GVT71512B18B-7 [CYPRESS]

Standard SRAM, 512KX18, 7.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, FBGA-119;
GVT71512B18B-7
型号: GVT71512B18B-7
厂家: CYPRESS    CYPRESS
描述:

Standard SRAM, 512KX18, 7.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, FBGA-119

时钟 静态存储器 内存集成电路
文件: 总28页 (文件大小:738K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1CY7C1361A  
CY7C1361A/GVT71256B36  
CY7C1363A/GVT71512B18  
256K x 36/512K x 18 Synchronous Burst Flowthrough SRAM  
and a 2-bit counter for internal burst operation. All synchro-  
Features  
nous inputs are gated by registers controlled by a positive-  
edge-triggered Clock Input (CLK). The synchronous inputs in-  
clude all addresses, all data inputs, address-pipelining Chip  
Enable (CE), depth-expansion Chip Enables (CE2 and CE2),  
Burst Control Inputs (ADSC, ADSP, and ADV), Write Enables  
(BWa, BWb, BWc, BWd, and BWE), and Global Write (GW).  
However, the CE2 chip enable input is only available for TA(GV-  
TI)/A(CY) package version.  
• Fast access times: 6.0, 6.5, 7.0, and 8.0 ns  
• Fast clock speed: 150, 133, 117, and 100 MHz  
• 1 ns set-up time and hold time  
• Fast OE access times: 3.5 ns and 4.0 ns  
• 3.3V –5% and +10% power supply  
• 3.3V or 2.5V I/O supply  
• 5V tolerant inputs except I/Os  
Asynchronous inputs include the Output Enable (OE) and  
burst mode control (MODE). The data outputs (Q), enabled by  
OE, are also asynchronous.  
• Clamp diodes to VSS at all inputs and outputs  
• Common data inputs and data outputs  
• Byte Write Enable and Global Write control  
• Multiple chip enables for depth expansion:  
three chip enables for TA(GVTI)/A(CY) package version  
and two chip enables for B(GVTI)/BG(CY) and  
T(GVTI)/AJ(CY) package versions  
• Address pipeline capability  
• Address, data and control registers  
• Internally self-timed Write Cycle  
• Burst control pins (interleaved or linear burst se-  
quence)  
• Automatic power-down for portable applications  
• JTAG boundary scan for B and T package version  
• Low profile 119-bump, 14-mm x 22-mm PBGA (Ball Grid  
Array) and 100-pin TQFP packages  
Addresses and chip enables are registered with either Ad-  
dress Status Processor (ADSP) or Address Status Controller  
(ADSC) input pins. Subsequent burst addresses can be inter-  
nally generated as controlled by the Burst Advance pin (ADV).  
Address, data inputs, and write controls are registered on-chip  
to initiate self-timed WRITE cycle. WRITE cycles can be one  
to four bytes wide as controlled by the write control inputs.  
Individual byte write allows individual byte to be written. BWa  
controls DQa. BWb controls DQb. BWc controls DQc. BWd  
controls DQd. BWa, BWb, BWc, and BWd can be active only  
with BWE being LOW. GW being LOW causes all bytes to be  
written. The x18 version only has 18 data inputs/outputs (DQa  
and DQb) along with BWa and BWb (no BWc, BWd, DQc, and  
DQd).  
For the B(GVTI)/BG(CY) and T(GVTI)/AJ(CY) package ver-  
sions, four pins are used to implement JTAG test capabilities:  
Test Mode Select (TMS), Test Data-In (TDI), Test Clock (TCK),  
and Test Data-Out (TDO). The JTAG circuitry is used to serially  
shift data to and from the device. JTAG inputs use  
LVTTL/LVCMOS levels to shift data during this testing mode of  
operation. The TA package version does not offer the JTAG  
capability.  
Functional Description  
The Cypress Synchronous Burst SRAM family employs high-  
speed, low-power CMOS designs using advanced triple-layer  
polysilicon, double-layer metal technology. Each memory cell  
consists of four transistors and two high-valued resistors.  
The GVT71256B36/CY7C1361A and GVT71512B18/  
CY7C1363A SRAMs integrate 262,144x36 and 524,288x18  
SRAM cells with advanced synchronous peripheral circuitry  
The GVT71256B36 and GVT71512B18 operate from a +3.3V  
power supply. All inputs and outputs are LVTTL compatible.  
Selection Guide  
7C1361A-150  
7C1361A-133  
7C1363A-133  
71256B36-6.5  
71512B18-6.5  
7C1361A-117  
7C1363A-117  
71256B36-7  
71512B18-7  
7C1361A-100  
7C1363A-100  
71256B36-8  
71512B18-8  
7C1363A-150  
71256B36-6  
71512B18-6  
Maximum Access Time (ns)  
6.0  
400  
10  
6.5  
360  
10  
7.0  
320  
10  
8.0  
270  
10  
Maximum Operating Current (mA)  
Maximum CMOS Standby Current (mA)  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
June 11, 2001  
CY7C1361A/GVT71256B36  
CY7C1363A/GVT71512B18  
256K x 36 (CY7C1361A/GVT71256B36) Functional Block Diagram[1]  
BYTE a WRITE  
BWa#  
BWE#  
D
Q
CLK  
BYTE b WRITE  
BWb#  
D
Q
GW#  
BYTE c WRITE  
BWc#  
D
Q
BYTE d WRITE  
BWd#  
D
Q
ENABLE  
CE#  
CE2  
D
Q
[2]CE2#  
OE#  
ZZ  
Power Down Logic  
Input  
Register  
ADSP#  
16  
A
Address  
Register  
ADSC#  
DQa,DQb  
DQc,DQd  
CLR  
ADV#  
A1-A0  
MODE  
Binary  
Counter  
& Logic  
512K x 18 (CY7C1363A/GVT71512B18)Functional Block Diagram  
BYTE b  
WRITE  
BWb#  
BWE#  
D
Q
BYTE a  
WRITE  
BWa#  
GW#  
D
Q
ENABLE  
CE#  
CE2  
D
Q
[2]CE2#  
ZZ  
Power Down Logic  
OE#  
ADSP#  
Input  
Register  
17  
A
Address  
Register  
ADSC#  
DQa,D  
Qb  
CLR  
ADV#  
A1-A0  
MODE  
Binary  
Counter  
& Logic  
Notes:  
1. The Functional Block Diagram illustrates simplified device operation. See Truth Table, pin descriptions, and timing diagrams for detailed information.  
2. CE2 is for AJ/TA version only.  
2
CY7C1361A/GVT71256B36  
CY7C1363A/GVT71512B18  
Pin Configurations  
CY7C1361A/GVT71256B36  
256Kx36 100-Pin TQFP  
T(AJ) Package Version  
TA(A) Package Version  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQc  
DQc  
DQc  
VCCQ  
VSS  
DQc  
DQc  
DQc  
DQc  
VSS  
VCCQ  
DQc  
DQc  
NC  
DQb  
DQb  
DQb  
VCCQ  
VSS  
DQb  
DQb  
DQb  
DQb  
VSS  
VCCQ  
DQb  
DQb  
VSS  
NC  
DQc  
DQc  
DQc  
VCCQ  
VSS  
DQc  
DQc  
DQc  
DQc  
VSS  
VCCQ  
DQc  
DQc  
NC  
DQb  
DQb  
DQb  
VCCQ  
VSS  
DQb  
DQb  
DQb  
DQb  
VSS  
VCCQ  
DQb  
DQb  
VSS  
NC  
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VCC  
NC  
VCC  
NC  
100-pin TQFP  
TA version  
100-pin TQFP  
VCC  
ZZ  
VCC  
ZZ  
VSS  
DQd  
DQd  
VCCQ  
VSS  
DQd  
DQd  
DQd  
DQd  
VSS  
VCCQ  
DQd  
DQd  
DQd  
VSS  
DQd  
DQd  
VCCQ  
VSS  
DQd  
DQd  
DQd  
DQd  
VSS  
VCCQ  
DQd  
DQd  
DQd  
DQa  
DQa  
VCCQ  
VSS  
DQa  
DQa  
DQa  
DQa  
VSS  
VCCQ  
DQa  
DQa  
DQa  
DQa  
DQa  
VCCQ  
VSS  
DQa  
DQa  
DQa  
DQa  
VSS  
VCCQ  
DQa  
DQa  
DQa  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
CY7C1363A/GVT71512B18  
TA(A) Package Version  
512Kx18 100-Pin TQFP  
T(AJ) Package Version  
10  
0
99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
1
80  
1
2
3
4
5
6
7
8
9
80  
NC  
NC  
NC  
VCCQ  
VSS  
NC  
A
NC  
NC  
VCCQ  
VSS  
NC  
DQa  
DQa  
DQa  
VSS  
VCCQ  
DQa  
DQa  
VSS  
NC  
NC  
NC  
NC  
VCCQ  
VSS  
NC  
A
NC  
NC  
VCCQ  
VSS  
NC  
DQa  
DQa  
DQa  
VSS  
VCCQ  
DQa  
DQa  
VSS  
NC  
2
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
3
4
5
6
7
NC  
NC  
8
DQb  
DQb  
VSS  
VCCQ  
DQb  
DQb  
NC  
DQb  
DQb  
VSS  
VCCQ  
DQb  
DQb  
NC  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VCC  
NC  
VCC  
NC  
100-pin TQFP  
TA version  
100-pin TQFP  
VCC  
ZZ  
VCC  
ZZ  
VSS  
DQb  
DQb  
VCCQ  
VSS  
DQb  
DQb  
DQb  
NC  
VSS  
VCCQ  
NC  
NC  
NC  
VSS  
DQb  
DQb  
VCCQ  
VSS  
DQb  
DQb  
DQb  
NC  
VSS  
VCCQ  
NC  
NC  
NC  
DQa  
DQa  
VCCQ  
VSS  
DQa  
DQa  
NC  
DQa  
DQa  
VCCQ  
VSS  
DQa  
DQa  
NC  
NC  
NC  
VSS  
VCCQ  
NC  
NC  
NC  
VSS  
VCCQ  
NC  
NC  
NC  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
3
CY7C1361A/GVT71256B36  
CY7C1363A/GVT71512B18  
Pin Configurations (continued)  
CY7C1361A/GVT71256B36  
256Kx36 119-Ball BGA  
Top View  
1
2
3
A
4
ADSP  
ADSC  
VCC  
NC  
5
6
7
A
B
C
D
E
F
VCCQ  
NC  
A
A
A
VCCQ  
NC  
CE2  
A
A
A
A
NC  
A
A
A
NC  
DQc  
DQc  
VCCQ  
DQc  
DQc  
VCCQ  
DQd  
DQd  
VCCQ  
DQd  
DQd  
NC  
DQc  
DQc  
DQc  
DQc  
DQc  
VCC  
DQd  
DQd  
DQd  
DQd  
DQd  
A
VSS  
VSS  
VSS  
BWc  
VSS  
NC  
VSS  
BWd  
VSS  
VSS  
VSS  
MODE  
A
VSS  
VSS  
VSS  
BWb  
VSS  
NC  
VSS  
BWa  
VSS  
VSS  
VSS  
NC  
A
DQb  
DQb  
DQb  
DQb  
DQb  
VCC  
DQa  
DQa  
DQa  
DQa  
DQa  
A
DQb  
DQb  
VCCQ  
DQb  
DQb  
VCCQ  
DQa  
DQa  
VCCQ  
DQa  
DQa  
NC  
CE  
OE  
G
H
J
ADV  
GW  
VCC  
CLK  
NC  
K
L
M
N
P
R
T
BWE  
A1  
A0  
VCC  
A
NC  
NC  
NC  
ZZ  
U
VCCQ  
TMS  
TDI  
TCK  
TDO  
NC  
VCCQ  
CY7C1361A/GVT71256B36  
512Kx18 119-Ball BGA  
Top View  
1
2
3
A
4
ADSP  
ADSC  
VCC  
NC  
5
6
A
7
A
B
C
D
E
F
VCCQ  
NC  
A
A
VCCQ  
NC  
CE2  
A
A
A
A
NC  
A
A
A
NC  
DQb  
NC  
NC  
DQb  
NC  
DQb  
NC  
VCC  
DQb  
NC  
DQb  
NC  
DQb  
A
VSS  
VSS  
VSS  
BWb  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
MODE  
A
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
VSS  
BWa  
VSS  
VSS  
VSS  
NC  
A
DQa  
NC  
DQa  
NC  
DQa  
VCC  
NC  
DQa  
NC  
DQa  
NC  
A
NC  
CE  
DQa  
VCCQ  
DQa  
NC  
VCCQ  
NC  
OE  
G
H
J
ADV  
GW  
VCC  
CLK  
NC  
DQb  
VCCQ  
NC  
VCCQ  
DQa  
NC  
K
L
DQb  
VCCQ  
DQb  
NC  
M
N
P
R
T
BWE  
A1  
VCCQ  
NC  
A0  
DQa  
NC  
NC  
VCC  
A
NC  
A
A
ZZ  
U
VCCQ  
TMS  
TDI  
TCK  
TDO  
NC  
VCCQ  
4
CY7C1361A/GVT71256B36  
CY7C1363A/GVT71512B18  
256K x 36 Pin Descriptions  
Pin  
x36 PBGA Pins x36 QFP Pins Name  
Type  
Description  
4P  
4N  
37  
36  
A0  
A1  
A
Input-  
Addresses: These inputs are registered and must meet the set-  
Synchronous up and hold times around the rising edge of CLK. The burst  
countergeneratesinternaladdressesassociatedwith A0andA1,  
during burst cycle and wait cycle.  
2A, 3A, 5A, 6A,  
3B, 5B, 6B, 2C, 100, 99, 82, 81,  
35, 34, 33, 32,  
3C, 5C, 6C, 2R, 44, 45, 46, 47,  
6R, 3T, 4T, 5T  
48, 49, 50  
92 (A/T version)  
43 (AJ/TA ver-  
sion)  
5L  
5G  
3G  
3L  
93  
94  
95  
96  
BWa  
Input-  
Byte Write: A byte write is LOW for a WRITE cycle and HIGH for  
BWb Synchronous a READ cycle. BWa controls DQa. BWb controls DQb. BWc con-  
BWc  
BWd  
trols DQc. BWd controls DQd. Data I/O are high impedance if  
either of these inputs are LOW, conditioned by BWE being LOW.  
4M  
4H  
4K  
87  
88  
89  
BWE  
Input-  
Write Enable: This active LOW input gates byte write operations  
Synchronous and must meet the set-up and hold times around the rising edge  
of CLK.  
GW  
Input-  
Global Write: This active LOW input allows a full 36-bit WRITE to  
Synchronous occur independent of the BWE and BWn lines and must meet the  
set up and hold times around the rising edge of CLK.  
CLK  
Input-  
Clock: This signal registers the addresses, data, chip enables,  
Synchronous write control and burst control inputs on its rising edge. All syn-  
chronous inputs must meet set up and hold times around the  
clock’s rising edge.  
4E  
2B  
98  
97  
CE  
CE2  
CE2  
OE  
Input-  
Chip Enable: This active LOW input is used to enable the device  
Synchronous and to gate ADSP.  
Input-  
Synchronous  
Chip Enable: This active HIGH input is used to enable the device.  
(not available for  
PBGA)  
92 (for AJ/TA  
version only)  
Input-  
Chip Enable: This active LOW input is used to enable the device.  
Synchronous Not available for B and T package versions.  
4F  
86  
Input  
Output Enable: This active LOW asynchronous input enables the  
data output drivers.  
4G  
83  
ADV  
Input-  
Address Advance: This active LOW input is used to control the  
Synchronous internal burst counter. A HIGH on this pin generates wait cycle  
(no address advance).  
4A  
4B  
84  
85  
ADSP  
ADSC  
Input-  
Address Status Processor: This active LOW input, along with CE  
Synchronous being LOW, causes a new external address to be registered and  
a READ cycle is initiated using the new address.  
Input-  
Address Status Controller: This active LOW input causes device  
Synchronous to be deselected or selected along with new external address to  
be registered. A READ or WRITE cycle is initiated depending  
upon write control inputs.  
3R  
7T  
31  
64  
MODE  
ZZ  
Input-  
Static  
Mode: This input selects the burst sequence. A LOW on this pin  
selects linear burst. A NC or HIGH on this pin selects interleaved  
burst.  
Input-  
Asynchro-  
nous  
Snooze: This active HIGH input puts the device in low power  
consumption standby mode. For normal operation, this input has  
to be either LOW or NC (No Connect).  
5
CY7C1361A/GVT71256B36  
CY7C1363A/GVT71512B18  
256K x 36 Pin Descriptions (continued)  
Pin  
x36 PBGA Pins x36 QFP Pins Name  
Type  
Description  
(a) 6P, 7P, 7N,  
6N, 6M, 6L, 7L,  
6K, 7K,  
(b) 7H, 6H, 7G,  
6G, 6F, 6E, 7E,  
7D, 6D,  
(a) 51, 52, 53,  
56, 57, 58, 59,  
62, 63  
(b) 68, 69, 72,  
73, 74, 75, 78,  
79, 80  
DQa  
DQb  
DQc  
DQd  
Input/  
Output  
Data Inputs/Outputs: First Byte is DQa. Second Byte is DQb.  
Third Byte is DQc. Fourth Byte is DQd. Input data must meet set  
up and hold times around the rising edge of CLK.  
(c) 2D, 1D, 1E,  
2E, 2F, 1G, 2G,  
1H, 2H,  
(d) 1K, 2K, 1L,  
2L, 2M, 1N, 2N,  
1P, 2P  
(c) 1, 2, 3, 6, 7,  
8, 9, 12, 13  
(d) 18, 19, 22,  
23, 24, 25, 28,  
29, 30  
2U  
3U  
4U  
38  
39  
43  
TMS  
TDI  
TCK  
Input  
IEEE 1149.1 Test Inputs. LVTTL-level inputs. Not available for  
AJ/TA package version.  
for BG/B and  
A/T version  
5U  
42  
TDO  
Output  
IEEE 1149.1 test output. LVTTL-level output. Not available for  
AJ/TA package version.  
for BG/B and  
A/T version  
4C, 2J, 4J, 6J,  
4R  
15, 41,65, 91  
VCC  
VSS  
Supply  
Ground  
Core power Supply: +3.3V –5% and +10%  
Ground: GND.  
3D, 5D, 3E, 5E,  
3F, 5F, 3H, 5H,  
3K, 5K, 3M, 5M,  
3N, 5N, 3P, 5P  
5, 10, 17, 21,  
26, 40, 55, 60,  
67, 71, 76, 90  
1A, 7A, 1F, 7F,  
1J, 7J, 1M, 7M,  
1U, 7U  
4, 11, 20, 27,  
54, 61, 70, 77  
VCCQ  
I/O Supply  
-
Output Buffer Supply: +2.5V or +3.3V.  
1B, 7B, 1C, 7C,  
4D, 3J, 5J, 4L,  
1R, 5R, 7R, 1T,  
2T, 6T, 6U  
14, 16, 66  
NC  
No Connect: These signals are not internally connected. User  
can leave it floating or connect it to VCC or VSS  
.
38, 39, 42 for  
AJ/TA Version  
512K X 18 Pin Descriptions  
Pin  
x18 PBGA Pins X18 QFP Pins Name  
Type  
Description  
4P  
4N  
37  
36  
A0  
A1  
A
Input-  
Addresses: These inputs are registered and must meet the set  
Synchronous up and hold times around the rising edge of CLK. The burst  
countergeneratesinternaladdressesassociatedwith A0andA1,  
during burst cycle and wait cycle.  
2A, 3A, 5A, 6A,  
3B, 5B, 6B, 2C, 100, 99, 82, 81,  
3C, 5C, 6C, 2R, 80, 48, 47, 46,  
35, 34, 33, 32,  
6R, 2T, 3T, 5T,  
6T  
45, 44, 49, 50  
92 (A/T version)  
43 (AJ/TA ver-  
sion)  
5L  
3G  
93  
94  
BWa  
Input-  
ByteWriteEnables:A bytewriteenableisLOWforaWRITEcycle  
BWb Synchronous and HIGH for a READ cycle. BWa controls DQa. BWb controls  
DQb. Data I/O are high impedance if either of these inputs are  
LOW, conditioned by BWE being LOW.  
4M  
87  
BWE  
Input-  
Write Enable: This active LOW input gates byte write operations  
Synchronous and must meet the set up and hold times around the rising edge  
of CLK.  
6
CY7C1361A/GVT71256B36  
CY7C1363A/GVT71512B18  
512K X 18 Pin Descriptions (continued)  
Pin  
x18 PBGA Pins X18 QFP Pins Name  
Type  
Description  
4H  
88  
GW  
Input-  
Global Write: This active LOW input allows a full 18-bit WRITE to  
Synchronous occur independent of the BWE# and WEn# lines and must meet  
the set up and hold times around the rising edge of CLK.  
4K  
89  
CLK  
Input-  
Clock: This signal registers the addresses, data, chip enables,  
Synchronous write control and burst control inputs on its rising edge. All syn-  
chronous inputs must meet set up and hold times around the  
clock’s rising edge.  
4E  
2B  
98  
97  
CE  
CE2  
CE2  
OE  
Input-  
Chip Enable: This active LOW input is used to enable the device  
Synchronous and to gate ADSP.  
input-  
Synchronous  
Chip Enable: This active HIGH input is used to enable the device.  
(not available for  
PBGA)  
92 (for AJ/TA  
Version only)  
input-  
Chip Elnable: This active LOW input is used to enable the device.  
Synchronous Not available for B and T package versions.  
4F  
86  
Input  
Output Enable: This active LOW asynchronous input enables the  
data output drivers.  
4G  
83  
ADV  
Input-  
Address Advance: This active LOW input is used to control the  
Synchronous internal burst counter. A HIGH on this pin generates wait cycle  
(no address advance).  
4A  
4B  
84  
85  
ADSP  
ADSC  
Input-  
Address Status Processor: This active LOW input, along with CE  
Synchronous being LOW, causes a new external address to be registered and  
a READ cycle is initiated using the new address.  
Input-  
Address Status Controller: This active LOW input causes device  
Synchronous to be deselected or selected along with new external address to  
be registered. A READ or WRITE cycle is initiated depending  
upon write control inputs.  
3R  
7T  
31  
64  
MODE  
ZZ  
Input-  
Static  
Mode: This input selects the burst sequence. A LOW on this pin  
selects linear burst. A NC or HIGH on this pin selects interleaved  
burst.  
Input-Asyn- Snooze: This active HIGH input puts the device in low power  
chronous  
consumption standby mode. For normal operation, this input has  
to be either LOW or NC (No Connect).  
(a) 6D, 7E, 6F,  
7G, 6H, 7K, 6L, 63, 68, 69, 72,  
6N, 7P 73, 74  
(a) 58, 59, 62,  
DQa  
DQb  
Input/  
Output  
Data Inputs/Outputs: Low Byte is DQa. High Byte is DQb. Input  
data must meet setup and hold times around the rising edge of  
CLK.  
(b) 1D, 2E, 2G, (b) 8, 9, 12, 13,  
1H, 2K, 1L, 2M, 18, 19, 22, 23,  
1N, 2P  
24  
2U  
3U  
4U  
38  
39  
TMS  
TDI  
TCK  
Input  
IEEE 1149.1 Test Inputs. LVTTL-level inputs. Not available for  
AJ/TA package version.  
43  
for B and T ver-  
sion  
5U  
42  
for B and T ver-  
sion  
TDO  
Output  
IEEE 1149.1 test output. LVTTL-level output. Not available for  
AJ/TA package version.  
4C, 2J, 4J, 6J,  
4R  
15, 41,65, 91  
VCC  
VSS  
Supply  
Ground  
Core power Supply: +3.3V –5% and +10%  
Ground: GND.  
3D, 5D, 3E, 5E,  
3F, 5F, 5G, 3H,  
5H, 3K, 5K, 3L,  
3M, 5M, 3N, 5N,  
3P, 5P  
5, 10, 17, 21,  
26, 40, 55, 60,  
67, 71, 76, 90  
7
CY7C1361A/GVT71256B36  
CY7C1363A/GVT71512B18  
512K X 18 Pin Descriptions (continued)  
Pin  
x18 PBGA Pins X18 QFP Pins Name  
Type  
Description  
1A, 7A, 1F, 7F,  
1J, 7J, 1M, 7M,  
1U, 7U  
4, 11, 20, 27,  
54, 61, 70, 77  
VCCQ  
I/O Supply  
Output Buffer Supply: +2.5V or +3.3V.  
1B, 7B, 1C, 7C, 1-3, 6, 7, 14, 16,  
2D, 4D, 7D, 1E, 25, 28-30, 51-  
6E, 2F, 1G, 6G, 53, 56, 57, 66,  
NC  
-
No Connect: These signals are not internally connected. User  
can leave it floating or connect it to VCC or VSS  
.
2H, 7H, 3J, 5J,  
1K, 6K, 2L, 4L,  
7L, 6M, 2N, 7N,  
1P, 6P, 1R, 5R,  
7R, 1T, 4T, 6U  
75, 78, 79, 80,  
95, 96  
38, 39, 42 for  
AJ/TA version  
Burst Address Table (MODE = NC/V  
)
Burst Address Table (MODE = GND)  
CC  
First  
Address  
(external)  
Second  
Address  
(internal)  
Third  
Address  
(internal)  
Fourth  
Address  
(internal)  
First  
Address  
(external)  
Second  
Address  
(internal)  
Third  
Address  
(internal)  
Fourth  
Address  
(internal)  
A...A00  
A...A01  
A...A10  
A...A11  
A...A01  
A...A00  
A...A11  
A...A10  
A...A10  
A...A11  
A...A00  
A...A01  
A...A11  
A...A10  
A...A01  
A...A00  
A...A00  
A...A01  
A...A10  
A...A11  
A...A01  
A...A10  
A...A11  
A...A00  
A...A10  
A...A11  
A...A00  
A...A01  
A...A11  
A...A00  
A...A01  
A...A10  
8
CY7C1361A/GVT71256B36  
CY7C1363A/GVT71512B18  
Truth Table[3, 4, 5, 6, 7, 8, 9]  
Address  
Used  
Operation  
CE  
H
L
CE2 CE2 ADSP ADSC ADV WRITE OE CLK  
DQ  
Deselected Cycle, Power Down  
Deselected Cycle, Power Down  
Deselected Cycle, Power Down  
Deselected Cycle, Power Down  
Deselected Cycle, Power Down  
READ Cycle, Begin Burst  
None  
None  
X
X
H
X
H
L
X
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
L
X
X
X
X
X
L
L-H High-Z  
L-H High-Z  
L-H High-Z  
L-H High-Z  
L-H High-Z  
None  
L
X
L
L
None  
L
H
H
L
None  
L
X
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
L
External  
External  
External  
External  
External  
Next  
L
X
X
L
L-H  
Q
READ Cycle, Begin Burst  
L
L
L
H
X
L
L-H High-Z  
WRITE Cycle, Begin Burst  
READ Cycle, Begin Burst  
L
L
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
L-H  
L-H  
D
Q
L
L
L
H
H
H
H
H
H
L
READ Cycle, Begin Burst  
L
L
L
H
L
L-H High-Z  
L-H  
L-H High-Z  
L-H  
L-H High-Z  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
WRITE Cycle, Continue Burst  
WRITE Cycle, Continue Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
WRITE Cycle, Suspend Burst  
WRITE Cycle, Suspend Burst  
X
X
H
H
X
H
X
X
H
H
X
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
Q
Next  
L
H
L
Next  
L
Q
Next  
L
H
X
X
L
Next  
L
L-H  
L-H  
L-H  
D
D
Q
Next  
L
L
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
H
L
L-H High-Z  
L-H  
L-H High-Z  
Q
H
X
L-H  
L-H  
D
D
H
X
L
X
Partial Truth Table for Read/Write[10]  
FUNCTION  
GW  
BWE  
BWa  
BWb  
X
BWc  
BWd  
READ  
READ  
H
H
H
H
L
H
L
L
L
X
X
H
L
X
H
H
L
X
H
H
L
H
WRITE one byte  
WRITE all bytes  
WRITE all bytes  
H
L
L
X
X
X
X
Notes:  
3. X = “Don’t Care.” H = logic HIGH. L = logic LOW.  
For x36 product, WRITE = L means [BWE + BWa*BWb*BWc*BWd]*GW equals LOW. WRITE = H means [BWE + BWa*BWb*BWc*BWd]*GW equals HIGH.  
For x18 product, WRITE = L means [BWE + BWa*BWb]*GW equals LOW. WRITE = H means [BWE + BWa*BWb]*GW equals HIGH.  
4. BWa enables write to DQa. BWb enables write to DQb. BWc enables write to DQc. BWd enables write to DQd.  
5. All inputs except OE must meet set-up and hold times around the rising edge (LOW to HIGH) of CLK.  
6. Suspending burst generates wait cycle.  
7. For a write operation following a read operation, OE must be HIGH before the input data required set-up time plus High-Z time for OE and staying HIGH  
throughout the input data hold time.  
8. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.  
9. ADSP LOW along with chip being selected always initiates a READ cycle at the L-H edge of CLK. A WRITE cycle can be performed by setting WRITE LOW  
for the CLK L-H edge of the subsequent wait cycle. Refer to WRITE timing diagram for clarification.  
10. For X18 product, There are only BWa and BWb.  
9
CY7C1361A/GVT71256B36  
CY7C1363A/GVT71512B18  
Performing a TAP Reset  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TAP circuitry does not have a reset pin (TRST, which is  
optional in the IEEE 1149.1 specification). A RESET can be  
performed for the TAP controller by forcing TMS HIGH (VCC)  
for five rising edges of TCK and pre-loads the instruction reg-  
ister with the IDCODE command. This type of reset does not  
affect the operation of the system logic. The reset affects test  
logic only.  
Overview  
This device incorporates a Serial Boundary Scan Access Port  
(TAP). This port is designed to operate in a manner consistent  
with IEEE Standard 1149.1-1990 (commonly referred to as  
JTAG), but does not implement all of the functions required for  
IEEE 1149.1 compliance. Certain functions have been modi-  
fied or eliminated because their implementation places extra  
delays in the critical speed path of the device. Nevertheless,  
the device supports the standard TAP controller architecture  
(the TAP controller is the state machine that controls the TAPs  
operation) and can be expected to function in a manner that  
does not conflict with the operation of devices with IEEE Stan-  
dard 1149.1 compliant TAPs. The TAP operates using  
LVTTL/LVCMOS logic level signaling.  
At power-up, the TAP is reset internally to ensure that TDO is  
in a High-Z state.  
Test Access Port (TAP) Registers  
Overview  
The various TAP registers are selected (one at a time) via the  
sequences of ones and zeros input to the TMS pin as the TCK  
is strobed. Each of the TAPs registers are serial shift registers  
that capture serial input data on the rising edge of TCK and  
push serial data out on subsequent falling edge of TCK. When  
a register is selected, it is connected between the TDI and  
TDO pins.  
Disabling the JTAG Feature  
It is possible to use this device without using the JTAG feature.  
To disable the TAP controller without interfering with normal  
operation of the device, TCK should be tied LOW (VSS) to pre-  
vent clocking the device. TDI and TMS are internally pulled up  
and may be unconnected. They may alternately be pulled up  
to VCC through a resistor. TDO should be left unconnected.  
Upon power-up the device will come up in a reset state which  
will not interfere with the operation of the device.  
Instruction Register  
The instruction register holds the instructions that are execut-  
ed by the TAP controller when it is moved into the run test/idle  
or the various data register states. The instructions are three  
bits long. The register can be loaded when it is placed between  
the TDI and TDO pins. The parallel outputs of the instruction  
register are automatically preloaded with the IDCODE instruc-  
tion upon power-up or whenever the controller is placed in the  
test-logic reset state. When the TAP controller is in the Cap-  
ture-IR state, the two least significant bits of the serial instruc-  
tion register are loaded with a binary “01” pattern to allow for  
fault isolation of the board-level serial test data path.  
Test Access Port (TAP)  
TCK - Test Clock (Input)  
Clocks all TAP events. All inputs are captured on the rising  
edge of TCK and all outputs propagate from the falling edge of  
TCK.  
TMS - Test Mode Select (Input)  
The TMS input is sampled on the rising edge of TCK. This is  
the command input for the TAP controller state machine. It is  
allowable to leave this pin unconnected if the TAP is not used.  
The pin is pulled up internally, resulting in a logic HIGH level.  
Bypass Register  
The bypass register is a single-bit register that can be placed  
between TDI and TDO. It allows serial test data to be passed  
through the device TAP to another device in the scan chain  
with minimum delay. The bypass register is set LOW (VSS  
when the BYPASS instruction is executed.  
)
TDI - Test Data In (Input)  
The TDI input is sampled on the rising edge of TCK. This is the  
input side of the serial registers placed between TDI and TDO.  
The register placed between TDI and TDO is determined by  
the state of the TAP controller state machine and the instruc-  
tion that is currently loaded in the TAP instruction register (refer  
to Figure 1, TAP Controller State Diagram). It is allowable to  
leave this pin unconnected if it is not used in an application.  
The pin is pulled up internally, resulting in a logic HIGH level.  
TDI is connected to the most significant bit (MSB) of any reg-  
ister. (See Figure 2.)  
Boundary Scan Register  
The Boundary scan register is connected to all the input and  
bidirectional I/O pins (not counting the TAP pins) on the device.  
This also includes a number of NC pins that are reserved for  
future needs. There are a total of 70 bits for x36 device and 51  
bits for x18 device. The boundary scan register, under the con-  
trol of the TAP controller, is loaded with the contents of the  
device I/O ring when the controller is in Capture-DR state and  
then is placed between the TDI and TDO pins when the con-  
troller is moved to Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE-Z instructions can be used  
to capture the contents of the I/O ring.  
TDO - Test Data Out (Output)  
The TDO output pin is used to serially clock data-out from the  
registers. The output that is active depending on the state of  
the TAP state machine (refer to Figure 1, TAP Controller State  
Diagram). Output changes in response to the falling edge of  
TCK. This is the output side of the serial registers placed be-  
tween TDI and TDO. TDO is connected to the least significant  
bit (LSB) of any register. (See Figure 2.)  
The Boundary Scan Order table describes the order in which  
the bits are connected. The first column defines the bit’s posi-  
tion in the boundary scan register. The MSB of the register is  
connected to TDI, and LSB is connected to TDO. The second  
column is the signal name, the third column is the TQFP pin  
number, and the fourth column is the PBGA bump number.  
10  
CY7C1361A/GVT71256B36  
CY7C1363A/GVT71512B18  
Identification (ID) Register  
Capture-DR mode and places the ID register between the TDI  
and TDO pins in Shift-DR mode. The IDCODE instruction is  
the default instruction loaded in the instruction upon power-up  
and at any time the TAP controller is placed in the test-logic  
reset state.  
The ID Register is a 32-bit register that is loaded with a device  
and vendor specific 32-bit code when the controller is put in  
Capture-DR state with the IDCODE command loaded in the  
instruction register. The register is then placed between the  
TDI and TDO pins when the controller is moved into Shift-DR  
state. Bit 0 in the register is the LSB and the first to reach TDO  
when shifting begins. The code is loaded from a 32-bit on-chip  
ROM. It describes various attributes of the device as described  
in the Identification Register Definitions table.  
SAMPLE-Z  
If the High-Z instruction is loaded in the instruction register, all  
output pins are forced to a High-Z state and the boundary scan  
register is connected between TDI and TDO pins when the  
TAP controller is in a Shift-DR state.  
TAP Controller Instruction Set  
SAMPLE/PRELOAD  
Overview  
SAMPLE/PRELOAD is an IEEE 1149.1 mandatory instruction.  
The PRELOAD portion of the command is not implemented in  
this device, so the device TAP controller is not fully IEEE  
1149.1-compliant.  
There are two classes of instructions defined in the IEEE Stan-  
dard 1149.1-1990; the standard (public) instructions and de-  
vice specific (private) instructions. Some public instructions  
are mandatory for IEEE 1149.1 compliance. Optional public  
instructions must be implemented in prescribed ways.  
When the SAMPLE/PRELOAD instruction is loaded in the in-  
struction register and the TAP controller is in the Capture-DR  
state, a snap shot of the data in the device’s input and I/O  
buffers is loaded into the boundary scan register. Because the  
device system clock(s) are independent from the TAP clock  
(TCK), it is possible for the TAP to attempt to capture the input  
and I/O ring contents while the buffers are in transition (i.e., in  
a metastable state). Although allowing the TAP to sample  
metastable inputs will not harm the device, repeatable results  
can not be expected. To guarantee that the boundary scan  
register will capture the correct value of a signal, the device  
input signals must be stabilized long enough to meet the TAP  
controller’s capture setup plus hold time (tCS plus tCH). The  
device clock input(s) need not be paused for any other TAP  
operation except capturing the input and I/O ring contents into  
the boundary scan register.  
Although the TAP controller in this device follows the IEEE  
1149.1 conventions, it is not IEEE 1149.1 compliant because  
some of the mandatory instructions are not fully implemented.  
The TAP on this device may be used to monitor all input and  
I/O pads, but can not be used to load address, data, or control  
signals into the device or to preload the I/O buffers. In other  
words, the device will not perform IEEE 1149.1 EXTEST,  
INTEST, or the preload portion of the SAMPLE/PRELOAD  
command.  
When the TAP controller is placed in Capture-IR state, the two  
least significant bits of the instruction register are loaded with  
01. When the controller is moved to the Shift-IR state the in-  
struction is serially loaded through the TDI input (while the  
previous contents are shifted out at TDO). For all instructions,  
the TAP executes newly loaded instructions only when the con-  
troller is moved to Update-IR state. The TAP instruction sets  
for this device are listed in the following tables.  
Moving the controller to Shift-DR state then places the bound-  
ary scan register between the TDI and TDO pins. Because the  
PRELOAD portion of the command is not implemented in this  
device, moving the controller to the Update-DR state with the  
SAMPLE/PRELOAD instruction loaded in the instruction reg-  
ister has the same effect as the Pause-DR command.  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is  
to be executed whenever the instruction register is loaded with  
all 0s. EXTEST is not implemented in this device.  
BYPASS  
When the BYPASS instruction is loaded in the instruction reg-  
ister and the TAP controller is in the Shift-DR state, the bypass  
register is placed between TDI and TDO. This allows the board  
level scan path to be shortened to facilitate testing of other  
devices in the scan path.  
The TAP controller does recognize an all-0 instruction. When  
an EXTEST instruction is loaded into the instruction register,  
the device responds as if a SAMPLE/PRELOAD instruction  
has been loaded. There is one difference between two instruc-  
tions. Unlike SAMPLE/PRELOAD instruction, EXTEST places  
the device outputs in a High-Z state.  
Reserved  
Do not use these instructions. They are reserved for future  
use.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the ID register when the controller is in  
11  
CY7C1361A/GVT71256B36  
CY7C1363A/GVT71512B18  
TEST-LOGIC  
RESET  
1
0
0
1
1
1
REUN-TEST/  
IDLE  
SELECT  
SELECT  
DR-SCAN  
IR-SCAN  
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
EXIT1-DR  
0
1
EXIT1-IR  
0
1
0
0
PAUSE-DR  
1
PAUSE-IR  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
1
0
0
Figure 1. TAP Controller State Diagram[11]  
Note:  
11. The 0/1 next to each state represents the value at TMS at the rising edge of TCK.  
12  
CY7C1361A/GVT71256B36  
CY7C1363A/GVT71512B18  
0
Bypass Register  
Selection  
Circuitry  
Selection  
Circuitry  
TDO  
2
1
0
TDI  
Instruction Register  
29  
Identification Register  
31 30  
.
.
2
1
1
0
0
.
x
.
.
.
2
Boundary Scan Register [12]  
TDI  
TDI  
TAP Controller  
Figure 2. TAP Controller Block Diagram  
TAP Electrical Characteristics (20°C < Tj < 110°C; VCC = 3.3V –0.2V and +0.3V unless otherwise noted)  
Parameter  
VIH  
Description  
Input High (Logic 1) Voltage[13, 14]  
Input Low (Logic 0) Voltage[13, 14]  
Input Leakage Current  
Test Conditions  
Min.  
2.0  
Max.  
VCC + 0.3  
0.8  
Unit  
V
VIl  
ILI  
ILI  
ILO  
–0.3  
–5.0  
–30  
–5.0  
V
0V < VIN < VCC  
5.0  
µA  
µA  
µA  
TMS and TDI input Leakage Current  
Output Leakage Current  
0V < VIN < VCC  
30  
Output disabled,  
0V < VIN < VCCQ  
5.0  
VOLC  
VOHC  
VOLT  
LVCMOS Output Low Voltage[13, 15]  
LVCMOS Output High Voltage[13, 15]  
LVTTL Output Low Voltage[13]  
IOLC = 100 µA  
IOHC = 100 µA  
IOLT = 8.0 mA  
IOHT = 8.0 mA  
0.2  
0.4  
V
V
V
V
VCC – 0.2  
2.4  
VOHT  
LVTTL Output High Voltage[13]  
Notes:  
12. X = 69 for the x36 configuration;  
X = 50 for the x18 configuration.  
13. All Voltage referenced to VSS (GND).  
14. Overshoot: VIH(AC)<VDD+1.5V for t<tKHKH/2, Undershoot:VIL(AC)<–0.5V for t<tKHKH/2, Power-up: VIH<+3.6V and VCC<3.135V and VCCQ<1.4V for t<200 ms.  
15. This parameter is sampled.  
13  
CY7C1361A/GVT71256B36  
CY7C1363A/GVT71512B18  
TAP AC Switching Characteristics Over the Operating Range[16, 17]  
Parameter  
Clock  
Description  
Min.  
Max.  
Unit  
tTHTH  
Clock Cycle Time  
Clock Frequency  
Clock HIGH Time  
Clock LOW Time  
20  
ns  
MHz  
ns  
fTF  
50  
tTHTL  
8
8
tTLTH  
ns  
Output Times  
tTLQX  
TCK LOW to TDO Unknown  
TCK LOW to TDO Valid  
TDI Valid to TCK HIGH  
TCK HIGH to TDI Invalid  
0
ns  
ns  
ns  
ns  
tTLQV  
10  
tDVTH  
5
5
tTHDX  
Set-up Times  
tMVTH  
TMS Set-Up  
5
5
ns  
ns  
tCS  
Capture Set-Up  
Hold Times  
tTHMX  
TMS Hold  
5
5
ns  
ns  
tCH  
Capture Hold  
Notes:  
16. tCS and tCH refer to the set-up and hold time requirements of latching data from the boundary scan register.  
17. Test conditions are specified using the load in TAP AC Test Conditions.  
14  
CY7C1361A/GVT71256B36  
CY7C1363A/GVT71512B18  
TAP Timing and Test Conditions  
1.5V  
50Ω  
ALL INPUT PULSES  
TDO  
3.0V  
Z =50Ω  
0
1.5V  
C =20 pF  
L
V
SS  
1.5 ns  
1.5 ns  
GND  
(a)  
t
t
THTL  
TLTH  
t
THTH  
TEST CLOCK  
(TCK)  
t
t
MVTH  
THMX  
TEST MODE SELECT  
(TMS)  
t
t
DVTH  
THDX  
TEST DATA IN  
(TDI)  
t
TLQV  
t
TLQX  
TEST DATA OUT  
(TDO)  
15  
CY7C1361A/GVT71256B36  
CY7C1363A/GVT71512B18  
Identification Register Definitions  
Instruction Field  
256K x 36  
512K x 18  
Description  
REVISION NUMBER  
(31:28)  
XXXX  
XXXX  
Reserved for revision number.  
DEVICE DEPTH  
(27:23)  
00110  
00111  
00011  
Defines depth of 256K or 512K words.  
Defines width of x36 or x18 bits.  
DEVICE WIDTH  
(22:18)  
00100  
RESERVED  
(17:12)  
XXXXXX  
00011100100  
1
XXXXXX  
00011100100  
1
Reserved for future use.  
CYPRESS JEDEC ID CODE  
(11:1)  
Allows unique identification of DEVICE vendor.  
Indicates the presence of an ID register.  
ID Register Presence Indicator (0)  
Scan Register Sizes  
Register Name  
Instruction  
Bit Size (x36)  
Bit Size (x18)  
3
1
3
1
Bypass  
ID  
32  
70  
32  
51  
Boundary Scan  
Instruction Codes  
Instruction  
Code  
Description  
EXTEST  
000  
Captures I/O ring contents. Places the boundary scan register between TDI  
and TDO. Forces all device outputs to High-Z state. This instruction is not  
IEEE 1149.1-compliant.  
IDCODE  
001  
010  
Preloads ID register with vendor ID code and places it between TDI and  
TDO. This instruction does not affect device operations.  
SAMPLE-Z  
Captures I/O ring contents. Places the boundary scan register between TDI  
and TDO. Forces all device outputs to High-Z state.  
RESERVED  
011  
100  
Do not use these instructions; they are reserved for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI  
and TDO. This instruction does not affect device operations. This instruction  
does not implement IEEE 1149.1 PRELOAD function and is therefore not  
1149.1-compliant.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do not use these instructions; they are reserved for future use.  
Do not use these instructions; they are reserved for future use.  
Places the bypass register between TDI and TDO. This instruction does not  
affect device operations.  
16  
CY7C1361A/GVT71256B36  
CY7C1363A/GVT71512B18  
Boundary Scan Order (256K x 36) (continued)  
Boundary Scan Order (256K x 36)  
Signal  
Signal  
Bit#  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
Name  
TQFP  
92  
93  
94  
95  
96  
97  
98  
99  
100  
1
Bump ID  
6B  
5L  
Bit#  
1
Name  
TQFP  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
56  
57  
58  
59  
62  
63  
64  
68  
69  
72  
73  
74  
75  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
Bump ID  
2R  
3T  
A
A
BWa  
BWb  
BWc  
BWd  
CE2  
CE  
2
A
5G  
3G  
3L  
3
A
4T  
4
A
5T  
5
A
6R  
3B  
5B  
6P  
7N  
6M  
7L  
2B  
4E  
3A  
2A  
2D  
1E  
2F  
6
A
7
A
A
8
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
ZZ  
A
9
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
2
3
6K  
7P  
6N  
6L  
6
1G  
2H  
1D  
2E  
2G  
1H  
5R  
2K  
1L  
7
8
9
7K  
7T  
12  
13  
14  
18  
19  
22  
23  
24  
25  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
A
6H  
7G  
6F  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
MODE  
A
7E  
6D  
7H  
6G  
6E  
7D  
6A  
5A  
4G  
4A  
4B  
4F  
2M  
1N  
2P  
1K  
2L  
2N  
1P  
3R  
2C  
3C  
5C  
6C  
4N  
4P  
A
ADV  
ADSP  
ADSC  
OE  
A
A
A
BWE  
GW  
CLK  
4M  
4H  
4K  
A1  
A0  
17  
CY7C1361A/GVT71256B36  
CY7C1363A/GVT71512B18  
Boundary Scan Order (512K x 18) (continued)  
Boundary Scan Order (512K x 18)  
Signal  
Signal  
Bit#  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
Name  
CLK  
A
TQFP  
89  
92  
93  
94  
97  
98  
99  
100  
8
Bump ID  
4K  
Bit#  
1
Name  
TQFP  
44  
45  
46  
47  
48  
49  
50  
58  
59  
62  
63  
64  
68  
69  
72  
73  
74  
80  
81  
82  
83  
84  
85  
86  
87  
88  
Bump ID  
2R  
2T  
A
6B  
2
A
BWa  
BWb  
CE2  
CE  
5L  
3
A
3T  
3G  
2B  
4
A
5T  
5
A
6R  
3B  
5B  
7P  
6N  
6L  
4E  
6
A
A
3A  
7
A
A
2A  
8
DQa  
DQa  
DQa  
DQa  
ZZ  
DQb  
DQb  
DQb  
DQb  
NC  
1D  
2E  
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
12  
13  
14  
18  
19  
22  
23  
24  
31  
32  
33  
34  
35  
36  
37  
2G  
1H  
5R  
2K  
7K  
7T  
DQa  
DQa  
DQa  
DQa  
DQa  
A
6H  
7G  
6F  
DQb  
DQb  
DQb  
DQb  
DQb  
MODE  
A
1L  
2M  
1N  
2P  
7E  
6D  
6T  
3R  
2C  
3C  
5C  
6C  
4N  
4P  
A
6A  
5A  
4G  
4A  
4B  
4F  
A
A
ADV  
ADSP  
ADSC  
OE  
BWE  
GW  
A
A
A1  
A0  
4M  
4H  
18  
CY7C1361A/GVT71256B36  
CY7C1363A/GVT71512B18  
Power Dissipation.......................................................... 1.0W  
Maximum Ratings  
Short Circuit Output Current ....................................... 50 mA  
.
(Above which the useful life may be impaired. For user guide-  
lines only, not tested.)  
Operating Range  
Voltage on VCC Supply Relative to VSS ......... –0.5V to +4.6V  
VIN............................................................–0.5V to VCC+0.5V  
Storage Temperature (plastic)........................–55°C to +150°  
Junction Temperature ...................................................+150°  
Range  
Com’l  
Ind’l  
Ambient Temperature[10]  
VCC  
0°C to +70°C  
3.3V –5%/+10%  
–40°C to +85°C  
Electrical Characteristics Over the Operating Range  
Parameter  
Description  
Test Conditions  
Min.  
2.0  
Max.  
VCC+0.3  
4.6  
Unit  
V
VIHD  
VIH  
VIl  
Input High (Logic 1) Voltage[13, 19] Data Inputs (DQx)  
All Other Inputs  
2.0  
V
Input Low (Logic 0) Voltage[13, 19]  
Input Leakage Current[13, 19]  
–0.5  
–5  
0.8  
V
ILI  
0V < VIN < VCC  
0V < VIN < VCC  
5
µA  
µA  
ILI  
MODE and ZZ Input Leakage  
Current[20]  
–30  
30  
ILO  
Output Leakage Current  
Output High Voltage[13]  
Output Low Voltage[13]  
Supply Voltage[13]  
I/O Supply Voltage (3.3V)[13]  
I/O Supply Voltage (2.5V)[13]  
Output(s) disabled, 0V < VOUT < VCC  
IOH = –5.0 mA  
–5  
5
µA  
V
VOH  
VOL  
2.4  
IOL = 8.0 mA  
0.4  
3.6  
V
VCC  
VCCQ  
VCCQ  
3.135  
3.135  
2.375  
V
VCC  
VCC  
V
V
Parameter  
Description  
Conditions  
Typ.  
-6  
-6.5  
-7  
-8  
Unit  
ICC  
Power Supply Current:  
Operating[21, 22, 23]  
Device selected;  
150  
400  
360  
320  
270  
mA  
all inputs < VILor > VIH;  
cycle time > tKC Min.; VCC = Max.;  
outputs open  
ISB2  
ISB3  
ISB4  
CMOS Standby[22, 23]  
TTL Standby[22, 23]  
Clock Running[22, 23]  
Device deselected; VCC = Max.;  
all inputs < VSS + 0.2 or > VCC – 0.2;  
all inputs static; CLK frequency = 0  
5
10  
30  
90  
10  
30  
80  
10  
30  
70  
10  
30  
60  
mA  
mA  
mA  
Device deselected; all inputs < VIL  
or > VIH; all inputs static;  
VCC = Max.; CLK frequency = 0  
15  
40  
Device deselected;  
all inputs < VIL or > VIH; VCC = Max.;  
CLK cycle time > tKC Min.  
Thermal Consideration  
Parameter  
Description  
Conditions  
TQFP Typ.  
Unit  
ΘJA  
Thermal Resistance - Junction to Ambient  
Thermal Resistance - Junction to Case  
Still air, soldered on 4.25 x 1.125  
inch 4-layer PCB  
25  
9
°C/W  
°C/W  
ΘJC  
Notes:  
18. TA is the case temperature.  
19. Overshoot: VIH < +6.0V for t < tKC /2.  
Undershoot: VIL < –2.0V for t < tKC /2.  
20. Output loading is specified with CL= 5 pF as in AC Test Loads.  
21. ICC is given with no output current. ICC increases with greater output loading and faster cycle times.  
22. “Device Deselected” means the device is in Power-Down mode as defined in the truth table. “Device Selected” means the device is active.  
23. Typical values are measured at 3.3V, 25°C and 20-ns cycle time.  
19  
CY7C1361A/GVT71256B36  
CY7C1363A/GVT71512B18  
Capacitance  
Parameter  
Description  
Input Capacitance[15]  
Input/Output Capacitance (DQ)[15]  
Test Conditions  
Typ.  
Max.  
Unit  
pF  
CI  
TA = 25°C, f = 1 MHz,  
VCC= 3.3V  
5
7
7
8
CO  
pF  
Typical Output Buffer Characteristics  
Output High Voltage  
Pull-up Current  
OH (mA) Min. OH (mA) Max.  
Output Low Voltage  
Pull-down Current  
VOH (V)  
–0.5  
0
I
I
VOL (V)  
–0.5  
0
IOL (mA) Min.  
I
ΟL (mA) Max.  
–38  
–38  
–38  
–26  
–20  
0
–105  
–105  
–105  
–83  
–70  
–30  
–10  
0
0
0
0
0
0.8  
0.4  
10  
20  
31  
40  
40  
40  
40  
20  
40  
63  
80  
80  
80  
80  
1.25  
1.5  
0.8  
1.25  
1.6  
2.3  
2.7  
0
2.8  
2.9  
0
3.2  
3.4  
0
0
3.4  
AC Test Loads and Waveforms (3.3V I/O)  
R = 317Ω  
3.3V  
[13]  
DQ  
ALL INPUT PULSES  
90%  
DQ  
3.0V  
0V  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
L
5 pF  
R = 351Ω  
1.0 ns  
1.0 ns  
V = 1.5V  
t
(c)  
(a)  
(b)  
AC Test Loads and Waveforms (2.5V I/O)  
DQ  
ALL INPUT PULSES  
90%  
2.5V  
90%  
10%  
Z = 50Ω  
0
10%  
R = 50Ω  
L
0V  
1.0 ns  
1.0 ns  
V = 1.25V  
t
(c)  
(a)  
20  
CY7C1361A/GVT71256B36  
CY7C1363A/GVT71512B18  
Switching Characteristics Over the Operating Range[24]  
150 MHz  
-6  
133 MHz  
-6.5  
117 MHz  
-7  
100 MHz  
-8  
Parameter  
Description  
Min. Max. Min. Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
Clock  
tKC  
Clock Cycle Time  
6.7  
2.5  
2.5  
7.5  
2.5  
2.5  
8.5  
3.0  
3.0  
10  
3.5  
3.5  
ns  
ns  
ns  
tKH  
Clock HIGH Time  
Clock LOW Time  
tKL  
Output Times  
V
3.3V  
=
=
tKQ  
Clock to Output Valid  
6.0  
6.5  
6.5  
7.0  
7.0  
7.5  
8.0  
9.0  
ns  
ns  
CCQ  
V
CCQ  
2.5V  
tKQX  
Clock to Output Invalid  
2
0
2
2
0
2
2
0
2
2
0
2
ns  
ns  
ns  
ns  
tKQLZ  
tKQHZ  
tOEQ  
Clock to Output in Low-Z[15, 20, 25]  
Clock to Output in High-Z[15, 20, 25]  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
4.0  
OE to Output Valid[26]  
V
3.3V  
=
CCQ  
V
2.5V  
=
4.5  
4.5  
4.5  
5.0  
ns  
CCQ  
tOELZ  
OE to Output in Low-Z[15, 20, 25]  
0
0
0
0
ns  
ns  
tOEHZ  
OE to Output in High-Z[15, 20, 25]  
3.5  
3.5  
3.5  
3.5  
Set-Up Times  
tS  
Address, Controls and Data In[27]  
Address, Controls and Data In[27]  
1.5  
0.5  
1.5  
0.5  
1.8  
0.5  
2.0  
0.5  
ns  
ns  
Hold Times  
tH  
Notes:  
24. Test conditions as specified with the output loading as shown in AC Test Loads unless otherwise noted.  
25. At any given temperature and voltage condition, tKQHZ is less than tKQLZ and tOEHZ is less than tOELZ  
26. OE is a “Don’t Care” when a byte write enable is sampled LOW.  
.
27. This is a synchronous device. All synchronous inputs must meet specified set-up and hold time, except for “Don’t Care” as defined in the truth table.  
21  
CY7C1361A/GVT71256B36  
CY7C1363A/GVT71512B18  
Timing Diagrams  
Read Timing[28, 29]  
tKC  
tKL  
CLK  
ADSP#  
tS  
tKH  
tH  
ADSC#  
tS  
ADDRESS  
A1  
A2  
tH  
BWa#, BWb#,  
BWc#, BWd#,[29]  
BWE#, GW#  
CE#[30]  
tS  
ADV#  
OE#  
DQ  
tH  
tKQ  
tKQ  
tOEQ  
tOELZ  
tKQLZ  
Q(A1)  
Q(A2)  
Q(A2+1)  
Q(A2+2)  
Q(A2+3)  
Q(A2)  
Q(A2+1)  
Q(A2+2)  
SINGLE READ  
BURST READ  
Notes:  
28. For X18 product, there are only BWa and BWb for byte write control.  
29. CE active in this timing diagram means that all chip enables CE, CE2, and CE2 are active. CE2 is only available for TA package version.  
22  
CY7C1361A/GVT71256B36  
CY7C1363A/GVT71512B18  
Timing Diagrams (continued)  
Write Timing  
CLK  
tS  
ADSP#  
tH  
ADSC#  
tS  
ADDRESS  
A1  
A2  
A3  
tH  
BWa#, BWb#,  
BWc#, BWd#,  
[29]  
BWE#  
GW#  
CE#[30]  
ADV#  
tS  
tH  
OE#  
tOEHZ  
tKQX  
Q
D(A1)  
D(A2)  
D(A2+2)  
D(A2+2)  
D(A2+2)  
D(A2+3)  
D(A3)  
D(A3+1)  
D(A3+2)  
DQ  
SINGLE WRITE  
BURST WRITE  
BURST WRITE  
23  
CY7C1361A/GVT71256B36  
CY7C1363A/GVT71512B18  
Timing Diagrams (continued)  
Read/Write Timing  
CLK  
tS  
ADSP#  
tH  
ADSC#  
tS  
ADDRESS  
A2  
A3  
A4  
A5  
A1  
tH  
BWa#, BWb#,  
BWc#, BWd#,[29]  
BWE#, GW#  
CE#[30]  
ADV#  
OE#  
Q(A1)  
Q(A2)  
D(A3)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
D(A5)  
D(A5+1)  
DQ  
Single Reads  
Single Write  
Burst Read  
Burst Write  
Ordering Information  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
Package Type  
150  
CY7C1361A-150AC  
GVT71256B36TA-6  
CY7C1361A-150AJC  
GVT71256B36T-6  
A101  
100-Lead Thin Quad Flat Pack  
Commercial  
CY7C1361A-150BGC  
GVT71256B36B-6  
BG119  
A101  
119-Ball BGA  
133  
CY7C1361A-133AC  
GVT71256B36TA-6.5  
CY7C1361A-133AJC  
GVT71256B36T-6.5  
CY7C1361A-133BGC  
GVT71256B36B-6.5  
100-Lead Thin Quad Flat Pack  
Commercial  
BG119  
119-Ball BGA  
24  
CY7C1361A/GVT71256B36  
CY7C1363A/GVT71512B18  
Ordering Information (continued)  
Speed  
Package  
Name  
Operating  
(MHz)  
Ordering Code  
CY7C1361A-117AC  
GVT71256B36TA-7  
CY7C1361A-117AI  
GVT71256B36TA-7I  
CY7C1361A-117AJC  
GVT71256B36T-7  
Package Type  
Range  
117  
A101  
100-Lead Thin Quad Flat Pack  
Commercial  
Industrial  
Commercial  
Industrial  
CY7C1361A-117AJI  
GVT71256B36T-7I  
CY7C1361A-117BGC  
GVT71256B36B-7  
CY7C1361A-117BGI  
GVT71256B36B-7I  
CY7C1361A-100AC  
GVT71256B36TA-8  
CY7C1361A-100AI  
GVT71256B36TA-8I  
CY7C1361A-100AJC  
GVT71256B36T-8  
BG119  
A101  
119-Ball BGA  
Commercial  
Industrial  
100  
100-Lead Thin Quad Flat Pack  
Commercial  
Industrial  
Commercial  
Industrial  
CY7C1361A-100AJI  
GVT71256B36T-8I  
CY7C1361A-100BGC  
GVT71256B36B-8  
CY7C1361A-100BGI  
GVT71256B36B-8I  
CY7C1363A-150AC  
GVT71512B18TA-6  
CY7C1363A-150AJC  
GVT71512B18T-6  
BG119  
A101  
119-Ball BGA  
Commercial  
Industrial  
150  
133  
100-Lead Thin Quad Flat Pack  
Commercial  
CY7C1363A-150BGC  
GVT71512B18B-6  
CY7C1363A-133AC  
GVT71512B18TA-6.5  
CY7C1363A-133AJC  
GVT71512B18T-6.5  
CY7C1363A-133BGC  
GVT71512B18B-6.5  
BG119  
A101  
119-Ball BGA  
100-Lead Thin Quad Flat Pack  
Commercial  
BG119  
119-Ball BGA  
25  
CY7C1361A/GVT71256B36  
CY7C1363A/GVT71512B18  
Ordering Information (continued)  
Speed  
Package  
Name  
Operating  
(MHz)  
Ordering Code  
CY7C1363A-177AC  
GVT71512B18TA-7  
CY7C1363A-177AI  
GVT71512B18TA-7I  
CY7C1363A-177AJC  
GVT71512B18T-7  
Package Type  
Range  
117  
A101  
100-Lead Thin Quad Flat Pack  
Commercial  
Industrial  
Commercial  
Industrial  
CY7C1363A-177AJI  
GVT71512B18T-7I  
CY7C1363A-177BGC  
GVT71512B18B-7  
CY7C1363A-177BGI  
GVT71512B18B-7I  
CY7C1363A-100AC  
GVT71512B18TA-8  
CY7C1363A-100AI  
GVT71512B18TA-8I  
CY7C1363A-100AJC  
GVT71512B18T-8  
BG119  
A101  
119-Ball BGA  
Commercial  
Industrial  
100  
100-Lead Thin Quad Flat Pack  
Commercial  
Industrial  
Commercial  
Industrial  
CY7C1363A-100AJI  
GVT71512B18T-8I  
CY7C1363A-100BGC  
GVT71512B18B-8  
CY7C1363A-100BGI  
GVT71512B18B-8I  
BG119  
119-Ball BGA  
Commercial  
Industrial  
Document #: 38-00991-*A  
26  
CY7C1361A/GVT71256B36  
CY7C1363A/GVT71512B18  
Package Diagrams  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
51-85050-A  
27  
CY7C1361A/GVT71256B36  
CY7C1363A/GVT71512B18  
Package Diagrams (continued)  
119-Lead FBGA (14 x 22 x 2.4 mm) BG119  
51-85115  
© Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

GVT71512B18B-7I

Standard SRAM, 512KX18, 7.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, FBGA-119
CYPRESS

GVT71512B18B-8I

Standard SRAM, 512KX18, 9ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, FBGA-119
CYPRESS

GVT71512B18T-6

Cache SRAM, 512KX18, 6.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

GVT71512B18T-6.5

Standard SRAM, 512KX18, 7ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

GVT71512B18T-7

Standard SRAM, 512KX18, 7.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

GVT71512B18T-7I

Standard SRAM, 512KX18, 7.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

GVT71512B18T-8

Standard SRAM, 512KX18, 9ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

GVT71512B18T-8I

Standard SRAM, 512KX18, 9ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

GVT71512B18TA-6.5

Standard SRAM, 512KX18, 7ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

GVT71512B18TA-7

Standard SRAM, 512KX18, 7.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

GVT71512B18TA-7I

Standard SRAM, 512KX18, 7.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

GVT71512B18TA-8

Standard SRAM, 512KX18, 9ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS