.3  
5.0  
30  
5.0  
V
ILI  
0V < VIN < VCC  
5.0  
µA  
µA  
µA  
ILI  
TMS and TDI Input Leakage Current 0V < VIN < VCC  
30  
ILO  
Output Leakage Current  
Output disabled,  
0V < VIN < VCCQ  
5.0  
VOLC  
VOHC  
VOLT  
LVCMOS Output Low Voltage[23, 25] IOLC = 100 µA  
LVCMOS Output High Voltage[23, 25] IOHC = 100 µA  
0.2  
0.4  
V
V
V
V
VCC 0.2  
LVTTL Output Low Voltage[23]  
IOLT = 8.0 mA  
IOHT = 8.0 mA  
VOHT  
LVTTL Output High Voltage[23]  
2.4  
Notes:  
22.X = 69 for the x36 configuration;  
X = 50 for the x18 configuration.  
23. All Voltage referenced to VSS (GND).  
24. Overshoot: VIH(AC)<VCC+1.5V for t<tKHKH/2, Undershoot: VIL(AC)<0.5V for t<tKHKH/2, Power-up: VIH<3.6V and VCC<3.135V and VCCQ<1.4V for t<200 ms.  
During normal operation, VCCQ must not exceed VCC. Control input signals (such as WEN, ADV/LD, etc.) may not have pulse widths less than tKHKL (min.).  
25. This parameter is sampled.  
Document #: 38-05265 Rev. **  
Page 13 of 31  
CY7C1357A  
CY7C1355A  
TAP AC Switching Characteristics Over the Operating Range[26, 27]  
Parameter  
Clock  
Description  
Min.  
Max.  
Unit  
tTHTH  
Clock Cycle Time  
Clock Frequency  
Clock HIGH Time  
Clock LOW Time  
20  
ns  
MHz  
ns  
fTF  
50  
tTHTL  
8
8
tTLTH  
ns  
Output Times  
tTLQX  
TCK LOW to TDO Unknown  
TCK LOW to TDO Valid  
TDI Valid to TCK HIGH  
TCK HIGH to TDI Invalid  
0
ns  
ns  
ns  
ns  
tTLQV  
10  
tDVTH  
5
5
tTHDX  
Set-up Times  
tMVTH  
TMS Set-up  
TDI Set-up  
5
5
5
ns  
ns  
ns  
tTDIS  
tCS  
Capture Set-up  
Hold Times  
tTHMX  
TMS Hold  
TDI Hold  
5
5
5
ns  
ns  
ns  
tTDIH  
tCH  
Capture Hold  
Notes:  
26.  
tCS and tCH refer to the set-up and hold time requirements of latching data from the boundary scan register.  
27. Test conditions are specified using the load in TAP AC test conditions.  
Document #: 38-05265 Rev. **  
Page 14 of 31  
CY7C1357A  
CY7C1355A  
TAP Timing and Test Conditions  
Vt = 1.5V  
50  
ALL INPUT PULSES  
1.5V  
TDO  
3.0V  
Z = 50Ω  
0
C = 20 pF  
L
V
SS  
1.5 ns  
1.5 ns  
(a)  
(b)  
GND  
t
t
THTL  
TLTH  
t
THTH  
TEST CLOCK  
(TCK)  
TEST MODE SELECT  
(TMS)  
t
t
DVTH  
THDX  
TEST DATA IN  
(TDI)  
t
TLQV  
t
TLQX  
TEST DATA OUT  
(TDO)  
Document #: 38-05265 Rev. **  
Page 15 of 31  
CY7C1357A  
CY7C1355A  
Identification Register Definitions  
Instruction Field  
Revision Number  
256K × 36  
512K × 18  
Description  
Reserved for revision number.  
XXXX  
XXXX  
(31:28)  
Device Depth  
(27:23)  
00110  
00111  
00011  
Defines depth of 256K or 512K words.  
Defines width of x36 or x18 bits.  
Reserved for future use.  
Device Width  
(22:18)  
00100  
Reserved  
(17:12)  
XXXXXX  
XXXXXX  
Cypress JEDEC ID CODE (11:1)  
ID Register Presence Indicator (0)  
00011100100  
1
00011100100 Allows unique identification of DEVICE vendor.  
1
Indicates the presence of an ID register.  
Scan Register Sizes  
Register Name  
Instruction  
Bypass  
Bit Size (x36)  
Bit Size (x18)  
3
1
3
1
ID  
32  
70  
32  
51  
Boundary Scan  
Instruction Codes  
Instruction  
Code  
Description  
EXTEST  
000  
Captures I/O ring contents. Places the boundary scan register between TDI  
and TDO. Forces all device outputs to High-Z state. This instruction is not  
IEEE 1149.1-compliant.  
IDCODE  
001  
010  
Preloads ID register with vendor ID code and places it between TDI and  
TDO. This instruction does not affect device operations.  
SAMPLE-Z  
Captures I/O ring contents. Places the boundary scan register between TDI  
and TDO. Forces all device outputs to High-Z state.  
RESERVED  
011  
100  
Do not use these instructions; they are reserved for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI  
and TDO. This instruction does not affect device operations. This instruction  
does not implement IEEE 1149.1 PRELOAD function and is therefore not  
1149.1-compliant.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do not use these instructions; they are reserved for future use.  
Do not use these instructions; they are reserved for future use.  
Places the bypass register between TDI and TDO. This instruction does not  
affect device operations.  
Document #: 38-05265 Rev. **  
Page 16 of 31  
CY7C1357A  
CY7C1355A  
Boundary Scan Order (256K × 36) (continued)  
Boundary Scan Order (256K × 36)  
Bit#  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
Signal Name  
CE3  
BWa  
BWb  
BWc  
BWd  
CE2  
CE1  
A
TQFP  
92  
93  
94  
95  
96  
97  
98  
99  
100  
1
Bump ID  
6B  
5L  
Bit#  
1
Signal Name  
A
TQFP  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
56  
57  
58  
59  
62  
63  
64  
68  
69  
72  
73  
74  
75  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
Bump ID  
2R  
3T  
2
A
5G  
3G  
3L  
3
A
4T  
4
A
5T  
5
A
6R  
3B  
5B  
6P  
7N  
6M  
7L  
2B  
4E  
3A  
2A  
2D  
1E  
2F  
6
A
7
A
8
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
ZZ  
A
9
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
2
3
6K  
7P  
6N  
6L  
6
1G  
2H  
1D  
2E  
2G  
1H  
5R  
2K  
1L  
7
8
9
7K  
7T  
12  
13  
14  
18  
19  
22  
23  
24  
25  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
A
6H  
7G  
6F  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
MODE  
A
7E  
6D  
7H  
6G  
6E  
7D  
6A  
5A  
4G  
4A  
4B  
4F  
2M  
1N  
2P  
1K  
2L  
2N  
1P  
3R  
2C  
3C  
5C  
6C  
4N  
4P  
A
A
NC  
A
ADV/LD  
OE  
A
A
CEN  
WEN  
CLK  
4M  
4H  
4K  
A1  
A0  
Document #: 38-05265 Rev. **  
Page 17 of 31  
CY7C1357A  
CY7C1355A  
Boundary Scan Order (512K x 18) (continued)  
Boundary Scan Order (512K x 18)  
Bit#  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
Signal Name  
CLK  
CE3  
BWa  
BWb  
CE2  
CE1  
A
TQFP  
89  
92  
93  
94  
97  
98  
99  
100  
8
Bump ID  
4K  
Bit#  
1
Signal Name  
TQFP  
44  
45  
46  
47  
48  
49  
50  
58  
59  
62  
63  
64  
68  
69  
72  
73  
74  
80  
81  
82  
83  
84  
85  
86  
87  
88  
Bump ID  
2R  
2T  
A
A
6B  
2
5L  
3
A
3T  
3G  
2B  
4
A
5T  
5
A
6R  
3B  
5B  
7P  
6N  
6L  
4E  
6
A
3A  
7
A
A
2A  
8
DQa  
DQa  
DQa  
DQa  
ZZ  
DQb  
DQb  
DQb  
DQb  
NC  
1D  
2E  
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
12  
13  
14  
18  
19  
22  
23  
24  
31  
32  
33  
34  
35  
36  
37  
2G  
1H  
5R  
2K  
7K  
7T  
DQa  
DQa  
DQa  
DQa  
DQa  
A
6H  
7G  
6F  
DQb  
DQb  
DQb  
DQb  
DQb  
MODE  
A
1L  
2M  
1N  
2P  
7E  
6D  
6T  
3R  
2C  
3C  
5C  
6C  
4N  
4P  
A
6A  
5A  
4G  
4A  
4B  
4F  
A
A
A
A
NC  
ADV/LD  
OE  
CEN  
WEN  
A
A1  
A0  
4M  
4H  
Document #: 38-05265 Rev. **  
Page 18 of 31  
CY7C1357A  
CY7C1355A  
Short Circuit Output Current ....................................... 50 mA  
Maximum Ratings  
Static Discharge Voltage........................................... >2001V  
(per MIL-STD-883, Method 3015)  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-up Current..................................................... >200 mA  
Voltage on VCC Supply Relative to VSS ......... 0.5V to +4.6V  
Operating Range  
VIN ...........................................................0.5V to VCC+0.5V  
Range  
Coml  
Ambient Temperature  
0°C to +70°C  
VCC  
VCCQ  
Storage Temperature (plastic) ...................... 55°C to +125°  
Junction Temperature ..................................................+125°  
Power Dissipation .........................................................2.0W  
3.3V ±5% 2.55 to  
3.3+5%  
Ind temp  
40°C to +85°C  
Electrical Characteristics Over the Operating Range  
Parameter  
VIHD  
Description  
Input High (Logic 1) Voltage[23, 29]  
Test Conditions  
Min.  
Max.  
Unit  
V
All other inputs  
3.3V I/O  
2.0  
2.0  
VCC + 0.3  
VIH  
V
2.5V I/O  
1.7  
V
Input Low (Logic 0) Voltage[23, 29]  
Input Leakage Current  
VIL  
3.3V I/O  
0.3  
0.3  
0.8  
0.7  
5
V
2.5V I/O  
V
ILI  
0V < VIN < VCC  
MODE and ZZ Input Leakage Current[30] 0V < VIN < VCC  
µA  
µA  
µA  
V
ILI  
30  
5
ILO  
VOH  
Output Leakage Current  
Output High Voltage[23]  
Output(s) disabled, 0V < VOUT < VCC  
IOH = 5.0 mA for 3.3V I/O  
IOH = 1.0 mA for 2.5V I/O  
IOL = 8.0 mA for 3.3V I/O  
IOL = 1.0 mA for 2.5V I/O  
2.4  
2.0  
V
VOL  
Output Low Voltage[23]  
0.4  
0.4  
V
V
VCC  
Supply Voltage[23]  
I/O Supply Voltage[23]  
3.135  
3.135  
2.375  
3.465  
3.465  
2.9  
V
VCCQ  
3.3V I/O  
2.5V I/O  
V
V
Max.  
100  
133  
117  
100  
MHz/ MHz/ MHz/ MHz/  
Parameter  
Description  
Conditions  
Typ.  
-6.5  
-7  
-7.5  
-8  
Unit  
ICC  
VCC Operating  
Device selected; all inputs < VILor > VIH; 150  
cycle time > tKC min.; VCC = Max.;  
outputs open, ADV/LD = X, f = fMAX  
480  
450  
410  
380  
mA  
Supply[31, 32, 33, 34]  
2
ISB1  
Automatic CE  
Power-down  
Device deselected;  
40  
250  
10  
235  
10  
220  
10  
210  
10  
mA  
mA  
all inputs < VIL or > VIH; VCC = max.;  
CurrentTTL Inputs[32, CLK cycle time > tKC min.  
33, 34]  
ISB2  
Automatic CE  
Power-down  
Device deselected; VCC = max.;  
all inputs < VSS + 0.2 or >VCC 0.2;  
all inputs static; CLK frequency = 0  
5
CurrentCMOS  
Inputs[32, 33, 34]  
ISB3  
Automatic CE  
Max. VDD, Device Deselected, or VIN  
<
40  
15  
190  
30  
180  
30  
170  
30  
170  
30  
mA  
mA  
Power-down Current0.3V or VIN > VDDQ 0.3V f= f MAX = 1/t  
CMOS Inputs  
CYC  
ISB4  
Automatic CS  
Power-down  
Device deselected; all inputs < VIL  
or > VIH; all inputs static;  
CurrentTTL Inputs[32, VCC = max.; CLK frequency = 0  
33, 34]  
Document #: 38-05265 Rev. **  
Page 19 of 31  
CY7C1357A  
CY7C1355A  
Capacitance[25]  
Parameter  
Description  
Input Capacitance  
Input/Output Capacitance DQ  
Test Conditions  
Typ.  
4
Max.  
Unit  
pF  
CI  
TA = 25°C, f = 1 MHz,  
VCC = 3.3V  
4
CI/O  
7
6.5  
pF  
Thermal Resistance  
Parameter  
Description  
Test Conditions  
TQFP Typ.  
Unit  
ΘJA  
Thermal Resistance  
(Junction to Ambient)  
Still Air, soldered on a 4.25 ×1.125 inch, four-layer PCB  
25  
°C/W  
ΘJC  
Thermal Resistance  
(Junction to Case)  
9
°C/W  
AC Test Loads and Waveforms  
R = 317Ω  
V
CCQ  
OUTPUT  
ALL INPUT PULSES  
90%  
OUTPUT  
V
CCQ  
90%  
10%  
Z =50Ω  
0
R = 50Ω  
10%  
L
5 pF  
GND  
R = 351Ω  
1 V/ns  
1 V/ns  
= 1.5V  
VTH  
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Switching Characteristics Over the Operating Range[35]  
-6.5  
133-MHz  
-7  
117 MHz  
-7.5  
100 MHz  
-8  
100 MHz  
Parameter  
Clock  
Description  
Clock Cycle Time  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
tKC  
7.5  
2.5  
2.5  
8.5  
3.0  
3.0  
10  
3.5  
3.5  
10  
3.5  
3.5  
ns  
ns  
ns  
tKH  
Clock HIGH Time  
Clock LOW Time  
tKL  
Output Times  
tKQ  
Clock to Output Valid  
6.5  
7.0  
7.5  
8.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tKQX  
Clock to Output Invalid  
2.0  
3.0  
2
2.0  
3.0  
2
2.0  
3.0  
2
2.0  
3.0  
2
tKQLZ  
tKQHZ  
tOEQ  
Clock to Output in Low-Z[25, 36, 37]  
Clock to Output in High-Z[25, 36, 37]  
OE to Output Valid  
3.5  
3.5  
3.5  
3.5  
3.5  
4.0  
3.5  
4.0  
tOELZ  
tOEHZ  
Set-up Times  
tS  
OE to Output in Low-Z[25, 36, 37]  
OE to Output in High-Z[25, 36, 37]  
0
0
0
0
3.5  
3.5  
3.5  
3.5  
Address and Controls[38]  
Data In[38]  
1.5  
1.5  
1.5  
1.5  
1.8  
1.8  
2.0  
2.0  
ns  
ns  
tSD  
Notes:  
28.  
TA is the case temperature.  
29. Overshoot: VIH < +6.0V for t < tKC /2  
Undershoot:VIL < -2.0V for t < tKC /2.  
30. MODE pin has an internal pull-up and ZZ pin has an internal pull-down. These two pins exhibit an input leakage current of ±50 µA.  
31. ICC is given with no output current. ICC increases with greater output loading and faster cycle times.  
32. Device Deselectedmeans the device is in Power-Down mode as defined in the truth table. Device Selectedmeans the device is active.  
33. Typical values are measured at 3.3V, 25°C, and 20 ns cycle time.  
34. At f = fMAX, inputs are cycling at the maximum frequency of read cycles of 1/tCYC; f = 0 means no input lines are changing.  
35. Test conditions as specified with the output loading as shown in part (a) of AC Test Loads unless otherwise noted.  
36. Output loading is specified with CL=5 pF as in part (a) of AC Test Loads.  
37. At any given temperature and voltage condition, tKQHZ is less than tKQLZ and tOEHZ is less than tOELZ  
.
38. This is a synchronous device. All synchronous inputs must meet specified setup and hold time, except for dont careas defined in the truth table.  
Document #: 38-05265 Rev. **  
Page 20 of 31  
CY7C1357A  
CY7C1355A  
Switching Characteristics Over the Operating Range[35]  
-6.5  
133-MHz  
-7  
-7.5  
100 MHz  
-8  
117 MHz  
100 MHz  
Parameter  
Hold Times  
tH  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
Address and Controls[38]  
Data In[38]  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
tHD  
Document #: 38-05265 Rev. **  
Page 21 of 31  
CY7C1357A  
CY7C1355A  
Switching Waveforms  
Read Timing[39, 40, 41, 42, 43]  
tKC  
tKH  
tKL  
CLK  
tS  
tH  
tH  
tH  
CEN  
tS  
WEN  
tS  
A
A1  
A2  
BWx  
tS  
tH  
CE  
tS  
tH  
ADV/LD  
OE  
(Burst Wraps around  
to initial state)  
tKQHZ  
(CKE# HIGH, eliminates  
current L-H clock edge)  
tKQ  
tKQX  
tKQLZ  
Q(A1)  
Q(A2)  
Q(A2+1)  
Q(A2+2)  
Q(A2+3)  
Q(A2)  
DQx  
Deselec  
Read  
Read  
BURST READ  
t
Notes:  
39. Q(A1) represents the first output from the external address A1. Q(A2) represents the first output from the external address A2; Q(A2+1) represents the next  
output data in the burst sequence of the base address A2, etc. where address bits SA0 and SA1 are advancing for the four word burst in the sequence defined  
by the state of the MODE input.  
40. CE2 timing transitions are identical to the CE signal. For example, when CE is LOW on this waveform, CE2 is LOW. CE2 timing transitions are identical but  
inverted to the CE signal. For example, when CE is LOW on this waveform, CE2 is HIGH.  
41. Burst ends when new address and control are loaded into the SRAM by sampling ADV/LD LOW.  
42. WEN is Dont Carewhen the SRAM is bursting (ADV/LD sampled HIGH). The nature of the burst access (Read or Write) is fixed by the state of the WEN  
signal when new address and control are loaded into the SRAM.  
43. BWc and BWd apply to 256K × 36 device only.  
Document #: 38-05265 Rev. **  
Page 22 of 31  
CY7C1357A  
CY7C1355A  
Switching Waveforms (continued)  
Write Timing[40, 41, 42, 43, 44, 45]  
tKC  
tKH  
tKL  
CLK  
tS  
tH  
CEN  
tS  
tH  
WEN  
tS  
tH  
tH  
tH  
tH  
A1  
A2  
A
tS  
tS  
tS  
BW(A1)  
BW(A2)  
BW(A2+1)  
BW(A2+2)  
BW(A2+3)  
BW(A2)  
BWx  
CE  
ADV/LD  
OE  
(CKE# HIGH, eliminates  
current L-H clock edge)  
(Burst Wraps around  
to initial state)  
tHD  
tSD  
D(A1)  
D(A2)  
D(A2+1)  
D(A2+2)  
D(A2+3)  
D(A2)  
DQx  
Write  
Write  
Burst Write  
Deselect  
Notes:  
44. D(A1) represents the first input to the external address A1. D(A2) represents the first input to the external address A2; D(A2+1) represents the next input data  
in the burst sequence of the base address A2, etc. where address bits SA0 and SA1 are advancing for the four word burst in the sequence defined by the  
state of the MODE input.  
45. Individual Byte Write signals (BWx) must be valid on all write and burst-write cycles. A write cycle is initiated when WEN signal is sampled LOW when ADV/LD  
is sampled LOW. The byte write information comes in one cycle before the actual data is presented to the SRAM.  
Document #: 38-05265 Rev. **  
Page 23 of 31  
CY7C1357A  
CY7C1355A  
Switching Waveforms (continued)  
Read/Write Timing[40, 43, 45, 46]  
tKC  
tKH  
tKL  
CLK  
tS  
tH  
CKE#  
R/W#  
tS  
tH  
tH  
tH  
tH  
tH  
tS  
ADDRESS  
A
A
A
A
A
A
A
7
A8  
A9  
1
2
3
4
5
6
tS  
BW(A)  
BW(A)  
BW(A)  
BWa#, BWb#  
BWc#, BWd#  
2
4
5
tS  
CE#  
ADV/LD#  
tS  
OE#  
tKQ  
tKQHZ  
tKQLZ  
tKQX  
Q(A)  
Q(A)  
Q(A)  
Q(A)  
7
DATA Out (Q)  
DATA In (D)  
1
3
6
Read  
Read  
Read  
D(A)  
D(A)  
D(A)  
2
4
8
Write  
Write  
Write  
Note:  
46. Q(A1) represents the first output from the external address A1. D(A2) represents the input data to the SRAM corresponding to address A2.  
Document #: 38-05265 Rev. **  
Page 24 of 31  
CY7C1357A  
CY7C1355A  
Switching Waveforms (continued)  
CEN Timing[40, 43, 45, 46, 47]  
tKC  
tKH  
tKL  
CLK  
tS  
tS  
tS  
tS  
tS  
tS  
tH  
CEN  
tH  
WEN  
tH  
tH  
tH  
tH  
A
A
A
A
A
4
A5  
1
2
3
BWx  
C#  
CE  
ADV/LD  
OE  
tKQ  
tKQHZ  
Q(A)  
Q(A)  
Q(A)  
DATA Out (Q)  
DATA In (D)  
Note:  
1
3
4
tSD tHD  
tKQLZ  
tKQX  
D(A)  
2
47. CEN when sampled HIGH on the rising edge of clock will block that L-H transition of the clock from propagating into the SRAM. The part will behave as if the  
L-H clock transition did not occur. All internal register in the SRAM will retain their previous state.  
Document #: 38-05265 Rev. **  
Page 25 of 31  
CY7C1357A  
CY7C1355A  
Switching Waveforms (continued)  
CE Timing[40, 43, 45, 48, 49]  
tKC  
tKH  
tKL  
CLK  
tS  
tH  
CEN  
tS  
tH  
WEN  
tS  
tH  
A
A
A
A
A
4
A5  
1
2
3
tS  
tH  
BWx  
tS  
tH  
CE#  
CE  
tS  
tH  
ADV/LD  
tOEQ  
OE  
tKQHZ  
tOEHZ  
tOELZ  
Q(A)  
Q(A)  
Q(A)  
4
DATA Out (Q)  
1
2
tSD tHD  
D(A)  
tKQLZ  
tKQ  
tKQX  
DATA In (D)  
3
Notes:  
48. Q(A1) represents the first output from the external address A1. D(A3) represents the input data to the SRAM corresponding to address A3, etc.  
49. When either one of the Chip enables (CE, CE2 or CE2) is sampled inactive at the rising clock edge, a chip deselect cycle is initiated. The data-bus High-Z  
one cycle after the initiation of the deselect cycle. This allows for any pending data transfers (reads or writes) to be completed.  
Document #: 38-05265 Rev. **  
Page 26 of 31  
CY7C1357A  
CY7C1355A  
Switching Waveforms (continued)  
ZZ Mode Timing [ 50, 51]  
CLK  
CE1  
LOW  
CE2  
HIGH  
CE3  
ZZ  
tZZS  
IDD  
IDD(active)  
tZZREC  
IDDZZ  
I/Os  
Three-state  
Note:  
50. Device must be deselected when entering ZZ mode. See Cycle Descriptions Table for all possible signal conditions to deselect the device.  
51. I/Os are in three-state when exiting ZZ sleep mode.  
Document #: 38-05265 Rev. **  
Page 27 of 31  
CY7C1357A  
CY7C1355A  
Ordering Information  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
Package Type  
133  
CY7C1355A-133AC  
GVT71256ZB36-6.5  
A101  
BG119  
A101  
100-lead 14 × 20 × 1.4 mm Thin Quad Flat Pack Commercial  
119-lead BGA (14 × 22 × 2.4 mm) Commercial  
100-lead 14 × 20 × 1.4 mm Thin Quad Flat Pack Commercial  
CY7C1355A-133BGC  
GVT71256ZB36B-6.5  
117  
CY7C1355A-117AC  
GVT71256ZB36-7  
CY7C1355A-117AI  
GVT71256ZB36-7I  
A101  
100-lead 14 × 20 × 1.4 mm Thin Quad Flat Pack  
119-lead BGA (14 × 22 × 2.4 mm)  
Industrial  
Commercial  
Industrial  
CY7C1355A-117BGC  
GVT71256ZB36B-7  
BG119  
BG119  
A101  
CY7C1355A-117BGI  
GVT71256ZB36B-7I  
119-lead BGA (14 × 22 × 2.4 mm)  
100  
CY7C1355A-100AC  
GVT71256ZB36-7.5  
100-lead 14 × 20 × 1.4 mm Thin Quad Flat Pack Commercial  
CY7C1355A-100AI  
GVT71256ZB36-7.5I  
A101  
100-lead 14 × 20 × 1.4 mm Thin Quad Flat Pack  
119-lead BGA (14 × 22 × 2.4 mm)  
Industrial  
Commercial  
Industrial  
CY7C1355A-100BGC  
GVT71256ZB36B-7.5  
BG119  
BG119  
CY7C1355A-100BGI  
GVT71256ZB36B-7.5I  
119-lead BGA (14 × 22 × 2.4 mm)  
CY7C1355A1-100AC  
CY7C1355A1-100AI  
CY7C1355A1-100BGC  
CY7C1355A1-100BGI  
A101  
A101  
100-lead 14 × 20 × 1.4 mm Thin Quad Flat Pack Commercial  
100-lead 14 × 20 × 1.4 mm Thin Quad Flat Pack  
119-lead BGA (14 × 22 × 2.4 mm)  
Industrial  
Commercial  
Industrial  
BG119  
BG119  
A101  
119-lead BGA (14 × 22 × 2.4 mm)  
133  
117  
CY7C1357A-133AC  
GVT71512ZB36-6.5  
100-lead 14 × 20 × 1.4 mm Thin Quad Flat Pack Commercial  
119-lead BGA (14 × 22 × 2.4 mm) Commercial  
100-lead 14 × 20 × 1.4 mm Thin Quad Flat Pack Commercial  
CY7C1357A-133BGC  
GVT71512ZB36B-6.5  
BG119  
A101  
CY7C1357A-117AC  
GVT71512ZB36-7  
CY7C1357A-117AI  
GVT71512ZB36-7I  
A101  
100-lead 14 × 20 × 1.4 mm Thin Quad Flat Pack  
119-lead BGA (14 × 22 × 2.4 mm)  
Industrial  
Commercial  
Industrial  
CY7C1357A-117BGC  
GVT71512ZB36B-7  
BG119  
BG119  
A101  
CY7C1357A-117BGI  
GVT71512ZB36B-7I  
119-lead BGA (14 × 22 × 2.4 mm)  
100  
CY7C1357A-100AC  
GVT71512ZB36-7.5  
100-lead 14 × 20 × 1.4 mm Thin Quad Flat Pack Commercial  
CY7C1357A-100AI  
GVT71512ZB36-7.5I  
A101  
100-lead 14 × 20 × 1.4 mm Thin Quad Flat Pack  
119-lead BGA (14 × 22 × 2.4 mm)  
Industrial  
Commercial  
Industrial  
CY7C1357A-100BGC  
GVT71512ZB36B-7.5  
BG119  
BG119  
CY7C1357A-100BGI  
GVT71512ZB36B-7.5I  
119-lead BGA (14 × 22 × 2.4 mm)  
CY7C1357A1-100AC  
CY7C1357A1-100AI  
CY7C1357A1-100BGC  
CY7C1357A1-100BGI  
A101  
A101  
100-lead 14 × 20 × 1.4 mm Thin Quad Flat Pack Commercial  
100-lead 14 × 20 × 1.4 mm Thin Quad Flat Pack  
119-lead BGA (14 × 22 × 2.4 mm)  
Industrial  
Commercial  
Industrial  
BG119  
BG119  
119-lead BGA (14 × 22 × 2.4 mm)  
Document #: 38-05265 Rev. **  
Page 28 of 31  
CY7C1357A  
CY7C1355A  
Package Diagrams  
100-pin Thin Plastic Quad Flatpack (14 × 20 × 1.4 mm) A101  
51-85050-A  
Document #: 38-05265 Rev. **  
Page 29 of 31  
CY7C1357A  
CY7C1355A  
Package Diagrams (continued)  
119-lead BGA (14 × 22 × 2.4) BG119  
51-85115-*A  
No Bus Latency and NoBL are trademarks of Cypress Semiconductor Corporation. All product and company names mentioned  
in this document are the trademarks of their respective holders.  
Document #: 38-05265 Rev. **  
Page 30 of 31  
© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C1357A  
CY7C1355A  
DocumentTitle:CY7C1355A/CY7C1357A256Kx36/512Kx18SynchronousFlow-ThruSRAMwithNoBLArchitecture  
Document Number: 38-05265  
Orig. of  
Issue Date Change  
REV  
ECN  
Description of Change  
**  
114118  
7/16/02  
KKV  
New Data Sheet  
Document #: 38-05265 Rev. **  
Page 31 of 31  

相关型号:

GVT71256ZB36B-7.5I

ZBT SRAM, 256KX36, 7.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, FBGA-119
CYPRESS

GVT71256ZB36B-7I

ZBT SRAM, 256KX36, 7ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, FBGA-119
CYPRESS

GVT71256ZC36

256K x 36/512K x 18 Pipelined SRAM with NoBL Architecture
CYPRESS

GVT71256ZC36-10

ZBT SRAM, 256KX36, 5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

GVT71256ZC36-10I

256K x 36/512K x 18 Pipelined SRAM with NoBL Architecture
CYPRESS

GVT71256ZC36-5

ZBT SRAM, 256KX36, 3.2ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

GVT71256ZC36-6

256K x 36/512K x 18 Pipelined SRAM with NoBL Architecture
CYPRESS

GVT71256ZC36-6I

暂无描述
CYPRESS

GVT71256ZC36-7.5I

256K x 36/512K x 18 Pipelined SRAM with NoBL Architecture
CYPRESS

GVT71256ZC36B-10I

256K x 36/512K x 18 Pipelined SRAM with NoBL Architecture
CYPRESS

GVT71256ZC36B-5

ZBT SRAM, 256KX36, 3.2ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119
CYPRESS

GVT71256ZC36B-6

ZBT SRAM, 256KX36, 3.6ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119
CYPRESS