MT58V512V36PT-10 [CYPRESS]

Cache SRAM, 512KX36, 5ns, CMOS, PQFP100, PLASTIC, TQFP-100;
MT58V512V36PT-10
型号: MT58V512V36PT-10
厂家: CYPRESS    CYPRESS
描述:

Cache SRAM, 512KX36, 5ns, CMOS, PQFP100, PLASTIC, TQFP-100

静态存储器
文件: 总34页 (文件大小:535K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
MT58L1MY18P, MT58V1MV18P,  
MT58L512Y32P, MT58V512V32P,  
18Mb SYNCBURST™  
SRAM  
MT58L512Y36P, MT58V512V36P  
3.3V VDD, 3.3V or 2.5V I/O; 2.5V VDD, 2.5V I/O  
Features  
Figure 1: 100-Pin TQFP  
JEDEC-Standard MS-026 BHA (LQFP)  
Fast clock and OE# access times  
Single 3.3V ±± percent or 2.±V ±± percent power  
supply  
Separate 3.3V ±± percent or 2.±V ±± percent isolated  
output buffer supply (VDDQ)  
SNOOZE MODE for reduced-power standby  
Single-cycle deselect (Pentium® BSRAM-  
compatible)  
Common data inputs and data outputs  
Individual byte write control and global write  
Three chip enables for simple depth expansion and  
address pipelining  
Clock-controlled and registered addresses, data  
I/Os, and control signals  
Internally self-timed WRITE cycle  
Burst control (interleaved or linear burst)  
Low capacitive bus loading  
Figure 2: 165-Ball FBGA  
JEDEC-Standard MS-216 (Var. CAB-1)  
TQFP  
Options  
Marking  
Timing (Access/Cycle/MHz)  
3.1ns/±ns/200 MHz  
3.±ns/6ns/166 MHz  
4.2ns/7.±ns/133 MHz  
±ns/10ns/100 MHz  
Configurations  
3.3V VDD, 3.3V or 2.±V I/O  
1 Meg x 18  
-±  
-6  
-7.±  
-10  
MT±8L1MY18P  
MT±8L±12Y32P  
MT±8L±12Y36P  
±12K x 32  
±12K x 36  
Part Number Example:  
2.±V VDD, 2.±V I/O  
1 Meg x 18  
±12K x 32  
±12K x 36  
Packages  
MT58L512Y36PT-10  
MT±8V1MV18P  
MT±8V±12V32P  
MT±8V±12V36P  
General Description  
The Micron® SyncBurst™ SRAM family employs  
high-speed, low-power CMOS designs that are fabri-  
cated using an advanced CMOS process.  
100-pin TQFP  
T
16±-ball, 13mm x 1±mm FBGA  
Operating Temperature Range  
Commercial (0ºC ? TA ? +70ºC)  
F1  
Microns 18Mb SyncBurst SRAMs integrate a 1 Meg x  
18, ±12K x 32, or ±12K x 36 SRAM core with advanced  
synchronous peripheral circuitry and a 2-bit burst  
counter. All synchronous inputs pass through registers  
controlled by a positive-edge-triggered single-clock  
input (CLK). The synchronous inputs include all  
addresses, all data inputs, active LOW chip enable  
(CE#), two additional chip enables for easy depth  
expansion (CE2, CE2#), burst control inputs (ADSC#,  
None  
IT2  
Industrial (-40ºC ? TA ? +8±ºC)  
NOTE:  
1. A Part Marking Guide for the FBGA devices can be found on  
Micron’s Web site—http://www.micron.com/numberguide.  
2. Contact factory for availability of Industrial Temperature  
devices.  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
©2003 Micron Technology, Inc.  
1
PRODUCTS AND SPECIFICATIONS DISCUSSED HEREIN ARE SUBJECT TO CHANGE BY MICRON WITHOUT NOTICE.  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
ADSP#, ADV#), byte write enables (BWx#), and global  
write (GW#).  
DQPb; BWc# controls DQc pins/balls and DQPc; BWd#  
controls DQd pins/balls and DQPd. GW# LOW causes  
all bytes to be written. Parity bits are only available on  
the x18 and x36 versions.  
Asynchronous inputs include the output enable  
(OE#), clock (CLK) and snooze enable (ZZ). There is  
also a burst mode input (MODE) that selects between  
interleaved and linear burst modes. The data out (Q) is  
enabled by OE#. WRITE cycles can be from one to two  
bytes wide (x18) or from one to four bytes wide (x32/  
x36), as controlled by the write control inputs.  
This device incorporates a single-cycle deselect fea-  
ture during READ cycles. If the device is immediately  
deselected after a READ cycle, the output bus goes to a  
t
High-Z state KQHZ nanoseconds after the rising edge  
of clock.  
Burst operation can be initiated with either address  
status processor (ADSP#) or address status controller  
(ADSC#) inputs. Subsequent burst addresses can be  
internally generated as controlled by the burst  
advance input (ADV#).  
The device is ideally suited for Pentium and Pow-  
erPC pipelined systems and systems that benefit from  
a very wide, high-speed data bus. The device is also  
ideal in generic 16-, 18-, 32-, 36-, 64-, and 72-bit-wide  
applications.  
Address and write control are registered on-chip to  
simplify WRITE cycles. This allows self-timed WRITE  
cycles. Individual byte enables allow individual bytes  
to be written. During WRITE cycles on the x18 device,  
BWa# controls DQa pins/balls and DQPa; BWb# con-  
trols DQb pins/balls and DQPb. During WRITE cycles  
on the x32 and x36 devices, BWa# controls DQa pins/  
balls and DQPa; BWb# controls DQb pins/balls and  
Please refer to Microns Web site (www.micron.com/  
sramds) for the latest data sheet.  
DUAL VOLTAGE I/O  
The 3.3V VDD device is tested for 3.3V and 2.±V I/O  
function. The 2.±V VDD device is tested for only 2.±V  
I/O function.  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
2
©2003 Micron Technology, Inc.  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
Figure 3: Functional Block Diagram  
1 Meg x 18  
20  
18  
20  
20  
2
ADDRESS  
REGISTER  
SA0, SA1, SAs  
MODE  
SA0-SA1  
Q1  
SA1'  
ADV#  
CLK  
BINARY  
COUNTER AND  
LOGIC  
SA0'  
CLR  
Q0  
ADSC#  
ADSP#  
BYTE “b”  
WRITE DRIVER  
BYTE “b”  
WRITE REGISTER  
9
9
9
9
OUTPUT  
BUFFERS  
BWb#  
DQs  
DQPa  
DQPb  
1 Meg x 9 x 2  
MEMORY  
ARRAY  
OUTPUT  
REGISTERS  
SENSE  
AMPS  
18  
18  
18  
18  
BYTE “a”  
WRITE DRIVER  
E
BYTE “a”  
WRITE REGISTER  
BWa#  
BWE#  
INPUT  
REGISTERS  
GW#  
18  
ENABLE  
REGISTER  
CE#  
CE2  
PIPELINED  
ENABLE  
CE2#  
OE#  
2
Figure 4: Functional Block Diagram  
512K x 32/36  
19  
17  
19  
19  
ADDRESS  
REGISTER  
SA0, SA1, SAs  
MODE  
SA0-SA1  
SA1'  
SA0'  
Q1  
BINARY  
COUNTER  
ADV#  
CLK  
CLR  
Q0  
ADSC#  
ADSP#  
BYTE “d”  
WRITE DRIVER  
BYTE “d”  
WRITE REGISTER  
9
9
9
9
BWd#  
BWc#  
512K x 8 x 4  
(x32)  
BYTE “c”  
WRITE DRIVER  
BYTE “c”  
WRITE REGISTER  
OUTPUT  
BUFFERS  
OUTPUT  
REGISTERS  
512K x 9 x 4  
(x36)  
SENSE  
AMPS  
DQs  
36  
36  
36  
36  
DQPa  
DQPb  
DQPc  
DQPd  
E
BYTE “b”  
WRITE DRIVER  
MEMORY  
ARRAY  
BYTE “b”  
WRITE REGISTER  
9
9
9
9
BWb#  
BYTE “a”  
WRITE DRIVER  
BYTE “a”  
WRITE REGISTER  
BWa#  
BWE#  
INPUT  
REGISTERS  
36  
GW#  
CE#  
CE2  
ENABLE  
REGISTER  
PIPELINED  
ENABLE  
CE2#  
OE#  
4
NOTE:  
Functional block diagrams illustrate simplified device operation. See truth tables, pin/ball descriptions, and tim-  
ing diagrams for detailed information.  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
3
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
Figure 5: Pin layout (Top View)  
100-Pin TQFP  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51  
SA  
SA  
81  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
SA  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
SA  
ADV#  
ADSP#  
ADSC#  
OE# (G#)  
BWE#  
GW#  
CLK  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
VSS  
VDD  
VDD  
VSS  
DNU  
DNU  
SA0  
SA1  
SA  
x18  
2
2
CE2#  
BWa#  
BWb#  
NC  
NC  
CE2  
SA  
CE#  
SA  
SA  
SA  
SA  
MODE  
(LBO#)  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51  
81  
SA  
SA  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
VDD  
VSS  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
ADV#  
ADSP#  
ADSC#  
OE# (G#)  
BWE#  
GW#  
CLK  
VSS  
VDD  
x32/x36  
2
2
CE2#  
BWa#  
BWb#  
BWc#  
BWd#  
CE2  
DNU  
DNU  
SA0  
SA1  
SA  
SA  
CE#  
SA  
SA  
SA  
SA  
MODE  
(LBO#)  
1 2 3 4 5 6 7 8 9 10 11 12 1314151617181920 21 22 2324 252627 28 29 30  
NOTE:  
1. No Function (NF) is used on the x32 version. Parity (DQPx) is used on the x36 version.  
2. Pins 39 and 38 are reserved for address expansion, 36Mb and 72Mb, respectively.  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
4
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
Table 1:  
TQFP Pin Descriptions  
SYMBOL  
TYPE  
DESCRIPTION  
ADSC#  
Input Synchronous Address Status Controller: This active LOW input interrupts any ongoing burst,  
causing a new external address to be registered. A READ or WRITE is performed using the new  
address if CE# is LOW. ADSC# is also used to place the chip into power-down state when CE# is  
HIGH.  
ADSP#  
ADV#  
Input Synchronous Address Status Processor: This active LOW input interrupts any ongoing burst,  
causing a new external address to be registered. A READ is performed using the new address,  
independent of the byte write enables and ADSC#, but dependent upon CE#, CE2, and CE2#.  
ADSP# is ignored if CE# is HIGH. Power-down state is entered if CE2 is LOW or CE2# is HIGH.  
Input Synchronous Address Advance: This active LOW input is used to advance the internal burst  
counter, controlling burst access after the external address is loaded. A HIGH on this pin  
effectively causes wait states to be generated (no address advance). To ensure use of correct  
address during a WRITE cycle, ADV# must be HIGH at the rising edge of the first clock after an  
ADSP# cycle is initiated.  
BWa#  
BWb#  
BWc#  
BWd#  
Input  
Synchronous Byte Write: These active LOW inputs allow individual bytes to be written when a  
WRITE cycle is active and must meet the setup and hold times around the rising edge of CLK.  
BWs need to be asserted on the same cycle as the address. To enable the BW’s functionality, the  
byte write enable (BWE#) input must be asserted LOW. BWa# controls DQa pins; BWb# controls  
DQb pins; BWc# controls DQc pins; and BWd# controls DQa pins.  
BWE#  
CE#  
Input  
Byte Write Enable: This active LOW input permits BYTE WRITE operations and must meet the  
setup and hold times around the rising edge of CLK.  
Input Synchronous Chip Enable: This active LOW input is used to enable the device and conditions the  
internal use of ADSP#. CE# is sampled only when a new external address is loaded.  
CE2#  
CE2  
Input  
Synchronous Chip Enable: This active LOW input is used to enable the device and is sampled only  
when a new external address is loaded.  
Input  
Synchronous Chip Enable: This active HIGH input is used to enable the device and is sampled only  
when a new external address is loaded.  
CLK  
Input Clock: This signal registers the address, data, chip enable, byte write enables, and burst control  
inputs on its rising edge. All synchronous inputs must meet setup and hold times around the  
clock’s rising edge.  
GW#  
Input  
Global Write: This active LOW input allows a full 18-, 32-, or 36-bit WRITE to occur independent  
of the BWE# and BWx# lines and must meet the setup and hold times around the rising edge of  
CLK.  
MODE (LBO#)  
OE# (G#)  
Input  
Mode: This input selects the burst sequence. A LOW on this pin selects “linear burst.” NC or HIGH  
on this pin selects “interleaved burst.” Do not alter input state while device is operating. LBO# is  
the JEDEC-standard term for MODE.  
Input Output Enable: This active LOW, asynchronous input enables the data I/O output drivers. G# is  
the JEDEC-standard term for OE#.  
SA0  
SA1  
SA  
Input  
Synchronous Address Inputs: These inputs are registered and must meet the setup and hold  
times around the rising edge of CLK.  
ZZ  
Input  
Snooze Enable: This active HIGH, asynchronous input causes the device to enter a low-power  
standby mode in which all data in the memory array is retained. When ZZ is active, all other  
inputs are ignored. This pin has an internal pull-down and can be left unconnected.  
DQa  
DQb  
DQc  
DQd  
Input/  
Output  
SRAM Data I/Os: For the x18 version, byte “a” is associated with DQa pins; byte “b” is associated  
with DQb pins. For the x32 and x36 versions, byte “a” is associated with DQa pins; byte “b” is  
associated with DQb pins; byte “c” is associated with DQc pins; byte “d” is associated with DQd  
pins. Input data must meet setup and hold times around the rising edge of CLK.  
NF/DQPa  
NF/DQPb  
NF/DQPc  
NF/DQPd  
NF  
I/O  
No Function/Parity Data I/Os: On the x32 version, these pins are No Function (NF). On the x18  
version, byte “a” parity is DQPa; byte “b” parity is DQPb. On the x36 version, byte “a” parity is  
DQPa; byte “b” parity is DQPb; byte “c” parity is DQPc; byte “d” parity is DQPd.  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
5
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
Table 1:  
TQFP Pin Descriptions (continued)  
SYMBOL  
TYPE  
DESCRIPTION  
VDD  
Supply Power Supply: See DC Electrical Characteristics and Operating Conditions for range.  
VDDQ  
Supply Isolated Output Buffer Supply: See DC Electrical Characteristics and Operating Conditions for  
range.  
VSS  
Supply  
Ground: GND.  
DNU  
Do Not Use: These pins are internally connected to the die. They may be left floating or  
connected to ground to improve package heat dissipation.  
NC  
NF  
No Connect: These pins are not internally connected to the die. They may be left floating, driven  
by signals, or connected to ground to improve package heat dissipation.  
No Function: These pins are internally connected to the die and have the capacitance of an input  
pin. They may be left floating, driven by signals, or connected to ground to improve package  
heat dissipation.  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
6
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
Figure 6: Ball Layout (Top View)  
165-Ball FBGA  
x18  
x32/x36  
1
2
3
4
5
6
7
8
9
10  
11  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
A
B
C
D
E
A
B
C
D
E
A
B
C
D
E
NC  
NC  
SA  
SA  
NC  
CE# BWb#  
NC  
CE2# BWE# ADSC# ADV#  
SA  
SA  
NC  
NC  
NC  
SA  
SA  
NC  
CE# BWc# BWb# CE2# BWE# ADSC# ADV#  
SA  
NC  
NC  
CE2  
NC  
VSS  
BWa# CLK  
GW# OE# (G#) ADSP# SA  
CE2 BWd# BWa# CLK  
GW# OE# (G#) ADSP# SA  
1
1
NC  
VDDQ  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
TD0  
TCK  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQPa  
DQa  
DQa  
DQa  
DQa  
ZZ  
NF/DQPc  
DQc  
DQc  
DQc  
DQc  
VDD  
VDDQ  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
TD0  
TCK  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VDDQ  
NC NF/DQPb  
NC  
DQb VDDQ  
DQb VDDQ  
DQb VDDQ  
DQb VDDQ  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
DQc VDDQ  
DQc VDDQ  
DQc VDDQ  
DQc VDDQ  
VDDQ DQb DQb  
VDDQ DQb DQb  
VDDQ DQb DQb  
VDDQ DQb DQb  
NC  
F
F
F
F
NC  
G
H
J
G
H
J
G
H
J
G
H
J
NC  
VDD  
DQb  
DQb  
DQb  
DQb  
DQPb  
NC  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
NC  
NC  
NC  
ZZ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
SA  
VDDQ DQa  
VDDQ DQa  
VDDQ DQa  
VDDQ DQa  
NC  
DQd DQd VDDQ  
DQd DQd VDDQ  
DQd DQd VDDQ  
VDDQ DQa  
VDDQ DQa  
VDDQ DQa  
VDDQ DQa  
DQa  
DQa  
DQa  
DQa  
K
L
K
L
K
L
K
L
NC  
NC  
M
N
P
M
N
P
M
N
P
M
N
P
NC  
DQd DQd VDDQ  
1
VDDQ  
SA  
NC  
SA  
SA  
NC  
1
NF/DQPd  
NC  
VDDQ  
VDDQ  
SA  
NC NF/DQPa  
2
NC  
SA  
TDI  
TMS  
SA1  
SA0  
SA  
SA  
2
NC  
NC  
SA  
SA  
TDI  
TMS  
SA1  
SA0  
SA  
SA  
SA  
SA  
SA  
R
R
R
R
2
MODE NC  
(LBO#)  
SA  
SA  
SA  
SA  
SA  
2
MODE NC  
(LBO#)  
SA  
SA  
SA  
SA  
TOP VIEW  
TOP VIEW  
NOTE:  
1. No Function (NF) is used on the x32 version. Parity (DQPx) is used on the x36 version.  
2. Balls 2R and 2P are reserved for address expansionely, 36Mb and 72Mb, respectively.  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
7
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
Table 2:  
FBGA Ball Descriptions  
SYMBOL  
TYPE  
DESCRIPTION  
ADSC#  
Input Synchronous Address Status Controller: This active LOW input interrupts any ongoing burst,  
causing a new extrnal address to be registered. A READ or WRITE is performed using the new  
address if CE# is LOW. ADSC# is also used to place the chip into power-down state when CE# is  
HIGH.  
ADSP#  
ADV#  
Input Synchronous Address Status Processor: This active LOW input interrupts any ongoing burst,  
causing a new external address to be registered. A READ is performed using the new address,  
independent of the byte write enables and ADSC#, but dependent upon CE#, CE2, and CE2#.  
ADSP# is ignored if CE# is HIGH. Power-down state is entered if CE2 is LOW or CE2# is HIGH.  
Input Synchcronous Address Advance: This active LOW input is used to advance the internal burst  
counter, controlling busrt access after the external address is loaded. A HIGH on ADV#  
effectively causes wait states to be generated (no address advance). To ensure use of correct  
address during a WRITE cycle, ADV# must be HIGH at the rising edge of the first clock after an  
ADSP# cycle is initiated.  
BWa#  
BWb#  
BWc#  
BWd#  
Input  
Synchronous Byte Write: These active LOW inputs allow individual bytes to be written when a  
WRITE cycle is active and must meet the setup and hold times around the rising edge of CLK.  
BWs need to be asserted on the same cycle as the address. To enable the BW’s functionality, the  
byte write enable (BWE#) input must be asserted LOW. BWa# controls DQa balls; BWb# controls  
DQb balls; BWc# controls DQc balls; and BWd# controls DQa balls.  
BWE#  
CE#  
Input  
Byte Write Enable: This active LOW input permits BYTE WRITE operations and must meet the  
setup and hold times around the rising edge of CLK.  
Input Synchronous Chip Enable: This active LOW input is used to enable the device and conditions the  
internal use of ADSP#. CE# is sampled only when a new external address is loaded.  
CE2#  
CE2  
Input  
Synchronous Chip Enable: This active LOW input is used to enable the device and is sampled only  
when a new external address is loaded.  
Input  
Synchronous Chip Enable: This active HIGH input is used to enable the device and is sampled  
only when a new external address is loaded.  
CLK  
Input Clock: This signal registers the address, data, chip enable, byte write enables, and burst control  
inputs on its rising edge. All synchronous inputs must meet setup and hold times around the  
clock’s rising edge.  
GW#  
Input  
Global Write: This active LOW input allows a full 18-, 32-, or 36-bit WRITE to occur independent  
of the BWE# and BWx# lines and must meet the setup and hold times around the rising edge of  
CLK.  
MODE (LBO#)  
OE#(G#)  
Input  
Mode: This input selects the burst sequence. A LOW on this ball selects “linear burst.” NC or  
HIGH on this ball selects “interleaved burst.” Do not alter input state while device is operating.  
LBO# is the JEDEC-standard term for MODE.  
Input Output Enable: This active LOW, asynchronous input enables the data I/O output drivers. G# is  
the JEDEC-standard term for OE#.  
SA0  
SA1  
SA  
Input  
Synchronous Address Inputs: These inputs are registered and must meet the setup and hold  
times around the rising edge of CLK.  
TMS  
TDI  
Input  
IEEE 1149.1 test inputs: JEDEC-standard 3.3V or 2.5V I/O levels. These balls may be left as No  
Connects if the JTAG function is not used in the circuit.  
TCK  
ZZ  
Input Snooze Enable: This active HIGH, asynchronous input causes the device to enter a low-power  
standby mode in which all data in the memory array is retained. When ZZ is active, all other  
inputs are ignored. This ball has an internal pull-down and can be left unconnected.  
DQa  
DQb  
DQc  
DQd  
Input/  
SRAM Data I/Os: For the x18 version, byte “a” is associated with DQa pins; byte “b” is associated  
Output with DQb balls. For the x32 and x36 versions, byte “a” is associated with DQa balls; byte “b” is  
associated with DQb balls; byte “c” is associated with DQc balls; byte “d” is associated with DQd  
balls. Input data must meet setup and hold times around the rising edge of CLK.  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
8
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
Table 2:  
FBGA Ball Descriptions (continued)  
SYMBOL  
TYPE  
DESCRIPTION  
NF/DQPa  
NF/DQPb  
NF/DQPc  
NF/DQPd  
NF  
I/O  
No Function/Parity Data I/Os: On the x32 version, these pins are No Function (NF). On the x18  
version, byte “a” parity is DQPa; byte “b” parity is DQPb. On the x36 version, byte “a” parity is  
DQPa; byte “b” parity is DQPb; byte “c” parity is DQPc; byte “d” parity is DQPd.  
TDO  
VDD  
Output  
Supply  
Supply  
IEEE 1149.1 test outputs: JEDEC-standard 3.3V or 2.5V I/O levels.  
Power Supply: See DC Electrical Characteristics and Operating Conditions for range.  
VDDQ  
Isolated Output Buffer Supply: See DC Electrical Characteristics and Operating Conditions for  
range.  
VSS  
NC  
Supply Ground: GND.  
No Connect: These balls are not internally connected to the die. They may be left floating,  
driven by signals, or connected to ground to improve package heat dissipation.  
NF  
No Function: These balls are internally connected to the die and have the capacitance of an  
input pin. They may be left floating, driven by signals, or connected to ground to improve  
package heat dissipation.  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
9
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
Table 3:  
Interleaved Burst Address Table (Mode = NC or HIGH)  
FIRST ADDRESS  
(EXTERNAL)  
SECOND ADDRESS  
(INTERNAL)  
THIRD ADDRESS  
(INTERNAL)  
FOURTH ADDRESS  
(INTERNAL)  
X...X00  
X...X01  
X...X10  
X...X11  
X...X01  
X...X00  
X...X11  
X...X10  
X...X10  
X...X11  
X...X00  
X...X01  
X...X11  
X...X10  
X...X01  
X...X00  
Table 4:  
Linear Burst Address Table (Mode = LOW)  
FIRST ADDRESS  
(EXTERNAL)  
SECOND ADDRESS  
(INTERNAL)  
THIRD ADDRESS  
FOURTH ADDRESS  
(INTERNAL)  
(INTERNAL)  
X...X00  
X...X01  
X...X10  
X...X11  
X...X01  
X...X10  
X...X11  
X...X00  
X...X10  
X...X11  
X...X00  
X...X01  
X...X11  
X...X00  
X...X01  
X...X10  
Table 5:  
Partial Truth Table For WRITE Commands (x18)  
FUNCTION  
GW#  
BWE#  
BWa#  
BWb#  
READ  
H
H
H
H
H
L
H
L
X
H
L
X
H
H
L
READ  
WRITE Byte “a”  
WRITE Byte “b”  
WRITE All Bytes  
WRITE All Bytes  
L
L
H
L
L
L
X
X
X
NOTE:  
Using BWE# and BWa# through BWd#, any one or more bytes may be written.  
Table 6:  
Partial Truth Table For WRITE Commands (x32/x36)  
FUNCTION  
GW#  
BWE#  
BWa#  
BWb#  
BWc#  
BWd#  
READ  
H
H
H
H
L
H
L
X
H
L
X
H
H
L
X
H
H
L
X
H
H
L
READ  
WRITE Byte “a”  
WRITE All Bytes  
WRITE All Bytes  
L
L
L
X
X
X
X
X
NOTE:  
Using BWE# and BWa# through BWd#, any one or more bytes may be written.  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
10  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
Table 7:  
Notes: 1–8  
Truth Table  
ADDRESS  
USED  
OPERATION  
CE# CE2# CE2 ZZ ADSP# ADSC# ADV# WRITE# OE# CLK  
DQ  
None  
None  
None  
None  
None  
None  
H
X
X
H
X
H
X
X
L
X
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L–H  
L–H  
L–H  
L–H  
L–H  
X
High-Z  
DESELECT Cycle,  
Power-Down  
L
L
L
L
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
DESELECT Cycle,  
Power-Down  
DESELECT Cycle,  
Power-Down  
L
X
L
L
L
L
L
H
H
X
DESELECT Cycle,  
Power-Down  
L
X
X
L
L
DESELECT Cycle,  
Power-Down  
SNOOZE MODE,  
Power-Down  
X
H
X
External  
External  
External  
External  
External  
Next  
L
L
L
L
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
X
L
X
X
X
X
X
L
X
X
L
L
H
X
L
L–H  
L–H  
L–H  
L–H  
L–H  
L–H  
L–H  
L–H  
L–H  
L–H  
L–H  
L–H  
L–H  
L–H  
L–H  
L–H  
L–H  
Q
READ Cycle, Begin Burst  
READ Cycle, Begin Burst  
WRITE Cycle, Begin Burst  
READ Cycle, Begin Burst  
READ Cycle, Begin Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
WRITE Cycle, Continue Burst  
WRITE Cycle, Continue Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
WRITE Cycle, Suspend Burst  
WRITE Cycle, Suspend Burst  
High-Z  
L
L
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
D
L
L
L
H
H
H
H
H
H
L
Q
L
L
L
H
L
High-Z  
X
X
H
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
Q
Next  
L
H
L
High-Z  
Next  
L
Q
Next  
L
H
X
X
L
High-Z  
Next  
L
D
Next  
L
L
D
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
Q
High-Z  
Q
H
L
H
X
X
High-Z  
D
L
D
NOTE:  
1. X means “Don’t Care.” # means active LOW. H means logic HIGH. L means logic LOW.  
2. For WRITE#, L means any one or more byte write enable signals (BWa#, BWb#, BWc#, or BWd#) and BWE# are LOW  
or GW# is LOW. WRITE# = H for all BWx#, BWE#, GW# HIGH.  
3. BWa# enables WRITEs to DQa pins/balls and DQPa. BWb# enables WRITEs to DQb pins/balls and DQPb. BWc# enables  
WRITEs to DQc pins/balls and DQPc. BWd# enables WRITEs to DQd pins/balls and DQPd. DQPa and DQPb are only  
available on the x18 and x36 versions. DQPc and DQPd are only available on the x36 version.  
4. All inputs except OE# and ZZ must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.  
5. Wait states are inserted by suspending burst.  
6. For a WRITE operation following a READ operation, OE# must be HIGH before the input data setup time and held  
HIGH throughout the input data hold time.  
7. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.  
8. ADSP# LOW always initiates an internal READ at the L–H edge of CLK. A WRITE is performed by setting one or more  
byte write enable signals and BWE# LOW or GW# LOW for the subsequent L–H edge of CLK. Refer to WRITE timing  
diagram for clarification.  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
11  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
Stresses greater than those listed may cause perma-  
nent damage to the device. This is a stress rating only,  
and functional operation of the device at these or any  
other conditions above those indicated in the opera-  
tional sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for  
extended periods may affect reliability.  
Maximum Junction Temperature depends upon  
package type, cycle time, loading, ambient tempera-  
ture and airflow.  
Absolute Maximum Ratings  
3.3V VDD  
Voltage on VDD Supply  
Relative to VSS .......................................-0.±V to +4.6V  
Voltage on VDDQ Supply  
Relative to VSS .......................................-0.±V to +4.6V  
VIN (DQx) ....................................... -0.±V to VDDQ + 0.±V  
VIN (inputs) ....................................... -0.±V to VDD + 0.±V  
Storage Temperature (TQFP).................-±±ºC to +1±0ºC  
Storage Temperature (FBGA).................-±±ºC to +12±ºC  
Junction Temperature .......................................... +1±0ºC  
Short Circuit Output Current ...............................100mA  
2.5V VDD  
Voltage on VDD Supply  
Relative to VSS .......................................-0.3V to +3.6V  
Voltage on VDDQ Supply  
Relative to VSS .......................................-0.3V to +3.6V  
VIN (DQx) ....................................... -0.3V to VDDQ + 0.3V  
VIN (inputs) ....................................... -0.3V to VDD + 0.3V  
Storage Temperature (TQFP).................-±±ºC to +1±0ºC  
Storage Temperature (FBGA).................-±±ºC to +12±ºC  
Junction Temperature .......................................... +1±0ºC  
Short Circuit Output Current ...............................100mA  
Table 8:  
3.3V VDD, 3.3V I/O DC Electrical Characteristics and Operating Conditions  
Notes appear following parameter tables on page 17; 0ºC ? TA ? +70ºC; VDD and VDDQ = 3.3V 0.165V unless otherwise  
noted  
DESCRIPTION  
CONDITIONS  
SYMBOL  
MIN  
MAX  
UNITS  
NOTES  
VIH  
VIL  
ILI  
2.0  
-0.3  
-1.0  
-1.0  
VDD + 0.3  
0.8  
V
V
1, 2  
1, 2  
4
Input High (Logic 1) Voltage  
Input Low (Logic 0) Voltage  
Input Leakage Current  
0V ? VIN ? VDD  
1.0  
µA  
µA  
Output(s) disabled,  
ILO  
1.0  
Output Leakage Current  
0V ? VIN ? VDD  
IOH = -4.0mA  
IOL = 8.0mA  
VOH  
VOL  
2.4  
V
V
V
V
1
1
Output High Voltage  
Output Low Voltage  
Supply Voltage  
0.4  
VDD  
3.135  
3.135  
3.465  
VDD  
1
VDDQ  
1, 5  
Isolated Output Buffer Supply  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
12  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
Table 9:  
3.3V VDD, 2.5V I/O DC Electrical Characteristics and Operating Conditions  
Notes appear following parameter tables on page 17; 0ºC ? TA ? +70ºC; VDD = 3.3V 0.165V and VDDQ = 2.5V 0.125V unless  
otherwise noted  
DESCRIPTION  
CONDITIONS  
SYMBOL  
MIN  
MAX  
UNITS  
NOTES  
Data bus (DQx)  
Inputs  
VIHQ  
VIH  
VIL  
1.7  
1.7  
VDDQ + 0.3  
VDD + 0.3  
0.7  
V
V
1, 2  
1, 2  
1, 2  
4
Input High (Logic 1) Voltage  
-0.3  
-1.0  
-1.0  
V
Input Low (Logic 0) Voltage  
Input Leakage Current  
0V ? VIN ? VDD  
ILI  
1.0  
µA  
µA  
Output(s) disabled,  
ILO  
1.0  
Output Leakage Current  
0V ? VIN ? VDDQ (DQx)  
IOH = -2.0mA  
IOH = -1.0mA  
IOL = 2.0mA  
IOL = 1.0mA  
VOH  
VOH  
VOL  
1.7  
2.0  
V
V
V
V
V
V
1
1
Output High Voltage  
Output Low Voltage  
0.7  
1
VOL  
0.4  
1
VDD  
VDDQ  
3.135  
2.375  
3.465  
2.625  
1
Supply Voltage  
1, 5  
Isolated Output Buffer Supply  
Table 10: 2.5V VDD, 2.5V I/O DC Electrical Characteristics and Operating Conditions  
Notes appear following parameter tables on page 17; 0ºC ? TA ? +70ºC; VDD and VDDQ = 2.5V 0.125V unless otherwise  
noted  
DESCRIPTION  
CONDITIONS  
SYMBOL  
MIN  
MAX  
UNITS  
NOTES  
Data bus (DQx)  
Inputs  
VIHQ  
VIH  
VIL  
1.7  
1.7  
VDDQ + 0.3  
VDD + 0.3  
0.7  
V
V
1, 3  
1, 3  
1, 3  
4
Input High (Logic 1) Voltage  
Input Low (Logic 0) Voltage  
Input Leakage Current  
-0.3  
-1.0  
-1.0  
V
0V ? VIN ? VDD  
ILI  
1.0  
µA  
µA  
Output Leakage Current  
Output(s) disabled,  
ILO  
1.0  
0V ? VIN ? VDDQ (DQx)  
Output High Voltage  
Output Low Voltage  
IOH = -2.0mA  
IOH = -1.0mA  
IOL = 2.0mA  
IOL = 1.0mA  
VOH  
VOH  
VOL  
1.7  
2.0  
V
V
V
V
V
V
1
1
0.7  
1
VOL  
0.4  
1
VDD  
VDDQ  
2.375  
2.375  
2.625  
2.625  
1
Supply Voltage  
1, 5  
Isolated Output Buffer Supply  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
13  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
Table 11: TQFP Capacitance  
Note 6; notes appear following parameter tables on page 17  
DESCRIPTION  
CONDITIONS  
SYMBOL  
TYP  
MAX  
UNITS  
CI  
CO  
CA  
4.2  
3.5  
4
5
4
5
5
pF  
pF  
pF  
pF  
Control Input Capacitance  
Input/Output Capacitance (DQ)  
Address Input Capacitance  
Clock Capacitance  
TA = 25ºC; f = 1 MHz;  
VDD = 3.3V  
CCK  
4.2  
Table 12: FBGA Capacitance  
Note 6; notes appear following parameter tables on page 17  
DESCRIPTION  
CONDITIONS  
SYMBOL  
TYP  
MAX  
UNITS  
CI  
CO  
CA  
4
4
4
5
5
pF  
pF  
pF  
pF  
Control Input Capacitance  
Input/Output Capacitance (DQ)  
Address Input Capacitance  
Clock Capacitance  
4.5  
5
TA = 25ºC; f = 1 MHz;  
VDD = 3.3V  
CCK  
5.5  
Table 13: TQFP Thermal Resistance  
Note 6; notes appear following parameter tables on page 17  
DESCRIPTION  
CONDITIONS  
SYMBOL  
TYP  
UNITS  
Junction to Ambient  
(Airflow of 1m/s, two-layer  
board)  
28.9  
°C/W  
Test conditions follow standard test methods and  
procedures for measuring thermal impedance,  
per EIA/JESD51.  
JA  
Thermal Resistance  
Junction to Case (Top)  
4.2  
°C/W  
JC  
Table 14: FBGA Thermal Resistance  
Note 6; notes appear following parameter tables on page 17  
DESCRIPTION  
CONDITIONS  
SYMBOL  
TYP  
UNITS  
32  
°C/W  
Junction to Ambient  
(Airflow of 1m/s, two-layer  
board)  
JA  
Test conditions follow standard test methods and  
procedures for measuring thermal impedance,  
per EIA/JESD51.  
Junction to Case (Top)  
1.7  
°C/W  
°C/W  
JC  
Junction to Board (Bottom)  
10.4  
JB  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
14  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
Table 15: 3.3V VDD IDD Operating Conditions and Maximum Limits  
(1 Meg x 18 and 512K x 36)  
Notes appear following parameter tables on page 17; 0ºC ? TA ? +70ºC; VDD and VDDQ = 3.3V 0.165V unless otherwise  
noted  
MAX  
DESCRIPTION  
CONDITIONS  
SYM TYP  
-5  
-6  
-7.5  
-10  
UNITS NOTES  
Power Supply  
Current:  
Device selected; All inputs ? VIL or  
t
O VIH; Cycle time O KC (MIN);  
IDD  
300  
120  
420  
380  
340  
300  
mA  
mA  
7, 8, 9  
7, 8, 9  
VDD = MAX; Outputs open  
Operating  
Device selected; VDD = MAX;  
ADSC#, ADSP#, GW#, BWx#,  
ADV# OꢁVIH; All inputs ? VSS + 0.2  
Power Supply  
Current: Idle  
IDD1  
180  
30  
170  
30  
160  
30  
150  
30  
t
or O VDDQ - 0.2; Cycle time O KC (MIN)  
Device deselected; VDD = MAX;  
All inputs ? VSS + 0.2  
or O VDDQ - 0.2; All inputs static;  
CLK frequency = 0  
CMOS Standby  
Clock Running  
Snooze Mode  
ISB2  
8
mA  
8, 9  
Device deselected; VDD = MAX; ADSC#,  
ADSP#, GW#, BWx#,  
ISB4  
120  
8
180  
30  
170  
30  
160  
30  
150  
30  
mA  
mA  
8, 9  
9
ADV# OꢁVIH; All inputs ? VSS + 0.2  
t
or O VDDQ - 0.2; Cycle time O KC (MIN)  
ZZ OꢁVIH  
ISB2Z  
Table 16: 2.5V VDD, IDD Operating Conditions and Maximum Limits  
(1 Meg x 18 and 512K x 36)  
Notes appear following parameter tables on page 17; 0ºC ? TA ? +70ºC; VDD and VDDQ = 2.5V 0.125V unless otherwise  
noted  
MAX  
DESCRIPTION  
CONDITIONS  
SYM TYP  
-5  
-6  
-7.5  
-10  
UNITS NOTES  
Power Supply  
Current:  
Device selected; All inputs ? VIL or  
t
O VIH; Cycle time O KC (MIN);  
IDD  
230  
90  
350  
300  
260  
230  
mA  
mA  
7, 8, 10  
7, 8, 10  
VDD = MAX; Outputs open  
Operating  
Device selected; VDD = MAX;  
ADSC#, ADSP#, GW#, BWx#,  
ADV# OꢁVIH; All inputs ? VSS + 0.2  
Power Supply  
Current: Idle  
IDD1  
150  
30  
130  
30  
110  
30  
90  
30  
t
or O VDDQ - 0.2; Cycle time O KC (MIN)  
Device deselected; VDD = MAX;  
All inputs ? VSS + 0.2  
or O VDDQ - 0.2; All inputs static;  
CLK frequency = 0  
CMOS Standby  
Clock Running  
Snooze Mode  
ISB2  
8
mA  
8, 10  
Device deselected; VDD = MAX; ADSC#,  
ADSP#, GW#, BWx#,  
ISB4  
90  
8
150  
30  
130  
30  
110  
30  
90  
30  
mA  
mA  
8, 10  
10  
ADV# OꢁVIH; All inputs ? VSS + 0.2  
t
or O VDDQ - 0.2; Cycle time O KC (MIN)  
ZZ OꢁVIH  
ISB2Z  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
15  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
Table 17: AC Electrical Characteristics and Recommended Operating Conditions  
Note 11; notes appear following parameter tables on page 17; 0ºC ? TA ? +70ºC; TJ ? 95ºC (commercial); TJ ? 110ºC  
(industrial); VDD = 3.3V 0.165V unless otherwise noted  
-5  
-6  
-7.5  
MAX  
-10  
MAX UNITS NOTES  
DESCRIPTION  
SYM  
MIN  
MAX  
MIN  
MAX  
MIN  
MIN  
Clock  
tKC  
fKF  
tKH  
tKL  
5.0  
6.0  
7.5  
10.0  
ns  
MHz  
ns  
Clock cycle time  
200  
166  
133  
4.0  
100  
5.0  
Clock frequency  
Clock HIGH time  
Clock LOW time  
2.0  
2.0  
2.3  
2.3  
2.5  
2.5  
3.0  
3.0  
12  
12  
ns  
Output Times  
Clock to output valid  
tKQ  
3.1  
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tKQX  
tKQLZ  
tKQHZ  
tOEQ  
tOELZ  
tOEHZ  
1.0  
0
1.5  
0
1.5  
0
1.5  
0
13  
Clock to output invalid  
Clock to output in Low-Z  
Clock to output in High-Z  
OE# to output valid  
6, 13, 14  
6, 13, 14  
15  
3.1  
3.1  
3.5  
3.5  
4.2  
4.0  
5.0  
5.0  
0
0
0
0
6, 13, 14  
6, 13, 14  
OE# to output in Low-Z  
OE# to output in High-Z  
3.0  
3.0  
3.5  
4.5  
Setup Times  
tAS  
tADSS  
Address  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
2.0  
2.0  
ns  
ns  
16, 17  
16, 17  
Address status (ADSC#,  
ADSP#)  
tAAS  
tWS  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
2.0  
2.0  
ns  
ns  
16, 17  
16, 17  
Address advance (ADV#)  
Write signals  
(BWa#-BWd#, BWE#, GW#)  
tDS  
tCES  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
2.0  
2.0  
ns  
ns  
16, 17  
16, 17  
Data-in  
Chip enables (CE#, CE2#,  
CE2)  
Hold Times  
tAH  
tADSH  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
16, 17  
16, 17  
Address  
Address status (ADSC#,  
ADSP#)  
tAAH  
tWH  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
16, 17  
16, 17  
Address advance (ADV#)  
Write signals  
(BWa#-BWd#, BWE#, GW#)  
tDH  
tCEH  
Data-in  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
16, 17  
16, 17  
Chip enables (CE#, CE2#,  
CE2)  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
16  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
Notes  
1. All voltages referenced to VSS (GND).  
2. For 3.3V VDD:  
Figures 13 and 14 for 2.±V I/O unless otherwise  
noted.  
12. Measured as HIGH above VIH and LOW below VIL.  
13. This parameter is measured with the output load-  
ing shown in Figure 12 for 3.3V I/O and Figure 14  
for 2.±V I/O.  
14. Refer to Technical Note TN-±8-09, “Synchronous  
SRAM Bus Contention Design Considerations,”  
for a more thorough discussion of these parame-  
ters.  
1±. OE# is a “Don’t Care” when a byte write enable is  
sampled LOW.  
16. A WRITE cycle is defined by at least one byte write  
(BWa#–BWd#) being LOW, the byte write enable  
(BWE#) active, and ADSC# LOW for the required  
setup and hold times. A READ cycle is defined by  
the byte write enable (BWE#) being HIGH or  
ADSP# LOW for the required setup and hold  
times.  
17. This is a synchronous device. All addresses must  
meet the specified setup and hold times when  
either ADSC# or ADSP# is LOW and chip is  
enabled. All other synchronous inputs must meet  
the setup and hold times with stable logic levels  
for all rising edges of CLK when the chip is  
enabled. To remain enabled, chip enable must be  
valid at each rising edge when either ADSC# or  
ADSP# is LOW.  
t
Overshoot: VIH ? +4.6V for t ? KC/2 for I ? 20mA  
t
Undershoot: VIL O -0.7V for t ? KC/2 for I ? 20mA  
Power-up: VIH ? +3.6V and VDD ? 3.13±V for t ?  
200ms  
3. For 2.±V VDD:  
t
Overshoot: VIH ? +3.6V for t ? KC/2 for I ? 20mA  
t
Undershoot: VIL O -0.±V for t ? KC/2 for I ? 20mA  
Power-up: VIH ? +2.6±V and VDD ? 2.37±V for t ?  
200ms  
4. The MODE and ZZ pins/balls have an internal  
pull-up/pull-down and input leakage = ±10µA.  
±. VDDQ should never exceed VDD. VDD and VDDQ  
can be connected together.  
6. This parameter is sampled.  
7. IDD is specified with no output current and  
increases with faster cycle times. IDDQ increases  
with faster cycle times and greater output loading.  
8. “Device deselected” means device is in power-  
down mode as defined in the truth table. “Device  
selected” means device is active (not in power-  
down mode).  
9. Typical values are measured at 3.3V, 2±ºC, and  
10ns cycle time.  
10. Typical values are measured at 2.±V, 2±ºC, and  
10ns cycle time.  
11. Test conditions as specified with the output load-  
ing shown in Figures 11 and 12 for 3.3V I/O and  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
17  
©2003 Micron Technology, Inc.  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
Figure 7:  
READ Timing  
t
KC  
CLK  
t
t
KL  
KH  
t
t
ADSH  
ADSS  
ADSP#  
ADSC#  
t
t
ADSH  
ADSS  
t
t
AH  
AS  
A1  
A2  
A3  
Burst continued with  
ADDRESS  
t
t
WH  
WS  
new base address  
GW#, BWE#,  
BWa#-BWd#  
Deselect  
cycle  
t
t
CEH  
(NOTE 4)  
CES  
CE#  
(NOTE 2)  
t
t
AAH  
AAS  
ADV#  
OE#  
ADV#  
suspends  
burst.  
t
t
OEQ  
KQ  
(NOTE 3)  
High-Z  
t
t
OEHZ  
t
OELZ  
t
KQHZ  
KQX  
t
KQLZ  
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2 + 3)  
Q(A2)  
Q(A2 + 1)  
Q(A1)  
Q
t
KQ  
Burst wraps around  
to its initial state  
(NOTE 1)  
Single READ  
BURST READ  
DON’T CARE  
UNDEFINED  
NOTE:  
1. Q(A2) refers to output from address A2. Q(A2 + 1) refers to output from the next internal burst address following A2.  
2. CE2# and CE2 have timing identical to CE#. On this diagram, when CE# is LOW, CE2# is LOW and CE2 is HIGH. When CE#  
is HIGH, CE2# is HIGH and CE2 is LOW.  
3. Timing diagram is shown assuming that the device was not enabled before entering into this sequence. OE# does not  
cause Q to be driven until after the following clock rising edge. (This note applies to whole diagram.)  
4. Outputs are disabled within one clock cycle after deselect.  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
18  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
Figure 8:  
WRITE Timing  
t
KC  
CLK  
t
t
KL  
KH  
t
t
ADSH  
ADSS  
ADSP#  
ADSC# extends burst  
t
t
t
ADSH  
ADSS  
t
ADSH  
ADSS  
ADSC#  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Byte write signals are  
ignored for first cycle when  
ADSP# initiates burst  
t
WS  
t
WH  
BWE#,  
BWa#-BWd#  
t
t
WH (NOTE 5)  
WS  
GW#  
t
t
CEH  
CES  
CE#  
(NOTE 2)  
t
AAS  
t
AAH  
ADV#  
OE#  
ADV# suspends burst  
(NOTE 4)  
(NOTE 3)  
t
t
DH  
DS  
D
Q
D(A2)  
(NOTE 1)  
D(A2 + 1)  
D(A2 + 1)  
D(A2 + 2)  
D(A2 + 3)  
D(A3)  
D(A3 + 1)  
D(A3 + 2)  
D(A1)  
High-Z  
t
OEHZ  
BURST READ  
Single WRITE  
BURST WRITE  
Extended BURST WRITE  
DON’T CARE UNDEFINED  
NOTE:  
1. D(A2) refers to input for address A2. D(A2 + 1) refers to input for the next internal burst address following A2.  
2. CE2# and CE2 have timing identical to CE#. On this diagram, when CE# is LOW, CE2# is LOW and CE2 is HIGH. When CE#  
is HIGH, CE2# is HIGH and CE2 is LOW.  
3. OE# must be HIGH before the input data setup and held HIGH throughout the data hold time. This prevents input/out-  
put data contention for the time period prior to the byte write enable inputs being sampled.  
4. ADV# must be HIGH to permit a WRITE to the loaded address.  
5. Full-width WRITE can be initiated by GW# LOW; or GW# HIGH and BWE#, BWa#, and BWb# LOW for x18 device; or GW#  
HIGH and BWE#, BWa#–BWd# LOW for x32 and x36 devices.  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
19  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
Figure 9:  
READ/WRITE Timing  
t
KC  
CLK  
t
t
KL  
KH  
t
t
ADSH  
ADSS  
ADSP#  
ADSC#  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WH  
WS  
BWE#,  
BWa#-BWd#  
(NOTE 4)  
t
t
CEH  
CES  
CE#  
(NOTE 2)  
ADV#  
OE#  
D
t
t
DH  
t
KQ  
DS  
t
OELZ  
High-Z  
High-Z  
D(A3)  
D(A5)  
D(A6)  
t
t
OEHZ  
KQLZ  
(NOTE 6)  
(NOTE 1)  
Q(A4)  
Q
Q(A1)  
Q(A2)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
(NOTE 3)  
Back-to-Back READs  
(NOTE 5)  
Single WRITE  
BURST READ  
Back-to-Back  
WRITEs  
DON’T CARE  
UNDEFINED  
NOTE:  
1. Q(A4) refers to output from address A4. Q(A4 + 1) refers to output from the next internal burst address following A4.  
2. CE2# and CE2 have timing identical to CE#. On this diagram, when CE# is LOW, CE2# is LOW and CE2 is HIGH. When CE#  
is HIGH, CE2# is HIGH and CE2 is LOW.  
3. The data bus (Q) remains in High-Z following a WRITE cycle unless an ADSP#, ADSC#, or ADV# cycle is performed.  
4. GW# is HIGH.  
5. Back-to-back READs may be controlled by either ADSP# or ADSC#.  
6. This undefined READ will follow any WRITE cycle which is transitioned to a Read, Deselect, or Snooze.  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
20  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
SNOOZE MODE  
SNOOZE MODE is a low-current, power-down  
mode in which the device is deselected and current is  
reduced to ISB2Z. The duration of SNOOZE MODE is  
dictated by the length of time ZZ is in a HIGH state.  
After the device enters SNOOZE MODE, all inputs  
except ZZ become gated inputs and are ignored.  
ZZ is an asynchronous, active HIGH input that  
causes the device to enter SNOOZE MODE. When ZZ  
becomes a logic HIGH, ISB2Z is guaranteed after the  
setup time ZZ is met. Any READ or WRITE operation  
pending when the device enters SNOOZE MODE is not  
guaranteed to complete successfully. Therefore,  
SNOOZE MODE must not be initiated until valid pend-  
ing operations are completed.  
t
Table 18: SNOOZE MODE Electrical Characteristics  
DESCRIPTION  
CONDITIONS  
SYMBOL  
ISB2Z  
tZZ  
tRZZ  
tZZI  
tRZZI  
MIN  
MAX  
30  
2(tKC)  
UNITS  
NOTES  
ZZ O VIH  
mA  
ns  
Current during SNOOZE MODE  
ZZ active to input ignored  
1
1
1
1
2(tKC)  
0
ZZ inactive to input sampled  
ZZ active to snooze current  
ZZ inactive to exit snooze current  
ns  
ns  
ns  
2(tKC)  
NOTE:  
1. This parameter is sampled.  
Figure 10:  
SNOOZE MODE Waveform  
CLK  
t
ZZ  
t
RZZ  
ZZ  
t
ZZI  
I
SUPPLY  
I
ISB2Z  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
21  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
3.3V VDD, 3.3V I/O AC Test Conditions  
2.5V VDD, 2.5V I/O AC Test Conditions  
Input pulse levels ....................VIH = (VDD/2.2) + 1.±V  
...................................................VIL = (VDD/2.2) - 1.±V  
Input rise and fall times......................................... 1ns  
Input timing reference levels ........................ VDD/2.2  
Output reference levels................................VDDQ/2.2  
Output load ..............................See Figures 11 and 12  
Input pulse levels .................... VIH = (VDD/2) + 1.2±V  
....................................................VIL = (VDD/2) - 1.2±V  
Input rise and fall times......................................... 1ns  
Input timing reference levels ........................... VDD/2  
Output reference levels.................................. VDDQ/2  
Output load...............................See Figures 13 and 14  
3.3V VDD, 2.5V I/O AC Test Conditions  
Input pulse levels ................VIH = (VDD/2.64) + 1.2±V  
...............................................VIL = (VDD/2.64) - 1.2±V  
Input rise and fall times......................................... 1ns  
Input timing reference levels ...................... VDD/2.64  
Output reference levels...................................VDDQ/2  
Output load ..............................See Figures 13 and 14  
3.3V I/O Output Load Equivalents  
2.5V I/O Output Load Equivalents  
Figure 11:  
Figure 13:  
VT = VDDQ/2.2  
VT = VDDQ/2  
50  
50  
Q
Q
ZO= 50Ω  
30pF  
ZO= 50Ω  
30pF  
Figure 12:  
Figure 14:  
+3.3V  
+2.5V  
317  
5pF  
225  
5pF  
Q
Q
351  
225Ω  
NOTE:  
For Figures 11 and 13, 30pF = distributive test jig capacitance.  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
22  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The SRAM incorporates a serial boundary scan test  
access port (TAP). This port operates in accordance  
with IEEE Standard 1149.1-1990 but does not have the  
set of functions required for full 1149.1 compliance.  
These functions from the IEEE specification are  
excluded because their inclusion places an added  
delay in the critical speed path of the SRAM. Note that  
the TAP controller functions in a manner that does not  
conflict with the operation of other devices using  
1149.1 fully compliant TAPs. The TAP operates using  
JEDEC-standard 3.3V or 2.±V I/O logic levels.  
Test Access Port (TAP)  
Test Clock (TCK)  
The test clock is used only with the TAP controller.  
All inputs are captured on the rising edge of TCK. All  
outputs are driven from the falling edge of TCK.  
Test MODE SELECT (TMS)  
The TMS input is used to give commands to the TAP  
controller and is sampled on the rising edge of TCK. It  
is allowable to leave this ball unconnected if the TAP is  
not used. The ball is pulled up internally, resulting in a  
logic HIGH level.  
The SRAM contains a TAP controller, instruction  
register, boundary scan register, bypass register, and  
ID register.  
Test Data-In (TDI)  
The TDI ball is used to serially input information  
into the registers and can be connected to the input of  
any of the registers. The register between TDI and TDO  
is chosen by the instruction that is loaded into the TAP  
instruction register. For information on loading the  
instruction register, see Figure 1±. TDI is internally  
pulled up and can be unconnected if the TAP is unused  
in an application. TDI is connected to the most signifi-  
cant bit (MSB) of any register. (See Figure 16.)  
Disabling the JTAG Feature  
These balls can be left floating (unconnected), if the  
JTAG function is not to be implemented. Upon power-  
up, the device will come up in a reset state which will  
not interfere with the operation of the device.  
Figure 15:  
TAP Controller State Diagram  
Test Data-Out (TDO)  
TEST-LOGIC  
1
The TDO output ball is used to serially clock data-  
out from the registers. The output is active depending  
upon the current state of the TAP state machine. (See  
Figure 1±.) The output changes on the falling edge of  
TCK. TDO is connected to the least significant bit  
(LSB) of any register. (See Figure 16.)  
RESET  
0
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
Figure 16:  
1
1
TAP Controller Block Diagram  
1
1
EXIT1-DR  
EXIT1-IR  
0
0
0
Bypass Register  
PAUSE-DR  
1
0
PAUSE-IR  
1
0
2
1 0  
Selection  
Circuitry  
Selection  
Circuitry  
0
0
Instruction Register  
31 30 29  
Identification Register  
EXIT2-DR  
1
EXIT2-IR  
1
TDI  
TDO  
.
.
. 2 1 0  
UPDATE-DR  
UPDATE-IR  
x
.
.
.
.
. 2 1 0  
1
0
1
0
Boundary Scan Register*  
NOTE:  
TCK  
TMS  
The 0/1 next to each state represents the value  
of TMS at the rising edge of TCK.  
TAP CONTROLLER  
NOTE:  
X = 74 for all configurations.  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
23  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
The Boundary Scan Order tables show the order in  
which the bits are connected. Each bit corresponds to  
one of the bumps on the SRAM package. The MSB of  
the register is connected to TDI, and the LSB is con-  
nected to TDO.  
Performing a TAP Reset  
A RESET is performed by forcing TMS HIGH (VDD)  
for five rising edges of TCK. This RESET does not affect  
the operation of the SRAM and may be performed  
while the SRAM is operating.  
At power-up, the TAP is reset internally to ensure  
that TDO comes up in a High-Z state.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-  
bit code during the Capture-DR state when the IDCO-  
DEcommand is loaded in the instruction register. The  
IDCODE is hardwired into the SRAM and can be  
shifted out when the TAP controller is in the Shift-DR  
state. The ID register has a vendor code and other  
information described in the Identification Register  
Definitions table.  
TAP Registers  
Registers are connected between the TDI and TDO  
balls and allow data to be scanned into and out of the  
SRAM test circuitry. Only one register can be selected  
at a time through the instruction register. Data is seri-  
ally loaded into the TDI ball on the rising edge of TCK.  
Data is output on the TDO ball on the falling edge of  
TCK.  
TAP Instruction Set  
Overview  
Instruction Register  
Three-bit instructions can be serially loaded into  
the instruction register. This register is loaded when it  
is placed between the TDI and TDO balls as shown in  
Figure 16. Upon power-up, the instruction register is  
loaded with the IDCODE instruction. It is also loaded  
with the IDCODE instruction if the controller is placed  
in a reset state as described in the previous section.  
When the TAP controller is in the Capture-IR state,  
the two least significant bits are loaded with a binary  
“01” pattern to allow for fault isolation of the board-  
level serial test data path.  
Eight different instructions are possible with the  
threebit instruction register. All combinations are  
listed in the Instruction Codes table. Three of these  
instructions are listed as RESERVED and should not be  
used. The other five instructions are described in detail  
below.  
The TAP controller used in this SRAM is not fully  
compliant to the 1149.1 convention because some of  
the mandatory 1149.1 instructions are not fully imple-  
mented.  
The TAP controller cannot be used to load address,  
data or control signals into the SRAM and cannot pre-  
load the I/O buffers. The SRAM does not implement  
the 1149.1 commands EXTEST or INTEST or the PRE-  
LOAD portion of SAMPLE/PRELOAD; rather, it per-  
forms a capture of the I/O ring when these instructions  
are executed.  
Instructions are loaded into the TAP controller dur-  
ing the Shift-IR state when the instruction register is  
placed between TDI and TDO. During this state,  
instructions are shifted through the instruction regis-  
ter through the TDI and TDO balls. To execute the  
instruction once it is shifted in, the TAP controller  
needs to be moved into the Update-IR state.  
Bypass Register  
To save time when serially shifting data through reg-  
isters, it is sometimes advantageous to skip certain  
chips. The bypass register is a single-bit register that  
can be placed between the TDI and TDO balls. This  
allows data to be shifted through the SRAM with mini-  
mal delay. The bypass register is set LOW (VSS) when  
the BYPASS instruction is executed.  
Boundary Scan Register  
The boundary scan register is connected to all the  
input and bidirectional balls on the SRAM. The SRAM  
has a 7±-bit-long register.  
The boundary scan register is loaded with the con-  
tents of the RAM I/O ring when the TAP controller is in  
the Capture-DR state and is then placed between the  
TDI and TDO balls when the controller is moved to the  
Shift-DR state. The EXTEST, SAMPLE/PRELOAD and  
SAMPLE Z instructions can be used to capture the  
contents of the I/O ring.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is  
to be executed whenever the instruction register is  
loaded with all 0s. EXTEST is not implemented in this  
SRAM TAP controller, and therefore this device is not  
compliant to1149.1. The TAP controller does recognize  
an all-0 instruction.  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
24  
©2003 Micron Technology, Inc.  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
When an EXTEST instruction is loaded into the  
instruction register, the SRAM responds as if a SAM-  
PLE/PRELOAD instruction has been loaded. There is  
one difference between the two instructions. Unlike  
the SAMPLE/PRELOAD instruction, EXTEST places  
the SRAM outputs in a High-Z state.  
the clock frequencies, it is possible that during the  
Capture-DR state, an input or output will undergo a  
transition. The TAP may then try to capture a signal  
while in transition (metastable state). This will not  
harm the device, but there is no guarantee as to the  
value that will be captured. Repeatable results may not  
be possible.  
To guarantee that the boundary scan register will  
capture the correct value of a signal, the SRAM signal  
must be stabilized long enough to meet the TAP con-  
trollers capture setup plus hold time (tCS plus tCH).  
The SRAM clock input might not be captured cor-  
rectly if there is no way in a design to stop (or slow) the  
clock during a SAMPLE/PRELOAD instruction. If this  
is an issue, it is still possible to capture all other signals  
and simply ignore the value of the CLK captured in the  
boundary scan register.  
Once the data is captured, it is possible to shift out  
the data by putting the TAP into the Shift-DR state.  
This places the boundary scan register between the  
TDI and TDO balls.  
Note that since the PRELOAD part of the command  
is not implemented, putting the TAP to the Update-DR  
state while performing a SAMPLE/PRELOAD instruc-  
tion will have the same effect as the Pause-DR com-  
mand.  
IDCODE  
The IDCODE instruction causes a vendor-specific,  
32-bit code to be loaded into the instruction register. It  
also places the instruction register between the TDI  
and TDO balls and allows the IDCODE to be shifted  
out of the device when the TAP controller enters the  
Shift-DR state.  
The IDCODE instruction is loaded into the instruc-  
tion register upon power-up or whenever the TAP con-  
troller is given a test logic reset state.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary  
scan register to be connected between the TDI and  
TDO balls when the TAP controller is in a Shift-DR  
state. It also places all SRAM outputs into a High-Z  
state.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruc-  
tion. The PRELOAD portion of this instruction is not  
implemented, so the device TAP controller is not fully  
1149.1-compliant.  
When the SAMPLE/PRELOAD instruction is loaded  
into the instruction register and the TAP controller is in  
the Capture-DR state, a snapshot of data on the inputs  
and bidirectional balls is captured in the boundary  
scan register.  
The user must be aware that the TAP controller  
clock can only operate at a frequency up to 10 MHz,  
while the SRAM clock operates more than an order of  
magnitude faster. Because there is a large difference in  
BYPASS  
When the BYPASS instruction is loaded in the  
instruction register and the TAP is placed in a Shift-DR  
state, the bypass register is placed between the TDI  
and TDO balls. The advantage of the BYPASS instruc-  
tion is that it shortens the boundary scan path when  
multiple devices are connected together on a board.  
Reserved  
These instructions are not implemented but are  
reserved for future use. Do not use these instructions.  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
25  
©2003 Micron Technology, Inc.  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
Figure 17:  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
t
THTH  
THTL  
TLTH  
t
t
MVTH  
DVTH  
THMX  
Test Mode Select  
(TMS)  
t
THDX  
Test Data-In  
(TDI)  
t
TLOV  
t
TLOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
Table 19: TAP AC Electrical Characteristics  
Notes 1, 2; 0ºC ? TA ? +70ºC; VDD = 3.3V 0.165V or 2.5V 0.125V  
DESCRIPTION  
SYMBOL  
MIN  
MAX  
UNITS  
Clock  
tTHTH  
fTF  
tTHTL  
tTLTH  
100  
ns  
MHz  
ns  
Clock cycle time  
10  
Clock frequency  
Clock HIGH time  
Clock LOW time  
40  
40  
ns  
Output Times  
tTLOX  
tTLOV  
tDVTH  
tTHDX  
0
ns  
ns  
ns  
ns  
TCK LOW to TDO unknown  
TCK LOW to TDO valid  
TDI valid to TCK HIGH  
TCK HIGH to TDI invalid  
20  
10  
10  
Setup Times  
tMVTH  
tCS  
TMS setup  
10  
10  
ns  
ns  
Capture setup  
Hold Times  
tTHMX  
tCH  
10  
10  
ns  
ns  
TMS hold  
Capture hold  
NOTE:  
t
1. CS and tCH refer to the setup and hold time requirements of latching data from the boundary scan register.  
2. Test conditions are specified using the load in Figures 18 and 19.  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
26  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
3.3V TAP AC Test Conditions  
2.5V TAP AC Test Conditions  
Input pulse levels ........................................... VSS to 3.0V  
Input rise and fall times ..............................................1ns  
Input timing reference levels.................................... 1.±V  
Output reference levels............................................. 1.±V  
Test load termination supply voltage ...................... 1.±V  
Input pulse levels............................................ VSS to 2.±V  
Input rise and fall times ............................................. 1ns  
Input timing reference levels.................................. 1.2±V  
Output reference levels........................................... 1.2±V  
Test load termination supply voltage .................... 1.2±V  
Figure 18:  
3.3V TAP AC Output Load Equivalent  
Figure 19:  
2.5V TAP AC Output Load Equivalent  
1.25V  
1.5V  
50  
50  
TDO  
TDO  
ZO= 50Ω  
ZO= 50Ω  
20pF  
20pF  
Table 20: 3.3V VDD, TAP DC Electrical Characteristics and Operating Conditions  
0ºC ? TA ? +70ºC; VDD = 3.3V 0.165V unless otherwise noted  
DESCRIPTION  
CONDITIONS  
SYMBOL  
MIN  
MAX  
UNITS NOTES  
VIH  
VIL  
ILI  
2.0  
-0.3  
-10  
-10  
VDD + 0.3  
V
V
1, 2  
1, 2  
1, 2  
1, 2  
Input High (Logic 1) Voltage  
Input Low (Logic 0) Voltage  
Input Leakage Current  
0.8  
10  
10  
0V ? VIN ? VDD  
µA  
µA  
Output(s) disabled,  
ILO  
Output Leakage Current  
0V ? VIN ? VDD (TDO)  
IOLC = 100µA  
IOLT = 2mA  
VOL1  
VOL2  
VOH1  
VOH2  
0.7  
0.8  
V
V
V
V
1, 2  
1, 2  
1, 2  
1, 2  
Output Low Voltage  
Output High Voltage  
IOHC = -100µA  
IOHT = -2mA  
2.9  
2.0  
Table 21: 2.5V VDD, TAP DC Electrical Characteristics and Operating Conditions  
0ºC ? TA ? +70ºC; VDD = 2.5V 0.125V unless otherwise noted  
DESCRIPTION  
CONDITIONS  
SYMBOL  
MIN  
MAX  
UNITS NOTES  
VIH  
VIL  
ILI  
1.7  
-0.3  
-10  
-10  
VDD + 0.3  
V
V
1, 2  
1, 2  
1, 2  
1, 2  
Input High (Logic 1) Voltage  
Input Low (Logic 0) Voltage  
Input Leakage Current  
0.7  
10  
10  
0V ? VIN ? VDD  
µA  
µA  
Output(s) disabled,  
ILO  
Output Leakage Current  
0V ? VIN ? VDD (TDO)  
IOLC = 100µA  
IOLT = 2mA  
VOL1  
VOL2  
VOH1  
VOH2  
0.2  
0.7  
V
V
V
V
1, 2  
1, 2  
1, 2  
1, 2  
Output Low Voltage  
Output High Voltage  
IOHC = -100µA  
IOHT = -2mA  
2.1  
1.7  
NOTE:  
1. All voltages referenced to VSS (GND).  
2. TAP control balls only. For boundary scan ball specifications, please refer to the I/O DC Electrical Characteristics and  
Operation Conditions tables.  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
27  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
Table 22: Identification Register Definitions  
BIT  
INSTRUCTION FIELD  
CONFIGURATION DESCRIPTION  
0000  
Revision Number  
(31:28)  
Reserved for version number.  
Device Depth  
(27:23)  
00111  
00110  
Defines depth of 1Mb.  
Defines depth of 512K.  
00011  
00100  
Device Width  
(22:18)  
Defines width of x18 bits.  
Defines width of x32 or x36 bits.  
xxxxxx  
00000101100  
1
Micron Device ID  
(17:12)  
Reserved for future use.  
Micron JEDEC ID Code  
(11:1)  
Allows unique identification of SRAM vendor.  
Indicates the presence of an ID register.  
ID Register Presence  
Indicator (0)  
Table 23: Scan Register Sizes  
REGISTER NAME  
BIT SIZE  
Instruction  
3
1
Bypass  
ID  
32  
75  
Boundary Scan: x18, x32, x36  
Table 24: Instruction Codes  
INSTRUCTION  
CODE  
DESCRIPTION  
EXTEST  
000  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state. This instruction is not 1149.1-compliant.  
001  
010  
IDCODE  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
SAMPLE Z  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation. This instruction does not implement 1149.1 preload  
function and is therefore not 1149.1-compliant.  
101  
110  
111  
RESERVED  
RESERVED  
BYPASS  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
28  
©2003 Micron Technology, Inc.  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
Table 25: 165-Ball FBGA Boundary Scan Order (x18)  
BIT#  
SIGNAL NAME  
BALL ID  
1R  
BIT#  
SIGNAL NAME  
BALL ID  
6B  
11B  
1A  
6A  
5B  
5A  
4A  
4B  
3B  
3A  
2A  
2B  
1B  
1C  
1D  
1E  
1
2
3
4
5
6
7
8
MODE (LB0#)  
SA  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
CLK  
NC  
NC  
CE2#  
BWa#  
NC  
BWb#  
NC  
CE2  
CE#  
SA  
SA  
NC  
6N  
11P  
8R  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
ZZ  
NC  
NC  
NC  
NC  
NC  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQPa  
NC  
NC  
NC  
NC  
SA  
SA  
SA  
8P  
9R  
9P  
10R  
10P  
11R  
11H  
11N  
11M  
11L  
11K  
11J  
10M  
10L  
10K  
10J  
11G  
11F  
11E  
11D  
11C  
10F  
10E  
10D  
10G  
11A  
10B  
10A  
9A  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
NC  
NC  
NC  
NC  
1F  
1G  
2D  
2E  
NC  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQPb  
NC  
NC  
NC  
NC  
SA  
SA  
SA  
SA  
SA1  
SA0  
2F  
2G  
1J  
1K  
1L  
1M  
1N  
2K  
2L  
2M  
2J  
3P  
3R  
4P  
ADV#  
ADSP#  
ADSC#  
OE# (G#)  
BWE#  
GW#  
9B  
8A  
4R  
6P  
8B  
7A  
6R  
7B  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
29  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
Table 26: 165-Ball FBGA Boundary Scan Order (x32)  
BIT#  
SIGNAL NAME  
BALL ID  
1R  
BIT#  
SIGNAL NAME  
BALL ID  
6B  
11B  
1A  
6A  
5B  
5A  
4A  
4B  
3B  
3A  
2A  
2B  
1B  
1C  
1D  
1E  
1
2
3
4
5
6
7
8
MODE (LB0#)  
SA  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
CLK  
NC  
NC  
6N  
11P  
8R  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
CE2#  
BWa#  
BWb#  
BWc#  
BWd#  
CE2  
CE#  
SA  
8P  
9R  
9P  
10R  
10P  
11R  
11H  
11N  
11M  
11L  
11K  
11J  
10M  
10L  
10K  
10J  
11G  
11F  
11E  
11D  
10G  
10F  
10E  
10D  
11C  
11A  
10B  
10A  
9A  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
ZZ  
NF  
SA  
NC  
NF  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
NF  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
NF  
1F  
1G  
2D  
2E  
2F  
2G  
1J  
1K  
1L  
1M  
2J  
2K  
2L  
2M  
1N  
3P  
NC  
SA  
SA  
SA  
SA  
SA  
SA  
SA1  
SA0  
3R  
4P  
ADV#  
ADSP#  
ADSC#  
OE# (G#)  
BWE#  
GW#  
9B  
8A  
4R  
6P  
8B  
7A  
6R  
7B  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
30  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
Table 27: 165-Ball FBGA Boundary Scan Order (x36)  
BIT#  
SIGNAL NAME  
BALL ID  
1R  
BIT#  
SIGNAL NAME  
BALL ID  
6B  
11B  
1A  
6A  
5B  
5A  
4A  
4B  
3B  
3A  
2A  
2B  
1B  
1C  
1D  
1E  
1
2
3
4
5
6
7
8
MODE (LB0#)  
SA  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
CLK  
NC  
NC  
CE2#  
BWa#  
BWb#  
BWc#  
BWd#  
CE2  
CE#  
SA  
SA  
NC  
DQPc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQPd  
SA  
6N  
11P  
8R  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
8P  
9R  
9P  
10R  
10P  
11R  
11H  
11N  
11M  
11L  
11K  
11J  
10M  
10L  
10K  
10J  
11G  
11F  
11E  
11D  
11C  
10F  
10E  
10D  
10G  
11A  
10B  
10A  
9A  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
ZZ  
DQPa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQPb  
NC  
1F  
1G  
2D  
2E  
2F  
2G  
1J  
1K  
1L  
1M  
1N  
2K  
2L  
2M  
2J  
SA  
SA  
3P  
3R  
4P  
ADV#  
ADSP#  
ADSC#  
OE# (G#)  
BWE#  
GW#  
SA  
SA  
SA  
SA1  
SA0  
9B  
8A  
4R  
6P  
8B  
7A  
6R  
7B  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
31  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
Figure 20:  
100-Pin Plastic TQFP (JEDEC LQFP)  
+0.10  
-0.20  
22.10  
20.10 0.10  
0.65 TYP  
0.32  
+0.06  
-0.10  
0.625  
SEE DETAIL A  
14.00 0.10  
16.00 0.20  
PIN #1 ID  
+0.03  
-0.02  
0.15  
1.40 0.05  
GAGE PLANE  
0.60 0.15  
1.60 MAX  
+0.10  
-0.05  
0.10  
0.10  
1.00 TYP  
0.25  
DETAIL A  
NOTE:  
1. All dimensions in inches (millimeters) ------------- or typical where noted.  
MAX  
MIN  
2. Package width and length do not include mold protrusion; allowable mold protrusion is 0.25mm per side.  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
32  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
Figure 21:  
165-Ball FBGA  
0.85 0.075  
0.12  
C
SEATING PLANE  
C
BALL A11  
165X Ø 0.45  
10.00  
SOLDER BALL DIAMETER REFERS  
TO POST REFLOW CONDITION. THE  
PRE-REFLOW DIAMETER IS Ø 0.40  
BALL A1  
PIN A1 ID  
1.20 MAX  
1.00  
TYP  
PIN A1 ID  
7.50 0.05  
14.00  
15.00 0.10  
7.00 0.05  
1.00  
TYP  
MOLD COMPOUND: EPOXY NOVOLAC  
SUBSTRATE: PLASTIC LAMINATE  
6.50 0.05  
5.00 0.05  
SOLDER BALL MATERIAL: EUTECTIC 62% Sn, 36% Pb, 2% Ag  
SOLDER BALL PAD: Ø .33mm  
13.00 0.10  
NOTE:  
MAX  
1. All dimensions in inches (millimeters) ------------- or typical where noted.  
MIN  
Data Sheet Designation  
No Marking: This data sheet contains minimum and maximum limits specified over the complete power  
supply and temperature range for production devices. Although considered final, these specifications are sub-  
ject to change, as further product development and data characterization sometimes occur.  
®
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900  
E-mail: prodmktg@micron.com, Internet: http://www.micron.com, Customer Comment Line: 800-932-4992  
Micron, the M logo, the Micron logo, and SyncBurst are trademarks and/or service marks of Micron Technology, Inc.  
Pentium is a registered trademark of Intel Corporation.  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
33  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED, SCD SYNCBURST SRAM  
Document Revision History  
Rev D; Pub. 2/03..........................................................................................................................................................2/03  
Changed designation from Preliminary to Production  
Rev C; Pub. 12/02 ......................................................................................................................................................12/02  
Added TJ specifications to the AC Electrical Characteristics table  
Corrected Boundary Scan errors  
Updated TQFP and FBGA Thermal Resistance values  
Corrected grammatical errors  
Rev. B; Pub. 11/02......................................................................................................................................................11/02  
Changed designation from ADVANCE to PRELIMINARY  
Corrected grammatical errors  
New ADVANCE data sheet for 0.16µm process; Rev. A, Pub. 6/02 ..........................................................................6/02  
18Mb: 1 Meg x 18, 512K x 32/36, Pipelined, SCD SyncBurst SRAM  
MT58L1MY18P1_16_D.fm – Rev. D, Pub 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
34  

相关型号:

MT58V512V36PT-5

512KX36 CACHE SRAM, 3.1ns, PQFP100, PLASTIC, TQFP-100
ROCHESTER

MT58V512V36PT-6

512KX36 CACHE SRAM, 3.5ns, PQFP100, PLASTIC, TQFP-100
ROCHESTER

MT58V512V36PT-7.5

Cache SRAM, 512KX36, 4ns, CMOS, PQFP100, PLASTIC, TQFP-100
CYPRESS

MT5900-IR

Peak Emission Wavelength: 900nm
MARKTECH

MT5900_IR

Peak Emission Wavelength: 900nm
MARKTECH

MT59L128H36FB-4.5

x36 Fast Synchronous SRAM
ETC

MT59L128H36LB-5.5

x36 Fast Synchronous SRAM
ETC

MT59L128H36PB-4.5

x36 Fast Synchronous SRAM
ETC

MT59L128L36LB-5.5

x36 Fast Synchronous SRAM
ETC

MT59L128V36FB-4.5

x36 Fast Synchronous SRAM
ETC

MT59L128V36LB-5.5

x36 Fast Synchronous SRAM
ETC

MT59L256H18FB-4.5

x18 Fast Synchronous SRAM
ETC