MB39C831QN [CYPRESS]

Battery Charge Controller,;
MB39C831QN
型号: MB39C831QN
厂家: CYPRESS    CYPRESS
描述:

Battery Charge Controller,

电池
文件: 总40页 (文件大小:2627K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MB39C831  
Ultra Low Voltage Boost Power Management IC  
for Solar/Thermal Energy Harvesting Datasheet  
Description  
The MB39C831 is the high-efficiency synchronous rectification boost DC/DC converter IC which efficiently supplies energy  
getting from the solar cell with the single cell or multiple cells, or from the thermoelectric generator (TEG) to the Li-ion battery.  
It contains the function to control the DC/DC converter output following the maximum power point of the solar cell (MPPT:  
Maximum Power Point Tracking) and the protection function to charge the Li-ion battery safely.  
It is possible to start-up from 0.35 V using the low-voltage process and adapts the applications which the single cell solar cell is  
treated as the input.  
Features  
Operation input voltage range : 0.3V to 4.75V  
Output voltage adjustment range : 3.0V to 5.0V  
Minimum input voltage at start-up : 0.35V  
Quiescent Current (No load) : 41 μA  
Input peak current limit : 200 mA  
Built-in MPPT  
Charge voltage to the Li-ion battery/current protection function built in  
Improvement of the efficiency during the low-output power according to the auto PFM/PWM switching mode  
Applications  
Solar energy harvesting  
Thermal energy harvesting  
Li-ion battery using the single cell or multiple cells' solar cell/Super Capacitor Charger  
Portable audio players  
Cellular phone  
eBook  
Electronic dictionary  
Wireless remote controllers  
Sensor node  
Note: This product supports the web-based design simulation tool, Easy DesignSim.  
It can easily select external components and can display useful information.  
Please access from http://cypress.transim.com/login.aspx  
Cypress Semiconductor Corporation  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Document Number: 002-08404 Rev *A  
Revised February 4, 2016  
MB39C831  
Contents  
1. Pin Assignments ....................................................................................................................................3  
2. Pin Descriptions.....................................................................................................................................4  
3. Block Diagram ........................................................................................................................................5  
4. Absolute Maximum Ratings ..................................................................................................................6  
5. Recommended Operating Conditions..................................................................................................7  
6. Electrical Characteristics.......................................................................................................................7  
6.1 Electrical Characteristics of Constant Voltage Mode......................................................................7  
6.2 Electrical Characteristics of Charge Mode ...................................................................................8  
6.3 Electrical Characteristics of Boost DC/DC Converter .....................................................................8  
7. Function..................................................................................................................................................9  
7.1 Outline of Operation.................................................................................................................9  
7.2 Start-up/Shut-down Sequence ...................................................................................................9  
7.3 MPPT Control .......................................................................................................................12  
7.4 Function Description ..............................................................................................................14  
8. Typical Applications Circuit.................................................................................................................18  
9. Application Notes.................................................................................................................................21  
10. Typical Characteristics ........................................................................................................................23  
11. Layout for Printed Circuit Board.........................................................................................................28  
12. Usage Precaution.................................................................................................................................29  
13. Ordering Information............................................................................................................................29  
14. Marking..................................................................................................................................................29  
15. Product Labels .....................................................................................................................................30  
16. Recommended Mounting Conditions.................................................................................................34  
17. Package Dimensions............................................................................................................................36  
Major Changes .............................................................................................................................................37  
Document Number: 002-08404 Rev *A  
Page 2 of 40  
MB39C831  
1. Pin Assignments  
Figure 1-1 Pin Assignments  
(TOP VIEW)  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
S2  
S1  
N.C.  
VST  
3
S0  
PGND1  
VDD  
4
ENA  
5
MPPT_ENA  
SGND1  
SGND3  
N.C.  
DET0  
DET1  
VCC  
6
7
8
N.C.  
9
SGND2  
FB  
N.C.  
10  
N.C.  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
(QFN_40PIN)  
Document Number: 002-08404 Rev *A  
Page 3 of 40  
MB39C831  
2. Pin Descriptions  
Table 2-1 Pin Descriptions  
Pin No.  
Pin Name  
I/O  
Description  
Input pin for preset output voltage setting and MPPT setting  
Input pin for preset output voltage setting and MPPT setting  
Input pin for preset output voltage setting and MPPT setting  
DC/DC converter control input pin  
1
2
3
4
5
6
7
S2  
I
I
I
I
I
-
-
-
S1  
S0  
ENA  
MPPT_ENA  
SGND1  
SGND3  
N.C.  
MPPT control input pin  
Analog ground pin  
Analog ground pin  
8, 9, 10, 11  
Non connection pins (Leave these pins open.)  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
CSH0  
CSH1  
CSH2  
MPPT_OUT  
MPPT_IN  
VOUT  
LX  
O
I
Capacitor connection pin for MPPT, used only at the charge mode  
Capacitor connection pin for MPPT, used only at the charge mode  
Capacitor connection pin for MPPT, used only at the charge mode  
MPPT output pin, used only at the charge mode  
MPPT input pin, used only at the charge mode  
Output pin of DC/DC converter  
I
O
I
O
I
Inductor connection pin  
PGND2  
VOUT_S  
FB  
-
Power ground pin  
I
Input pin for DC/DC converter FB  
I
Feedback input pin of DC/DC converter  
DC/DC control system ground pin  
SGND2  
N.C.  
-
-
Non connection pin (Leave this pin open.)  
Control system power supply output pin  
Output pin for state notification  
VCC  
O
O
O
I
DET1  
DET0  
VDD  
Output pin for state notification  
External power supply input pin  
PGND1  
VST  
-
Power ground pin  
O
Start-up power supply output pin  
30, 31, 32, 33, 34, 35,  
36, 37, 38, 39, 40  
N.C.  
-
Non connection pins (Leave these pins open.)  
Document Number: 002-08404 Rev *A  
Page 4 of 40  
MB39C831  
3. Block Diagram  
Figure 3-1 Block Diagram  
L1  
C1  
LX  
VST  
VCC  
VDD  
VCC  
VDD  
D1  
D2  
C11  
C2  
Start-Up  
VDD voltage  
detector  
(UVLO)  
SW1  
SW2  
Boost DC/DC Converter  
VCC  
VCC voltage  
detector  
VOUT  
VOUT_S  
C3  
(*1)  
Li-ion  
VOUT voltage  
detector  
PFM/PWM  
Controler  
C9  
Battery  
FB  
VOUT-VDD  
voltage  
MPPT_ENA  
ENA  
S0  
S1  
inversion  
detector  
DET0  
DET1  
VCC  
BGR  
S2  
R3  
MPPT_OUT  
MPPT  
Controler  
LOGIC  
C8 C7  
C6 C5  
C4  
R1 R2 C10  
*1: Connect the Li-ion battery in the charge mode (refer to Figure 8-2)  
Document Number: 002-08404 Rev *A  
Page 5 of 40  
 
MB39C831  
4. Absolute Maximum Ratings  
Table 4-1 Absolute Maximum Ratings  
Rating  
Parameter  
Symbol  
VDDMAX  
Condition  
Unit  
Min  
-0.3  
Max  
+7.0  
+7.0  
VDD input voltage  
VOUT input voltage  
VDD pin  
V
VOUTMAX  
VOUT, VOUT_S pins  
MPPT_ENA, ENA,  
S2, S1, S0,  
-0.3  
V
VCC pin  
Input pin input voltage  
VINPUTMAX  
-0.3  
voltage +0.3  
( ≤ +7.0)  
V
CSH0, CSH1, CSH2,  
MPPT_IN, MPPT_OUT pins  
Ta ≤ +25°C  
Power dissipation  
Storage temperature  
ESD voltage1  
PD  
-
2500(*1)  
+125  
mW  
oC  
V
TSTG  
VESDH  
VESDM  
-
-55  
-2000  
-200  
Human Body Model  
Machine Model  
+2000  
+200  
ESD voltage2  
V
*1: In the case of θ ja (wind speed 0m/s) +28oC/W  
Figure 4-1 Power Dissipation Operating Ambient Temperature  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-50  
-25  
0
25  
50  
75  
100  
Temperature []  
WARNING:  
Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or  
temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings.  
Document Number: 002-08404 Rev *A  
Page 6 of 40  
MB39C831  
5. Recommended Operating Conditions  
Table 5-1 Recommended Operating Conditions  
Value  
Typ  
Parameter  
Symbol  
VVDD  
VVOUT  
VINPUT  
Ta  
Condition  
Unit  
V
Min  
Max  
4.75  
VDD input voltage  
VOUT input voltage  
Input pin input voltage  
VDD pin  
0.3  
-
VOUT pin  
2.55  
0
3
-
5.5  
V
MPPT_ENA=H, ENA=H  
MPPT_ENA, ENA,  
S2, S1, S0 pins  
VCC pin  
voltage  
V
Operating ambient  
temperature  
-
-40  
-
+85  
C  
WARNING:  
1. The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device.  
All of the device's electrical characteristics are warranted when the device is operated under these conditions.  
2. Any use of semiconductor devices will be under their recommended operating condition.  
3. Operation under any conditions other than these conditions may adversely affect reliability of device and could result in  
device failure  
4. No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If  
you are considering application under any conditions other than listed herein, please contact sales representatives  
beforehand  
6. Electrical Characteristics  
6.1 Electrical Characteristics of Constant Voltage Mode  
Table 6-1 Electrical Characteristics of Constant Voltage Mode (MPPT_ENA = L, ENA = H)  
(Ta=-40C to +85C, VDD ≤ VOUT - 0.25V, L=4.7µH, Cout=10µF)  
Condition  
Value  
Typ  
Parameter  
Symbol  
Unit  
MPPT_ENA  
ENA  
Other  
Min  
Max  
0.5  
Minimum input voltage  
at start-up  
VSTART  
-
0.35  
V
VDD pin, Ta = +25C  
S2=L, S1=L, S0=L  
S2=L, S1=L, S0=H  
S2=L, S1=H, S0=L  
S2=L, S1=H, S0=H  
S2=H, S1=L, S0=L  
S2=H, S1=L, S0=H  
VDD, LX pin input current,  
VDD=0.6V, VOUT=3.3V,  
IOUT=0  
2.940  
3.234  
3.528  
4.018  
4.410  
4.900  
3.000  
3.300  
3.600  
4.100  
4.500  
5.000  
3.060  
3.366  
3.672  
4.182  
4.590  
5.100  
V
V
V
V
V
V
Preset output voltage  
Current dissipation 1  
VOUT  
L
H
IQIN  
-
0.75  
5(*1)  
mA  
VOUT pin input current,  
VOUT=3.3V, IOUT=0  
Upper threshold  
Current dissipation 2  
IQOUT  
-
32  
64  
µA  
VCCDETH1  
VCCDETL1  
VOUTDETH1  
VOUTDETL1  
2.8  
2.5  
2.8  
2.5  
2.9  
2.6  
2.9  
2.6  
3
V
V
V
V
VCC detection voltage 1  
VOUT detection voltage 1  
Lower threshold  
2.7  
3
Upper threshold  
Lower threshold  
2.7  
Document Number: 002-08404 Rev *A  
Page 7 of 40  
MB39C831  
*1: This parameter is not be specified. This should be used as a reference to support designing the circuits.  
6.2 Electrical Characteristics of Charge Mode  
Table 6-2 Electrical Characteristics of Charge Mode (MPPT_ENA = H, ENA = H)  
(Ta=-40C to +85C, VDD ≤ VOUT - 0.25V, L=4.7µH, Cout=10µF)  
Condition  
Value  
Typ  
Parameter  
Symbol  
Unit  
MPPT_ENA  
ENA  
Other  
Min  
Max  
0.5  
Minimum input voltage  
at start-up  
VSTART  
-
0.35  
V
VDD pin, Ta = +25C  
S2=L, S1=L, S0=L  
S2=L, S1=L, S0=H  
S2=L, S1=H, S0=L  
S2=L, S1=H, S0=H  
S2=H, S1=L, S0=L  
S2=H, S1=L, S0=H  
S2=H, S1=H, S0=L  
S2=H, S1=H, S0=H  
VOUT pin input current,  
VOUT=3.3V, IOUT=0  
Upper threshold  
45  
50  
55  
60  
65  
70  
75  
80  
50  
55  
60  
65  
70  
75  
80  
85  
55  
60  
65  
70  
75  
80  
85  
90  
%
%
%
%
%
%
%
%
MPPT setting  
MPPTSET  
H
H
Current dissipation 2  
IQOUT  
-
41  
82  
µA  
VUVLOH  
0.2(*1)  
0.1  
0.3(*1)  
0.2  
0.4(*1)  
0.3  
V
V
V
V
V
V
V
V
UVLO detection voltage  
(VDD detection voltage)  
VUVLOL  
Lower threshold  
VCCDETH2  
VCCDETL2  
VOUTDETH2  
VOUTDETL2  
VOUTDETH3  
VOUTDETL3  
Upper threshold  
2.5  
2.6  
2.7  
VCC detection voltage 2  
VOUT detection voltage 2  
VOUT detection voltage 3  
Lower threshold  
2.45  
2.5  
2.55  
2.6  
2.65  
2.7  
Upper threshold  
Lower threshold  
2.45  
3.88  
3.58  
2.55  
4
2.65  
4.12  
3.82  
Upper threshold  
Lower threshold  
3.7  
*1: This parameter is not be specified. This should be used as a reference to support designing the circuits.  
6.3 Electrical Characteristics of Boost DC/DC Converter  
Table 6-3 Electrical Characteristics of Boost DC/DC Converter  
(Ta=-40C to +85C, VDD ≤ VOUT - 0.25V, L=4.7µH, Cout=10µF)  
Condition  
Value  
Parameter  
LX peak current  
Symbol  
ILIMIN_A  
Unit  
MPPT_ENA  
ENA  
Other  
Min  
Typ  
Max  
LX pin input current  
VDD=0.6V, VOUT=3.3V  
VDD=3.0V, VOUT=3.3V  
PWM mode  
-
200  
mA  
mA  
mA  
MHz  
8
-
-
Maximum output current  
IOUT  
80  
-
-
Oscillation frequency  
Line regulation  
FOSC  
VLINE  
0.87  
1
1.13  
L or H  
H
0.4V VDD VOUT -  
0.25V, IOUT=0  
-
-
-
-
0.5  
0.5  
%
%
VDD=0.6V, VOUT=3.3V,  
IOUT=0 to 8mA  
Load regulation  
VLOAD  
Document Number: 002-08404 Rev *A  
Page 8 of 40  
MB39C831  
7. Function  
7.1 Outline of Operation  
MB39C831 is the boost DC/DC converter which has the function controls for the synchronous rectification operation of the  
integrated FET using the frequency set by the built-in oscillator. The converter operates in PFM at light load currents.  
This converter is equipped with a constant voltage mode (MPPT_ENA = L) and a charge mode (MPPT_ENA = H).  
Constant voltage mode: An output terminal VOUT outputs a constant voltage set by the S2, S1 and S0 pins.  
Charge mode  
: The input voltage (VIN) is adjusted by following the MPPT value set by the S2, S1 and S0 pins, and a  
Li-ion battery can be charged.  
7.2 Start-up/Shut-down Sequence  
Constant Voltage Mode: MPPT_ENA = L, ENA = H  
In order to operate the constant voltage mode, it supposes that to connect ceramic capacitor, electrolytic capacitor, tantalum  
capacitor, electric double layered capacitor, and so on, to VCC pin. See Figure 11-1 circuit to use the constant voltage mode.  
The constant voltage mode is necessary to set MPPT_ENA = L and ENA = H. MPPT_ENA pin is connected to GND, and ENA  
pin is connected to VCC pin. See Figure 10-1 Start-up/shut-down sequences of constant voltage mode.  
Figure 7-1 Start-up/Shut-down Sequences of Constant Voltage Mode (MPPT_ENA=L, ENA=H)  
0.35V  
VDD Voltage  
0V  
0V  
0.2V  
0V  
VST  
startup voltage  
2.9V  
VCC=VOUT  
VCC Voltage  
2.6V  
2.6V  
2.6V  
0V  
0V  
0V  
0V  
2.9V  
VOUT Voltage  
Constant Voltage Operation  
LX  
switching  
VCC-VOUT  
SW1  
OFF  
0V  
OFF  
ON  
Same as VCC Voltage  
0V  
DET1  
DET0  
0V  
0V  
U
U
S
D
S
U
D
D
D
Mark  
State  
U
S
D
UVLO  
[5]  
[6]  
[1]  
[2]  
[3]  
[4]  
Start-Up  
Boost DC/DC  
[1] When 0.35V (Minimum input voltage at start-up: VSTART) or higher voltage is applied to the VDD pin, the start-up circuit  
activates charging the VCC capacitor C2 (see Figure 3-1).  
Document Number: 002-08404 Rev *A  
Page 9 of 40  
MB39C831  
[2] When the VCC reaches 2.9V (upper threshold of VCC detection voltage 1: VCCDETH1), the operation of the start-up circuit  
stops, then the DC/DC converter activates charging the VOUT capacitor C3 (see Figure 3-1).  
[3] When the VCC reaches less than 2.6V (lower threshold of VCC detection voltage 1: VCCDETL1) by the internal  
consumption current, the start-up circuit operates again, and this sequence is repeated until the VOUT becomes 2.9V (upper  
threshold of VOUT detection voltage 1: VOUTDETH1).  
[4] When the VOUT reaches 2.9V (upper threshold of VOUT detection voltage 1: VOUTDETH1), the internal switch SW1 (see  
Figure 3-1) between VCC and VOUT is turned on, and then the VCC and the VOUT are connected internally. While the DC/DC  
converter is continuously operated, charging the VOUT capacitor C3 to the preset voltage setting by S2, S1, and S0 pins is  
performed.  
[5] When the VDD falls and reaches 0.3V (VDD input voltage: VVDD) or less, the voltage of the VOUT and VCC starts to  
decreases.  
[6] After that the VOUT voltage reaches 2.6V (lower threshold of VOUT detection voltage 1: VOUTDETL1) or the VCC voltage  
reaches 2.6V (lower threshold of VCC detection voltage 1: VCCDETL1), and then the internal switch SW1 between VCC and  
VOUT is turned off, and the VCC and the VOUT are disconnected internally.  
Document Number: 002-08404 Rev *A  
Page 10 of 40  
MB39C831  
Charge Mode: MPPT_ENA = H, ENA = H  
In order to operate the charge mode, it supposes that to connect lithium ion secondary batteries, and so on, to VCC pin. See  
Figure 11-2 circuit to use the charge mode.  
The charge mode is necessary to set MPPT_ENA = H and ENA = H. Both MPPT_ENA and ENA are connected to the VCC  
pin, and a Li-ion battery should be connected to the VOUT pin to make the VOUT 2.6V (upper threshold of VOUT detection  
voltage 2: VOUTDETH2). See Figure 10-2 Start-up/shut-down sequences of charge mode.  
Figure 7-2 Start-up/Shut-down Sequences of Charge Mode (MPPT_ENA = H, ENA=H)  
Release Voltage  
0.35V  
VDD Voltage  
0.2V  
0V  
0V  
0V  
VST  
startup voltage  
VCC=VOUT  
3.7V  
VCC=VOUT  
4V  
4V  
2.6V  
2.55V  
VCC Voltage  
0V  
0V  
VOUT=Li-ion Voltage(>=2.6V)  
VOUT=Li-ion Voltage(>=2.55V)  
0V  
3.7V  
Battery Charging Operation  
2.55V  
VOUT Voltage  
0V  
LX  
switching  
VCC-VOUT  
SW1  
OFF  
0V  
OFF  
0V  
ON  
VCC/2  
VCC/2  
CSH1  
CSH2  
0V  
0V  
Same as VCC Voltage  
0V  
0V  
0V  
DET1  
DET0  
Mark  
U
State  
UVLO  
0V  
S
Start-Up  
U
S
R
M
R
M
M
R
M
U
U
R
Release Voltage  
MPPT Charge  
M
[5]  
[6]  
[1]  
[2]  
[3],[4]  
[1] When 0.35V (Minimum input voltage at start-up: VSTART) or higher voltage is applied to the VDD pin, the start-up circuit  
activates charging the VCC capacitor C2 (see Figure 3-1).  
[2] When the VCC reaches 2.6V (upper threshold of VCC detection voltage 2: VCCDETH2) and the VOUT is higher than 2.6V  
(upper threshold of VOUT detection voltage 2: VOUTDETH2), the operation of the start-up circuit stops and the internal switch  
SW1 (see Figure 3-1) between VCC and VOUT is turned on. Then the DC/DC converter activates charging the Li-ion battery  
(see Figure 3-1), and the MPPT control starts at the same time.  
[3] While the DC/DC converter is continuously operated, the voltage of VDD is controlled to the MPPT value setting by S0, S1,  
and S2 pins. (For more detail, refer to Chapter 7.3).  
[4] When the voltage of the Li-ion battery reaches 4V (upper threshold of VOUT detection voltage 3: VOUTDETH3), the  
charging of the Li-ion battery stops. When the voltage of the Li-ion battery drops and reaches 3.7V (lower threshold of VOUT  
detection voltage 3: VOUTDETL3), the charging of the Li-ion battery starts again.  
[5] When the VDD voltage drops and reaches 0.2V (lower threshold of UVLO detection voltage: VUVLOL), the operation of the  
DC/DC converter stops, and then the voltage of the VOUT and VCC starts to decreases.  
Document Number: 002-08404 Rev *A  
Page 11 of 40  
MB39C831  
[6] The VOUT voltage reaches 2.55V (lower threshold of VOUT detection voltage 2: VOUTDETL2) or the VCC voltage reaches  
2.55V (lower threshold of VCC detection voltage 2: VCCDETL2, and then the internal switch SW1 between VCC and VOUT is  
turned off, and the VCC and the VOUT are disconnected internally to protect the Li-ion battery from an over-discharge.  
7.3 MPPT Control  
In general, the voltage of a solar cell varies depending on the load current. The operating point where the power becomes the  
maximum is called the optimum operating point. The control which tracks the optimum operating point is called the MPPT  
(Maximum Power Point Tracking) control.  
MPPT Values Setting  
The voltage where the power becomes the maximum is called the power maximum voltage, and the voltage with no load is  
called the release voltage. The comparison between the power maximum voltage and the release voltage is defined as the  
MPPT values.  
In the charge mode, the input voltage (VDD) is adjusted and the DC/DC converter operates while tracking the MPPT value  
setting by the S2, S1 and S0 pins.  
When in use, set the MPPT value after confirming the voltage dependency of the solar cell power.  
Figure 7-3 MPPT Control  
Voltage depedence of Solar  
cell_Current  
Power  
maximum  
Release  
voltage  
voltage  
Voltage(V)  
Voltage depedence of Solar  
cell_Power  
Optimum  
operating point  
Voltage(V)  
MPPT values[%] = Power maximum voltage/Open voltage×100  
Document Number: 002-08404 Rev *A  
Page 12 of 40  
MB39C831  
MPPT Operation  
When setting the charge mode, the internal pulse frequency is determined by the values of the capacitors C5/C6 and C7/C8  
(see Figure 3-1), which are connected to the CSH1 pin, and the CSH2 pin.  
During the period of high level of the internal pulse setting by the capacitors C5/C6 connected to the CHS1 pin, the release  
voltage is measured. The capacitors C5/C6 latch the measured voltage level, the release voltage.  
During the period of low level of the internal pulse setting by the capacitors C7/C8 connected to the CSH2 pin, the charge  
current is determined in order to make the VDD pin's voltage equal to the MPPT setting voltage, then the charging operation  
starts up. The MPPT setting voltage is calculated by the following equation.  
(refer to Table 7-3 MPPT control)  
When using the recommended pars, the frequency is set to 0.35Hz with 5% duty.  
If not using the recommended parts, please be aware of the following points.  
1. In general, laminated capacitances have leak current. If the inside pulse cycle setting by the capacitors  
2.  
3.  
C7/C8 were set too long, the voltage level of the capacitors C5/C6 would drop. There is a possibility that  
the MPPT value cannot be set correctly.  
4. If the period of high level of inside pulse is set too short, setting by the capacitors C5/C6, the MPPT value  
5. cannot be set correctly due to a lack of the measurement time of the release voltage.  
Figure 7-4 MPPT Operation  
Release voltage  
VDD pin  
voltage  
MPPT setting voltage  
Full charge detection  
VOUT pin  
voltage  
Chareging resume  
LX waveform  
Frequency 0.35Hz Duty 5%,  
when using recommended parts  
Measurement of release voltage  
No DC/DC operation  
Charging Operation  
Internal Pulse  
time  
The period of high level is set  
by capacitors C5 and C6.  
The period of high level is set  
by capacitors C7 and C8.  
Document Number: 002-08404 Rev *A  
Page 13 of 40  
MB39C831  
7.4 Function Description  
Mode control  
The mode is controlled by the MPPT_ENA pin. There are the charge mode and constant voltage mode, which also determine  
the presence or absence of The MPPT, the UVLO, the VCC detecting, and the VOUT detecting functions. Set the MPPT_ENA  
pin according to an application.  
And also, the DC/DC converter is controlled by the ENA pin, transfer in operating state of Table10-1.  
Table 7-1 Mode Control  
Input  
Signal  
Function  
Mode  
Operating State  
Constan  
t
L
VOUT output stop  
OFF  
OFF  
OFF  
OFF  
ON  
ON  
OFF  
OFF  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
L
H
VOUT output enabled  
voltage  
L
Charge stop  
ON  
ON  
ON  
ON  
OFF  
OFF  
ON  
ON  
OFF  
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
Charge  
H
H
Charge enabled  
Changing Setting Method of Preset Output Voltage & MPPT Setting  
The state is controlled by the MPPT_ENA, the ENA, the S2, S1, and S0 pins.  
The preset output voltage can be set in the constant voltage mode, set the MPPT_ENA = L and the ENA =H, and then set it by  
the S2, S1, and S0 pins.  
The MPPT value can be set in the charge mode, set the MPPT_ENA = H and the ENA =H, and then set it by the S2, S1, and  
S0 pins.  
Table 7-2 Changing Preset Output Voltage in Constant Voltage Mode (MPPT_ENA = L, ENA = H)  
Input Signal  
Control  
MPPT_ENA pin  
ENA pin  
S2 pin  
S1 pin  
S0 pin  
Preset Output Voltage (V)  
L
L
L
3.0  
L
L
H
L
3.3  
L
H
H
L
3.6  
L
H
L
4.1  
L
H
H
H
H
H
4.5  
L
H
L
5.0  
H
H
Setting prohibited  
Setting prohibited  
H
Document Number: 002-08404 Rev *A  
Page 14 of 40  
MB39C831  
Table 7-3 Changing MPPT Setting in Charge Mode (MPPT_ENA = H, ENA = H)  
Input Signal  
Control  
MPPT Values  
MPPT_ENA pin  
ENA pin  
S2 pin  
S1 pin  
S0 pin  
L
L
L
50%  
55%  
60%  
65%  
70%  
75%  
80%  
85%  
L
L
H
L
L
H
H
L
L
H
L
H
H
H
H
H
H
L
H
L
H
H
H
VCC Detection1, 2 (VCC Detection Voltage1, 2): VCC Voltage Protection  
This function works with both the constant voltage mode (MPPT_ENA =L) and the charge mode (MPPT_ENA =H).  
Constant voltage mode (MPPT_ENA =L)  
The detection that the VCC pin is equal to the threshold voltage (VCCDETH1 = 2.9V) or higher is the source to start the  
DC/DC converter operation. Its a factor to turn on the internal switch between VCC and VOUT.  
It has the hysteresis, and the detection that the VCC pin is equal to the threshold voltage (VCCDETL1 = 2.6V) or lower is  
the source to stop the DC/DC converter operation. Its a factor turn off the internal switch between VCC and VOUT.  
When the VCC pin becomes higher than the threshold voltage (VCCDETH1 = 2.9V) again, this function is repeated.  
Charge mode (MPPT_ENA =H)  
The detection that the VCC pin is equal to the threshold voltage (VCCDETH2 = 2.6V) or higher is the source to start the  
DC/DC converter operation. Its a factor turn on the internal switch between VCC and VOUT.  
It has the hysteresis, and the detection that the VCC pin is equal to the threshold voltage (VCCDETL2 = 2.55V) or lower is  
the source to stop the DC/DC converter operation. Its a factor turn off the internal switch between VCC and VOUT.  
When the VCC pin becomes higher than the threshold voltage (VCCDETH2 = 2.6V) again, this function is repeated.  
VOUT Detection1, 2 (VOUT Detection Voltage1, 2)  
This function works with both the constant voltage mode (MPPT_ENA =L) and the charge mode (MPPT_ENA =H).  
Constant voltage mode (MPPT_ENA =L)  
The detection that the VOUT pin is equal to the threshold voltage (VOUTDETH1 = 2.9V), and its a factor to turn on the  
internal switch between VCC and VOUT.  
It has the hysteresis, and the detection that the VOUT pin is equal to the threshold voltage (VOUTDETL1 = 2.6V), and its a  
factor to turn off the internal switch between VCC and VOUT.  
When the VOUT pin becomes higher than the threshold voltage (VOUTDETH1 = 2.9V) again, this function is repeated.  
Charge mode (MPPT_ENA =H)  
The detection that the VOUT pin is equal to the threshold voltage (VOUTDETH2 = 2.6V) or higher is the source to start the  
DC/DC converter operation. Its a factor turn on the internal switch between VCC and VOUT.  
It has the hysteresis, and the detection that the VOUT pin is equal to the threshold voltage (VOUTDETL2 = 2.55V) or lower  
is the source to stop the DC/DC converter operation. Its a factor turn off the internal switch between VCC and VOUT.  
When the VOUT pin becomes higher than the threshold voltage (VOUTDETH2 = 2.6V) again, this function is repeated.  
Document Number: 002-08404 Rev *A  
Page 15 of 40  
MB39C831  
VOUT Detection3 (VOUT Detection Voltage3)  
This function works with the charge mode (MPPT_ENA =H).  
When the VOUT pin becomes higher than the threshold voltage (VOUTDETH3 = 4V), the DC/DC converter stops the  
operation.  
It has the hysteresis, and when the VOUT pin becomes lower than the threshold voltage (VOUTDETL3 =3.7V), the DC/DC  
converter restarts the operation.  
UVLO  
This function works with the charge mode (MPPT_ENA =H).  
In the state the DC/DC converter starts and during the charge operation, when the VDD pin becomes lower than the lower  
threshold voltage (VUVLOL = 0.2V), UVLO function works and the DC/DC converter stops the operation.  
Then when the VDD pin becomes higher than the upper threshold voltage (VUVLOH = 0.3V), the DC/DC converter starts the  
operation again.  
After that, this function is repeated.  
VOUT-VDD Voltage Reverse Monitoring  
This function works with the charge mode (MPPT_ENA =H).  
The detection that the VDD pin is equal to the VOUT pin's voltage or higher is the source to stop the DC/DC control part  
operation.  
Output Current Protection  
It has the current limitation function to protect the circuit during the over load current. When the input current for the LX pin  
reaches LX peak current (ILIMIN_A), the output voltage drops in order to prevent the IC destruction.  
State Notification  
This function is independent of the MPPT_ENA setting.  
The VCC voltage stage, the VOUT voltage state, and the VOUT-VDD voltage reverse state are notified by the DET[1:0]  
signals.  
The state notification is not a power good function.  
Table 7-4 Stage Notification of Constant Voltage Mode (MPPT_ENA = L, ENA = H)  
Output Signal  
DET1 Pin DET0 Pin  
State  
Constant Voltage Mode (MPPT_ENA = L, ENA = H)  
L
L
L
VCC terminal ≤ VCC detection voltage 1 and VOUT terminal ≤ VOUT detection voltage 1  
VCC terminal ≥ VCC detection voltage 1 and VOUT terminal ≤ VOUT detection voltage 1  
H
Constant voltage operation:  
H
H
L
VCC terminal ≥ VCC detection voltage 1 and VOUT terminal ≥ VOUT detection voltage 1  
H
VCC terminal ≤ VCC detection voltage 1 and VOUT terminal ≥ VOUT detection voltage 1  
Document Number: 002-08404 Rev *A  
Page 16 of 40  
MB39C831  
Table 7-5 Stage Notification of Charge Node (MPPT_ENA = H, ENA = H)  
Output Signal State  
DET1 Pin DET0 Pin Charge Mode (MPPT_ENA = H, ENA = H)  
L
L
VCC terminal ≤ VCC detection voltage 2 and VOUT terminal ≤ VOUT detection voltage 2  
Abnormal stage:  
L
H
Stage that VDD voltage is higher than VOUT voltage (VOUT < VDD) (*1)  
Protection stop stage:  
H
H
L
During the period VOUT drop from 4V to 3.7V, after VOUT reaches VOUT detection  
voltage 3 (VOUTDETH3 = 4V) (*2)  
MPPT operation:  
H
VCC terminal ≥ VCC detection voltage 2 and VOUT terminal ≥ VOUT detection voltage 2  
*1: DET[1:0]=[L:L] has the highest priority.  
*2: DET[1:0]=[L:H] has the highest priority.  
Document Number: 002-08404 Rev *A  
Page 17 of 40  
MB39C831  
8. Typical Applications Circuit  
Constant Voltage Mode  
Figure 8-1 Application Circuit of Constant Voltage Mode (MPPT_ENA = L, ENA = H)  
4.7µF  
L1  
C1  
10µF  
Solar  
Cell  
LX  
VST  
D1  
(IZ = 250µA)  
C11  
VDD  
VZ = 6.2V  
47nF  
VCC  
D2  
C2  
VZ = 6.2V  
(IZ = 250µA)  
1µF  
VOUT  
C3  
VOUT_S  
10µF  
Super  
Cap  
GND  
VCC  
MPPT_ENA  
ENA  
S0  
FB  
DET0  
VCC or GND  
VCC or GND  
VCC or GND  
S1  
DET1  
S2  
MPPT_OUT  
CSH2  
CSH1 CSH0 MPPT_IN  
Document Number: 002-08404 Rev *A  
Page 18 of 40  
MB39C831  
Charge Mode  
Figure 8-2 Application Circuit of Charge Mode (MPPT_ENA = H, ENA = H)  
4.7µF  
L1  
C1  
10µF  
Solar  
Cell  
LX  
VST  
D1  
C11  
VDD  
VZ = 6.2V  
(IZ = 250µA)  
47nF  
VCC  
D2  
(IZ = 250µA)  
C2  
VZ = 6.2V  
1µF  
VOUT  
C3  
VOUT_S  
10µF  
Li-ion  
Battery  
C9  
33pF  
VCC  
VCC  
MPPT_ENA  
ENA  
S0  
FB  
DET0  
VCC or GND  
VCC or GND  
VCC or GND  
S1  
DET1  
R3  
S2  
MPPT_OUT  
200kΩ  
CSH2  
CSH1 CSH0 MPPT_IN  
C8 C7 C6 C5 C4  
47nF 100nF 4.7nF 3.3nF 470nF  
R1 R2 C10  
10nF  
100kΩ 100kΩ  
Document Number: 002-08404 Rev *A  
Page 19 of 40  
MB39C831  
Parts List  
Table 8-1 Parts List  
Part number  
Value  
Description  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
R1  
R2  
R3  
L1  
10 μF  
1 μF  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Resistor  
10 μF  
470 nF  
3.3 nF  
4.7 nF  
100 nF  
47 nF  
33 pF  
10 nF  
47 nF  
100 kΩ  
100 kΩ  
200 kΩ  
4.7 μH  
Resistor  
Resistor  
Inductor  
D1  
D2  
VZ=6.2V (LZ=250 µA)  
VZ=6.2V (LZ=250 µA)  
Zener diode  
Zener diode  
Document Number: 002-08404 Rev *A  
Page 20 of 40  
MB39C831  
9. Application Notes  
Inductor  
The MB39C831 is optimized to work with an inductor in the range of 4.7 µH. Select a value of 4.7 µH. Also, select an inductor  
with a DC current rating which can permit the peak current for the inductor.  
The peak current for the inductor in steady state operation (ILMAX) can be calculated by the following equation according to  
the maximum current of harvesters (IINMAX).  
Harvester (Photovoltaic Power Generator)  
In case of photovoltaic (or solar) energy harvesting, use a solar cell with an open-circuit voltage less than 4.75V and the preset  
output voltage. Electric power obtained from a solar or light is increased in proportion to the ambient illuminance.  
Silicone-based solar cells are single crystal silicon solar cell, polycrystalline silicon solar cell, and amorphous silicon solar cell.  
Organic-based solar cells are dye-sensitized solar cell (DSC), and organic thin film solar cell. Crystal silicon and polycrystalline  
silicon solar cells have high energy conversion efficiency. Amorphous silicon solar cells are lightweight, flexible, and produced  
at low cost. Dye-sensitized solar cells are composed by sensitizing dye and electrolytes, and are low-cost solar cell. Organic  
thin film solar cells are lightweight, flexible, and easily manufactured.  
Harvester (Temperature Difference Power Generator)  
Temperature difference power generators produce electric power keeping temperature difference between the high  
temperature side and the low temperature side. The temperature difference power generators include the peltier elements  
utilizing the Seebeck effect and thermopiles that made of thermocouples in series or in parallel.  
Sizing of Input and Output Capacitors  
Common capacitors are layered ceramic capacitor, electrolytic capacitor, electric double layered capacitor (EDLC), and so on.  
Electrostatic capacitance of layered ceramic capacitors is relatively small. However, layered ceramic capacitors are small and  
have high voltage resistance characteristic. Electrolytic capacitors have high electrostatic capacitance from µF order to mF  
order. The size of capacitor becomes large in proportion to the size of capacitance. Electric double layered capacitors have  
high electrostatic capacitance around 0.5F to 1F, but have low voltage resistance characteristics around 3V to 5V. Be very  
careful with a voltage resistance characteristic. Also, leak current, equivalent series resistance (ESR), and temperature  
characteristic are criteria for selecting,  
Table 9-1 Manufactures of Capacitors  
Part Number/Series Name  
EDLC351420-501-2F-50  
EDLC082520-500-1F-81  
EDLC041720-050-2F-52  
Gold capacitor  
Type, Capacitance  
EDLC, 500 mF  
Manufacture  
EDLC, 50 mF  
EDLC, 5 mF  
EDLC  
TDK Corporation  
Panasonic Corporation  
Energy from harvester should be stored on the Cin and Cout to operate the application block. If the size of these capacitors  
were too big, it would take too much time to charge energy into these capacitors, and the system cannot be operated  
frequently. On the other hand, if these capacitors were too small, enough energy cannot be stored on these capacitors for the  
application block. The sizing of the Cin and Cout is important.  
Document Number: 002-08404 Rev *A  
Page 21 of 40  
MB39C831  
First of all, apply the following equation and calculate energy consumption for an application from voltage, current, and time  
during an operation.  
The energy stored on a capacitor is calculated by the following equation.  
Since the energy in a capacitor is proportional to the square of the voltage, it is energetically advantageous for the boost  
DC/DC converter, the input voltage, is less than the output voltage, to make the Cout larger.  
The Cin and the Cout are sized so as to satisfy the following equation (refer to Figure 9-1). The η, the efficiency of the  
MB39C831, is determined from the graph of the efficiency shown in Figure 10-1  
dECin and dECout are the available energies for the application.  
Figure 9-1 Example of Energy Harvesting System  
VDD  
Cin  
VOUT  
Appli.  
Cout  
MB39C831  
Harvester  
VOUT  
VOMIN  
VDD  
0.3V  
0V  
0V  
Efficiency(η)  
Available Energy  
VDD : VDD input voltage  
0.3V : Min VDD input voltage  
+
Total Energy  
VOUT : Preset output voltage  
VOMIN : Min. operating voltage of an application  
Before calculating the initial charging time (TInitial), calculate the total energy (ECin and ECout) stored on both Cin and Cout.  
PHarvester is a power generation capability of a harvester. An initial charging time (TInitial) is calculated by the following equation.  
Repeat charging time (TRepeat) is calculated by the following equation. The TRepeat become shorter than TInitial  
.
Document Number: 002-08404 Rev *A  
Page 22 of 40  
 
MB39C831  
10. Typical Characteristics  
Figure 10-1 Typical Characteristics of Constant Voltage Mode (MPPT_ENA = L, ENA = H)  
Line Regulation: VOUT vs VDD  
Line Regulation: VOUT vs VDD  
Line Regulation: VOUT vs VDD  
VDD = 0.6V, IOUT = 0A, Ta = 25oC  
VDD = 0.6V, IOUT = 0A, Ta = 25oC  
VDD = 0.6V, IOUT = 0A, Ta = 25oC  
3.05  
3.04  
3.03  
3.02  
3.35  
3.34  
3.33  
3.32  
5.09  
5.08  
5.07  
5.06  
Preset output voltage = 3.0V  
Preset output voltage = 3.3V  
Preset output voltage = 5.0V  
3.01  
3.00  
3.31  
3.30  
5.05  
5.04  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
1
2
3
4
5
VDD [V]  
VDD [V]  
VDD [V]  
Data831001  
Data831002  
Data831003  
Load Regulation: VOUT vs IOUT  
Load Regulation: VOUT vs IOUT  
Load Regulation: VOUT vs IOUT  
Ta = 25oC  
Ta = 25oC  
Ta = 25oC  
3.03  
3.02  
3.01  
3.00  
3.33  
3.32  
3.31  
3.30  
5.06  
5.05  
5.04  
5.03  
Preset output voltage = 3.0V  
Preset output voltage = 3.3V  
Preset output voltage = 5.0V  
VDD = 4.8V  
VDD = 3.1V  
VDD = 2.8V  
VDD = 0.6V  
VDD = 0.6V  
VDD = 0.6V  
2.99  
2.98  
3.29  
3.28  
5.02  
5.01  
1µ  
0.01m 0.1m  
1m  
0.01  
0.1  
1
1µ  
0.01m 0.1m  
1m  
0.01  
0.1  
1
1µ  
0.01m 0.1m  
1m  
0.01  
0.1  
1
IOUT [A]  
IOUT [A]  
IOUT [A]  
Data831004  
Data831005  
Data831006  
Efficiency vs Inductor current  
Efficiency vs Inductor current  
Efficiency vs Inductor current  
Ta = 25oC  
Ta = 25oC  
Ta = 25oC  
100  
80  
100  
80  
60  
40  
20  
100  
80  
Preset output  
voltage = 3.0V  
Preset output  
voltage = 3.3V  
Preset output  
voltage = 5.0V  
VDD = 2.8V  
VDD = 0.6V  
VDD = 3.1V  
VDD = 0.6V  
VDD = 4.8V  
60  
60  
VDD = 0.6V  
40  
40  
20  
0
20  
0
1µ  
0.01m 0.1m  
1m  
0.01  
0.1  
1
1µ  
0.01m 0.1m  
1m  
0.01  
0.1  
1
1µ  
0.01m 0.1m  
1m  
0.01  
0.1  
1
Inductor current [A]  
Inductor current [A]  
Inductor current [A]  
Data831007  
Data831008  
Data831009  
Document Number: 002-08404 Rev *A  
Page 23 of 40  
MB39C831  
Min. VDD input voltage in start-up  
420 vs Temp.  
IQOUT vs Temp.  
Efficiency vs VDD  
VDD = 0V  
IOUT = 10mA, Ta = 25oC  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
100  
90  
80  
70  
60  
Preset output voltage = 3.0V  
in applying 5.0V to VOUT  
in applying 3.6V to VOUT  
400  
380  
360  
340  
320  
300  
Preset output voltage = 3.0V  
Preset output voltage = 3.6V  
Preset output voltage = 5.0V  
in applying 3.0V to VOUT  
50  
40  
-40  
-20  
0
20  
40  
60  
80 85  
-40  
-20  
0
20  
40  
60  
80 85  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Temp. [oC]  
Temp. [oC]  
VDD [V]  
Data831010  
Data831011  
Data831012  
Inductor current in start-up  
100 vs VDD  
Inductor current in start-up  
100 vs VDD  
Inductor current in start-up  
100 vs VDD  
Preset output voltage = 3.0V  
Preset output voltage = 3.6V  
Preset output voltage = 5.0V  
90  
80  
70  
60  
50  
40  
30  
20  
90  
80  
70  
60  
50  
40  
30  
20  
90  
80  
70  
60  
50  
40  
30  
20  
40oC  
25oC  
85oC  
25oC  
85oC  
40oC  
25oC  
85oC  
40oC  
10  
0
10  
0
10  
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
VDD [V]  
VDD [V]  
VDD [V]  
Data831013  
Data831014  
Data831015  
Document Number: 002-08404 Rev *A  
Page 24 of 40  
MB39C831  
Maximum output current  
Maximum output current  
Maximum output current  
100 vs Preset output voltages  
100 vs Preset output voltages  
100 vs Preset output voltages  
VDD = 0.3V  
90  
40oC  
25oC  
85oC  
VDD = 0.6V  
90  
40oC  
25oC  
85oC  
VDD = 1.0V  
90  
40oC  
25oC  
85oC  
80  
70  
60  
50  
40  
30  
20  
80  
70  
60  
50  
40  
30  
20  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
0
10  
0
3.0V  
3.3V  
3.6V  
4.1V  
4.5V  
5.0V  
3.0V  
3.3V  
3.6V  
4.1V  
4.5V  
5.0V  
3.0V  
3.3V  
3.6V  
4.1V  
4.5V  
5.0V  
Preset output voltages  
Preset output voltages  
Preset output voltages  
Data831016  
Data831017  
Data831018  
Maximum output current  
Maximum output current  
Maximum output current vs VDD  
Ta = 25oC  
300 vs Preset output voltages  
300 vs Preset output voltages  
300  
250  
200  
150  
100  
VDD = 2.0V  
40oC  
25oC  
85oC  
VDD = 3.0V  
40oC  
25oC  
85oC  
Preset output voltage =  
250  
200  
150  
100  
250  
200  
150  
100  
3.0V  
3.3V  
3.6V  
4.1V  
4.5V  
5.0V  
50  
0
50  
0
50  
0
3.0V  
3.3V  
3.6V  
4.1V  
4.5V  
5.0V  
3.3V  
3.6V  
4.1V  
4.5V  
5.0V  
0
1
2
3
4
5
Preset output voltages  
Preset output voltages  
VDD [V]  
Data831019  
Data831020  
Data831021  
VOUT pin current  
60 vs Preset output voltages  
VDD = 0.6V, Ta = 25oC  
MPPT_ENA = L, ENA = H  
50  
40  
30  
20  
10  
0
3.3V  
3.6V  
4.1V  
4.5V  
5.0V  
Preset output voltages  
Data831022  
Document Number: 002-08404 Rev *A  
Page 25 of 40  
MB39C831  
Figure 10-2 Switching Waveforms of Constant Voltage Mode (MPPT_ENA = L, ENA = H)  
Waveforms : PWM mode  
Waveforms : PWM mode  
VDD = 0.6V, L = 4.7µH, IOUT = 10mA  
VDD = 0.6V, L = 4.7µH, IOUT = 10mA  
Preset output voltage = 3.3V  
Preset output voltage = 3.3V  
VOUT  
5mV/DIV  
AC-COUPLED  
VOUT  
5mV/DIV  
AC-COUPLED  
ILX  
100mA/DIV  
ILX  
100mA/DIV  
1µs/DIV  
400ns/DIV  
Wave831001  
Wave831002  
Waveforms : PFM mode  
Waveforms : PFM mode  
VDD = 0.6V, L = 4.7µH, IOUT = 1mA  
VDD = 0.6V, L = 4.7µH, IOUT = 1mA  
Preset output voltage = 3.3V  
Preset output voltage = 3.3V  
VOUT  
5mV/DIV  
AC-COUPLED  
VOUT  
5mV/DIV  
AC-COUPLED  
ILX  
100mA/DIV  
ILX  
100mA/DIV  
10µs/DIV  
4µs/DIV  
Wave831003  
Wave831004  
Document Number: 002-08404 Rev *A  
Page 26 of 40  
MB39C831  
Figure 10-3 Typical Characteristics of Charge Mode (MPPT_ENA = H, ENA = H)  
VOUT pin current  
VOUT pin current  
6.0 vs VOUT  
60 vs Preset output voltages  
VDD = 0.6V, Ta = 25oC  
VDD = 0V, Ta = 25oC  
MPPT_ENA = H, ENA = H  
50  
MPPT_ENA = H, ENA = H  
5.0  
40  
30  
20  
4.0  
3.0  
2.0  
10  
0
1.0  
0
3.0V  
3.3V  
3.6V  
4.1V  
4.5V  
5.0V  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Preset output voltages  
VOUT [V]  
Data831024  
Data831025  
Figure 10-4 Waveforms of VDD Pin Voltage in Charge Mode (MPPT_ENA = H, ENA = H)  
Waveforms : Charge mode (MPPT mode)  
Waveforms : Charge mode (MPPT mode)  
VDD = 0.6V, C5/C6 = 3.3nF/4.7nF, C7/C8 = 100nF/47nF  
VDD = 0.6V, C5/C6 = 10nF/4.7nF, C7/C8 = 100nF/220nF  
MPPT setting = 50%, MPPT setting voltage = 0.6V × 50%  
in applying 3.3V to VOUT  
MPPT setting = 50%, MPPT setting voltage = 0.6V × 50%  
in applying 3.3V to VOUT  
VDD  
200mV/DIV  
VDD  
200mV/DIV  
Measurement of release voltage  
Measurement of release voltage  
600  
300  
0
600  
300  
0
Period of 1 cycle  
1s/DIV  
Period of 1 cycle  
1s/DIV  
Wave831005  
Wave831006  
Document Number: 002-08404 Rev *A  
Page 27 of 40  
MB39C831  
11. Layout for Printed Circuit Board  
Note the Points Listed Below in Layout Design  
Place the switching parts (*1) on top layer, and avoid connecting each other through through-holes.  
Make the through-holes connecting the ground plane close to the GND pins of the switching parts(*1)  
.
Be very careful about the current loop consisting of the output capacitor C3, the VOUT pin of IC, and the PGND2 pin. Place  
and connect these parts as close as possible to make the current loop small.  
The input capacitor C1 and the inductor L1 are placed adjacent to each other.  
Place the bypass capacitor C11 close to VST pin, and make the through-holes connecting the ground plane close to the  
GND pin of the bypass capacitor C11.  
Place the bypass capacitor C2 close to VCC pin, and make the through-holes connecting the ground plane close to the  
GND pin of the bypass capacitor C2.  
Draw the feedback wiring pattern from the VOUT_S pin to the output capacitor C3 pin. The wiring connected to the  
VOUT_S pin is very sensitive to noise so that the wiring should keep away from the switching parts(*1). Especially, be very  
careful about the leaked magnetic flux from the inductor L1, even the back side of the inductor L1.  
*1:  
Switching parts: IC (MB39C831), Input capacitor (C1), Inductor (L1), Output capacitor (C3).  
Refer to Figure 3-1.  
Figure 11-1 Example of a Layout Design  
VST  
PGND1  
VDD  
VCC  
C9  
C3  
through-holes  
C1  
L1  
R3,R2  
R1,C10  
C4-C8  
feedback wiring pattern  
Top Layer  
Back Layer  
Document Number: 002-08404 Rev *A  
Page 28 of 40  
MB39C831  
12. Usage Precaution  
Do Not Configure the IC Over the Maximum Ratings  
If the IC is used over the maximum ratings, the LSI may be permanently damaged.  
It is preferable for the device to be normally operated within the recommended usage conditions. Usage outside of these  
conditions can have a bad effect on the reliability of the LSI.  
Use the Devices within Recommended Operating Conditions  
The recommended operating conditions are the recommended values that guarantee the normal operations of LSI.  
The electrical ratings are guaranteed when the device is used within the recommended operating conditions and under the  
conditions stated for each item.  
Printed Circuit Board Ground Lines should be Set up with Consideration for Common Impedance  
Take Appropriate Measures Against Static Electricity  
Containers for semiconductor materials should have anti-static protection or be made of conductive material.  
After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.  
Work platforms, tools, and instruments should be properly grounded.  
Working personnel should be grounded with resistance of 250 kΩ to 1 MΩ in series between body and ground.  
Do Not Apply Negative Voltages  
The use of negative voltages below -0.3V may cause the parasitic transistor to be activated on LSI lines, which can cause  
malfunctions.  
13. Ordering Information  
Table 13-1 Ordering Information  
Part Number  
Package  
40-pin plastic QFN  
(LCC-40P-M63)  
MB39C831QN  
14. Marking  
Figure 14-1 Marking  
MB 3 9 C 8 3 1  
E 2  
INDEX  
Lead free mark  
Document Number: 002-08404 Rev *A  
Page 29 of 40  
MB39C831  
15. Product Labels  
Figure 15-1 Inner Box Label [Q-Pack Label (4 × 8.5inch)]  
Ordering Part Number  
(P)+Part No.  
Quantity  
Mark lot information  
Label spec  
: Conformable JEDEC  
Barcode form : Code 39  
Document Number: 002-08404 Rev *A  
Page 30 of 40  
MB39C831  
Figure 15-2 Al(Aluminum) Bag Label [2-in-1 Label (4 × 8.5inch)]  
Ordering Part Number  
(P)+Part No.  
Mark lot information  
Quantity  
Caution  
JEDEC MSL, if available.  
Document Number: 002-08404 Rev *A  
Page 31 of 40  
MB39C831  
Figure 15-3 Reel Label [Reel Label (4 × 2.5inch)]  
Ordering Part Number  
(P)+Part No.  
Mark lot information  
Quantity  
Figure 15-4 Reel Label [Dry Pack & Reel Label (4 × 2.5inch)]  
Document Number: 002-08404 Rev *A  
Page 32 of 40  
MB39C831  
Figure 15-5 Outer Box Label [Shopping Label (4 × 8.5inch)]  
Quantity  
Ordering Part Number : (1P)+Part No.  
Document Number: 002-08404 Rev *A  
Page 33 of 40  
MB39C831  
16. Recommended Mounting Conditions  
Table 16-1 Recommended Mounting Conditions  
Items  
Method  
Times  
Contents  
IR(Infrared Reflow) / Convection  
3 times in succession  
Before unpacking  
From unpacking to reflow  
In case over period  
of floor life(*1)  
Please use within 2 years after production.  
Within 7 days  
Floor life  
Baking with 125°C+/-3°C for 24hrs+2hrs/-0hrs is required. Then please  
use within 7 days (Please remember baking is up to 2 times).  
Between 5°C and 30°C and also below 60%RH required.  
(It is preferred lower humidity in the required temp range.)  
Floor life  
condition  
*1: Concerning the Tape & Reel product, please transfer product to heatproof tray and so on when you perform baking. Also  
please prevent lead deforming and ESD damage during baking process.  
Figure 16-1 Recommended Mounting Conditions  
SupplierT T  
p
c
User T T  
p
c
T
c
T
-5°C  
c
Supplier t  
p
User t  
p
Tp  
TL  
T -5°C  
c
tp  
tL  
Max. Ramp Up Rate = 3°C/s  
Max. Ramp Down Rate = 6°C/s  
T
smax  
Preheat Area  
T
smin  
ts  
25  
Time 25°C to Peak  
Time  
Document Number: 002-08404 Rev *A  
Page 34 of 40  
MB39C831  
Table 16-2 Recommended Mounting Conditions (J-STD-020D)  
(Temperature on the top of the package body is measured.)  
260°C Max.  
TL to TP: Ramp Up Rate  
TS: Preheat & Soak  
3°C/s Max.  
150°C to 200°C, 60s to 120s  
260°C Down, within 30s  
217°C, 60s to 150s  
6°C /s Max.  
TP - tP: Peak Temperature  
TL tL: Liquidous Temperature  
TP to TL: Ramp Down Rate  
Time 25°C to Peak  
8min Max.  
Document Number: 002-08404 Rev *A  
Page 35 of 40  
MB39C831  
17. Package Dimensions  
40-pin plastic QFN  
Lead pitch  
0.50 mm  
6.00 mm × 6.00 mm  
Plastic mold  
Package width ×  
package length  
Sealing method  
Mounting height  
Weight  
0.90 mm MAX  
0.10 g  
(LCC-40P-M63)  
40-pin plastic QFN  
(LCC-40P-M63)  
6.00±0.10  
(.236±.004)  
4.50±0.10  
(.177±.004)  
0.25±0.05  
(.010±.002)  
6.00±0.10  
(.236±.004)  
4.50±0.10  
(.177±.004)  
INDEX AREA  
0.45  
(.017)  
1PIN INDEX  
R0.20(R.008)  
0.50(.020)  
(TYP)  
0.40±0.05  
(.016±.002)  
0.035 +0.015  
(0.20(.008))  
0.85±0.05  
(.033±.002)  
-0.035 (.0014  
)
-.0014  
+.0006  
C
2013 FUJITSU SEMICONDUCTOR LIMITED HMbC40-63Sc-1-1  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
Document Number: 002-08404 Rev *A  
Page 36 of 40  
MB39C831  
18. Major Changes  
Page  
Section  
Change Results  
Preliminary 0.1 [June 14, 2013]  
-
-
Initial release  
Revision 1.0 [November 18, 2013]  
8
9
6.Block Diagram  
Added capacitor  
7.Absolute Maximum Ratings  
Added the Rating and of Power dissipation and Figure 7-1  
Divided old table into system in general table and Boost DC/DC converter  
table.  
11, 12  
14  
9.Electrical Characteristics  
Added ENA=H into the condition on the table.  
Changed the Input power supply current condition  
10.Function  
Added more description  
10.3 MPPT control  
10.4 Function  
Changed the sentence "This function is independent of MPPT_ENA." to"  
This function operates in the charge mode."  
16  
UVLO  
18  
11.Example  
Added standard example  
Added D2 and C11  
12.Typical Applications Circuit  
19, 20  
Circuit  
21  
23  
24  
25  
26  
-
Parts list  
Added D2 and C11  
14.Ordering Information  
Added "Figures 14-2 EVB ORDERING INFORMATION"  
15.Marking  
Added new  
16.Product Label  
Added new  
17.Recommended Mounting Conditions  
-
Added new  
Company name and layout design change  
Revision 2.0 [August 29, 2014]  
9. Electrical Characteristics  
The table of the electrical characteristics was divided into that of the  
constant voltage mode and that of charge mode  
11, 12  
15  
Table 9-1, Table 9-2  
10.2 Start-up/Shut-down sequence  
Figure 10-1  
Added the sequences of MPPT_ENA, ENA, DET1, and DET0 pins.  
Added the sequences of MPPT_ENA, ENA, DET1, and DET0 pins.  
10.2 Start-up/Shut-down sequence  
Figure 10-2  
17  
10.4 Function description  
Table 10-2, Table 10-3  
10.4 Function description  
State notification  
The table of the preset output voltage and the MPPT setting was divided  
into that of the preset output voltage and that of the MPPT setting.  
19  
The table of the state notification was divided into that of the constant  
voltage mode and that of charge mode  
21  
Table 10-4, Table 10-5  
12. Application Notes  
13. Typical Characteristics  
14. Layout for Printed Circuit Board  
18. Product Labels  
25, 26  
27 to 31  
32  
Added the 12. Application Notes  
Added the 13. Typical Characteristics  
Added the 14. Layout for Printed Circuit Board  
Changed the 18. Product Labels  
36 to 39  
Revision 3.0 [October 10, 2014]  
Made a change in the sentence.  
3
1. Description  
(MPPT) (MPPT: Maximum Power Point Tracking)  
Document Number: 002-08404 Rev *A  
Page 37 of 40  
MB39C831  
10.4 Function description  
State notification  
Added a following sentence.  
21  
24  
26  
“The state notification is not a power good function”  
Made a correction in the part number C6.  
4.7 pF 4.7 nF  
11. Typical Applications Circuit  
Table 11-1 Parts list  
12. Application Notes  
Figure 12-1  
Added a note in the Figure 12-1 Application example using the power  
gating”  
Page  
Section  
Change results  
19. Recommended Mounting Conditions  
Table 19-1  
Made a correction in the floor life condition.  
37  
70%RH 60%RH  
Revision 4.0  
Added descriptions for all N.C. pins in “Table 5-1 Pin descriptions”  
“Non connection pin” → “Non connection pin (Leave this pin open)”  
Changed the parameter names in “Table 9-1”  
7
5. Pin Descriptions  
9. Electrical Characteristics  
9.1 Electrical Characteristics of Constant  
Voltage Mode  
11  
Input power supply current” → “Current dissipation 1 “  
Current dissipation” → “Current dissipation 2 “  
Changed the parameter names in “Table 9-2”  
9. Electrical Characteristics  
12  
12  
Current dissipation” → “Current dissipation 2 “  
9.2 Electrical Characteristics of Charge Mode  
Deleted the rows of the Input power supply currentfrom “Table 9-2”  
9. Electrical Characteristics  
Deleted the *2annotation  
9.3 Electrical Characteristics of Boost DC/DC  
Converter  
10. Function  
13  
Updated the “10.1 Outline of Operation”  
Updated the “10.2 Start-up/Shut-down Sequence”  
Updated the “10.3 MPPT Control”  
10.1 Outline of Operation  
10. Function  
14, 15  
16, 17  
18 to 20  
10.2 Start-up/Shut-down Sequence  
10. Function  
10.3 MPPT Control  
10. Function  
Updated the “10.4 Function Description”  
10.4 Function Description  
Added the equation according to the maximum current in the Inductor” part.  
Added the “Table 12-1 Manufactures of Capacitors”  
Deleted the description of the power gating from Figure 12-1”  
Updated the “13. Typical Characteristics”  
24, 25  
12.Application Notes  
26 to 30  
32  
13. Typical Characteristics  
16. Ordering Information  
Replaced the efficiency data in “Figure 13-1”  
Efficiency vs IOUT” → “Efficiency vs Inductor current”  
Deleted the “Table 16-2 EVB Ordering information”  
NOTE: Please see “Document History” about later revised information.  
Document Number: 002-08404 Rev *A  
Page 38 of 40  
MB39C831  
Document History  
Document Title: MB39C831 Ultra Low Voltage Boost Power Management IC for Solar/Thermal Energy Harvesting  
Datasheet  
Document Number: 002-08404  
Orig. of Submission  
Revision  
ECN  
Description of Change  
Change  
Date  
Migrated to Cypress and assigned document number 002-08404.  
No change to document contents or format.  
**  
TAOA  
01/30/2015  
*A  
5121759  
TAOA  
02/04/2016 Updated to Cypress template  
Document Number: 002-08404 Rev *A  
Page 39 of 40  
MB39C831  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find  
the office closest to you, visit us at Cypress Locations.  
Products  
PSoC® Solutions  
Automotive  
Clocks & Buffers  
Interface  
cypress.com/go/automotive  
cypress.com/go/clocks  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP  
Cypress Developer Community  
cypress.com/go/interface  
Lighting & Power Control cypress.com/go/powerpsoc  
Community | Forums | Blogs | Video | Training  
Technical Support  
Memory  
cypress.com/go/memory  
cypress.com/go/psoc  
cypress.com/go/touch  
cypress.com/go/USB  
cypress.com/go/wireless  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/go/support  
Spansion Products cypress.com/spansion products  
Cypress®, the Cypress logo, Spansion®, the Spansion logo, MirrorBit®, MirrorBit® EclipseTM, ORNANDTM, Easy DesignSimTM, TraveoTM and combinations thereof, are trademarks and  
registered trademarks of Cypress Semiconductor Corp. ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries. All other trademarks or registered  
trademarks referenced herein are the property of their respective owners.  
© Cypress Semiconductor Corporation, 2015-2016. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for  
the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor  
intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not  
authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion  
of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and  
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create  
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used  
only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code  
except as specified above is prohibited without the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED  
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described  
herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical  
components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support  
systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 002-08404 Rev *A  
Page 40 of 40  

相关型号:

MB39F101PFV

Analog Circuit, 1 Func, PDSO20, PLASTIC, SSOP-20
FUJITSU

MB3A

BiSS to PC-LPT ADAPTER
ICHAUS

MB3CG-S1

M23 B Series Traditional Cord Grip, IP67, Cable Range 7.5 -10.5mm
AMPHENOL

MB3CG-S3

Circular Connector
AMPHENOL

MB3G

Multipurpose Boxes
ETC

MB3S

0.5 Ampere Glass Passivated Bridge Rectifiers
FAIRCHILD

MB3S

GLASS PASSIVATED BRIDGE RECTIFIERS
CTC

MB3U

BiSS TO PC-USB ADAPTER
ICHAUS

MB3U-I2C

BiSS TO PC-USB ADAPTER
ICHAUS

MB4-080P

Board Connector, 80 Contact(s), 4 Row(s), Female, Straight, Solder Terminal,
AMPHENOL

MB4-080Q-(710)

Board Connector, 80 Contact(s), 4 Row(s), Female, Straight, Wire Wrap Terminal,
AMPHENOL

MB4-080W-(710)

Board Connector, 80 Contact(s), 4 Row(s), Female, Straight, Wire Wrap Terminal,
AMPHENOL