MT55V1MV18FF-12 [CYPRESS]

ZBT SRAM, 1MX18, 9ns, CMOS, PBGA165, FBGA-165;
MT55V1MV18FF-12
型号: MT55V1MV18FF-12
厂家: CYPRESS    CYPRESS
描述:

ZBT SRAM, 1MX18, 9ns, CMOS, PBGA165, FBGA-165

静态存储器
文件: 总38页 (文件大小:515K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NOT RECOMMENDED FOR NEW DESIGNS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
MT55L1MY18F, MT55V1MV18F,  
MT55L512Y32F, MT55V512V32F,  
MT55L512Y36F, MT55V512V36F  
18Mb  
ZBT® SRAM  
3.3V VDD, 3.3V or 2.5V I/O; 2.5V VDD 2.5V I/O  
FEATURES  
1
100-Pin TQFP  
• High frequency and 100 percent bus utilization  
• Fast cycle times: 10ns, 11ns and 12ns  
• Single +3.3V ±±5, or 2.±V ±±5 poꢀer supply ꢁVDD)  
• Separate +3.3V or +2.±V isolated output buffer  
supply ꢁVDDQ)  
• Advanced control logic for minimum control signal  
interface  
• Individual BYTE WRITE controls may be tied LOW  
• Single R/W# ꢁread/ꢀrite) control pin  
• CKE# pin to enable clock and suspend operations  
• Three chip enables for simple depth expansion  
• Clock-controlled and registered addresses, data  
I/Os, and control signals  
165-Ball FBGA  
• Internally self-timed, fully coherent WRITE  
• Internally self-timed, registered outputs to eliminate  
the need to control OE#  
• SNOOZE MODE for reduced-poꢀer standby  
• Common data inputs and data outputs  
• Linear or Interleaved Burst Modes  
• Burst feature ꢁoptional)  
• Pin and ball/function compatibility ꢀith 2Mb, 4Mb,  
and 8Mb ZBT SRAM  
NOTE:1. JEDEC-standard MS-026 BHA (LQFP).  
OPTIONS  
TQFP MARKING  
• Timing ꢁAccess/Cycle/MHz)  
2.±V VDD, 2.±V I/O  
• Operating Temperature Range  
Commercial ꢁ0ºC TA +70ºC)  
None  
7.±ns/10ns/100 MHz  
9ns/12ns/83 MHz  
3.3V VDD, 3.3V or 2.±V I/O  
8.±ns/11ns/90 MHz  
9ns/12ns/83 MHz  
-10  
-12  
Part Number Example:  
MT55L512Y32FT-12  
-11  
-12  
GENERAL DESCRIPTION  
The Micron® Zero Bus TurnaroundꢁZBT®) SRAM  
family employs high-speed, loꢀ-poꢀer CMOS designs  
using an advanced CMOS process.  
• Configurations  
3.3V VDD, 3.3V or 2.±V I/O  
1 Meg x 18  
MT±±L1MY18F  
MT±±L±12Y32F  
MT±±L±12Y36F  
Micron’s 18Mb ZBT SRAMs integrate a 1 Meg x 18,  
±12K x 32, or ±12K x 36 SRAM core ꢀith advanced syn-  
chronous peripheral circuitry and a 2-bit burst counter.  
These SRAMs are optimized for 100 percent bus utiliza-  
tion, eliminating any turnaround cycles for READ to  
WRITE, or WRITE to READ, transitions. All synchronous  
inputs pass through registers controlled by a positive-  
edge-triggered single clock input ꢁCLK). The synchro-  
nous inputs include all addresses, all data inputs, chip  
enable ꢁCE#), tꢀo additional chip enables for easy depth  
expansionCE2, CE2#), cyclestartinputADV/LD#), syn-  
chronousclockenableCKE#), byteriteenablesBWa#,  
BWb#, BWc#, and BWd#), and read/ꢀrite ꢁR/W#).  
±12K x 32  
±12K x 36  
2.±V VDD, 2.±V I/O  
1 Meg x 18  
±12K x 32  
MT±±V1MV18F  
MT±±V±12V32F  
MT±±V±12V36F  
±12K x 36  
• Packages  
100-pin TQFP  
16±-ball FBGA  
T
F*  
* A Part Marking Guide for the FBGA devices can be found on Micron’s  
Web site—http://ꢀꢀꢀ.micron.com/support/index.html.  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. H, Pub. 9/02  
©2002, Micron Technology, Inc.  
1
PRODUCTS AND SPECIFICATIONS DISCUSSED HEREIN ARE SUBJECT TO CHANGE BY MICRON WITHOUT NOTICE.  
NOT RECOMMENDED FOR NEW DESIGNS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
FUNCTIONAL BLOCK DIAGRAM  
1 MEG x 18  
18  
20  
20  
20  
ADDRESS  
REGISTER  
SA0, SA1, SA  
SA1  
SA0  
SA1'  
D1  
D0  
Q1  
Q0  
SA0'  
MODE  
K
BURST  
LOGIC  
CE  
ADV/LD#  
K
CLK  
CKE#  
20  
20  
WRITE ADDRESS  
REGISTER  
O
U
T
P
U
T
D
A
T
S
E
N
S
A
ADV/LD#  
BWa#  
1 Meg x 9 x 2  
B
U
F
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
WRITE  
DRIVERS  
E
S
T
E
E
R
I
18  
18  
18  
18  
18  
DQs  
DQPa  
DQPb  
18  
MEMORY  
ARRAY  
A
M
P
F
BWb#  
R/W#  
E
R
S
S
E
N
G
INPUT  
REGISTER  
18  
OE#  
CE#  
READ LOGIC  
CE2  
CE2#  
FUNCTIONAL BLOCK DIAGRAM  
512K x 32/36  
17  
19  
19  
19  
ADDRESS  
REGISTER  
SA0, SA1, SA  
MODE  
SA1  
SA0  
SA1'  
SA0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
CE  
ADV/LD#  
K
CLK  
CKE#  
K
19  
WRITE ADDRESS  
REGISTER  
19  
O
U
T
P
D
A
T
S
E
N
S
U
T
512K x 8 x 4  
(x32)  
ADV/LD#  
BWa#  
BWb#  
BWc#  
A
B
U
F
WRITE  
DRIVERS  
E
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
S
T
E
E
R
I
512K x 9 x 4  
(x36)  
DQs  
36  
36  
36  
36  
36  
36  
DQPa  
DQPb  
DQPc  
DQPd  
A
M
P
F
E
R
S
MEMORY  
ARRAY  
BWd#  
R/W#  
S
E
N
G
36  
INPUT  
E
REGISTER  
OE#  
CE#  
READ LOGIC  
CE2  
CE2#  
NOTE: Functional block diagrams illustrate simplified device operation. See truth table, pin/ball descriptions, and timing  
diagrams for detailed information.  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
2
NOT RECOMMENDED FOR NEW DESIGNS  
GENERAL DESCRIPTION (continued)  
AsynchronousinputsincludetheoutputenableOE#,  
ꢀhich may be tied LOW for control signal minimization),  
clock ꢁCLK) and snooze enable ꢁZZ, ꢀhich may be tied  
LOW if unused). There is also a burst mode pin/ball  
ꢁMODE)thatselectsbetꢀeeninterleavedandlinearburst  
modes. MODE may be tied HIGH, LOW or left uncon-  
nected if burst is unused. The floꢀ-through data-out ꢁQ)  
is enabled by OE#. WRITE cycles can be from one to four  
bytes ꢀide as controlled by the ꢀrite control inputs.  
All READ, WRITE, and DESELECT cycles are initiated  
by the ADV/LD# input. Subsequent burst addresses can  
be internally generated as controlled by the burst ad-  
vance pin ꢁADV/LD#). Use of burst mode is optional. It is  
alloꢀable to give an address for each individual READ  
and WRITE cycle. BURST cycles ꢀrap around after the  
fourth access from a base address.  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
address. The ꢀrite data associated ꢀith the address is  
required one cycle later, or on the rising edge of clock  
cycle tꢀo.  
Address and ꢀrite control are registered on-chip to  
simplify WRITE cycles. This alloꢀs self-timed WRITE  
cycles. Individual byte enables alloꢀ individual bytes to  
be ꢀritten. During a BYTE WRITE cycle, BWa# controls  
DQa pins/balls; BWb# controls DQb pins/balls; BWc#  
controls DQc pins/balls; and BWd# controls DQd pins/  
balls. Cycle types can only be defined ꢀhen an address is  
loaded, i.e., ꢀhen ADV/LD# is LOW. Parity/ECC bits are  
only available on the x36 versions.  
The device is ideally suited for systems requiring high  
bandꢀidth and zero bus turnaround delays.  
Please refer to Micron’s Web site ꢁꢀꢀꢀ.micron.com/  
sramds) for the latest data sheet.  
To alloꢀ for continuous, 100 percent use of the data  
bus, the floꢀ-through ZBT SRAM uses a LATE WRITE  
cycle. For example, if a WRITE cycle begins in clock cycle  
one, the address is present on rising edge one. BYTE  
WRITEs need to be asserted on the same cycle as the  
DUAL VOLTAGE I/O  
The 3.3V VDD device is tested for 3.3V and 2.±V I/O  
function. The 2.±V VDD device is tested for only 2.±V  
I/O function.  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
3
NOT RECOMMENDED FOR NEW DESIGNS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
TQFP PIN ASSIGNMENT TABLE  
PIN # x18  
x32  
NF  
DQc  
DQc  
x36  
DQPc  
DQc  
PIN # x18  
26  
27  
x32  
x36  
PIN # x18  
x32  
NF  
DQa  
DQa  
x36  
DQPa  
DQa  
DQa  
PIN # x18  
76  
77  
x32  
x36  
3
1
2
3
NC  
NC  
NC  
V
SS  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
NC  
NC  
NC  
V
SS  
VDD  
Q
V
DD  
Q
DQc  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
NC  
NC  
NC  
DQd  
DQd  
NF  
DQd  
DQd  
DQPd  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
NC  
NC  
SA  
DQb  
DQb  
NF  
SA  
SA  
DQb  
DQb  
DQPb  
4
5
V
DD  
Q
VDDQ  
V
SS  
V
SS  
6
7
NC  
NC  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
MODE (LBO#)  
NC  
NC  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
SA  
SA  
SA  
8
9
DQb  
DQb  
SA  
SA  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
V
SS  
SA  
V
SS  
ADV/LD#  
OE# (G#)  
CKE#  
R/W#  
CLK  
V
DD  
Q
SA1  
SA0  
DNU  
DNU  
V
DD  
Q
DQb  
DQb  
DQc  
DQc  
DQc  
DQa  
DQa  
ZZ  
DQc  
1
V
SS  
V
DD  
V
SS  
V
DD  
V
SS  
2
1
V
DD  
SS  
V
DD  
V
SS  
VDD  
V
DNU  
DNU  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
V
SS  
CE2#  
BWa#  
BWb#  
BWc# BWc#  
BWd# BWd#  
CE2  
CE#  
SA  
DQb  
DQb  
DQd  
DQd  
DQd  
DQd  
DQa  
DQa  
DQb  
DQb  
DQb  
DQb  
V
DD  
Q
V
DD  
Q
NC  
NC  
V
SS  
V
SS  
DQb  
DQb  
DQb  
NC  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQa  
DQa  
DQa  
NC  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
SA  
NOTE: 1. Pins 14 and 66 do not have to be connected directly to VSS if the input voltage is VIL.  
2. Pin 16 does not have to be connected directly to VDD if the input voltage is VIH.  
3. NF for x32 version, DQPx for x36 version.  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
4
NOT RECOMMENDED FOR NEW DESIGNS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
PIN ASSIGNMENT (TOP VIEW)  
100-PIN TQFP  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51  
SA  
SA  
81  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
SA  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
SA  
SA  
SA  
SA  
SA  
ADV/LD#  
OE# (G#)  
CKE#  
R/W#  
CLK  
SA  
SA  
SA  
DNU  
DNU  
V
SS  
DD  
V
V
DD  
SS  
V
x18  
CE2#  
BWa#  
BWb#  
NC  
DNU  
DNU  
SA0  
SA1  
SA  
NC  
CE2  
CE#  
SA  
SA  
SA  
SA  
SA  
100  
MODE  
(LBO#)  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51  
81 50  
SA  
SA  
SA  
SA  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
SA  
SA  
SA  
SA  
ADV/LD#  
OE# (G#)  
CKE#  
SA  
SA  
SA  
R/W#  
CLK  
DNU  
DNU  
V
SS  
DD  
V
DD  
SS  
V
V
x32/x36  
CE2#  
BWa#  
BWb#  
BWc#  
BWd#  
CE2  
DNU  
DNU  
SA0  
SA1  
SA  
SA  
CE#  
SA  
SA  
SA  
SA  
100  
MODE  
(LBO#)  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
NOTE: 1. NF for x32 version, DQPx for x36 version.  
2. Pins 14 and 66 do not have to be connected directly to VSS if the input voltage is VIL.  
3. Pin 16 does not have to be connected directly to VDD if the input voltage is VIH.  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
5
NOT RECOMMENDED FOR NEW DESIGNS  
TQFP PIN DESCRIPTIONS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
x18  
x32/36  
SYMBOL TYPE  
DESCRIPTION  
37  
36  
37  
36  
SA0  
SA1  
SA  
Input Synchronous Address Inputs: These inputs are registered  
and must meet the setup and hold times around the  
rising edge of CLK. SA0 and SA1 are the two least  
significant bits (LSB) of the address field and set the  
internal burst counter if burst is desired.  
32–35, 44–50,  
80–84, 99,  
100  
32–35, 44–50,  
81–84, 99,  
100  
93  
94  
93  
94  
95  
96  
BWa# Input Synchronous Byte Write Enables: These active LOW  
BWb#  
BWc#  
BWd#  
inputs allow individual bytes to be written when a  
WRITE cycle is active and must meet the setup and hold  
times around the rising edge of CLK. BYTE WRITEs need  
to be asserted on the same cycle as the address. BWa#  
controls DQa pins; BWb# controls DQb pins; BWc#  
controls DQc pins; BWd# controls DQd pins.  
89  
89  
CLK  
Input Clock: This signal registers the address, data, chip  
enables, byte write enables, and burst control inputs on  
its rising edge. All synchronous inputs must meet setup  
and hold times around the clock’s rising edge.  
98  
92  
98  
92  
CE#  
Input Synchronous Chip Enable: This active LOW input is used  
to enable the device and is sampled only when a new  
external address is loaded (ADV/LD# LOW).  
CE2#  
Input Synchronous Chip Enable: This active LOW input is used  
to enable the device and is sampled only when a new  
external address is loaded (ADV/LD# LOW). This input  
can be used for memory depth expansion.  
97  
97  
CE2  
Input Synchronous Chip Enable: This active HIGH input is used  
to enable the device and is sampled only when a new  
external address is loaded (ADV/LD# LOW). This input  
can be used for memory depth expansion.  
86  
85  
86  
85  
OE#  
(G#)  
Input Output Enable: This active LOW, asynchronous input  
enables the data I/O output drivers. G# is the JEDEC-  
standard term for OE#.  
ADV/LD# Input Synchronous Address Advance/Load: When HIGH, this  
input is used to advance the internal burst counter,  
controlling burst access after the external address is  
loaded. When ADV/LD# is HIGH, R/W# is ignored. A LOW  
on ADV/LD# clocks a new address at the CLK rising edge.  
87  
64  
87  
64  
CKE#  
Input Synchronous Clock Enable: This active LOW input  
permits CLK to propagate throughout the device. When  
CKE is HIGH, the device ignores the CLK input and  
effectively internally extends the previous CLK cycle. This  
input must meet setup and hold times around the rising  
edge of CLK.  
ZZ  
Input Snooze Enable: This active HIGH, asynchronous input  
causes the device to enter a low-power standby mode in  
which all data in the memory array is retained. When ZZ  
is active, all other inputs are ignored. This pin has an  
internal pull-down and can be floating.  
(continued on next page)  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
6
NOT RECOMMENDED FOR NEW DESIGNS  
TQFP PIN DESCRIPTIONS (continued)  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
x18  
x32/36  
SYMBOL TYPE  
R/W#  
DESCRIPTION  
88  
88  
Input Read/Write: This input determines the cycle type when  
ADV/LD# is LOW and is the only means for determining  
READs and WRITEs. READ cycles may not be converted  
into WRITEs (and vice versa) other than by loading a  
new address. A LOW on this pin permits BYTE WRITE  
operations and must meet the setup and hold times  
around the rising edge of CLK. Full bus-width WRITEs  
occur if all byte write enables are LOW.  
31  
31  
MODE Input Mode: This input selects the burst sequence. A LOW on  
(LBO#)  
this pin selects linear burst. NC or HIGH on this pin  
selects interleaved burst. Do not alter input state while  
device is operating. LBO# is the JEDEC-standard term for  
MODE.  
(a) 58, 59, 62, 63, (a) 52, 53, 56–59,  
DQa  
DQb  
DQc  
DQd  
Input/ SRAM Data I/Os: Byte “a” is associated with DQa pins;  
Output Byte “b” is associated with DQb pins; Byte “c” is  
associated with DQc pins; Byte “d” is associated with  
DQd pins. Input data must meet setup and hold times  
around the rising edge CLK.  
68, 69, 72–74  
(b) 8, 9, 12, 13,  
18, 19, 22–24  
62, 63  
(b) 68, 69, 72–75,  
78, 79  
(c) 2, 3, 6–9,  
12, 13  
(d) 18, 19, 22–25,  
28, 29  
51  
80  
1
NF/DQPa NF/  
NF/DQPb I/O  
NF/DQPc  
No Function/Data Bits: On the x32 version, these pins are  
no function (NF) and can be left floating or connected  
to GND to minimize thermal impedance. On the x36  
version, these bits are DQs.  
30  
NF/DQPd  
No function balls are internally connected to the die and  
have the capacitance of an input pin. It is allowable to  
leave these pins unconnected or driven by signals.  
15, 16, 41, 65, 91 15, 16, 41, 65, 91  
VDD  
Supply Power Supply: See DC Electrical Characteristics and  
Operating Conditions for range.  
4, 11, 20, 27,  
54, 61, 70, 77  
4, 11, 20, 27,  
54, 61, 70, 77  
VDDQ Supply Isolated Output Buffer Supply: See DC Electrical  
Characteristics and Operating Conditions for range.  
5, 10, 14, 17, 21, 5, 10, 14, 17, 21,  
26, 40, 55, 60, 26, 40, 55, 60,  
66, 67, 71, 76, 90 66, 67, 71, 76, 90  
VSS  
Supply Ground: GND.  
1–3, 6, 7, 25,  
28–30, 51–53, 56,  
57, 75, 78, 79,  
95, 96  
NC  
No Connect: These pins can be left floating or connected  
to GND to minimize thermal impedance.  
38, 39, 42, 43  
38, 39, 42, 43  
DNU  
Do Not Use: These signals may either be unconnected or  
wired to GND to minimize thermal impedance.  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
7
©2002, Micron Technology, Inc.  
NOT RECOMMENDED FOR NEW DESIGNS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
BALL LAYOUT (TOP VIEW)  
165-BALL FBGA  
x18  
x32/x36  
1
2
3
4
5
6
7
8
9
10  
11  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
A
B
C
D
E
A
B
C
D
E
A
B
C
D
E
NC  
NC  
NC  
NC  
NC  
NC  
NC  
SA  
SA  
CE# BWb#  
NC  
CE2# CKE# ADV/LD# SA  
SA  
SA  
SA  
NC  
NC  
NC  
SA  
SA  
CE# BWc# BWb# CE2# CKE# ADV/LD# SA  
CE2 BWd# BWa# CLK R/W# OE# (G#) SA  
SA  
SA  
NC  
NC  
CE2  
NC  
BWa# CLK R/W# OE# (G#) SA  
NC  
V
DD  
DD  
DD  
DD  
DD  
Q
V
SS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
V
V
V
V
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
V
SS  
V
V
V
V
V
DD  
DD  
DD  
DD  
DD  
Q
Q
Q
Q
Q
NC  
DQPa  
DQa  
DQa  
DQa  
DQa  
ZZ  
NF/DQPc NC  
V
V
V
V
V
DD  
DD  
DD  
DD  
DD  
Q
Q
Q
Q
Q
V
SS  
V
V
V
V
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
V
V
V
V
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
V
SS  
V
V
V
V
V
DD  
DD  
DD  
DD  
DD  
Q
Q
Q
Q
Q
NC NF/DQPb  
DQb DQb  
DQb DQb  
DQb DQb  
DQb DQb  
DQb  
DQb  
DQb  
DQb  
V
V
V
V
Q
Q
Q
Q
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
NC  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
NC  
F
F
F
F
NC  
G
H
J
G
H
J
G
H
J
G
H
J
NC  
VSS  
VDD  
NC  
NC  
NC  
VSS  
VDD  
NC  
NC  
NC  
ZZ  
DQb  
DQb  
DQb  
DQb  
DQPb  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
V
DD  
DD  
DD  
DD  
DD  
Q
V
DD  
DD  
DD  
DD  
DD  
Q
DQa  
DQa  
DQa  
DQa  
NC  
NC  
DQd DQd  
DQd DQd  
DQd DQd  
DQd DQd  
NF/DQPd NC  
V
DD  
DD  
DD  
DD  
DD  
Q
V
DD  
DD  
DD  
DD  
DD  
Q
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
K
L
K
L
K
L
K
L
V
V
V
V
Q
Q
Q
Q
V
V
V
V
Q
Q
Q
Q
NC  
V
V
V
V
Q
Q
Q
Q
V
V
V
V
Q
Q
Q
Q
NC  
M
N
P
M
N
P
M
N
P
M
N
P
NC  
V
SS  
NC  
TDI  
NC  
SA1  
SA0  
VSS  
NC  
V
SS  
NC  
TDI  
NC  
SA1  
SA0  
VSS  
NC NF/DQPa  
SA  
SA  
SA  
SA  
TDO  
TCK  
SA  
SA  
SA  
SA  
SA  
NC  
NC  
NC  
SA  
SA  
SA  
SA  
TDO  
TCK  
SA  
SA  
SA  
SA  
SA  
SA  
NC  
SA  
R
R
R
R
MODE NC  
(LBO#)  
TMS  
SA  
SA  
MODE NC  
(LBO#)  
TMS  
TOP VIEW  
TOP VIEW  
*No Function (NF) is used on the x32 version. Parity (DQPx) is used on the x36 version.  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
8
NOT RECOMMENDED FOR NEW DESIGNS  
FBGA BALL DESCRIPTIONS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
x18  
x32/x36  
SYMBOL TYPE  
DESCRIPTION  
6R  
6P  
6R  
6P  
SA0  
SA1  
SA  
Input Synchronous Address Inputs: These inputs are registered and  
must meet the setup and hold times around the rising edge of  
CLK.  
2A, 2B, 3P,  
3R, 4P, 4R,  
8P, 8R, 9A,  
9B, 9P, 9R,  
2A, 2B, 3P,  
3R, 4P, 4R,  
8P, 8R, 9A,  
9B, 9P, 9R,  
10A, 10B, 10P,10A, 10B, 10P,  
10R, 11A, 11R  
10R, 11R  
5B  
4A  
5B  
5A  
4A  
4B  
BWa#  
BWb#  
BWc#  
BWd#  
Input Synchronous Byte Write Enables: These active LOW inputs allow  
individual bytes to be written and must meet the setup and hold  
times around the rising edge of CLK. A byte write enable is LOW  
for a WRITE cycle and HIGH for a READ cycle. For the x18 version,  
BWa# controls DQa balls and DQPa; BWb# controls DQb balls  
and DQPb. For the x32 and x36 versions, BWa# controls DQa balls  
and DQPa; BWb# controls DQb balls and DQPb; BWc# controls  
DQc balls and DQPc; BWd# controls DQd balls and DQPd. Parity is  
only available on the x18 and x36 versions.  
7A  
7B  
7A  
7B  
CKE#  
R/W#  
Input Synchronous Clock Enable: This active LOW input permits CLK to  
propogate throughout the device. When CKE# is HIGH, the  
device ignores the CLK input and effectively internally extends  
the previous CLK cycle. This input must meet the setup and hold  
times around the rising edge of CLK.  
Input Read/Write: This input determines the cycle type when ADV/LD#  
is LOW and is the only means for determining READs and  
WRITEs. READ cycles may not be converted into WRITEs (and vice  
versa) other than by loading a new address. A LOW on this ball  
permits BYTE WRITE operations to meet the setup and hold times  
around the rising edge of CLK. Full bus-width WRITEs occur if all  
byte write enables are LOW.  
6B  
6B  
CLK  
Input Clock: This signal registers the address, data, chip enable, byte  
write enables, and burst control inputs on its rising edge. All  
synchronous inputs must meet setup and hold times around the  
clock’s rising edge.  
3A  
6A  
3A  
6A  
CE#  
CE2#  
ZZ  
Input Synchronous Chip Enable: This active LOW input is used to enable  
the device. CE# is sampled only when a new external address is  
loaded. (ADV/LD# LOW)  
Input Synchronous Chip Enable: This active LOW input is used to enable  
the device and is sampled only when a new external address is  
loaded.  
11H  
11H  
Input Snooze Enable: This active HIGH, asynchronous input causes the  
device to enter a low-power standby mode in which all data in  
the memory array is retained. When ZZ is active, all other inputs  
are ignored.  
3B  
3B  
CE2  
Input Synchronous Chip Enable: This active HIGH input is used to  
enable the device and is sampled only when a new external  
address is loaded.  
(continued on next page)  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
9
©2002, Micron Technology, Inc.  
NOT RECOMMENDED FOR NEW DESIGNS  
FBGA BALL DESCRIPTIONS (continued)  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
x18  
x32/x36  
SYMBOL TYPE  
DESCRIPTION  
8B  
8B  
OE#(G#) Input Output Enable: This active LOW, asynchronous input enables the  
data I/O output drivers.  
8A  
1R  
8A  
1R  
ADV/LD# Input Synchronous Address Advance/Load: When HIGH, this input is used  
to advance the internal burst counter, controlling burst access after  
the external address is loaded. When ADV/LD# is HIGH, R/W# is  
ingored. A LOW on ADV/LD# clocks a new address at the CLK rising  
edge.  
MODE  
(LB0#)  
Input Mode: This input selects the burst sequence. A LOW on this input  
selects “linear burst.” NC or HIGH on this input selects “interleaved  
burst.” Do not alter input state while device is operating.  
5R  
5P  
7R  
5R  
5P  
7R  
TMS  
TDI  
TCK  
Input IEEE 1149.1 Test Inputs: JEDEC-standard 2.5V I/O levels. These balls  
may be left not connected if the JTAG function is not used in the  
circuit.  
(a) 10J, 10K, (a) 10J, 10K,  
10L, 10M, 11D, 10L, 10M, 11J,  
11E, 11F, 11G 11K, 11L, 11M  
DQa  
DQb  
DQc  
DQd  
Input/ SRAM Data I/Os: For the x18 version, Byte “a” is associated with  
Output DQa balls; Byte “b” is associated with DQb balls. For the x32 and  
x36 versions, Byte “a” is associated with DQa balls; Byte “b” is  
associated with DQb balls; Byte “c” is associated with DQc balls;  
Byte “d” is associated with DQd balls. Input data must meet setup  
and hold times around the rising edge of CLK.  
(b) 1J, 1K,  
(b) 10D, 10E,  
1L, 1M, 2D, 10F, 10G, 11D,  
2E, 2F, 2G  
11E, 11F, 11G  
(c) 1D, 1E,  
1F, 1G, 2D,  
2E, 2F, 2G  
(d) 1J, 1K, 1L,  
1M, 2J, 2K,  
2L, 2M  
11C  
1N  
11N  
11C  
1C  
NF/DQPa  
NF/DQPb  
NF/DQPc  
NF/DQPd  
NC/ No Function/Parity Data I/Os: On the x32 version, these are no  
I/O  
function (NF). On the x18 version, Byte “a” parity is DQPa; Byte “b”  
parity is DQPb. On the x36 version, Byte “a” parity is DQPa; Byte  
“b” parity is DQPb; Byte “c” parity is DQPc; Byte “d” parity is DQPd.  
No function balls are internally connected to the die and have  
the capacitance of an input pin. It is allowable to leave these  
balls unconnected or driven by signals.  
1N  
2H, 4D, 4E, 4F, 2H, 4D, 4E, 4F,  
VDD  
Supply Power Supply: See DC Electrical Characteristics and Operating  
Conditions for range.  
4G, 4H, 4J,  
4K, 4L, 4M,  
8D, 8E, 8F,  
8G, 8H, 8J,  
8K, 8L, 8M  
4G, 4H, 4J,  
4K, 4L, 4M,  
8D, 8E, 8F,  
8G, 8H, 8J,  
8K, 8L, 8M  
3C, 3D, 3E,  
3F, 3G, 3J,  
3K, 3L, 3M,  
3N, 9C, 9D,  
9E, 9F, 9G,  
9J, 9K, 9L,  
9M, 9N  
3C, 3D, 3E,  
3F, 3G, 3J,  
3K, 3L, 3M,  
3N, 9C, 9D,  
9E, 9F, 9G,  
9J, 9K, 9L,  
9M, 9N  
VDDQ  
Supply Isolated Output Buffer Supply: See DC Electrical Characteristics and  
Operating Conditions for range.  
(continued on next page)  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
10  
©2002, Micron Technology, Inc.  
NOT RECOMMENDED FOR NEW DESIGNS  
FBGA BALL DESCRIPTIONS (continued)  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
x18  
x32/x36  
SYMBOL TYPE  
Supply Ground: GND.  
DESCRIPTION  
1H, 4C, 4N,  
1H, 4C, 4N,  
VSS  
5C, 5D, 5E, 5F, 5C, 5D, 5E, 5F,  
5G, 5H, 5J,  
5K, 5L, 5M,  
5G, 5H, 5J,  
5K, 5L, 5M,  
6C, 6D, 6E, 6F, 6C, 6D, 6E, 6F,  
6G, 6H, 6J,  
6K, 6L, 6M,  
7C, 7D, 7E,  
7F, 7G, 7H,  
7J, 7K, 7L,  
6G, 6H, 6J,  
6K, 6L, 6M,  
7C, 7D, 7E,  
7F, 7G, 7H,  
7J, 7K, 7L,  
7M, 7N, 8C, 8N 7M, 7N, 8C, 8N  
7P  
7P  
TDO  
NC  
Output IEEE 1149.1 Test Output: JEDEC-standard 2.5V I/O level.  
1A, 1B, 1C,  
1D, 1E, 1F,  
1G, 1P, 2C,  
2J, 2K, 2L,  
2M, 2N, 2P,  
2R, 3H, 4B,  
5A, 5N, 6N,  
9H, 10C,  
1A, 1B, 1P,  
2C, 2N, 2P,  
2R, 3H, 5N,  
6N, 9H, 10C,  
10H, 10N,  
11A, 11B,  
11P  
No Connect: These signals are not internally connected and may  
be connected to ground to improve package heat dissipation.  
10D, 10E,  
10F, 10G,  
10H, 10N,  
11B, 11J,  
11K, 11L,  
11M, 11N,  
11P  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
11  
©2002, Micron Technology, Inc.  
NOT RECOMMENDED FOR NEW DESIGNS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
INTERLEAVED BURST ADDRESS TABLE (MODE = NC OR HIGH)  
FIRST ADDRESS (EXTERNAL) SECOND ADDRESS (INTERNAL) THIRD ADDRESS (INTERNAL) FOURTH ADDRESS (INTERNAL)  
X...X00  
X...X01  
X...X10  
X...X11  
X...X01  
X...X00  
X...X11  
X...X10  
X...X10  
X...X11  
X...X00  
X...X01  
X...X11  
X...X10  
X...X01  
X...X00  
LINEAR BURST ADDRESS TABLE (MODE = LOW)  
FIRST ADDRESS (EXTERNAL)  
SECOND ADDRESS (INTERNAL)  
THIRD ADDRESS (INTERNAL)  
FOURTH ADDRESS (INTERNAL)  
X...X00  
X...X01  
X...X10  
X...X11  
X...X01  
X...X10  
X...X11  
X...X00  
X...X10  
X...X11  
X...X00  
X...X01  
X...X11  
X...X00  
X...X01  
X...X10  
PARTIAL TRUTH TABLE FOR READ/WRITE COMMANDS (x18)  
FUNCTION  
R/W#  
BWa#  
BWb#  
READ  
H
L
L
L
L
X
L
X
H
L
WRITE Byte “a”  
WRITE Byte “b”  
WRITE All Bytes  
WRITE ABORT/NOP  
H
L
L
H
H
NOTE: Using R/W# and byte write(s), any one or more bytes may be  
written.  
PARTIAL TRUTH TABLE FOR READ/WRITE COMMANDS (x32/x36)  
FUNCTION  
R/W#  
BWa#  
BWb#  
BWc# BWd#  
READ  
H
L
L
L
L
L
L
X
L
X
H
L
X
H
H
L
X
H
H
H
L
WRITE Byte “a”  
WRITE Byte “b”  
WRITE Byte “c”  
WRITE Byte “d”  
WRITE All Bytes  
WRITE ABORT/NOP  
H
H
H
L
H
H
L
H
L
L
H
H
H
H
NOTE: Using R/W# and byte write(s), any one or more bytes may be written.  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
12  
NOT RECOMMENDED FOR NEW DESIGNS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
STATE DIAGRAM FOR ZBT SRAM  
DS  
BURST  
DS  
DS  
DESELECT  
WRITE  
DS  
WRITE  
READ  
BEGIN  
READ  
BEGIN  
WRITE  
WRITE  
BURST  
READ  
READ  
BURST  
BURST  
WRITE  
BURST  
READ  
BURST  
WRITE  
BURST  
KEY:  
COMMAND OPERATION  
DS  
DESELECT  
READ  
WRITE  
BURST  
New READ  
New WRITE  
BURST READ,  
BURST WRITE, or  
CONTINUE DESELECT  
NOTE: 1. A STALL or IGNORE CLOCK EDGE cycle is not shown in the above diagram. This is because CKE# HIGH only blocks the  
clock (CLK) input and does not change the state of the device.  
2. States change on the rising edge of the clock (CLK).  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
13  
NOT RECOMMENDED FOR NEW DESIGNS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
TRUTH TABLE  
(Notes 5-10)  
ADDRESS  
USED  
ADV/  
OPERATION  
CE# CE2# CE2 ZZ LD# R/W# BWx OE# CKE# CLK  
DQ  
NOTES  
DESELECT Cycle  
DESELECT Cycle  
DESELECT Cycle  
CONTINUE DESELECT Cycle  
None  
H
X
X
X
L
X
H
X
X
L
X
X
L
L
L
L
L
L
L
L
X
X
X
X
H
X
X
X
X
X
X
X
X
X
L
L
L
L
L
L
LH High-Z  
LH High-Z  
LH High-Z  
LH High-Z  
None  
None  
L
None  
X
H
H
L
1
READ Cycle  
(Begin Burst)  
External  
LH  
Q
READ Cycle  
(Continue Burst)  
Next  
External  
Next  
X
L
X
L
X
H
X
H
X
H
X
X
X
L
L
L
L
L
L
L
L
H
H
L
X
H
X
L
X
X
X
L
L
L
L
LH  
Q
1, 11  
2
NOP/DUMMY READ  
(Begin Burst)  
H
H
X
X
X
X
X
X
LH High-Z  
DUMMY READ  
(Continue Burst)  
X
L
X
L
H
L
L
LH High-Z 1, 2,  
11  
WRITE Cycle  
(Begin Burst)  
External  
Next  
L
LH  
LH  
D
D
3
WRITE Cycle  
(Continue Burst)  
X
L
X
L
H
L
X
L
L
L
1, 3,  
11  
NOP/WRITE ABORT  
(Begin Burst)  
None  
H
H
X
X
L
LH High-Z  
2, 3  
WRITE ABORT  
(Continue Burst)  
Next  
X
X
X
X
X
X
H
X
X
X
X
X
L
LH High-Z 1, 2,  
3, 11  
IGNORE CLOCK EDGE  
(Stall)  
Current  
None  
H
X
LH  
4
SNOOZE MODE  
X
High-Z  
NOTE: 1. CONTINUE BURST cycles, whether READ or WRITE, use the same control inputs. The type of cycle performed (READ or  
WRITE) is chosen in the initial BEGIN BURST cycle. A CONTINUE DESELECT cycle can only be entered if a DESELECT cycle  
is executed first.  
2. DUMMY READ and WRITE ABORT cycles can be considered NOPs because the device performs no external operation.  
A WRITE ABORT means a WRITE command is given, but no operation is performed.  
3. OE# may be wired LOW to minimize the number of control signals to the SRAM. The device will automatically turn off  
the output drivers during a WRITE cycle. OE# may be used when the bus turn-on and turn-off times do not meet an  
application’s requirements.  
4. If an IGNORE CLOCK EDGE command occurs during a READ operation, the DQ bus will remain active (Low-Z). If it  
occurs during a WRITE cycle, the bus will remain in High-Z. No WRITE operations will be performed during the IGNORE  
CLOCK EDGE cycle.  
5. X means “Don’t Care.” H means logic HIGH. L means logic LOW. BWx = H means all byte write signals (BWa#, BWb#,  
BWc#, and BWd#) are HIGH. BWx = L means one or more byte write signals are LOW.  
6. BWa# enables WRITEs to Byte “a” (DQa pins); BWb# enables WRITEs to Byte “b” (DQb pins); BWc# enables WRITEs to  
Byte “c” (DQc pins); BWd# enables WRITEs to Byte “d” (DQd pins).  
7. All inputs except OE# and ZZ must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.  
8. Wait states are inserted by setting CKE# HIGH.  
9. This device contains circuitry that will ensure that the outputs will be in High-Z during power-up.  
10. The device incorporates a 2-bit burst counter. Address wraps to the initial address every fourth BURST cycle.  
11. The address counter is incremented for all CONTINUE BURST cycles.  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
14  
NOT RECOMMENDED FOR NEW DESIGNS  
3.3V VDD, ABSOLUTE MAXIMUM  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
2.5V VDD, ABSOLUTE MAXIMUM  
RATINGS*  
Voltage on VDD Supply Relative  
RATINGS*  
Voltage on VDD Supply  
Relative to VSS ........................................ -0.5V to +4.6V  
Voltage on VDDQ Supply  
to VSS ........................................................ -0.3V to +3.6V  
Voltage on VDDQ Supply Relative  
Relative to VSS ........................................... -0.5V to VDD  
VIN (DQs) ........................................... -0.5V to VDDQ + 0.5V  
VIN (Inputs) ........................................... -0.5V to VDD + 0.5V  
Storage Temperature (TQFP) ................ -55ºC to +150ºC  
Storage Temperature (FBGA) ................ -55ºC to +125ºC  
Junction Temperature** ......................................... +150ºC  
Short Circuit Output Current ................................ 100mA  
to VSS ........................................................ -0.3V to +3.6V  
VIN (DQs) ........................................... -0.3V to VDDQ + 0.3V  
VIN (Inputs)........................................... -0.3V to VDD + 0.3V  
Storage Temperature (TQFP) ................ -55ºC to +150ºC  
Storage Temperature (FBGA) ................ -55ºC to +125ºC  
Junction Temperature** ........................................ +150ºC  
Short Circuit Output Current ................................ 100mA  
*Stresses greater than those listed under “Absolute Maxi-  
mum Ratings” may cause permanent damage to the de-  
vice. This is a stress rating only, and functional operation  
of the device at these or any other conditions above those  
indicated in the operational sections of this specification  
is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect reliability.  
**Junctiontemperaturedependsuponpackagetype,cycle  
time, loading, ambient temperature, and airflow. See  
Micron Technical Note TN-05-14 for more information.  
3.3V VDD, 3.3V I/O DC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS  
(0ºC ≤ ΤA ≤ +70ºC; VDD, VDDQ = +3.3V 0.165V unless otherwise notedꢀ  
DESCRIPTION  
CONDITIONS  
DQ pins/balls  
0V VIN VDD  
SYMBOL  
MIN  
2.0  
MAX  
DD + 0.3  
DD + 0.3  
0.8  
UNITS  
V
NOTES  
1, 2  
1, 2  
1, 2  
3
Input High (Logic 1ꢀ Voltage  
Input High (Logic 1ꢀ Voltage  
Input Low (Logic 0ꢀ Voltage  
Input Leakage Current  
Output Leakage Current  
V
V
IH  
V
V
IH  
2.0  
V
V
IL  
-0.3  
-1.0  
-1.0  
V
IL  
IL  
I
1.0  
µA  
µA  
Output(sꢀ disabled,  
O
1.0  
0V VIN VDD  
Output High Voltage  
Output Low Voltage  
Supply Voltage  
I
OH = -4.0mA  
V
OH  
OL  
DD  
DD  
2.4  
V
V
V
V
1, 4  
1, 4  
1
I
OL = 8.0mA  
V
0.4  
V
3.135  
3.135  
3.465  
Isolated Output Buffer Supply  
V
Q
V
DD  
1, 5  
NOTE: 1. All voltages referenced to VSS (GNDꢀ.  
2. For 3.3V VDD:  
t
Overshoot:  
VIH +4.6V for t KHKH/2 for I 20mA  
t
Undershoot: VIL -0.7V for t KHKH/2 for I 20mA  
Power-up:  
VIH +3.6V and VDD 3.135V for t 200ms  
For 2.5V VDD:  
Overshoot:  
t
VIH +3.6V for t KHKH/2 for I 20mA  
t
Undershoot: VIL -0.5V for t KHKH/2 for I 20mA  
Power-up:  
VIH +2.65V and VDD 2.375V for t 200ms  
3. MODE pin has an internal pull-up, and input leakage = 10µA.  
4. The load used for VOH, VOL testing is shown in Figure 2. AC load current is higher than the shown DC values. AC I/O  
curves are available upon request.  
5. VDDQ should never exceed VDD. VDD and VDDQ can be externally wired together to the same power supply.  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
15  
NOT RECOMMENDED FOR NEW DESIGNS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
3.3V VDD, 2.5V I/O DC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS  
(0ºC TA ≤ +70ºC; VDD = +3.3V 0.165V; VDDQ = +2.5V 0.125V unless otherwise noted)  
DESCRIPTION  
CONDITIONS  
Data bus (DQx)  
Inputs  
SYMBOL  
MIN  
1.7  
MAX  
UNITS  
V
NOTES  
1, 2  
1, 2  
1, 2  
3
Input High (Logic 1) Voltage  
V
IH  
Q
V
DDQ + 0.3  
V
IH  
1.7  
V
DD + 0.3  
0.7  
V
Input Low (Logic 0) Voltage  
Input Leakage Current  
V
IL  
-0.3  
-1.0  
-1.0  
V
0V VIN VDD  
Output(s) disabled,  
0V VIN VDDQ (DQx)  
IL  
I
1.0  
µA  
µA  
Output Leakage Current  
IL  
O
1.0  
Output High Voltage  
Output Low Voltage  
I
OH = -2.0mA  
OH = -1.0mA  
V
V
OH  
OH  
1.7  
2.0  
V
V
V
V
V
V
1
1
1
1
1
1
I
I
OL = 2.0mA  
OL = 1.0mA  
V
V
OL  
OL  
0.7  
I
0.4  
Supply Voltage  
V
DD  
3.135  
2.375  
3.465  
2.625  
Isolated Output Buffer Supply  
V
DD  
Q
2.5V VDD, 2.5V I/O DC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS  
(0ºC TA ≤ +70ºC; VDD = +2.5V 0.125V; VDDQ = +2.5V 0.125V unless otherwise noted)  
DESCRIPTION  
CONDITIONS  
Data bus (DQx)  
Inputs  
SYMBOL  
MIN  
1.7  
MAX  
UNITS  
V
NOTES  
1, 2  
1, 2  
1, 2  
3
Input High (Logic 1) Voltage  
V
IH  
Q
V
DDQ + 0.3  
V
IH  
1.7  
V
DD + 0.3  
0.7  
V
Input Low (Logic 0) Voltage  
Input Leakage Current  
V
IL  
-0.3  
-1.0  
-1.0  
V
0V VIN VDD  
Output(s) disabled,  
0V VIN VDDQ (DQx)  
IL  
I
1.0  
µA  
µA  
Output Leakage Current  
IL  
O
1.0  
Output High Voltage  
Output Low Voltage  
I
OH = -2.0mA  
OH = -1.0mA  
V
V
OH  
OH  
1.7  
2.0  
V
V
V
V
V
V
1
1
1
1
1
1
I
I
OL = 2.0mA  
OL = 1.0mA  
V
V
OL  
OL  
0.7  
I
0.4  
Supply Voltage  
V
DD  
2.375  
2.375  
2.625  
2.625  
Isolated Output Buffer Supply  
V
DD  
Q
NOTE: 1. All voltages referenced to VSS (GND).  
2. For 3.3V VDD:  
t
Overshoot:  
VIH +4.6V for t KHKH/2 for I 20mA  
t
Undershoot: VIL -0.7V for t KHKH/2 for I 20mA  
Power-up:  
VIH +3.6V and VDD 3.135V for t 200ms  
For 2.5V VDD:  
Overshoot:  
t
VIH +3.6V for t KHKH/2 for I 20mA  
t
Undershoot: VIL -0.5V for t KHKH/2 for I 20mA  
Power-up:  
VIH +2.65V and VDD 2.375V for t 200ms  
3. MODE pin has an internal pull-up, and input leakage = 10µA.  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
16  
NOT RECOMMENDED FOR NEW DESIGNS  
TQFP CAPACITANCE  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
DESCRIPTION  
CONDITIONS  
TA = 25ºC; f = 1 MHz  
VDD = 3.3V  
SYMBOL  
TYP  
4.8  
3.8  
4.7  
4.5  
MAX  
6.0  
UNITS  
pF  
NOTES  
Control Input Capacitance  
Input/Output Capacitance (DQ)  
Address Capacitance  
Clock Capacitance  
CI  
CO  
CA  
CCK  
1
1
1
1
4.5  
pF  
5.5  
pF  
5.0  
pF  
FBGA CAPACITANCE  
DESCRIPTION  
CONDITIONS  
SYMBOL TYP  
MAX  
UNITS NOTES  
Address/Control Input Capacitance  
Output Capacitance (Q)  
Clock Capacitance  
CI  
2.5  
4
3.5  
5
pF  
pF  
pF  
1
1
1
TA = 25ºC; f = 1 MHz  
CO  
CCK  
2.5  
3.5  
TQFP THERMAL RESISTANCE  
DESCRIPTION  
CONDITIONS  
SYMBOL  
TYP  
UNITS NOTES  
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow standard test methods  
and procedures for measuring thermal  
impedance, per EIA/JESD51.  
θ
46  
ºC/W  
1
JA  
Thermal Resistance  
(Junction to Top of Case)  
θ
2.8  
ºC/W  
1
JC  
FBGA THERMAL RESISTANCE  
DESCRIPTION  
CONDITIONS  
SYMBOL  
TYP  
UNITS NOTES  
Junction to Ambient  
(Airflow of 1m/s)  
Test conditions follow standard test methods  
and procedures for measuring thermal  
impedance, per EIA/JESD51.  
θJA  
40  
ºC/W  
1
Junction to Case (Top)  
θJC  
θJB  
9
ºC/W  
ºC/W  
1
1
Junction to Pins/Balls  
(Bottom)  
17  
NOTE: 1. This parameter is sampled.  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
17  
NOT RECOMMENDED FOR NEW DESIGNS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
3.3V VDD, IDD OPERATING CONDITIONS AND MAXIMUM LIMITS (512K x 32/36)  
(Note 1, unless otherwise noted) (0ºC TA ≤ +70ºC)  
MAX  
DESCRIPTION  
CONDITIONS  
SYMBOL  
TYP  
-11  
-12  
UNITS NOTES  
Power Supply  
Current: Operating  
Device selected; All inputs VIL or VIH  
;
t
Cycle time KC (MIN);  
I
DD  
TBD  
480  
450  
mA  
2, 3, 4  
V
DD = MAX; Outputs open  
Power Supply  
Current: Idle  
Device selected; VDD = MAX;  
CKE# VIH  
;
I
DD1  
TBD  
160  
150  
mA  
2, 3, 4  
All inputs VSS + 0.2 or VDD - 0.2;  
t
Cycle time KC (MIN)  
CMOS Standby  
TTL Standby  
Device deselected; VDD = MAX;  
All inputs VSS + 0.2 or VDD - 0.2;  
All inputs static; CLK frequency = 0  
I
SB  
SB  
SB  
2
TBD  
TBD  
30  
30  
mA  
mA  
3, 4  
3, 4  
Device deselected; VDD = MAX;  
All inputs VIL or VIH  
;
I
3
100  
100  
All inputs static; CLK frequency = 0  
Clock Running  
Snooze Mode  
Device deselected; VDD = MAX;  
ADV/LD# VIH; All inputs VSS + 0.2  
I
4
TBD  
TBD  
160  
10  
150  
10  
mA  
mA  
3, 4  
4
t
or VDD - 0.2; Cycle time KC (MIN)  
ZZ VIH  
ISB2Z  
NOTE: 1. VDDQ = +3.3V or +2.5V. Voltage tolerances: +3.3V 0.165 or +2.5V 0.125V for all values of VDD and VDDQ.  
2. IDD is specified with no output current and increases with faster cycle times. IDDQ increases with faster cycle times and  
greater output loading.  
3. “Device deselected” means device is in a deselected cycle as defined in the truth table. “Device selected” means device  
is active (not in deselected mode).  
4. Typical values are measured at 3.3V, 25ºC, and 12ns cycle time.  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
18  
NOT RECOMMENDED FOR NEW DESIGNS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
2.5V VDD, IDD OPERATING CONDITIONS AND MAXIMUM LIMITS (512K x 32/36)  
(Note 1, unless otherwise noted) (0ºC TA ≤ +70ºC)  
MAX  
DESCRIPTION  
CONDITIONS  
SYMBOL  
TYP  
-10  
-12  
UNITS NOTES  
Power Supply  
Current: Operating  
Device selected; All inputs VIL or VIH  
;
t
Cycle time KC (MIN);  
I
DD  
TBD  
400  
345  
mA  
mA  
2, 3, 4  
2, 3, 4  
V
DD = MAX; Outputs open  
Power Supply  
Current: Idle  
Device selected; VDD = MAX;  
CKE# VIH  
;
I
DD  
1
TBD  
135  
115  
All inputs VSS + 0.2 or VDD - 0.2;  
t
Cycle time KC (MIN)  
CMOS Standby  
TTL Standby  
Device deselected; VDD = MAX;  
All inputs VSS + 0.2 or VDD - 0.2;  
All inputs static; CLK frequency = 0  
I
SB  
SB  
SB  
2
TBD  
TBD  
225  
80  
25  
80  
mA  
mA  
3, 4  
3, 4  
Device deselected; VDD = MAX;  
All inputs VIL or VIH  
;
I
3
All inputs static; CLK frequency = 0  
Clock Running  
Snooze Mode  
Device deselected; VDD = MAX;  
ADV/LD# VIH; All inputs VSS + 0.2  
I
4
TBD  
TBD  
135  
10  
115  
10  
mA  
mA  
3, 4  
4
t
or VDD - 0.2; Cycle time KC (MIN)  
ZZ VIH  
ISB2Z  
NOTE: 1. VDDQ = +2.5V. Voltage tolerances: +3.3V 0.165 or +2.5V 0.125V for all values of VDD and VDDQ.  
2. IDD is specified with no output current and increases with faster cycle times. IDDQ increases with faster cycle times and  
greater output loading.  
3. “Device deselected” means device is in a deselected cycle as defined in the truth table. “Device selected” means device  
is active (not in deselected mode).  
4. Typical values are measured at 2.5V, 25ºC, and 12ns cycle time.  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
19  
NOT RECOMMENDED FOR NEW DESIGNS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
3.3V VDD, IDD OPERATING CONDITIONS AND MAXIMUM LIMITS (1 MEG x 18)  
(Note 1, unless otherwise noted) (0ºC TA ≤ +70ºC)  
MAX  
DESCRIPTION  
CONDITIONS  
SYMBOL  
TYP  
-11  
-12  
UNITS NOTES  
Power Supply  
Current: Operating  
Device selected; All inputs VIL or VIH  
;
t
Cycle time KC (MIN);  
I
DD  
TBD  
360  
340  
mA  
mA  
2, 3, 4  
2, 3, 4  
V
DD = MAX; Outputs open  
Power Supply  
Current: Idle  
Device selected; VDD = MAX;  
CKE# VIH  
;
I
DD  
1
TBD  
120  
115  
All inputs VSS + 0.2 or VDD - 0.2;  
t
Cycle time KC (MIN)  
CMOS Standby  
TTL Standby  
Device deselected; VDD = MAX;  
All inputs VSS + 0.2 or VDD - 0.2;  
All inputs static; CLK frequency = 0  
I
SB  
SB  
SB  
2
TBD  
TBD  
25  
75  
25  
75  
mA  
mA  
3, 4  
3, 4  
Device deselected; VDD = MAX;  
All inputs VIL or VIH  
;
I
3
All inputs static; CLK frequency = 0  
Clock Running  
Snooze Mode  
Device deselected; VDD = MAX;  
ADV/LD# VIH; All inputs VSS + 0.2  
I
4
TBD  
TBD  
120  
10  
115  
10  
mA  
mA  
3, 4  
4
t
or VDD - 0.2; Cycle time KC (MIN)  
ZZ VIH  
ISB2Z  
NOTE: 1. VDDQ = +3.3V or +2.5V. Voltage tolerances: +3.3V 0.165 or +2.5V 0.125V for all values of VDD and VDDQ.  
2. IDD is specified with no output current and increases with faster cycle times. IDDQ increases with faster cycle times and  
greater output loading.  
3. “Device deselected” means device is in a deselected cycle as defined in the truth table. “Device selected” means device  
is active (not in deselected mode).  
4. Typical values are measured at 3.3V, 25ºC, and 12ns cycle time.  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
20  
NOT RECOMMENDED FOR NEW DESIGNS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
2.5V VDD, IDD OPERATING CONDITIONS AND MAXIMUM LIMITS (1 MEG x 18)  
(Note 1, unless otherwise noted) (0ºC TA ≤ +70ºC)  
MAX  
DESCRIPTION  
CONDITIONS  
SYMBOL  
TYP  
-10  
-12  
UNITS NOTES  
Power Supply  
Current: Operating  
Device selected; All inputs VIL  
t
or VIH; Cycle time KC (MIN);  
I
DD  
TBD  
305  
260  
mA  
mA  
2, 3, 4  
2, 3, 4  
V
DD = MAX; Outputs open  
Power Supply  
Current: Idle  
Device selected; VDD = MAX;  
CKE# VIH  
;
I
DD  
1
TBD  
105  
90  
All inputs VSS + 0.2 or VDD - 0.2;  
t
Cycle time KC (MIN)  
CMOS Standby  
TTL Standby  
Device deselected; VDD = MAX;  
All inputs VSS + 0.2 or VDD - 0.2;  
All inputs static; CLK frequency = 0  
I
SB  
SB  
SB  
2
TBD  
TBD  
20  
80  
20  
80  
mA  
mA  
3, 4  
3, 4  
Device deselected; VDD = MAX;  
All inputs VIL or VIH  
;
I
3
All inputs static; CLK frequency = 0  
Clock Running  
Snooze Mode  
Device deselected; VDD = MAX;  
ADV/LD# VIH; All inputs VSS + 0.2  
I
4
TBD  
TBD  
105  
10  
90  
10  
mA  
mA  
3, 4  
4
t
or VDD - 0.2; Cycle time KC (MIN)  
ZZ VIH  
ISB2Z  
NOTE: 1. VDDQ = +2.5V. Voltage tolerances: +3.3V 0.165 or +2.5V 0.125V for all values of VDD and VDDQ.  
2. IDD is specified with no output current and increases with faster cycle times. IDDQ increases with faster cycle times and  
greater output loading.  
3. “Device deselected” means device is in a deselected cycle as defined in the truth table. “Device selected” means device  
is active (not in deselected mode).  
4. Typical values are measured at 2.5V, 25ºC, and 12ns cycle time.  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
21  
NOT RECOMMENDED FOR NEW DESIGNS  
AC ELECTRICAL CHARACTERISTICS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
(Notes 1, 2, 3) (0ºC TA ≤ +70ºC)(Note 4, unless otherwise noted)  
5
6
-10  
-11  
-12  
DESCRIPTION  
SYMBOL MIN  
MAX  
MIN  
MAX  
MIN  
MAX UNITS NOTES  
Clock  
t
Clock cycle time  
Clock frequency  
Clock HIGH time  
Clock LOW time  
Output Times  
Clock to output valid  
Clock to output invalid  
Clock to output in Low-Z  
Clock to output in High-Z  
OE# to output valid  
OE# to output in Low-Z  
OE# to output in High-Z  
Setup Times  
KHKH  
10  
11  
12  
ns  
MHz  
ns  
f
KF  
KHKL  
KLKH  
100  
90  
83  
t
2.5  
2.5  
3.0  
3.0  
3.0  
3.0  
7
7
t
ns  
t
t
KHQV  
KHQX  
KHQX1  
7.5  
8.5  
9.0  
ns  
ns  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
8
t
ns 8, 9, 10, 11  
ns 8, 9, 10, 11  
ns  
ns 8, 9, 10, 11  
ns 8, 9, 10, 11  
t
KHQZ  
GLQV  
GLQX  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
t
1
t
0
0
0
t
GHQZ  
5.0  
5.0  
5.0  
t
Address  
AVKH  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
ns  
ns  
ns  
ns  
12  
12  
12  
12  
t
Clock enable (CKE#)  
Control signals  
Data-in  
EVKH  
t
CVKH  
t
DVKH  
Hold Times  
Address  
Clock enable (CKE#)  
Control signals  
Data-in  
t
KHAX  
KHEX  
KHCX  
KHDX  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
12  
12  
12  
12  
t
t
t
NOTE: 1. OE# can be considered a “Don’t Care” during WRITEs; however, controlling OE# can help fine-tune a system for  
turnaround timing.  
2. Test conditions as specified with the output loading shown in Figure 1 for 3.3V I/O (VDDQ = +3.3V 0.165V) and Figure  
3 for 2.5V I/O (VDDQ = +2.5V +0.4V/-0.125V) unless otherwise noted.  
3. A WRITE cycle is defined by R/W# LOW having been registered into the device at ADV/LD# LOW. A READ cycle is  
defined by R/W# HIGH with ADV/LD# LOW. Both cases must meet setup and hold times.  
4. If VDD = +3.3V, then VDDQ = +3.3V or +2.5V. If VDD = +2.5V, then VDDQ = +2.5V.  
Voltage tolerances: +3.3V 0.165 or +2.5V 0.125V for all values of VDD and VDDQ.  
5. The -10 speed grade is available for 2.5V VDD and I/O only.  
6. The -11 speed grade is available for 3.3V VDD and I/O only.  
7. Measured as HIGH above VIH and LOW below VIL.  
8. Refer to Technical Note TN-55-01, “Designing with ZBT SRAMs,” for a more thorough discussion of these parameters.  
9. This parameter is sampled.  
10. This parameter is measured with the output loading shown in Figure 2 for 3.3V I/O and Figure 4 for 2.5V I/O.  
11. Transition is measured 200mV from steady state voltage.  
12. This is a synchronous device. All addresses must meet the specified setup and hold times for all rising edges of CLK  
when they are being registered into the device. All other synchronous inputs must meet the setup and hold times  
with stable logic levels for all rising edges of clock (CLK) when the chip is enabled. Chip enable must be valid at each  
rising edge of CLK when ADV/LD# is LOW to remain enabled.  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
22  
NOT RECOMMENDED FOR NEW DESIGNS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
3.3V I/O Output Load Equivalents  
3.3V VDD, 3.3V I/O AC TEST CONDITIONS  
Input pulse levels ...................................VSS to 3.3V  
Input rise and fall times..................................... 1ns  
Input timing reference levels .......................... 1.5V  
Output reference levels ................................... 1.5V  
Output load ............................. See Figures 1 and 2  
Figure 1  
Q
ZO= 50Ω  
50Ω  
V = 1.5V  
T
Figure 2  
+3.3V  
317  
3.3V VDD, 2.5V I/O AC TEST CONDITIONS  
Input pulse levels ...................................VSS to 2.5V  
Input rise and fall times..................................... 1ns  
Input timing reference levels ........................ 1.25V  
Output reference levels ................................. 1.25V  
Output load ............................. See Figures 3 and 4  
Q
5pF  
351  
2.5V VDD, 2.5V I/O AC TEST CONDITIONS  
Input pulse levels ...................................VSS to 2.5V  
Input rise and fall times..................................... 1ns  
Input timing reference levels ........................ 1.25V  
Output reference levels ................................. 1.25V  
Output load ............................. See Figures 3 and 4  
2.5V I/O Output Load Equivalents  
Figure 3  
Q
ZO= 50Ω  
50Ω  
VT = 1.25V  
LOAD DERATING CURVES  
Micron1Megx18, ±12Kx32, and±12K x36ZBT SRAM  
timing is dependent upon the capacitive loading on the  
outputs.  
Consult the factory for copies of I/O current versus  
voltage curves.  
Figure 4  
+2.5V  
225Ω  
5pF  
Q
225Ω  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
23  
NOT RECOMMENDED FOR NEW DESIGNS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
SNOOZE MODE  
SNOOZEMODEisaloꢀ-current,poꢀer-doꢀnmode  
in ꢀhich the device is deselected and current is reduced  
to ISB2Z. The duration of SNOOZE MODE is dictated by  
the length of time the ZZ pin is in a HIGH state. After the  
device enters SNOOZE MODE, all inputs except ZZ be-  
come disabled and all outputs go to High-Z.  
theZZpinbecomesalogicHIGH, ISB2Z isguaranteedafter  
the time ZZI is met. Any READ or WRITE operation  
t
pending ꢀhen the device enters SNOOZE MODE is not  
guaranteedtocompletesuccessfully.Therefore,SNOOZE  
MODE must not be initiated until valid pending opera-  
tions are completed. Similarly, ꢀhen exiting SNOOZE  
t
The ZZ pin is an asynchronous, active HIGH input  
that causes the device to enter SNOOZE MODE. When  
MODE during RZZ, only a DESELECT or READ cycle  
should be given.  
SNOOZE MODE ELECTRICAL CHARACTERISTICS  
DESCRIPTION  
CONDITIONS  
SYMBOL MIN  
MAX  
10  
tKHKH  
tKHKH  
tKHKH  
UNITS NOTES  
Current during SNOOZE MODE  
ZZ active to input ignored  
ZZ inactive to input sampled  
ZZ active to snooze current  
ZZ inactive to exit snooze current  
ZZ VIH  
ISB2Z  
mA  
tZZ  
tRZZ  
tZZI  
0
0
ns  
ns  
ns  
ns  
1
1
1
1
tRZZI  
0
NOTE: 1. This parameter is sampled.  
SNOOZE MODE WAVEFORM  
CLK  
t
ZZ  
t
RZZ  
ZZ  
t
ZZI  
I
SUPPLY  
I
ISB2Z  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT  
or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
24  
NOT RECOMMENDED FOR NEW DESIGNS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
READ/WRITE TIMING  
1
2
3
4
5
6
7
8
9
10  
t
KHKH  
t
CLK  
t
t
t
t
EVKH KHEX  
KLKH  
KHKL  
CKE#  
t
CVKH KHCX  
CE#  
ADV/LD#  
R/W#  
BWx#  
A1  
A2  
A4  
A3  
A5  
A6  
A7  
ADDRESS  
DQ  
t
KHQV  
t
t
AVKH KHAX  
t
t
t
t
KHQZ  
KHQX  
GLQV  
KHQX1  
D(A1)  
t
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6)  
D(A7)  
t
GHQZ  
t
DVKH KHDX  
t
KHQX  
t
GLQX  
OE#  
COMMAND  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
D(A2+1)  
Q(A4+1)  
DON’T CARE  
UNDEFINED  
READ/WRITE TIMING PARAMETERS  
-10*  
-11**  
-12  
-10*  
-11**  
-12  
SYMBOL  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX UNITS  
SYMBOL  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX UNITS  
t
t
KHKH  
10  
11  
12  
ns  
GHQZ  
5.0  
5.0  
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
f
t
KF  
100  
90  
83  
MHz  
ns  
AVKH  
2.0  
2.0  
2.0  
2.0  
0.5  
0.5  
0.5  
0.5  
2.2  
2.2  
2.2  
2.2  
0.5  
0.5  
0.5  
0.5  
2.5  
2.5  
2.5  
2.5  
0.5  
0.5  
0.5  
0.5  
t
t
KHKL  
2.5  
2.5  
3.0  
3.0  
3.0  
3.0  
EVKH  
t
t
KLKH  
ns  
CVKH  
t
t
KHQV  
7.5  
8.5  
9.0  
ns  
DVKH  
t
t
KHQX  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
ns  
KHAX  
t
t
KHQX1  
ns  
KHEX  
t
t
KHQZ  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
ns  
KHCX  
t
t
GLQV  
ns  
KHDX  
t
GLQX  
0
0
0
ns  
*The -10 speed grade available for 2.5V VDD and I/O only.  
**The -11 speed grade available for 3.3V VDD and I/O only.  
NOTE: 1. For this waveform, ZZ is tied LOW.  
2. Burst sequence order is determined by MODE (0 = linear, 1 = interleaved). BURST operations are optional.  
3. CE# represents three signals. When CE# = 0, it represents CE# = 0, CE2# = 0, CE2 = 1.  
4. Data coherency is provided for all possible operations. If a READ is initiated, the most current data is used. The most  
recent data may be from the input data register.  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
25  
NOT RECOMMENDED FOR NEW DESIGNS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
NOP, STALL, AND DESELECT CYCLES  
1
2
3
4
5
6
7
8
9
10  
CLK  
CKE#  
CE#  
ADV/LD#  
R/W#  
BWx#  
A1  
A2  
A3  
A4  
A5  
ADDRESS  
t
KHQZ  
D(A1)  
Q(A2)  
Q(A3)  
D(A4)  
Q(A5)  
KHQX  
DQ  
t
COMMAND  
WRITE  
D(A1)  
READ  
Q(A2)  
STALL  
READ  
Q(A3)  
WRITE  
D(A4)  
STALL  
NOP  
READ  
Q(A5)  
DESELECT  
CONTINUE  
DESELECT  
DON’T CARE  
UNDEFINED  
NOP, STALL, AND DESELECT TIMING PARAMETERS  
-10*  
-11**  
-12  
SYMBOL  
MIN  
3.0  
MAX  
MIN  
3.0  
MAX  
MIN  
MAX UNITS  
t
KHQX  
3.0  
ns  
t
KHQZ  
5.0  
5.0  
5.0  
ns  
*The -10 speed grade available for 2.5V VDD and I/O only.  
**The -11 speed grade available for 3.3V VDD and I/O only.  
NOTE: 1. The IGNORE CLOCK EDGE or STALL cycle (clock 3) illustrates CKE# being used to create a “pause.” A WRITE is not  
performed during this cycle.  
2. For this waveform, ZZ and OE# are tied LOW.  
3. CE# represents three signals. When CE# = 0, it represents CE# = 0, CE2# = 0, CE2 = 1.  
4. Data coherency is provided for all possible operations. If a READ is initiated, the most current data is used. The most  
recent data may be from the input data register.  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
26  
NOT RECOMMENDED FOR NEW DESIGNS  
IEEE 1149.1 SERIAL BOUNDARY SCAN  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
TEST ACCESS PORT (TAP)  
TEST CLOCK (TCK)  
The test clock is used only ꢀith the TAP controller. All  
inputs are captured on the rising edge of TCK. All outputs  
are driven from the falling edge of TCK.  
(JTAG)  
The 18Mb SRAM incorporates a serial boundary scan  
test access port ꢁTAP). This port operates in accordance  
ꢀith IEEE Standard 1149.1-1990 but does not have the set  
of functions required for full 1149.1 compliance. These  
functions from the IEEE specification are excluded be-  
cause their inclusion places an added delay in the critical  
speed path of the SRAM. Note that the TAP controller  
functions in a manner that does not conflict ꢀith the  
operation of other devices using 1149.1 fully compliant  
TAPs. The TAP operates using JEDEC-standard 2.±V I/O  
logic levels.  
TEST MODE SELECT (TMS)  
The TMS input is used to give commands to the TAP  
controller and is sampled on the rising edge of TCK. It is  
alloꢀable to leave this pin/ball unconnected if the TAP is  
not used. The pin/ball is pulled up internally, resulting in  
a logic HIGH level.  
TEST DATA-IN (TDI)  
The SRAM contains a TAP controller, instruction reg-  
ister, boundary scan register, bypass register, and ID  
register.  
The TDI pin/ball is used to serially input information  
into the registers and can be connected to the input of  
any of the registers. The register betꢀeen TDI and TDO is  
chosen by the instruction that is loaded into the TAP  
instruction register. For information on loading the in-  
struction register, see Figure 5. TDI is internally pulled up  
and can be unconnected if the TAP is unused in an appli-  
cation. TDI is connected to the most significant bit ꢁMSB)  
of any register. ꢁSee Figure 6.)  
DISABLING THE JTAG FEATURE  
These pins/balls can be left floating ꢁunconnected), if  
theJTAGfunctionisnottobeimplemented.Uponpoꢀer-  
up, the device ꢀill come up in a reset state ꢀhich ꢀill not  
interfere ꢀith the operation of the device.  
Figure 5  
Figure 6  
TAP Controller State Diagram  
TAP Controller Block Diagram  
TEST-LOGIC  
1
0
RESET  
0
Bypass Register  
1
1
1
2
1 0  
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
Selection  
Circuitry  
Selection  
Circuitry  
Instruction Register  
31 30 29  
Identification Register  
0
0
TDI  
TDO  
.
.
. 2 1 0  
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
x
.
.
.
.
. 2 1 0  
SHIFT-DR  
0
SHIFT-IR  
0
Boundary Scan Register*  
1
1
1
1
EXIT1-DR  
EXIT1-IR  
0
0
TCK  
TMS  
PAUSE-DR  
1
0
PAUSE-IR  
1
0
TAP CONTROLLER  
0
0
EXIT2-DR  
1
EXIT2-IR  
1
*x = 52 for the x18 configuration, x = 67 for the x32 configuration,  
x = 71 for the x36 configuration.  
UPDATE-DR  
UPDATE-IR  
1
0
1
0
NOTE: The 0/1 next to each state represents the value of  
TMS at the rising edge of TCK.  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
27  
NOT RECOMMENDED FOR NEW DESIGNS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
TEST DATA-OUT (TDO)  
The boundary scan register is loaded ꢀith the con-  
tentsoftheRAMI/OringhentheTAPcontrollerisinthe  
Capture-DR state and is then placed betꢀeen the TDI  
and TDO pins ꢀhen the controller is moved to the Shift-  
DR state. The EXTEST, SAMPLE/PRELOAD and SAMPLE  
Z instructions can be used to capture the contents of the  
I/O ring.  
The TDO output pin/ball is used to serially clock data-  
out from the registers. The output is active depending  
upon the current state of the TAP state machine. ꢁSee  
Figure 5.) The output changes on the falling edge of TCK.  
TDO is connected to the least significant bit ꢁLSB) of any  
register. ꢁSee Figure 6.)  
The Boundary Scan Order tables shoꢀ the order in  
ꢀhich the bits are connected. Each bit corresponds to  
one of the pins on the SRAM package. The MSB of the  
register is connected to TDI, and the LSB is connected to  
TDO.  
PERFORMING A TAP RESET  
A RESET is performed by forcing TMS HIGH ꢁVDD) for  
five rising edges of TCK. This RESET does not affect the  
operation of the SRAM and may be performed ꢀhile the  
SRAM is operating.  
At poꢀer-up, the TAP is reset internally to ensure that  
TDO comes up in a High-Z state.  
IDENTIFICATION (ID) REGISTER  
The ID register is loaded ꢀith a vendor-specific, 32-  
bit code during the Capture-DR state ꢀhen the IDCODE  
command is loaded in the instruction register. The  
IDCODE is hardꢀired into the SRAM and can be shifted  
out ꢀhen the TAP controller is in the Shift-DR state. The  
ID register has a vendor code and other information  
describedintheIdentificationRegisterDefinitionstable.  
TAP REGISTERS  
Registers are connected betꢀeen the TDI and TDO  
pins/balls and alloꢀ data to be scanned into and out of  
the SRAM test circuitry. Only one register can be selected  
at a time through the instruction register. Data is serially  
loaded into the TDI pin on the rising edge of TCK. Data is  
output on the TDO pin on the falling edge of TCK.  
TAP INSTRUCTION SET  
OVERVIEW  
INSTRUCTION REGISTER  
Eightdifferentinstructionsarepossibleiththethree-  
bit instruction register. All combinations are listed in the  
Instruction Codes table. Three of these instructions are  
listed as RESERVED and should not be used. The other  
five instructions are described in detail beloꢀ.  
The TAP controller used in this SRAM is not fully  
compliant to the 1149.1 convention because some of the  
mandatory1149.1instructionsarenotfullyimplemented.  
The TAP controller cannot be used to load address, data  
or control signals into the SRAM and cannot preload the  
I/O buffers. The SRAM does not implement the 1149.1  
commands EXTEST or INTEST or the PRELOAD portion  
of SAMPLE/PRELOAD; rather, it performs a capture of  
the I/O ring ꢀhen these instructions are executed.  
InstructionsareloadedintotheTAPcontrollerduring  
the Shift-IR state ꢀhen the instruction register is placed  
betꢀeenTDIandTDO. Duringthisstate, instructionsare  
shifted through the instruction register through the TDI  
and TDO pins/balls. To execute the instruction once it is  
shifted in, the TAP controller needs to be moved into the  
Update-IR state.  
Three-bit instructions can be serially loaded into the  
instruction register. This register is loaded ꢀhen it is  
placed betꢀeen the TDI and TDO pins/balls as shoꢀn in  
Figure5.Uponpoꢀer-up,theinstructionregisterisloaded  
ꢀith the IDCODE instruction. It is also loaded ꢀith the  
IDCODE instruction if the controller is placed in a reset  
state as described in the previous section.  
WhentheTAPcontrollerisintheCapture-IRstate, the  
tꢀo least significant bits are loaded ꢀith a binary “01”  
patterntoalloforfaultisolationoftheboard-levelserial  
test data path.  
BYPASS REGISTER  
To save time ꢀhen serially shifting data through reg-  
isters, it is sometimes advantageous to skip certain chips.  
The bypass register is a single-bit register that can be  
placed betꢀeen the TDI and TDO pins/balls. This alloꢀs  
data to be shifted through the SRAM ꢀith minimal delay.  
The bypass register is set LOW ꢁVSS) ꢀhen the BYPASS  
instruction is executed.  
BOUNDARY SCAN REGISTER  
EXTEST  
The boundary scan register is connected to all the  
input and bidirectional pins/balls on the SRAM. The x36  
configuration has a 71-bit-long register, the x32 configu-  
ration has a 67-bit-long register, and the x18 configura-  
tion has a ±2-bit-long register.  
EXTEST is a mandatory 1149.1 instruction ꢀhich is to  
be executed ꢀhenever the instruction register is loaded  
ꢀith all 0s. EXTEST is not implemented in this SRAM TAP  
controller, and therefore this device is not compliant to  
1149.1.  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
28  
NOT RECOMMENDED FOR NEW DESIGNS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
The TAP controller does recognize an all-0 instruc-  
tion. When an EXTEST instruction is loaded into the  
instruction register, the SRAM responds as if a SAMPLE/  
PRELOAD instruction has been loaded. There is one dif-  
ference betꢀeen the tꢀo instructions. Unlike the  
SAMPLE/PRELOADinstruction,EXTESTplacestheSRAM  
outputs in a High-Z state.  
faster. Because there is a large difference in the clock  
frequencies, it is possible that during the Capture-DR  
state, an input or output ꢀill undergo a transition. The  
TAP may then try to capture a signal ꢀhile in transition  
ꢁmetastable state). This ꢀill not harm the device, but  
there is no guarantee as to the value that ꢀill be captured.  
Repeatable results may not be possible.  
To guarantee that the boundary scan register ꢀill  
capture the correct value of a signal, the SRAM signal  
must be stabilized long enough to meet the TAP  
controller’s capture setup plus hold time ꢁtCS plus tCH).  
The SRAM clock input might not be captured correctly if  
there is no ꢀay in a design to stop ꢁor sloꢀ) the clock  
during a SAMPLE/PRELOAD instruction. If this is an  
issue, it is still possible to capture all other signals and  
simply ignore the value of the CK and CK# captured in the  
boundary scan register.  
IDCODE  
The IDCODE instruction causes a vendor-specific,  
32-bit code to be loaded into the instruction register. It  
also places the instruction register betꢀeen the TDI and  
TDO pins/balls and alloꢀs the IDCODE to be shifted out  
of the device ꢀhen the TAP controller enters the Shift-DR  
state. The IDCODE instruction is loaded into the instruc-  
tion register upon poꢀer-up or ꢀhenever the TAP con-  
troller is given a test logic reset state.  
Once the data is captured, it is possible to shift out the  
data by putting the TAP into the Shift-DR state. This  
places the boundary scan register betꢀeen the TDI and  
TDO pins.  
Note that since the PRELOAD part of the command is  
not implemented, putting the TAP to the Update-DR  
state ꢀhile performing a SAMPLE/PRELOAD instruction  
ꢀill have the same effect as the Pause-DR command.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan  
register to be connected betꢀeen the TDI and TDO pins/  
balls ꢀhen the TAP controller is in a Shift-DR state. It also  
places all SRAM outputs into a High-Z state.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruc-  
tion. The PRELOAD portion of this instruction is not  
implemented, so the device TAP controller is not fully  
1149.1-compliant.  
When the SAMPLE/PRELOAD instruction is loaded  
into the instruction register and the TAP controller is in  
the Capture-DR state, a snapshot of data on the inputs  
and bidirectional pins/balls is captured in the boundary  
scan register.  
BYPASS  
When the BYPASS instruction is loaded in the instruc-  
tion register and the TAP is placed in a Shift-DR state, the  
bypass register is placed betꢀeen TDI and TDO. The  
advantage of the BYPASS instruction is that it shortens  
the boundary scan path ꢀhen multiple devices are con-  
nected together on a board.  
The user must be aꢀare that the TAP controller clock  
can only operate at a frequency up to 10 MHz, ꢀhile the  
SRAM clock operates more than an order of magnitude  
RESERVED  
These instruction are not implemented but are re-  
served for future use. Do not use these instructions.  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
29  
NOT RECOMMENDED FOR NEW DESIGNS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
TAP TIMING  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
t
THTH  
THTL  
TLTH  
t
t
MVTH  
DVTH  
THMX  
Test Mode Select  
(TMS)  
t
THDX  
Test Data-In  
(TDI)  
t
TLOV  
t
TLOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC ELECTRICAL CHARACTERISTICS  
(Notes 1, 2) (0ºC TA ≤ +70ºC; +2.4V VDD +2.6V)  
DESCRIPTION  
Clock  
SYMBOL  
MIN  
MAX  
UNITS  
t
Clock cycle time  
Clock frequency  
Clock HIGH time  
Clock LOW time  
Output Times  
TCK LOW to TDO unknown  
TCK LOW to TDO valid  
TDI valid to TCK HIGH  
TCK HIGH to TDI invalid  
Setup Times  
THTH  
TF  
THTL  
TLTH  
100  
ns  
MHz  
ns  
f
10  
t
40  
40  
t
ns  
t
TLOX  
TLOV  
0
ns  
ns  
ns  
ns  
t
20  
t
DVTH  
THDX  
10  
10  
t
t
TMS setup  
Capture setup  
MVTH  
CS  
10  
10  
ns  
ns  
t
Hold Times  
TMS hold  
t
THMX  
CH  
10  
10  
ns  
ns  
t
Capture hold  
t
t
NOTE: 1. CS and CH refer to the setup and hold time requirements of latching data from the boundary scan register.  
2. Test conditions are specified using the load in Figure 7.  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
30  
NOT RECOMMENDED FOR NEW DESIGNS  
TAP AC TEST CONDITIONS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
Figure 7  
TAP AC Output Load Equivalent  
Input pulse levels ...................................... VSS to 2.5V  
Input rise and fall times ....................................... 1ns  
Input timing reference levels ...........................1.25V  
Output reference levels ....................................1.25V  
Test load termination supply voltage ..............1.25V  
1.25V  
50Ω  
TDO  
ZO= 50Ω  
20pF  
3.3V VDD, TAP DC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS  
(0ºC TA ≤ +70ºC; +3.135V VDD +3.465V unless otherwise noted)  
DESCRIPTION  
CONDITIONS  
SYMBOL  
MIN  
2.0  
MAX  
VDD + 0.3  
0.8  
UNITS  
V
NOTES  
1, 2  
Input High (Logic 1) Voltage  
Input Low (Logic 0) Voltage  
Input Leakage Current  
Output Leakage Current  
VIH  
VIL  
ILI  
-0.3  
-5.0  
-5.0  
V
1, 2  
0V VIN VDD  
Output(s) disabled,  
0V VIN VDDQ (DQx)  
IOLC = 100µA  
5.0  
µA  
µA  
ILO  
5.0  
Output Low Voltage  
Output Low Voltage  
Output High Voltage  
Output High Voltage  
VOL1  
VOL2  
VOH1  
VOH2  
0.7  
0.8  
V
V
V
V
1
1
1
1
IOLT = 2mA  
IOHC = 100µA  
2.9  
2.0  
IOHT = 2mA  
2.5V VDD, TAP DC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS  
(0ºC TA ≤ +70ºC; +2.4V VDD +2.6V unless otherwise noted)  
DESCRIPTION  
CONDITIONS  
SYMBOL  
MIN  
1.7  
MAX  
VDD + 0.3  
0.7  
UNITS  
V
NOTES  
1, 2  
Input High (Logic 1) Voltage  
Input Low (Logic 0) Voltage  
Input Leakage Current  
Output Leakage Current  
VIH  
VIL  
ILI  
-0.3  
-5.0  
-5.0  
V
1, 2  
0V VIN VDD  
Output(s) disabled,  
0V VIN VDDQ (DQx)  
IOLC = 100µA  
5.0  
µA  
µA  
ILO  
5.0  
Output Low Voltage  
Output Low Voltage  
Output High Voltage  
Output High Voltage  
VOL1  
VOL2  
VOH1  
VOH2  
0.2  
0.7  
V
V
V
V
1
1
1
1
IOLT = 2mA  
IOHC = 100µA  
2.1  
1.7  
IOHT = 2mA  
NOTE: 1. All voltages referenced to VSS (GND).  
t
2. Overshoot:  
VIH (AC) VDD + 1.5V for t KHKH/2  
t
Undershoot: VIL (AC) -0.5V for t KHKH/2  
Power-up:  
During normal operation, VDDQ must not exceed VDD. Control input signals (such as LD#, R/W#, etc.) may not have  
VIH +2.6V and VDD 2.4V and VDDQ 1.4V for t 200ms  
t
f
pulse widths less than KHKL (MIN) or operate at frequencies exceeding KF (MAX).  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
31  
NOT RECOMMENDED FOR NEW DESIGNS  
IDENTIFICATION REGISTER DEFINITIONS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
INSTRUCTION FIELD 512K x 18  
DESCRIPTION  
REVISION NUMBER  
(31:28)  
xxxx  
Reserved for version number.  
Defines depth of 512K or 1Mb words.  
Defines width of 18, 32, or 36 bits.  
Reserved for future use.  
DEVICE DEPTH  
(27:23)  
00111  
00011  
xxxxxx  
DEVICE WIDTH  
(22:18)  
MICRON DEVICE ID  
(17:12)  
MICRON JEDEC ID  
CODE (11:1)  
00000101100 Allows unique identification of SRAM vendor.  
Indicates the presence of an ID register.  
ID Register Presence  
Indicator (0)  
1
SCAN REGISTER SIZES  
REGISTER NAME  
Instruction  
Bypass  
BIT SIZE  
3
1
ID  
32  
Boundary Scan  
x18: 52 x32: 67 x36: 71  
INSTRUCTION CODES  
INSTRUCTION  
CODE  
DESCRIPTION  
EXTEST  
000  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state. This instruction is not 1149.1-compliant.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register between TDI  
and TDO. This operation does not affect SRAM operations.  
SAMPLE Z  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation. This instruction does not implement 1149.1 preload  
function and is therefore not 1149.1-compliant.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect  
SRAM operations.  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
32  
©2002, Micron Technology, Inc.  
NOT RECOMMENDED FOR NEW DESIGNS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
165-BALL FBGA BOUNDARY SCAN ORDER (x18)  
FBGA BIT#  
SIGNAL NAME  
SA  
BALL ID  
8P  
FBGA BIT#  
27  
SIGNAL NAME  
CLK  
BALL ID  
6B  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
SA  
SA  
SA  
SA  
SA  
9R  
9P  
10R  
10P  
11R  
8R  
10M  
10L  
10K  
10J  
11H  
11G  
11F  
11E  
11D  
11C  
11A  
10B  
10A  
9A  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
CE2#  
BWa#  
BWb#  
CE2  
CE#  
SA  
6A  
5B  
4A  
3B  
3A  
2A  
2B  
2D  
2E  
SA  
DQa  
DQa  
DQa  
DQa  
ZZ  
DQa  
DQa  
DQa  
DQa  
DQPa  
SA  
SA  
DQb  
DQb  
DQb  
DQb  
VSS  
2F  
2G  
1H  
1J  
1K  
1L  
1M  
1N  
1R  
DQb  
DQb  
DQb  
DQb  
DQPb  
MODE (LBO#)  
SA  
SA  
SA  
SA  
3P  
3R  
SA  
SA  
9B  
8A  
8B  
7A  
SA  
SA  
SA1  
SA0  
4P  
4R  
6P  
6R  
ADV/LD#  
OE# (G#)  
CKE#  
R/W#  
7B  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
33  
NOT RECOMMENDED FOR NEW DESIGNS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
165-BALL FBGA BOUNDARY SCAN ORDER (x32)  
FBGA BIT#  
SIGNAL NAME  
SA  
BALL ID  
8P  
FBGA BIT#  
34  
SIGNAL NAME  
CE2#  
BALL ID  
6A  
5B  
5A  
4A  
4B  
3B  
3A  
2A  
2B  
1D  
1E  
1
2
3
4
5
6
7
8
SA  
SA  
SA  
SA  
SA  
9R  
9P  
10R  
10P  
11R  
8R  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
BWa#  
BWb#  
BWc#  
BWd#  
CE2  
CE#  
SA  
SA  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
VSS  
SA  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
ZZ  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
SA  
11M  
11L  
11K  
11J  
10M  
10L  
10K  
10J  
11H  
11G  
11F  
11E  
11D  
10G  
10F  
10E  
10D  
10B  
10A  
9A  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
1F  
1G  
2D  
2E  
2F  
2G  
1H  
1J  
1K  
1L  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
MODE (LBO#)  
SA  
1M  
2J  
2K  
2L  
2M  
1R  
3P  
3R  
4P  
SA  
SA  
SA  
9B  
8A  
8B  
7A  
7B  
6B  
ADV/LD#  
OE# (G#)  
CKE#  
R/W#  
CLK  
SA  
SA  
SA  
SA1  
4R  
6P  
6R  
SA0  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
34  
NOT RECOMMENDED FOR NEW DESIGNS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
165-BALL FBGA BOUNDARY SCAN ORDER (x36)  
FBGA BIT#  
SIGNAL NAME  
SA  
BALL ID  
8P  
FBGA BIT#  
36  
SIGNAL NAME  
CE2#  
BALL ID  
6A  
5B  
5A  
4A  
4B  
3B  
3A  
2A  
2B  
1C  
1D  
1E  
1
2
3
4
5
6
7
8
SA  
SA  
SA  
SA  
SA  
9R  
9P  
10R  
10P  
11R  
8R  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
BWa#  
BWb#  
BWc#  
BWd#  
CE2  
CE#  
SA  
SA  
NF/DQPc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
SA  
NF/DQPa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
ZZ  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
NF/DQPb  
SA  
11N  
11M  
11L  
11K  
11J  
10M  
10L  
10K  
10J  
11H  
11G  
11F  
11E  
11D  
10G  
10F  
10E  
10D  
11C  
10B  
10A  
9A  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
1F  
1G  
2D  
2E  
2F  
2G  
1H  
1J  
1K  
1L  
1M  
2J  
2K  
2L  
2M  
1N  
1R  
3P  
3R  
4P  
4R  
6P  
6R  
VSS  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
NF/DQPd  
MODE (LBO#)  
SA  
SA  
SA  
SA  
9B  
8A  
8B  
7A  
7B  
6B  
ADV/LD#  
OE# (G#)  
CKE#  
R/W#  
CLK  
SA  
SA  
SA  
SA1  
SA0  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
35  
NOT RECOMMENDED FOR NEW DESIGNS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
100-PIN PLASTIC TQFP  
(JEDEC LQFP)  
+0.10  
-0.20  
22.10  
20.10 0.10  
0.65 TYP  
0.32  
+0.06  
-0.10  
0.625  
(TYP)  
SEE DETAIL A  
14.00 0.10  
16.00 0.20  
PIN #1 ID  
+0.03  
0.15  
1.40 0.05  
-0.02  
GAGE PLANE  
0.60 0.15  
1.60 MAX  
0.10  
+0.10  
-0.05  
0.10  
1.00 TYP  
0.10  
DETAIL A  
MAX  
MIN  
NOTE: 1. All dimensions in millimeters  
or typical where noted.  
2. Package width and length do not include mold protrusion; allowable mold protrusion is 0.25mm per side.  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
36  
NOT RECOMMENDED FOR NEW DESIGNS  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
165-BALL FBGA  
0.85 0.075  
0.12  
C
SEATING PLANE  
C
BALL A11  
165X Ø 0.45  
10.00  
SOLDER BALL DIAMETER REFERS  
TO POST REFLOW CONDITION. THE  
PRE-REFLOW DIAMETER IS Ø 0.40  
BALL A1  
PIN A1 ID  
1.20 MAX  
1.00  
TYP  
PIN A1 ID  
7.50 0.05  
14.00  
15.00 0.10  
7.00 0.05  
1.00  
TYP  
MOLD COMPOUND: EPOXY NOVOLAC  
SUBSTRATE: PLASTIC LAMINATE  
6.50 0.05  
5.00 0.05  
SOLDER BALL MATERIAL: EUTECTIC 63% Sn, 37% Pb  
SOLDER BALL PAD: Ø .33mm  
13.00 0.10  
MAX  
MIN  
NOTE: 1. All dimensions in millimeters  
or typical where noted.  
DATA SHEET DESIGNATION  
No Marking  
This data sheet contains minimum and maximum limits specified over the complete power supply  
and temperature range for production devices. Although considered final, these specifications  
are subject to change, as further product development and data characterization sometimes  
occur.  
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900  
E-mail: prodmktg@micron.com, Internet: http://www.micron.com, Customer Comment Line: 800-932-4992  
Micron, the M and Micron logos are trademarks and/or servicemarks of Micron Technology, Inc.  
ZBT and Zero Bus Turnaround are trademarks of Integrated Device Technology, Inc.,  
and the architecture is supported by Micron Technology, Inc., and Motorola Inc.  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
37  
NOT RECOMMENDED FOR NEW DESIGNS  
REVISION HISTORY  
18Mb: 1 MEG x 18, 512K x 32/36  
FLOW-THROUGH ZBT SRAM  
Rev. H, Pub. 9/02 ................................................................................................................................................................ Sept/02  
• Updated operating temperature range: From +10ºC TJ +110ºC to 0ºC TA +70ºC  
Rev. G, Pub. 6/02 ................................................................................................................................................................ June/02  
• Added “NOT RECOMMENDED FOR NEW DESIGNS” to header  
Rev. F, Pub. 3/02 .................................................................................................................................................................. Mar/02  
• Removed 119-Pin PBGA and references  
• Removed ADVANCE designation  
• Updated operating temperature range:  
From 0ºC TA +70ºC to +10ºC TJ +110ºC  
• Removed -8.8 speed grade from 2.± VDD and I/O  
• Removed -10 speed grade from 3.3 VDD and I/O  
Rev. E, Pub. 1/02, ADVANCE .............................................................................................................................................. Jan/02  
• Changed MAX temperature from +70ºC to +110ºC  
• Updated 100-pin TQFP capacitance values:  
CI from TYP 3pF, MAX 4pF to TYP 4.8pF, MAX 6.0pF  
CO from TYP 4pF, MAX ±pF to TYP 3.8pF, MAX 4.±pF  
CA from TYP 3pF, MAX 3.±pF to TYP 4.7pF, MAX ±.±pF  
CCK from TYP 3pF, MAX 3.±pF to TYP 4.±pF, MAX ±.0pF  
Rev. D, Pub. 9/01, ADVANCE............................................................................................................................................ Sept/01  
• Removed -11 speed grade from 3.3 VDD and I/O  
Rev. C, Pub. 9/01, ADVANCE ............................................................................................................................................ Sept/01  
• Removed Industrial Temperature references  
• Changed IDD tables by splitting x18 and x32/36 configuration  
• Changed NC references to NF  
• Removed note “Not Recommended for Neꢀ Design” from 119-pin FBGA  
• Changed boundary scan order, 16±-ball FBGA, x18 and x32/36  
8P ꢁSA) moved to bit #7 from bit #1  
• Increased IDD table values  
Rev. 3/01, ADVANCE ................................................................................................................................................ March/19/01  
• Added Industrial Temperature note and references  
• Changed 16Mb to 18Mb references  
• Added -8.8 speed grades  
Rev. 1/01, ADVANCE ....................................................................................................................................................... Jan/9/01  
• Added 16±-ball JTAG Boundary Scan  
• Added 119-pin PBGA package and references  
Rev. 8/00, ADVANCE .................................................................................................................................................... Aug/22/00  
• Removed FBGA Part Marking Guide  
Rev. 7/00, ADVANCE ...................................................................................................................................................... Aug/8/00  
• Changed FBGA capacitance values  
• CI; TYP 2.± pF from 4 pF; MAX 3.± pF from ± pF  
• CO; TYP 4 pF from 6 pF; MAX ± pF from 7 pF  
• CCK; TYP 2.± pF from ± pF; MAX 3.± pF from 6 pF  
Rev. 7/00, ADVANCE ..................................................................................................................................................... Jun/28/00  
• Added 16±-PIN FBGA Package  
• Added FBGA Part Marking References  
• Removed 119-Pin PBGA and references  
Rev. 4/00, ADVANCE ..................................................................................................................................................... Apr/13/00  
• Added note: ZZ has internal pull-doꢀn  
Rev. 3/00, ADVANCE ....................................................................................................................................................... Apr/6/00  
• Updated Boundary Scan Order  
Rev. 1/00, ADVANCE ..................................................................................................................................................... Jan/18/00  
• Added BGA JTAG functionality  
• Added 119-pin PBGA package  
• Added ADVANCE status  
Original document, Rev. 11/99, DRAFT ..................................................................................................................... Nov/11/99  
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through ZBT SRAM  
MT55L1MY18F_H.p65 – Rev. G, Pub. 6/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
38  

相关型号:

MT55V1MV18FF-8.8

ZBT SRAM, 1MX18, 6.5ns, CMOS, PBGA165, 13 X 15 MM, FBGA-165
CYPRESS

MT55V1MV18FT-10

ZBT SRAM, 1MX18, 7.5ns, CMOS, PQFP100, PLASTIC, TQFP-100
CYPRESS

MT55V1MV18FT-11

ZBT SRAM, 1MX18, 8.5ns, CMOS, PQFP100, PLASTIC, TQFP-100
CYPRESS

MT55V1MV18FT-12

ZBT SRAM, 1MX18, 9ns, CMOS, PQFP100, PLASTIC, TQFP-100
CYPRESS

MT55V1MV18FT-8.8

ZBT SRAM, 1MX18, 6.5ns, CMOS, PQFP100, PLASTIC, TQFP-100
CYPRESS

MT55V1MV18PF-10

ZBT SRAM, 1MX18, 5ns, CMOS, PBGA165, 13 X 15 MM, FBGA-165
CYPRESS

MT55V1MV18PF-5

ZBT SRAM, 1MX18, 3.2ns, CMOS, PBGA165, MS-216CAB-1, FBGA-165
CYPRESS

MT55V1MV18PF-6

ZBT SRAM, 1MX18, 3.5ns, CMOS, PBGA165, 13 X 15 MM, FBGA-165
CYPRESS

MT55V1MV18PF-7.5

ZBT SRAM, 1MX18, 4.2ns, CMOS, PBGA165, 13 X 15 MM, FBGA-165
CYPRESS