S29GL256N90FFIR23 [CYPRESS]

Flash, 16MX16, 90ns, PBGA64, 13 X 11 MM, LEAD FREE, FBGA-64;
S29GL256N90FFIR23
型号: S29GL256N90FFIR23
厂家: CYPRESS    CYPRESS
描述:

Flash, 16MX16, 90ns, PBGA64, 13 X 11 MM, LEAD FREE, FBGA-64

文件: 总92页 (文件大小:2021K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S29GL512N  
S29GL256N  
S29GL128N  
512, 256, 128 Mbit, 3 V, Page Flash  
Featuring 110 nm MirrorBit  
This product family has been retired and is not recommended for designs. For new and current designs, S29GL128S, S29GL256S,  
and S29GL512T supersede the S29GL128N, S29GL256N, and S29GL512N respectively. These are the factory-recommended  
migration paths. Please refer to the S29GL-S and S29GL-T Family data sheets for specifications and ordering information.  
Distinctive Characteristics  
Package Options  
Architectural Advantages  
Single Power Supply Operation  
– 56-pin TSOP  
– 64-ball Fortified BGA  
– 3 volt read, erase, and program operations  
Enhanced VersatileI/OControl  
Software & Hardware Features  
Software Features  
– All input levels (address, control, and DQ input levels) and outputs  
are determined by voltage on VIO input. VIO range is 1.65 to VCC  
– Program Suspend and Resume: read other sectors before  
programming operation is copleted  
Manufactured on 110 nm MirrorBit Process Technology  
Secured Silicon Sector Region  
– Erase Suspend and Resume: read/program other sectors before  
an erase operation is completed  
– 128-word/256-byte sector for permanent, secure identification  
through an 8-word/16-byte random Electronic Serial Number,  
accessible through a command sequence  
– Data# polling and gle bits provide status  
– Unlock Bypass Program command reduces overall multiple-word  
programming time  
– May be programmed and locked at the factory or by the customer  
Flexible Sector Architecture  
– CFI (Common Flash Interface) compliant: allows host system to  
identify and accommodate multiple flash devices  
– S29GL512N: Five hundred twelve 64 Kword (128 Kbyte) sectors  
– S29GL256N: Two hundred fifty-six 64 Kword (128 Kbyte) sectors  
– S29GL128N: One hundred twenty-eight 64 Kword (128 Kbyte)  
sectors  
Hardware Features  
vanced Sector Protection  
– WP#/ACC input accelerates programming time (when high  
voltage is applied) for greater throughput during system  
production. Protects first or last sector regardless of sector  
protection settings  
Compatibility with JEDEC Standards  
– Provides pinout and software compatibility for single-power supply  
flash, and superior inadvertent write protection  
100,000 Erase Cycles per sector typical  
20-year Data Retention typical  
– Hardware reset input (RESET#) resets device  
– Ready/Busy# output (RY/BY#) detects program or erase cycle  
completion  
Performance Characteristics  
High Performance  
Product Availability Table  
– 90 ns access time (S29GL128N, S29GL256N)  
– 100 ns (S29GL512N)  
Density  
Init. Access  
110 ns  
100 ns  
110 ns  
100 ns  
90 ns  
VCC  
Full  
Availability  
Now  
– 8-word/16-byte page read buffer  
– 25 ns page read times  
512 Mb  
Full  
Now  
Full  
Now  
– 16-word/32-byte write buffer redus overall programming time for  
multiple-word updates  
256 Mb  
128 Mb  
Full  
Now  
Low Power Consumption (typical values at 3.0 V, 5 MHz)  
– 25 mA typical active read current;  
Regulated  
Full  
Now  
110 ns  
100 ns  
90 ns  
Now  
– 50 mA typical erase/program current  
– 1 µA typical standby mode current  
Full  
Now  
Regulated  
Now  
Cypress Semiconductor Corporation  
Document Number: 002-01522 Rev. *B  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised January 08, 2016  
S29GL512N  
S29GL256N  
S29GL128N  
General Description  
The S29GL512/256/128N family of devices are 3.0V single power flash memory manufactured using 110 nmMirrorBit technology.  
The S29GL512N is a 512 Mbit, organized as 33,554,432 words or 67,108,864 bytes. The S29GL256N is a 256 Mbit, organized as  
16,777,216 words or 33,554,432 bytes. The S29GL128N is a 128 Mbit, organized as 8,388,608 words or 16,777,216 bytes. The  
devices have a 16-bit wide data bus that can also function as an 8-bit wide data bus by using the BYTE# input. The device can be  
programmed either in the host system or in standard EPROM programmers.  
Access times as fast as 90 ns (S29GL128N, S29GL256N), 100 ns (S29GL512N) are available. Note that each access time has a  
specific operating voltage range (VCC) and an I/O voltage range (VIO), as specified in the Product Selector Guide on page 4 and the  
Ordering Information on page 9. The devices are offered in a 56-pin TSOP or 64-ball Fortified BGA package. Each device has  
separate chip enable (CE#), write enable (WE#) and output enable (OE#) controls.  
Each device requires only a single 3.0 volt power supply for both read and write functions. In addition to a VCC input, a high-  
voltage accelerated program (WP#/ACC) input provides shorter programming times through increased current. This feature is  
intended to facilitate factory throughput during system production, but may also be used in the field if desired.  
The devices are entirely command set compatible with the JEDEC single-power-supply Flash standard. Commands are written to  
the device using standard microprocessor write timing. Write cycles also internally latch addesses and data needed for the  
programming and erase operations.  
The sector erase architecture allows memory sectors to be erased and reprogrammed without affecting the data contents of other  
sectors. The device is fully erased when shipped from the factory.  
Device programming and erasure are initiated through command sequences. Once a program or erase operation has begun, the  
host system need only poll the DQ7 (Data# Polling) or DQ6 (toggle) status bits or monitor the Ready/Busy# (RY/BY#) output to  
determine whether the operation is complete. To facilitate programming, Unlock Bypass mode reduces command sequence  
overhead by requiring only two write cycles to program data instead of four.  
The Enhanced VersatileI/O™ (VIO) control allows the host system to set the voltage levels that the device generates and tolerates  
on all input levels (address, chip control, and DQ input levels) tthe same voltage level that is asserted on the VIO pin. This allows  
the device to operate in a 1.8 V or 3 V system environment as required.  
Hardware data protection measures include a low VCC detector that automatically inhibits write operations during power  
transitions. Persistent Sector Protection provides in-system, command-enabled protection of any combination of sectors using a  
single power supply at VCC. Password Sector Protection prevents unauthorized write and erase operations in any combination of  
sectors through a user-defined 64-bit password.  
The Erase Suspend/Erase Resume feature allows the host system to pause an erase operation in a given sector to read or  
program any other sector and then complete the erase operation. The Program Suspend/Program Resume feature enables the  
host system to pause a program operation in a given sector to read any other sector and then complete the program operation.  
The hardware RESET# pin termiates any operation in progress and resets the device, after which it is then ready for a new  
operation. The RESET# pin may be tied to the system reset circuitry. A system reset would thus also reset the device, enabling the  
host system to read boot-up firmware from the Flash memory device.  
The device reduces power consumption in the standby mode when it detects specific voltage levels on CE# and RESET#, or when  
addresses have been stable for a specified period of time.  
The Secured Silicon Sector provides a 128-word/256-byte area for code or data that can be permanently protected. Once this  
sector is protected, no further changes within the sector can occur.  
The Write Protect (WP#/ACC) feature protects the first or last sector by asserting a logic low on the WP# pin.  
MirrorBit flash technology combines years of Flash memory manufacturing experience to produce the highest levels of quality,  
reliability and cost effectiveness. The device electrically erases all bits within a sector simultaneously via hot-hole assisted erase.  
The data is programmed using hot electron injection.  
Document Number: 002-01522 Rev. *B  
Page 2 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Contents  
1.  
Product Selector Guide............................................... 4  
9.15 Secured Silicon Sector Entry Command....................... 54  
9.16 Secured Silicon Sector Exit Command......................... 54  
9.17 Command Definitions.................................................... 54  
1.1 S29GL512N ................................................................... 4  
1.2 S29GL256N, S29GL128N ............................................. 4  
10. Write Operation Status ............................................... 59  
10.1 DQ7: Data# Polling....................................................... 59  
10.2 RY/BY#: Ready/Busy#.................................................. 60  
10.3 DQ6: Toggle Bit I .......................................................... 60  
10.4 DQ2: Toggle Bit II ......................................................... 62  
10.5 Reading Toggle Bits DQ6/DQ2..................................... 62  
10.6 DQ5: Exceeded Timing Limits ...................................... 62  
10.7 DQ3: Sector Erase Timer.............................................. 63  
10.8 DQ1: Write-to-Buffer Abort............................................ 63  
2.  
Block Diagram.............................................................. 5  
3.  
Connection Diagrams.................................................. 6  
3.1 Special Package Handling Instructions.......................... 7  
4.  
5.  
6.  
7.  
Pin Description............................................................. 7  
Logic Symbol ............................................................... 7  
Ordering Information................................................... 9  
Device Bus Operations.............................................. 10  
7.1 Word/Byte Configuration.............................................. 10  
7.2 VersatileIOTM (VIO) Control .......................................... 10  
7.3 Requirements for Reading Array Data......................... 10  
7.4 Writing Commands/Command Sequences.................. 11  
7.5 Standby Mode.............................................................. 11  
7.6 Automatic Sleep Mode................................................. 12  
7.7 RESET#: Hardware Reset Pin..................................... 12  
7.8 Output Disable Mode ................................................... 13  
7.9 Autoselect Mode .......................................................... 34  
7.10 Sector Protection ......................................................... 34  
7.11 Advanced Sector Protection ........................................ 35  
7.12 Lock Register............................................................... 35  
7.13 Persistent Sector Protection ........................................ 36  
7.14 Persistent Protection Mode Lock Bit............................ 37  
7.15 Password Sector Protection......................................... 38  
7.16 Password and Password Protection Mode Lock Bit .... 38  
7.17 64-bit Password ........................................................... 38  
7.18 Persistent Protection Bit Lock (PPB Lock Bit).............. 38  
7.19 Secured Silicon Sector Flash Memory Region ............ 39  
7.20 Write Protect (WP#)..................................................... 40  
7.21 Hardware Data Protection........................................... 40  
11. Absolute Maximum Rangs....................................... 64  
12. Operating Ranges....................................................... 65  
13. DC Characterics...................................................... 65  
13.1 CMOS Compatible........................................................ 65  
14. Test Conditions........................................................... 66  
14.1 Key to Switching Waveforms........................................ 67  
15. AC Characteristics...................................................... 68  
15.1 ead-Only Operations.................................................. 68  
15.2 Hardware Reset (RESET#)........................................... 69  
5.3 Erase and Program Operations.................................... 71  
15.4 Alternate CE# Controlled Erase and Program Operations:  
S29GL128N, S29GL256N, S29GL512N....................... 75  
16. Erase And Programming Performance..................... 77  
17. TSOP Pin and BGA Package Capacitance................ 77  
18. Physical Dimensions.................................................. 78  
18.1 TS056—56-Pin Standard Thin Small Outline Package  
(TSOP).......................................................................... 78  
18.2 LAA064—64-Ball Fortified Ball Grid Array (FBGA)....... 79  
8.  
9.  
Common Flash Memory Interface (CFI)................... 40  
Command Definitions.............................................. 43  
19. Advance Information on S29GL-P Hardware Reset  
(RESET#) and Power-up Sequence ................................... 80  
9.1 Reading Array Data ..................................................... 43  
9.2 Reset Command.......................................................... 43  
9.3 Autoselect Command Sequence ................................. 44  
9.4 Enter Secured Silicon Sector/Exit Secured Silicon  
Sector Command Sequence........................................ 44  
9.5 Word Program Command Sequence........................... 44  
9.6 Program Suspend/Program Resume Command  
20. Advance Information on S29GL-R 65 nm MirrorBit .....  
Hardware Reset (RESET#) and Power-up Sequence ....... 82  
21. Document History Page ............................................. 84  
Sequence..................................................................... 48  
9.7 Chip Erase Command Sequence ................................ 49  
9.8 Sector Erase Command Sequence ............................. 50  
9.9 Erase Suspend/Erase Resume Commands ................ 51  
9.10 Lock Register Command Set Definitions ..................... 51  
9.11 Password Protection Command Set Definitions .......... 52  
9.12 Non-Volatile Sector Protection Command Set  
Definitions .................................................................... 52  
9.13 Global Volatile Sector Protection Freeze Command  
Set............................................................................... 53  
9.14 Volatile Sector Protection Command Set..................... 53  
Document Number: 002-01522 Rev. *B  
Page 3 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
1. Product Selector Guide  
1.1  
S29GL512N  
Part Number  
S29GL512N  
= 2.7–3.6 V  
V
V
10  
11  
IO  
Speed Option  
V
= 2.7–3.6 V  
CC  
= 1.65–3.6 V  
11  
110  
110  
30  
IO  
Max. Access Time (ns)  
100  
100  
25  
110  
110  
25  
Max. CE# Access Time (ns)  
Max. Page access time (ns)  
Max. OE# Access Time (ns)  
25  
35  
35  
1.2  
S29GL256N, S29GL128N  
Part Number  
S29GL256N, S29GL128N  
V
V
V
= 2.7–3.6 V  
10  
11  
IO  
IO  
IO  
V
V
= 2.7–3.6 V  
CC  
CC  
Speed Option  
= 1.65–3.6 V  
11  
= Regulated (3.0–3.6 V)  
= Regulated (3.0–3.6 V)  
90  
90  
90  
25  
25  
Max. Access Time (ns)  
100  
100  
25  
110  
110  
25  
110  
110  
30  
Max. CE# Access Time (ns)  
Max. Page access time (ns)  
Max. OE# Access Time (ns)  
25  
35  
35  
Document Number: 002-01522 Rev. *B  
Page 4 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
2. Block Diagram  
DQ15DQ0 (A-1)  
RY/BY#  
V
CC  
Sector Switches  
V
SS  
V
IO  
Erase Voltage  
Generator  
Input/Output  
Buffers  
RESET#  
WE#  
WP#/ACC  
BYTE#  
State  
Control  
Command  
Register  
PGM Voltage  
Generator  
Data  
Latch  
Chip Enable  
Output Enable  
Logic  
STB  
CE#  
OE#  
Y-Decoder  
Y-Gating  
STB  
V
Detector  
CC  
Timer  
Cell Matrix  
X-Decoder  
A
**–A0  
Max  
Note  
** A  
GL512N = A24, A  
GL256N = A23, A GL128N = A22  
Max  
Max  
Max  
Document Number: 002-01522 Rev. *B  
Page 5 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
3. Connection Diagrams  
Figure 3.1 56-Pin Standard TSOP  
NC for S29GL128N  
NC for S29GL256N  
and S29GL128N  
A23  
A22  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
1
2
3
4
5
6
7
8
9
56 A24  
55 NC  
54 A16  
53 BYTE#  
52 VSS  
51 DQ15/A-1  
50 DQ7  
49 DQ14  
48 DQ6  
47 DQ13  
46 DQ5  
45 DQ12  
44 DQ4  
43 VCC  
42 D1  
41 DQ3  
40 DQ10  
39 DQ2  
38 DQ9  
37 DQ1  
36 DQ8  
35 DQ0  
34 OE#  
33 VSS  
A8 10  
A19 11  
A20 12  
WE# 13  
RESET# 14  
A21 15  
WP#/ACC 16  
RY/BY# 17  
A18 18  
A17 19  
A7 20  
A6 21  
A5 22  
A4 23  
A3 24  
A2 25  
32 CE#  
31 A0  
30 NC  
29 VIO  
A1 26  
NC 27  
NC 28  
Figure 3.2 64-all Fortified BGA  
Top View, Balls Facing Down  
A8  
B8  
C8  
D8  
E8  
F8  
G8  
NC  
H8  
A231  
VIO  
VSS  
A242  
NC  
NC  
A22  
A
B7  
C7  
D7  
E7  
F7  
G7  
H7  
VSS  
A13  
A12  
A14  
A15  
A16  
BYTE# DQ15/A-1  
A6  
A9  
B6  
A8  
C6  
D6  
E6  
F6  
G6  
H6  
A10  
A11  
DQ7  
DQ14  
DQ13  
DQ6  
A5  
B5  
C5  
D5  
E5  
F5  
G5  
H5  
VCC  
WE#  
RESET#  
A21  
A19  
DQ5  
DQ12  
DQ4  
A4  
B4  
C4  
D4  
E4  
F4  
G4  
H4  
RY/BY# WP#/ACC  
A18  
A20  
DQ2  
DQ10  
DQ11  
DQ3  
A3  
A7  
B3  
C3  
A6  
D3  
A5  
E3  
F3  
G3  
H3  
A17  
DQ0  
DQ8  
DQ9  
DQ1  
A2  
A3  
B2  
A4  
C2  
A2  
D2  
A1  
E2  
A0  
F2  
G2  
H2  
VSS  
CE#  
OE#  
A1  
B1  
C1  
D1  
E1  
F1  
G1  
NC  
H1  
NC  
NC  
NC  
NC  
NC  
NC  
VIO  
Notes  
1. Ball C8 is NC on S29GL128N  
2. Ball F8 is NC on S29GL256N and S29GL128N  
Document Number: 002-01522 Rev. *B  
Page 6 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
3.1  
Special Package Handling Instructions  
Special handling is required for Flash Memory products in molded packages (TSOP, BGA). The package and/or data integrity may  
be compromised if the package body is exposed to temperatures above 150C for prolonged periods of time.  
4. Pin Description  
A24–A0  
A23–A0  
A22–A0  
DQ14–DQ0  
DQ15/A-1  
CE#  
25 Address inputs (512 Mb)  
24 Address inputs (256 Mb)  
23 Address inputs (128 Mb)  
15 Data inputs/outputs  
DQ15 (Data input/output, word mode), A-1 (LSB Address input, byte mode)  
Chip Enable input  
OE#  
Output Enable input  
WE#  
Write Enable input  
WP#/ACC  
RESET#  
BYTE#  
Hardware Write Protect input; Acceleration input  
Hardware Reset Pin input  
Selects 8-bit or 16-bit mode  
Ready/Busy output  
RY/BY#  
3.0 volt-only single power supply  
(see Product Selector Guide on page 4 for speed options and voltage supply tolerances)  
V
CC  
V
Output Buffer power  
Device Ground  
IO  
V
SS  
NC  
Pin Not Connected Internally  
5. Logic Symbol  
Figure 5.1 S29GL512N  
25  
A24–A0  
16 or 8  
DQ15–DQ0  
(A-1)  
CE#  
OE#  
WE#  
WP#/ACC  
RESET#  
VIO  
RY/BY#  
BYTE#  
Document Number: 002-01522 Rev. *B  
Page 7 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Figure 5.2 S29GL256N  
24  
A23–A0  
16 or 8  
DQ15–DQ0  
(A-1)  
CE#  
OE#  
WE#  
WP#/ACC  
RESET#  
VIO  
RY/BY#  
BYTE#  
Figure 5.3 S29GL128N  
23  
A22–A0  
16 or 8  
DQ15–DQ0  
A-1)  
CE#  
OE#  
WE#  
WP#/ACC  
RESET#  
VIO  
RY/BY#  
BYTE#  
This product family has been retired and is not recommended for designs. For new and current designs, S29GL128P, S29GL256P,  
and S29GL512P supersede S29GL128N, S29GL256N, and S29GL512N respectively. These are the factory-recommended  
migration paths. Please refer to the S29GL-P Family data sheets for specifications and ordering information.  
Document Number: 002-01522 Rev. *B  
Page 8 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
6. Ordering Information  
The ordering part number is formed by a valid combination of the following:  
S29GL512N  
11  
F
F
I
01  
0
PACKING TYPE  
0
2
3
= Tray (standard; see note 1)  
= 7” Tape and Reel  
= 13” Tape and Reel  
MODEL NUMBER (V range, protection when WP# =V  
)
IL  
IO  
01 = V = V = 2.7 to 3.6 V, highest address sector protected  
IO  
CC  
02 = V = V = 2.7 to 3.6 V, lowest address sector protected  
IO  
CC  
V1 = V = 1.65 to 3.6 V, V = 2.7 to 3.6 V, highest address sector protected  
IO  
CC  
V2 = V = 1.65 to 3.6 V, V = 2.7 to 3.6 V, lowest address sector protected  
IO  
CC  
R1 = V = V = 3.0 to 3.6 V, highest address sector protected  
IO  
CC  
R2 = V = V = 3.0 to 3.6 V, lowest address sector protected  
IO  
CC  
TEMPERATURE RANGE  
= Industrial (–40°C to +85°C)  
I
PACKAGE MATERIALS SET  
A
F
= SnPb  
= Pb-free (Recommended)  
PACKAGE TYPE  
T
F
= Thin Small Outline Package (TSOP) Standard Pinout (TS056)  
= Fortified Ball Grid Array, 1.0 mm pitch package (LAA064)  
SPEED OPTION  
90 = 90 ns (Note 4)  
10 = 100 ns (Note 4)  
11 = 110 ns (Recommended)  
DEVICE NUMBER/DESCRIPTION  
S29GL128N, S29GL256N, S29GL512N  
3.0 Volt-only, 512 Megabit (32 M x 16-Bit/64 M x 8-Bit) Page-Me Flash Memory  
Manufactured on 110 nm MirrorBit process technology  
Valid Combinations  
Valid Combinations list configurations planned to be supported in volume for this device. Consult your local sales office to confirm  
availability of specific valid combinations and to check on newly released combinations.  
S29GL-N Valid Combinations  
Base Part  
Number  
Speed (ns)  
90  
Package  
Temperature  
Model Number  
R1, R2  
01, 02  
Packing Type  
S29GL128N  
10, 11  
11  
TA, TF (Note 2); FA, FF (Note 3)  
I
0, 2, 3 (Note 1)  
V1, V2  
90  
R1, R2  
01, 02  
S29GL256N  
S29GL512N  
10, 11  
11  
TA, TF (Note 2); FA, FF (Note 3)  
TA, TF (Note 2); FA, FF (Note 3)  
I
I
0, 2, 3 (Note 1)  
0, 2, 3 (Note 1)  
V1, V2  
10, 11  
11  
01, 02  
V1, V2  
Notes  
1. Type 0 is standard. Specify other options as required. TSOP can be packed in Types 0 and 3; BGA can be packed in Types 0, 2, 3.  
2. TSOP package marking omits packing type designator from ordering part number.  
3. BGA package marking omits leading “S29” and packing type designator from ordering part number.  
4. Contact a local sales representative for availability.  
Document Number: 002-01522 Rev. *B  
Page 9 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
7. Device Bus Operations  
This section describes the requirements and use of the device bus operations, which are initiated through the internal command  
register. The command register itself does not occupy any addressable memory location. The register is a latch used to store the  
commands, along with the address and data information needed to execute the command. The contents of the register serve as  
inputs to the internal state machine. The state machine outputs dictate the function of the device. Table lists the device bus  
operations, the inputs and control levels they require, and the resulting output. The following subsections describe each of these  
operations in further detail.  
Device Bus Operations  
DQ8–DQ15  
Addresses  
(Note 1)  
DQ0–  
DQ7  
BYTE#  
BYTE#  
= V  
Operation  
CE#  
OE#  
L
WE#  
RESET#  
WP#/ACC  
X
= V  
IH  
IL  
Read  
L
L
L
H
L
L
H
H
H
A
A
A
D
D
OUT  
IN  
IN  
IN  
OUT  
DQ8–DQ14  
= High-Z,  
Q15 = A-1  
Write (Program/Erase)  
Accelerated Program  
H
(Note 2)  
(Note 3)  
(Note 3)  
(Note 3)  
(Note 3)  
H
V
HH  
V
0.3 V  
±
V
0.3 V  
±
CC  
CC  
Standby  
X
X
H
X
High-Z  
Hih-Z  
High-Z  
Output Disable  
Reset  
L
H
X
H
X
H
L
X
X
X
X
High-Z  
High-Z  
igh-Z  
High-Z  
High-Z  
High-Z  
X
Legend  
L = Logic Low = V , H = Logic High = V , V = 11.5–12.5 V, V = 11.5–12.5V, X = Don’t Care, SA = Sector Address, A = Address In,  
IL  
IH  
ID  
HH  
IN  
D
= Data In, D  
= Data Out  
IN  
OUT  
Notes  
1. Addresses are AMax:A0 in word mode; A  
:A-1 in byte mode. Sector addresses are A  
:A16 in both modes.  
Max  
Max  
2. If WP# = V , the first or last sector group remains protected. If WP# = V , the first oast sector is protected or unprotected as determined by the method described in  
IL  
IH  
“Write Protect (WP#)”. All sectors are unprotected when shipped from the factory (The Secured Silicon Sector may be factory protected depending on version  
ordered.)  
3.  
D
or D  
as required by command sequence, data polling, or sector protect algorithm (see Figure 9.2 on page 48, Figure 9.4 on page 50, and Figure 10.1  
IN  
OUT  
on page 60).  
7.1  
Word/Byte Configuration  
The BYTE# pin controls whether the device daI/O pins operate in the byte or word configuration. If the BYTE# pin is set at logic  
‘1’, the device is in word configuration, DQ0–DQ15 are active and controlled by CE# and OE#.  
If the BYTE# pin is set at logic ‘0’, the vice is in byte configuration, and only data I/O pins DQ0–DQ7 are active and controlled by  
CE# and OE#. The data I/O pins DQ8–DQ14 are tri-stated, and the DQ15 pin is used as an input for the LSB (A-1) address function.  
7.2  
VersatileIOTM (V ) Control  
IO  
The VersatileIOTM (VIO) control allows the host system to set the voltage levels that the device generates and tolerates on CE# and  
DQ I/Os to the same voltage level that is asserted on VIO. See Ordering Information for VIO options on this device.  
For example, a VI/O of 1.65–3.6 volts allows for I/O at the 1.8 or 3 volt levels, driving and receiving signals to and from other 1.8 or 3  
V devices on the same data bus.  
7.3  
Requirements for Reading Array Data  
To read array data from the outputs, the system must drive the CE# and OE# pins to VIL. CE# is the power control and selects the  
device. OE# is the output control and gates array data to the output pins. WE# should remain at VIH.  
The internal state machine is set for reading array data upon device power-up, or after a hardware reset. This ensures that no  
spurious alteration of the memory content occurs during the power transition. No command is necessary in this mode to obtain array  
data. Standard microprocessor read cycles that assert valid addresses on the device address inputs produce valid data on the  
device data outputs. The device remains enabled for read access until the command register contents are altered.  
Document Number: 002-01522 Rev. *B  
Page 10 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
See Reading Array Data on page 43 for more information. Refer to the AC Read-Only Operations table for timing specifications and  
to Figure 15.1 on page 68 for the timing diagram. Refer to the DC Characteristics table for the active current specification on reading  
array data.  
7.3.1  
Page Mode Read  
The device is capable of fast page mode read and is compatible with the page mode Mask ROM read operation. This mode provides  
faster read access speed for random locations within a page. The page size of the device is 8 words/16 bytes. The appropriate page  
is selected by the higher address bits A(max)–A3. Address bits A2–A0 in word mode (A2–A-1 in byte mode) determine the specific  
word within a page. This is an asynchronous operation; the microprocessor supplies the specific word location.  
The random or initial page access is equal to tACC or tCE and subsequent page read accesses (as long as the locations specified by  
the microprocessor falls within that page) is equivalent to tPACC. When CE# is de-asserted and reasserted for a subsequent access,  
the access time is tACC or tCE. Fast page mode accesses are obtained by keeping the “read-page addresses” constant and changing  
the “intra-read page” addresses.  
7.4  
Writing Commands/Command Sequences  
To write a command or command sequence (which includes programming data to the dce and erasing sectors of memory), the  
system must drive WE# and CE# to VIL, and OE# to VIH.  
The device features an Unlock Bypass mode to facilitate faster programming. Once the device enters the Unlock Bypass mode,  
only two write cycles are required to program a word or byte, instead of four. The “Word Program Command Sequence” section has  
details on programming data to the device using both standard and Unlock Bypass command sequences.  
An erase operation can erase one sector, multiple sectors, or the entire device. Table on page 13, Table on page 31, and Table  
on page 34 indicate the address space that each sector occupies.  
Refer to the DC Characteristics table for the active current specifican for the write mode. The AC Characteristics section contains  
timing specification tables and timing diagrams for write operations.  
7.4.1  
Write Buffer  
Write Buffer Programming allows the system write to a maximum of 16 words/32 bytes in one programming operation. This results in  
faster effective programming time than the standard programming algorithms. See Write Buffer on page 11 for more information.  
7.4.2  
Accelerated Program Operation  
The device offers accelerated program operations through the ACC function. This is one of two functions provided by the WP#/ACC  
pin. This function is primarily intended to allow faster manufacturing throughput at the factory.  
If the system asserts VHH on this pin, the device automatically enters the aforementioned Unlock Bypass mode, temporarily  
unprotects any protected sector groups, and uses the higher voltage on the pin to reduce the time required for program operations.  
The system would use a two-cycle program command sequence as required by the Unlock Bypass mode. Removing VHH from the  
WP#/ACC pin returns the device to normal operation. Note that the WP#/ACC pin must not be at VHH for operations other than  
accelerated programming, or device damage may result. WP# has an internal pull-up; when unconnected, WP# is at VIH.  
7.4.3  
Autoselect Functions  
If the system writes the autoselect command sequence, the device enters the autoselect mode. The system can then read  
autoselect codes from the internal register (which is separate from the memory array) on DQ7–DQ0. Standard read cycle timings  
apply in this mode. Refer to the Autoselect Mode on page 34 and Autoselect Command Sequence on page 44, for more information.  
7.5  
Standby Mode  
When the system is not reading or writing to the device, it can place the device in the standby mode. In this mode, current  
consumption is greatly reduced, and the outputs are placed in the high impedance state, independent of the OE# input.  
The device enters the CMOS standby mode when the CE# and RESET# pins are both held at VIO ± 0.3 V. (Note that this is a more  
restricted voltage range than VIH.) If CE# and RESET# are held at VIH, but not within VIO ± 0.3 V, the device is in the standby mode,  
Document Number: 002-01522 Rev. *B  
Page 11 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
but the standby current is greater. The device requires standard access time (tCE) for read access when the device is in either of  
these standby modes, before it is ready to read data.  
If the device is deselected during erasure or programming, the device draws active current until the operation is completed.  
Refer to DC Characteristics on page 65 for the standby current specification.  
7.6  
Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device energy consumption. The device automatically enables this mode when  
addresses remain stable for tACC + 30 ns. The automatic sleep mode is independent of the CE#, WE#, and OE# control signals.  
Standard address access timings provide new data when addresses are changed. While in sleep mode, output data is latched and  
always available to the system. Refer to DC Characteristics on page 65 for the automatic sleep mode current specification.  
7.7  
RESET#: Hardware Reset Pin  
The RESET# pin provides a hardware method of resetting the device to reading array data. When the RESET# pin is driven low for  
at least a period of tRP, the device immediately terminates any operation in progress, tristates all output pins, and ignores all read/  
write commands for the duration of the RESET# pulse. The device also resets the internal state machine to reading array data. The  
operation that was interrupted should be reinitiated once the device is ready to accept anher command sequence, to ensure data  
integrity.  
Current is reduced for the duration of the RESET# pulse. When RESET# is held t VSS±0.3 V, the device draws CMOS standby  
current (ICC5). If RESET# is held at VIL but not within VSS±0.3 V, the standby current is greater.  
The RESET# pin may be tied to the system reset circuitry. A system reset would thus also reset the Flash memory, enabling the  
system to read the boot-up firmware from the Flash memory.  
Refer to the AC Characteristics tables for RESET# parameters and Figure 15.3 on page 70 for the timing diagram.  
Document Number: 002-01522 Rev. *B  
Page 12 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
7.8  
Output Disable Mode  
When the OE# input is at VIH, output from the device is disabled. The output pins are placed in the high impedance state.  
Sector Address Table–S29GL512N (Sheet 1 of 12)  
Sector Size  
(Kbytes/  
Kwords)  
8-bit  
Address Range  
(in hexadecimal)  
16-bit  
Address Range  
(in hexadecimal)  
Sector  
SA0  
A24–A16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/6
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
0000000–001FFFF  
0020000–003FFFF  
0040000–005FFFF  
0060000–007FFFF  
0080000–009FFFF  
00A0000–00BFFFF  
00C0000–00DFFFF  
00E0000–00FFFFF  
0100000–011FFFF  
0120000–013FFFF  
0140000–015FFFF  
0160000–017FFF  
0180000–019FFFF  
01A0000–01BFFFF  
01000–01DFFFF  
01E0000–01FFFFF  
0200000–021FFFF  
0220000–023FFFF  
0240000–025FFFF  
0260000–027FFFF  
0280000–029FFFF  
02A0000–02BFFFF  
02C0000–02DFFFF  
02E0000–02FFFFF  
0300000–031FFFF  
0320000–033FFFF  
0340000–035FFFF  
0360000–037FFFF  
0380000–039FFFF  
03A0000–03BFFFF  
03C0000–03DFFFF  
03E0000–0EFFFFF  
0400000–041FFFF  
0420000–043FFFF  
0440000–045FFFF  
0460000–047FFFF  
0480000–049FFFF  
04A0000–04BFFFF  
04C0000–04DFFFF  
04E0000–04FFFFF  
0500000–051FFFF  
0520000–053FFFF  
0000000–000FFFF  
0010000–001FFFF  
0020000–002FFFF  
0030000–003FFFF  
0040000–004FFFF  
0050000–005FFFF  
006000006FFFF  
0070000–007FFFF  
080000–008FFFF  
0090000–009FFFF  
00A0000–00AFFFF  
00B0000–00BFFFF  
00C0000–00CFFFF  
00D0000–00DFFFF  
00E0000–00EFFFF  
00F0000–00FFFFF  
0100000–010FFFF  
0110000–011FFFF  
0120000–012FFFF  
0130000–013FFFF  
0140000–014FFFF  
0150000–015FFFF  
0160000–016FFFF  
0170000–017FFFF  
0180000–018FFFF  
0190000–019FFFF  
01A0000–01AFFFF  
01B0000–01BFFFF  
01C0000–01CFFFF  
01D0000–01DFFFF  
01E0000–01EFFFF  
01F0000–01FFFFF  
0200000–020FFFF  
0210000–021FFFF  
0220000–022FFFF  
0230000–023FFFF  
0240000–024FFFF  
0250000–025FFFF  
0260000–026FFFF  
0270000–027FFFF  
0280000–028FFFF  
0290000–029FFFF  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
Document Number: 002-01522 Rev. *B  
Page 13 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Sector Address Table–S29GL512N (Sheet 2 of 12)  
Sector Size  
(Kbytes/  
Kwords)  
8-bit  
Address Range  
(in hexadecimal)  
16-bit  
Address Range  
(in hexadecimal)  
Sector  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
A24–A16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
28/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
0540000–055FFFF  
0560000–057FFFF  
0580000–059FFFF  
05A0000–05BFFFF  
05C0000–05DFFFF  
05E0000–05FFFFF  
0600000–061FFFF  
0620000–063FFFF  
0640000–065FFFF  
0660000–067FFFF  
0680000–069FFFF  
06A0000–06BFFFF  
06C0000–06DFFFF  
06E0000–06FFFFF  
0700000–071FFF  
0720000–073FFFF  
0740000–075FFFF  
076000–077FFFF  
0780000–079FFFF  
07A0000–07BFFFF  
07C0000–07DFFFF  
07E0000–07FFFFF  
0800000–081FFFF  
0820000–083FFFF  
0840000–085FFFF  
0860000–087FFFF  
0880000–089FFFF  
08A0000–08BFFFF  
08C0000–08DFFFF  
08E0000–08FFFFF  
0900000–091FFFF  
0920000–093FFFF  
0940000–095FFFF  
0960000–097FFFF  
0980000–099FFFF  
09A0000–09BFFFF  
09C0000–09DFFFF  
09E0000–09FFFFF  
0A00000–0A1FFFF  
0A20000–0A3FFFF  
0A40000–0A5FFFF  
0A60000–0A7FFFF  
0A80000–0A9FFFF  
0AA0000–0ABFFFF  
0AC0000–0ADFFFF  
02A0000–02AFFFF  
02B0000–02BFFFF  
02C0000–02CFFFF  
02D0000–02DFFFF  
02E0000–02EFFFF  
02F0000–02FFFFF  
0300000–030FFFF  
0310000–031FFFF  
0320000–032FFFF  
03300033FFFF  
0340000–034FFFF  
0350000–035FFFF  
0360000–036FFFF  
0370000–037FFFF  
0380000–038FFFF  
0390000–039FFFF  
03A0000–03AFFFF  
03B0000–03BFFFF  
03C0000–03CFFFF  
03D0000–03DFFFF  
03E0000–03EFFFF  
03F0000–03FFFFF  
0400000–040FFFF  
0410000–041FFFF  
0420000–042FFFF  
0430000–043FFFF  
0440000–044FFFF  
0450000–045FFFF  
0460000–046FFFF  
0470000–047FFFF  
0480000–048FFFF  
0490000–049FFFF  
04A0000–04AFFFF  
04B0000–04BFFFF  
04C0000–04CFFFF  
04D0000–04DFFFF  
04E0000–04EFFFF  
04F0000–04FFFFF  
0500000–050FFFF  
0510000–051FFFF  
0520000–052FFFF  
0530000–053FFFF  
0540000–054FFFF  
0550000–055FFFF  
0560000–056FFFF  
Document Number: 002-01522 Rev. *B  
Page 14 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Sector Address Table–S29GL512N (Sheet 3 of 12)  
Sector Size  
(Kbytes/  
Kwords)  
8-bit  
Address Range  
(in hexadecimal)  
16-bit  
Address Range  
(in hexadecimal)  
Sector  
SA87  
A24–A16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
28/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
0AE0000–0AFFFFF  
0B00000–0B1FFFF  
0B20000–0B3FFFF  
0B40000–0B5FFFF  
0B60000–0B7FFFF  
0B80000–0B9FFFF  
0BA0000–0BBFFFF  
0BC0000–0BDFFFF  
0BE0000–0BFFFFF  
0C00000–0C1FFFF  
0C20000–0C3FFFF  
0C40000–0C5FFFF  
0C60000–0C7FFFF  
0C80000–0C9FFFF  
0CA0000–0CFFFF  
0CC0000–0CDFFFF  
0CE0000–0CFFFFF  
0D00000–0D1FFFF  
0D20000–0D3FFFF  
0D40000–0D5FFFF  
0D60000–0D7FFFF  
0D80000–0D9FFFF  
0DA0000–0DBFFFF  
0DC0000–0DDFFFF  
0DE0000–0DFFFFF  
0E00000–0E1FFFF  
0E20000–0E3FFFF  
0E40000–0E5FFFF  
0E60000–0E7FFFF  
0E80000–0E9FFFF  
0EA0000–0EBFFFF  
0EC0000–0EDFFFF  
0EE0000–0EFFFFF  
0F00000–0F1FFFF  
0F20000–0F3FFFF  
0F40000–0F5FFFF  
0F60000–0F7FFFF  
0F80000–0F9FFFF  
0FA0000–0FBFFFF  
0FC0000–0FDFFFF  
0FE0000–0FFFFFF  
1000000–101FFFF  
1020000–103FFFF  
1040000–105FFFF  
1060000–017FFFF  
0570000–057FFFF  
0580000–058FFFF  
0590000–059FFFF  
05A0000–05AFFFF  
05B0000–05BFFFF  
05C0000–05CFFFF  
05D0000–05DFFFF  
05E0000–05EFFFF  
05F0000–05FFFFF  
06000060FFFF  
0610000–061FFFF  
0620000–062FFFF  
0630000–063FFFF  
0640000–064FFFF  
0650000–065FFFF  
0660000–066FFFF  
0670000–067FFFF  
0680000–068FFFF  
0690000–069FFFF  
06A0000–06AFFFF  
06B0000–06BFFFF  
06C0000–06CFFFF  
06D0000–06DFFFF  
06E0000–06EFFFF  
06F0000–06FFFFF  
0700000–070FFFF  
0710000–071FFFF  
0720000–072FFFF  
0730000–073FFFF  
0740000–074FFFF  
0750000–075FFFF  
0760000–076FFFF  
0770000–077FFFF  
0780000–078FFFF  
0790000–079FFFF  
07A0000–07AFFFF  
07B0000–07BFFFF  
07C0000–07CFFFF  
07D0000–07DFFFF  
07E0000–07EFFFF  
07F0000–07FFFFF  
0800000–080FFFF  
0810000–081FFFF  
0820000–082FFFF  
0830000–083FFFF  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
Document Number: 002-01522 Rev. *B  
Page 15 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Sector Address Table–S29GL512N (Sheet 4 of 12)  
Sector Size  
(Kbytes/  
Kwords)  
8-bit  
Address Range  
(in hexadecimal)  
16-bit  
Address Range  
(in hexadecimal)  
Sector  
SA132  
SA133  
SA134  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
SA142  
SA143  
SA144  
SA145  
SA146  
SA147  
SA148  
SA149  
SA150  
SA151  
SA152  
SA153  
SA154  
SA155  
SA156  
SA157  
SA158  
SA159  
SA160  
SA161  
SA162  
SA163  
SA164  
SA165  
SA166  
SA167  
SA168  
SA169  
SA170  
SA171  
SA172  
SA173  
SA174  
SA175  
SA176  
A24–A16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
28/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
1080000–109FFFF  
10A0000–10BFFFF  
10C0000–10DFFFF  
10E0000–10FFFFF  
1100000–111FFFF  
1120000–113FFFF  
1140000–115FFFF  
1160000–117FFFF  
1180000–119FFFF  
11A0000–11BFFFF  
11C0000–11DFFFF  
11E0000–11FFFFF  
1200000–121FFFF  
1220000–123FFFF  
1240000–125FFF  
1260000–127FFFF  
1280000–129FFFF  
12A000–12BFFFF  
12C0000–12DFFFF  
12E0000–12FFFFF  
1300000–131FFFF  
1320000–133FFFF  
1340000–135FFFF  
1360000–137FFFF  
1380000–139FFFF  
13A0000–13BFFFF  
13C0000–13DFFFF  
13E0000–13FFFFF  
1400000–141FFFF  
1420000–143FFFF  
1440000–145FFFF  
1460000–147FFFF  
1480000–149FFFF  
14A0000–14BFFFF  
14C0000–14DFFFF  
14E0000–14FFFFF  
1500000–151FFFF  
1520000–153FFFF  
1540000–155FFFF  
1560000–157FFFF  
1580000–159FFFF  
15A0000–15BFFFF  
15C0000–15DFFFF  
15E0000–15FFFFF  
160000–161FFFF  
0840000–084FFFF  
0850000–085FFFF  
0860000–086FFFF  
0870000–087FFFF  
0880000–088FFFF  
0890000–089FFFF  
08A0000–08AFFFF  
08B0000–08BFFFF  
08C0000–08CFFFF  
08D0008DFFFF  
08E0000–08EFFFF  
08F0000–08FFFFF  
0900000–090FFFF  
0910000–091FFFF  
0920000–092FFFF  
0930000–093FFFF  
0940000–094FFFF  
0950000–095FFFF  
0960000–096FFFF  
0970000–097FFFF  
0980000–098FFFF  
0990000–099FFFF  
09A0000–09AFFFF  
09B0000–09BFFFF  
09C0000–09CFFFF  
09D0000–09DFFFF  
09E0000–09EFFFF  
09F0000–09FFFFF  
0A00000–0A0FFFF  
0A10000–0A1FFFF  
0A20000–0A2FFFF  
0A30000–0A3FFFF  
0A40000–0A4FFFF  
0A50000–0A5FFFF  
0A60000–0A6FFFF  
0A70000–0A7FFFF  
0A80000–0A8FFFF  
0A90000–0A9FFFF  
0AA0000–0AAFFFF  
0AB0000–0ABFFFF  
0AC0000–0ACFFFF  
0AD0000–0ADFFFF  
0AE0000–0AEFFFF  
0AF0000–0AFFFFF  
0B00000–0B0FFFF  
Document Number: 002-01522 Rev. *B  
Page 16 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Sector Address Table–S29GL512N (Sheet 5 of 12)  
Sector Size  
(Kbytes/  
Kwords)  
8-bit  
Address Range  
(in hexadecimal)  
16-bit  
Address Range  
(in hexadecimal)  
Sector  
SA177  
SA178  
SA179  
SA180  
SA181  
SA182  
SA183  
SA184  
SA185  
SA186  
SA187  
SA188  
SA189  
SA190  
SA191  
SA192  
SA193  
SA194  
SA195  
SA196  
SA197  
SA198  
SA199  
SA200  
SA201  
SA202  
SA203  
SA204  
SA205  
SA206  
SA207  
SA208  
SA209  
SA210  
SA211  
SA212  
SA213  
SA214  
SA215  
SA216  
SA217  
SA218  
SA219  
SA220  
SA221  
A24–A16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
28/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
1620000–163FFFF  
1640000–165FFFF  
1660000–167FFFF  
1680000–169FFFF  
16A0000–16BFFFF  
16C0000–16DFFFF  
16E0000–16FFFFF  
1700000–171FFFF  
1720000–173FFFF  
1740000–175FFFF  
1760000–177FFFF  
1780000–179FFFF  
17A0000–17BFFFF  
17C0000–17DFFFF  
17E0000–17FFFF  
1800000–181FFFF  
1820000–183FFFF  
184000–185FFFF  
1860000–187FFFF  
1880000–189FFFF  
18A0000–18BFFFF  
18C0000–18DFFFF  
18E0000–18FFFFF  
1900000–191FFFF  
1920000–193FFFF  
1940000–195FFFF  
1960000–197FFFF  
1980000–199FFFF  
19A0000–19BFFFF  
19C0000–19DFFFF  
19E0000–19FFFFF  
1A00000–1A1FFFF  
1A20000–1A3FFFF  
1A40000–1A5FFFF  
1A60000–1A7FFFF  
1A80000–1A9FFFF  
1AA0000–1ABFFFF  
1AC0000–1ADFFFF  
1AE0000–1AFFFFF  
1B00000–1B1FFFF  
1B20000–1B3FFFF  
1B40000–1B5FFFF  
1B60000–1B7FFFF  
1B80000–1B9FFFF  
1BA0000–1BBFFFF  
0B10000–0B1FFFF  
0B20000–0B2FFFF  
0B30000–0B3FFFF  
0B40000–0B4FFFF  
0B50000–0B5FFFF  
0B60000–0B6FFFF  
0B70000–0B7FFFF  
0B80000–0B8FFFF  
0B90000–0B9FFFF  
0BA000BAFFFF  
0BB0000–0BBFFFF  
0C0000–0BCFFFF  
0BD0000–0BDFFFF  
0BE0000–0BEFFFF  
0BF0000–0BFFFFF  
0C00000–0C0FFFF  
0C10000–0C1FFFF  
0C20000–0C2FFFF  
0C30000–0C3FFFF  
0C40000–0C4FFFF  
0C50000–0C5FFFF  
0C60000–0C6FFFF  
0C70000–0C7FFFF  
0C80000–0C8FFFF  
0C90000–0C9FFFF  
0CA0000–0CAFFFF  
0CB0000–0CBFFFF  
0CC0000–0CCFFFF  
0CD0000–0CDFFFF  
0CE0000–0CEFFFF  
0CF0000–0CFFFFF  
0D00000–0D0FFFF  
0D10000–0D1FFFF  
0D20000–0D2FFFF  
0D30000–0D3FFFF  
0D40000–0D4FFFF  
0D50000–0D5FFFF  
0D60000–0D6FFFF  
0D70000–0D7FFFF  
0D80000–0D8FFFF  
0D90000–0D9FFFF  
0DA0000–0DAFFFF  
0DB0000–0DBFFFF  
0DC0000–0DCFFFF  
0DD0000–0DDFFFF  
Document Number: 002-01522 Rev. *B  
Page 17 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Sector Address Table–S29GL512N (Sheet 6 of 12)  
Sector Size  
(Kbytes/  
Kwords)  
8-bit  
Address Range  
(in hexadecimal)  
16-bit  
Address Range  
(in hexadecimal)  
Sector  
SA222  
SA223  
SA224  
SA225  
SA226  
SA227  
SA228  
SA229  
SA230  
SA231  
SA232  
SA233  
SA234  
SA235  
SA236  
SA237  
SA238  
SA239  
SA240  
SA241  
SA242  
SA243  
SA244  
SA245  
SA246  
SA247  
SA248  
SA249  
SA250  
SA251  
SA252  
SA253  
SA254  
SA255  
SA256  
SA257  
SA258  
SA259  
SA260  
SA261  
SA262  
SA263  
SA264  
SA265  
SA266  
A24–A16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
28/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
1BC0000–1BDFFFF  
1BE0000–1BFFFFF  
1C00000–1C1FFFF  
1C20000–1C3FFFF  
1C40000–1C5FFFF  
1C60000–1C7FFFF  
1C80000–1C9FFFF  
1CA0000–1CBFFFF  
1CC0000–1CDFFFF  
1CE0000–1CFFFFF  
1D00000–1D1FFFF  
1D20000–1D3FFFF  
1D40000–1D5FFFF  
1D60000–1D7FFFF  
1D80000–1DFFFF  
1DA0000–1DBFFFF  
1DC0000–1DDFFFF  
1DE000–1DFFFFF  
1E00000–1E1FFFF  
1E20000–1E3FFFF  
1E40000–1E5FFFF  
1E60000–1E7FFFF  
1E80000–1E9FFFF  
1EA0000–1EBFFFF  
1EC0000–1EDFFFF  
1EE0000–1EFFFFF  
1F00000–1F1FFFF  
1F20000–1F3FFFF  
1F40000–1F5FFFF  
1F60000–1F7FFFF  
1F80000–1F9FFFF  
1FA0000–1FBFFFF  
1FC0000–1FDFFFF  
1FE0000–1FFFFFF  
2000000–201FFFF  
2020000–203FFFF  
2040000–205FFFF  
2060000–207FFFF  
2080000–209FFFF  
20A0000–20BFFFF  
20C0000–20DFFFF  
20E0000–20FFFFF  
2100000–211FFFF  
2120000–213FFFF  
2140000–215FFFF  
0DE0000–0DEFFFF  
0DF0000–0DFFFFF  
0E00000–0E0FFFF  
0E10000–0E1FFFF  
0E20000–0E2FFFF  
0E30000–0E3FFFF  
0E40000–0E4FFFF  
0E50000–0E5FFFF  
0E60000–0E6FFFF  
0E7000E7FFFF  
0E80000–0E8FFFF  
0E90000–0E9FFFF  
0EA0000–0EAFFFF  
0EB0000–0EBFFFF  
0EC0000–0ECFFFF  
0ED0000–0EDFFFF  
0EE0000–0EEFFFF  
0EF0000–0EFFFFF  
0F00000–0F0FFFF  
0F10000–0F1FFFF  
0F20000–0F2FFFF  
0F30000–0F3FFFF  
0F40000–0F4FFFF  
0F50000–0F5FFFF  
0F60000–0F6FFFF  
0F70000–0F7FFFF  
0F80000–0F8FFFF  
0F90000–0F9FFFF  
0FA0000–0FAFFFF  
0FB0000–0FBFFFF  
0FC0000–0FCFFFF  
0FD0000–0FDFFFF  
0FE0000–0FEFFFF  
0FF0000–0FFFFFF  
1000000–100FFFF  
1010000–101FFFF  
1020000–102FFFF  
1030000–103FFFF  
1040000–104FFFF  
1050000–105FFFF  
1060000–106FFFF  
1070000–107FFFF  
1080000–108FFFF  
1090000–109FFFF  
10A0000–10AFFFF  
Document Number: 002-01522 Rev. *B  
Page 18 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Sector Address Table–S29GL512N (Sheet 7 of 12)  
Sector Size  
(Kbytes/  
Kwords)  
8-bit  
Address Range  
(in hexadecimal)  
16-bit  
Address Range  
(in hexadecimal)  
Sector  
SA267  
SA268  
SA269  
SA270  
SA271  
SA272  
SA273  
SA274  
SA275  
SA276  
SA277  
SA278  
SA279  
SA280  
SA281  
SA282  
SA283  
SA284  
SA285  
SA286  
SA287  
SA288  
SA289  
SA290  
SA291  
SA292  
SA293  
SA294  
SA295  
SA296  
SA297  
SA298  
SA299  
SA300  
SA301  
SA302  
SA303  
SA304  
SA305  
SA306  
SA307  
SA308  
SA309  
SA310  
SA311  
A24–A16  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
28/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
2160000–217FFFF  
2180000–219FFFF  
21A0000–21BFFFF  
21C0000–21DFFFF  
21E0000–21FFFFF  
2200000–221FFFF  
2220000–223FFFF  
2240000–225FFFF  
2260000–227FFFF  
2280000–229FFFF  
22A0000–22BFFFF  
22C0000–22DFFFF  
22E0000–22FFFFF  
2300000–231FFFF  
2320000–233FFF  
2340000–235FFFF  
2360000–237FFFF  
2380000–239FFFF  
23A0000–23BFFFF  
23C0000–23DFFFF  
23E0000–23FFFFF  
2400000–241FFFF  
2420000–243FFFF  
2440000–245FFFF  
2460000–247FFFF  
2480000–249FFFF  
24A0000–24BFFFF  
24C0000–24DFFFF  
24E0000–24FFFFF  
2500000–251FFFF  
2520000–253FFFF  
2540000–255FFFF  
2560000–257FFFF  
2580000–259FFFF  
25A0000–25BFFFF  
25C0000–25DFFFF  
25E0000–25FFFFF  
2600000–261FFFF  
2620000–263FFFF  
2640000–265FFFF  
2660000–267FFFF  
2680000–269FFFF  
26A0000–26BFFFF  
26C0000–26DFFFF  
26E0000–26FFFFF  
10B0000–10BFFFF  
10C0000–10CFFFF  
10D0000–10DFFFF  
10E0000–10EFFFF  
10F0000–10FFFFF  
1100000–110FFFF  
1110000–111FFFF  
1120000–112FFFF  
1130000–113FFFF  
11400014FFFF  
1150000–115FFFF  
1160000–116FFFF  
1170000–117FFFF  
1180000–118FFFF  
1190000–119FFFF  
11A0000–11AFFFF  
11B0000–11BFFFF  
11C0000–11CFFFF  
11D0000–11DFFFF  
11E0000–11EFFFF  
11F0000–11FFFFF  
1200000–120FFFF  
1210000–121FFFF  
1220000–122FFFF  
1230000–123FFFF  
1240000–124FFFF  
1250000–125FFFF  
1260000–126FFFF  
1270000–127FFFF  
1280000–128FFFF  
1290000–129FFFF  
12A0000–12AFFFF  
12B0000–12BFFFF  
12C0000–12CFFFF  
12D0000–12DFFFF  
12E0000–12EFFFF  
12F0000–12FFFFF  
1300000–130FFFF  
1310000–131FFFF  
1320000–132FFFF  
1330000–133FFFF  
1340000–134FFFF  
1350000–135FFFF  
1360000–136FFFF  
1370000–137FFFF  
Document Number: 002-01522 Rev. *B  
Page 19 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Sector Address Table–S29GL512N (Sheet 8 of 12)  
Sector Size  
(Kbytes/  
Kwords)  
8-bit  
Address Range  
(in hexadecimal)  
16-bit  
Address Range  
(in hexadecimal)  
Sector  
SA312  
SA313  
SA314  
SA315  
SA316  
SA317  
SA318  
SA319  
SA320  
SA321  
SA322  
SA323  
SA324  
SA325  
SA326  
SA327  
SA328  
SA329  
SA330  
SA331  
SA332  
SA333  
SA334  
SA335  
SA336  
SA337  
SA338  
SA339  
SA340  
SA341  
SA342  
SA343  
SA344  
SA345  
SA346  
SA347  
SA348  
SA349  
SA350  
SA351  
SA352  
SA353  
SA354  
SA355  
SA356  
A24–A16  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
28/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
2700000–271FFFF  
2720000–273FFFF  
2740000–275FFFF  
2760000–277FFFF  
2780000–279FFFF  
27A0000–27BFFFF  
27C0000–27DFFFF  
27E0000–27FFFFF  
2800000–281FFFF  
2820000–283FFFF  
2840000–285FFFF  
2860000–287FFFF  
2880000–289FFFF  
28A0000–28BFFFF  
28C0000–28DFFFF  
28E0000–28FFFFF  
2900000–291FFFF  
292000–293FFFF  
2940000–295FFFF  
2960000–297FFFF  
2980000–299FFFF  
29A0000–29BFFFF  
29C0000–29DFFFF  
29E0000–29FFFFF  
2A00000–2A1FFFF  
2A20000–2A3FFFF  
2A40000–2A5FFFF  
2A60000–2A7FFFF  
2A80000–2A9FFFF  
2AA0000–2ABFFFF  
2AC0000–2ADFFFF  
2AE00000–2EFFFFF  
2B00000–2B1FFFF  
2B20000–2B3FFFF  
2B40000–2B5FFFF  
2B60000–2B7FFFF  
2B80000–2B9FFFF  
2BA0000–2BBFFFF  
2BC0000–2DFFFFF  
2BE0000–2BFFFFF  
2C00000–2C1FFFF  
2C20000–2C3FFFF  
2C40000–2C5FFFF  
2C60000–2C7FFFF  
2C80000–2C9FFFF  
1380000–138FFFF  
1390000–139FFFF  
13A0000–13AFFFF  
13B0000–13BFFFF  
13C0000–13CFFFF  
13D0000–13DFFFF  
13E0000–13EFFFF  
13F0000–13FFFFF  
1400000–140FFFF  
14100041FFFF  
1420000–142FFFF  
1430000–143FFFF  
1440000–144FFFF  
1450000–145FFFF  
1460000–146FFFF  
1470000–147FFFF  
1480000–148FFFF  
1490000–149FFFF  
14A0000–14AFFFF  
14B0000–14BFFFF  
14C0000–14CFFFF  
14D0000–14DFFFF  
14E0000–14EFFFF  
14F0000–14FFFFF  
1500000–150FFFF  
1510000–151FFFF  
1520000–152FFFF  
1530000–153FFFF  
1540000–154FFFF  
1550000–155FFFF  
1560000–156FFFF  
1570000–157FFFF  
1580000–158FFFF  
1590000–159FFFF  
15A0000–15AFFFF  
15B0000–15BFFFF  
15C0000–15CFFFF  
15D0000–15DFFFF  
15E0000–15EFFFF  
15F0000–15FFFFF  
1600000–160FFFF  
1610000–161FFFF  
1620000–162FFFF  
1630000–163FFFF  
1640000–164FFFF  
Document Number: 002-01522 Rev. *B  
Page 20 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Sector Address Table–S29GL512N (Sheet 9 of 12)  
Sector Size  
(Kbytes/  
Kwords)  
8-bit  
Address Range  
(in hexadecimal)  
16-bit  
Address Range  
(in hexadecimal)  
Sector  
SA357  
SA358  
SA359  
SA360  
SA361  
SA362  
SA363  
SA364  
SA365  
SA366  
SA367  
SA368  
SA369  
SA370  
SA371  
SA372  
SA373  
SA374  
SA375  
SA376  
SA377  
SA378  
SA379  
SA380  
SA381  
SA382  
SA383  
SA384  
SA385  
SA386  
SA387  
SA388  
SA389  
SA390  
SA391  
SA392  
SA393  
SA394  
SA395  
SA396  
SA397  
SA398  
SA399  
SA400  
SA401  
A24–A16  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
28/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
2CA0000–2CBFFFF  
2CC0000–2CDFFFF  
2CE0000–2CFFFFF  
2D00000–2D1FFFF  
2D20000–2D3FFFF  
2D40000–2D5FFFF  
2D60000–2D7FFFF  
2D80000–2D9FFFF  
2DA0000–2DBFFFF  
2DC0000–2DDFFFF  
2DE0000–2DFFFFF  
2E00000–2E1FFFF  
2E20000–2E3FFFF  
2E40000–2E5FFFF  
2E60000–2E7FFFF  
2E80000–2E9FFFF  
2EA0000–2EBFFFF  
2EC0000–2EDFFFF  
2EE0000–2EFFFFF  
2F00000–2F1FFFF  
2F20000–2F3FFFF  
2F40000–2F5FFFF  
2F60000–2F7FFFF  
2F80000–2F9FFFF  
2FA0000–2FBFFFF  
2FC0000–2FDFFFF  
3FE0000–3FFFFFF  
3000000–301FFFF  
3020000–303FFFF  
3040000–305FFFF  
3060000–307FFFF  
3080000–309FFFF  
30A0000–30BFFFF  
30C0000–30DFFFF  
30E0000–30FFFFF  
3100000–311FFFF  
3120000–313FFFF  
3140000–315FFFF  
3160000–317FFFF  
3180000–319FFFF  
31A0000–31BFFFF  
31C0000–31DFFFF  
31E0000–31FFFFF  
3200000–321FFFF  
3220000–323FFFF  
1650000–165FFFF  
1660000–166FFFF  
1670000–167FFFF  
1680000–168FFFF  
1690000–169FFFF  
16A0000–16AFFFF  
16B0000–16BFFFF  
16C0000–16CFFFF  
16D0000–16DFFFF  
16E0006EFFFF  
16F0000–16FFFFF  
1700000–170FFFF  
1710000–171FFFF  
1720000–172FFFF  
1730000–173FFFF  
1740000–174FFFF  
1750000–175FFFF  
1760000–176FFFF  
1770000–177FFFF  
1780000–178FFFF  
1790000–179FFFF  
17A0000–17AFFFF  
17B0000–17BFFFF  
17C0000–17CFFFF  
17D0000–17DFFFF  
17E0000–17EFFFF  
17F0000–17FFFFF  
1800000–180FFFF  
1810000–181FFFF  
1820000–182FFFF  
1830000–183FFFF  
1840000–184FFFF  
1850000–185FFFF  
1860000–186FFFF  
1870000–187FFFF  
1880000–188FFFF  
1890000–189FFFF  
18A0000–18AFFFF  
18B0000–18BFFFF  
18C0000–18CFFFF  
18D0000–18DFFFF  
18E0000–18EFFFF  
18F0000–18FFFFF  
1900000–190FFFF  
1910000–191FFFF  
Document Number: 002-01522 Rev. *B  
Page 21 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Sector Address Table–S29GL512N (Sheet 10 of 12)  
Sector Size  
(Kbytes/  
Kwords)  
8-bit  
Address Range  
(in hexadecimal)  
16-bit  
Address Range  
(in hexadecimal)  
Sector  
SA402  
SA403  
SA404  
SA405  
SA406  
SA407  
SA408  
SA409  
SA410  
SA411  
SA412  
SA413  
SA414  
SA415  
SA416  
SA417  
SA418  
SA419  
SA420  
SA421  
SA422  
SA423  
SA424  
SA425  
SA426  
SA427  
SA428  
SA429  
SA430  
SA431  
SA432  
SA433  
SA434  
SA435  
SA436  
SA437  
SA438  
SA439  
SA440  
SA441  
SA442  
SA443  
SA444  
SA445  
SA446  
A24–A16  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
28/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
3240000–325FFFF  
3260000–327FFFF  
3280000–329FFFF  
32A0000–32BFFFF  
32C0000–32DFFFF  
32E0000–32FFFFF  
3300000–331FFFF  
3320000–333FFFF  
3340000–335FFFF  
3360000–337FFFF  
3380000–339FFFF  
33A0000–33BFFFF  
33C0000–33DFFFF  
33E0000–33FFFFF  
3400000–341FFF  
3420000–343FFFF  
3440000–345FFFF  
3460000–347FFFF  
3480000–349FFFF  
34A0000–34BFFFF  
34C0000–34DFFFF  
34E0000–34FFFFF  
3500000–351FFFF  
3520000–353FFFF  
3540000–355FFFF  
3560000–357FFFF  
3580000–359FFFF  
35A0000–35BFFFF  
35C0000–35DFFFF  
35E0000–35FFFFF  
3600000–361FFFF  
3620000–363FFFF  
3640000–365FFFF  
3660000–367FFFF  
3680000–369FFFF  
36A0000–36BFFFF  
36C0000–36DFFFF  
36E0000–36FFFFF  
3700000–371FFFF  
3720000–373FFFF  
3740000–375FFFF  
3760000–377FFFF  
3780000–379FFFF  
37A0000–37BFFFF  
37C0000–37DFFFF  
1920000–192FFFF  
1930000–193FFFF  
1940000–194FFFF  
1950000–195FFFF  
1960000–196FFFF  
1970000–197FFFF  
1980000–198FFFF  
1990000–199FFFF  
19A0000–19AFFFF  
19B0009BFFFF  
19C0000–19CFFFF  
1D0000–19DFFFF  
19E0000–19EFFFF  
19F0000–19FFFFF  
1A00000–1A0FFFF  
1A10000–1A1FFFF  
1A20000–1A2FFFF  
1A30000–1A3FFFF  
1A40000–1A4FFFF  
1A50000–1A5FFFF  
1A60000–1A6FFFF  
1A70000–1A7FFFF  
1A80000–1A8FFFF  
1A90000–1A9FFFF  
1AA0000–1AAFFFF  
1AB0000–1ABFFFF  
1AC0000–1ACFFFF  
1AD0000–1ADFFFF  
1AE0000–1AEFFFF  
1AF0000–1AFFFFF  
1B00000–1B0FFFF  
1B10000–1B1FFFF  
1B20000–1B2FFFF  
1B30000–1B3FFFF  
1B40000–1B4FFFF  
1B50000–1B5FFFF  
1B60000–1B6FFFF  
1B70000–1B7FFFF  
1B80000–1B8FFFF  
1B90000–1B9FFFF  
1BA0000–1BAFFFF  
1BB0000–1BBFFFF  
1BC0000–1BCFFFF  
1BD0000–1BDFFFF  
1BE0000–1BEFFFF  
Document Number: 002-01522 Rev. *B  
Page 22 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Sector Address Table–S29GL512N (Sheet 11 of 12)  
Sector Size  
(Kbytes/  
Kwords)  
8-bit  
Address Range  
(in hexadecimal)  
16-bit  
Address Range  
(in hexadecimal)  
Sector  
SA447  
SA448  
SA449  
SA450  
SA451  
SA452  
SA453  
SA454  
SA455  
SA456  
SA457  
SA458  
SA459  
SA460  
SA461  
SA462  
SA463  
SA464  
SA465  
SA466  
SA467  
SA468  
SA469  
SA470  
SA471  
SA472  
SA473  
SA474  
SA475  
SA476  
SA477  
SA478  
SA479  
SA480  
SA481  
SA482  
SA483  
SA484  
SA485  
SA486  
SA487  
SA488  
SA489  
SA490  
SA491  
A24–A16  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
28/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
37E0000–37FFFFF  
3800000–381FFFF  
3820000–383FFFF  
3840000–385FFFF  
3860000–387FFFF  
3880000–389FFFF  
38A0000–38BFFFF  
38C0000–38DFFFF  
38E0000–38FFFFF  
3900000–391FFFF  
3920000–393FFFF  
3940000–395FFFF  
3960000–397FFFF  
3980000–399FFFF  
39A0000–39BFFFF  
39C0000–39DFFFF  
39E0000–39FFFFF  
3A0000–3A1FFFF  
3A20000–3A3FFFF  
3A40000–3A5FFFF  
3A60000–3A7FFFF  
3A80000–3A9FFFF  
3AA0000–3ABFFFF  
3AC0000–3ADFFFF  
3AE0000–3AFFFFF  
3B00000–3B1FFFF  
3B20000–3B3FFFF  
3B40000–3B5FFFF  
3B60000–3B7FFFF  
3B80000–3B9FFFF  
3BA0000–3BBFFFF  
3BC0000–3BDFFFF  
3BE0000–3BFFFFF  
3C00000–3C1FFFF  
3C20000–3C3FFFF  
3C40000–3C5FFFF  
3C60000–3C7FFFF  
3C80000–3C9FFFF  
3CA0000–3CBFFFF  
3CC0000–3CDFFFF  
3CE0000–3CFFFFF  
3D00000–3D1FFFFF  
3D20000–3D3FFFF  
3D40000–3D5FFFF  
3D60000–3D7FFFF  
1BF0000–1BFFFFF  
1C00000–1C0FFFF  
1C10000–1C1FFFF  
1C20000–1C2FFFF  
1C30000–1C3FFFF  
1C40000–1C4FFFF  
1C50000–1C5FFFF  
1C60000–1C6FFFF  
1C70000–1C7FFFF  
1C8000C8FFFF  
1C90000–1C9FFFF  
1CA0000–1CAFFFF  
1CB0000–1CBFFFF  
1CC0000–1CCFFFF  
1CD0000–1CDFFFF  
1CE0000–1CEFFFF  
1CF0000–1CFFFFF  
1D00000–1D0FFFF  
1D10000–1D1FFFF  
1D20000–1D2FFFF  
1D30000–1D3FFFF  
1D40000–1D4FFFF  
1D50000–1D5FFFF  
1D60000–1D6FFFF  
1D70000–1D7FFFF  
1D80000–1D8FFFF  
1D90000–1D9FFFF  
1DA0000–1DAFFFF  
1DB0000–1DBFFFF  
1DC0000–1DCFFFF  
1DD0000–1DDFFFF  
1DE0000–1DEFFFF  
1DF0000–1DFFFFF  
1E00000–1E0FFFF  
1E10000–1E1FFFF  
1E20000–1E2FFFF  
1E30000–1E3FFFF  
1E40000–1E4FFFF  
1E50000–1E5FFFF  
1E60000–1E6FFFF  
1E70000–1E7FFFF  
1E80000–1E8FFFF  
1E90000–1E9FFFF  
1EA0000–1EAFFFF  
1EB0000–1EBFFFF  
Document Number: 002-01522 Rev. *B  
Page 23 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Sector Address Table–S29GL512N (Sheet 12 of 12)  
Sector Size  
(Kbytes/  
Kwords)  
8-bit  
Address Range  
(in hexadecimal)  
16-bit  
Address Range  
(in hexadecimal)  
Sector  
SA492  
SA493  
SA494  
SA495  
SA496  
SA497  
SA498  
SA499  
SA500  
SA501  
SA502  
SA503  
SA504  
SA505  
SA506  
SA507  
SA508  
SA509  
SA510  
SA511  
A24–A16  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
3D80000–3D9FFFF  
3DA0000–3DBFFFF  
3DC0000–3DDFFFF  
3DE0000–3DFFFFF  
3E00000–3E1FFFF  
3E20000–3E3FFFF  
3E40000–3E5FFFF  
3E60000–3E7FFFF  
3E80000–3E9FFFF  
3EA0000–3EBFFFF  
3EC00000–3EDFFFF  
3EE0000–3EFFFFF  
3F00000–3F1FFFF  
3F20000–3F3FFFF  
3F40000–3F5FFF  
3F60000–3F7FFFF  
3F80000–3F9FFFF  
3FA0000–3FBFFFF  
3FC0000–3FDFFFF  
3FE0000–3FFFFFF  
1EC0000–1ECFFFF  
1ED0000–1EDFFFF  
1EE0000–1EEFFFF  
1EF0000–1EFFFFF  
1F00000–1F0FFFF  
1F10000–1F1FFFF  
1F20000–1F2FFFF  
1F30000–1F3FFFF  
1F40000–1F4FFFF  
1F5000F5FFFF  
1F60000–1F6FFFF  
1F70000–1F7FFFF  
1F80000–1F8FFFF  
1F90000–1F9FFFF  
1FA0000–1FAFFFF  
1FB0000–1FBFFFF  
1FC0000–1FCFFFF  
1FD0000–1FDFFFF  
1FE0000–1FEFFFF  
1FF0000–1FFFFFF  
Document Number: 002-01522 Rev. *B  
Page 24 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Sector Address Table–S29GL256N (Sheet 1 of 6)  
8-bit  
16-bit  
Sector Size  
Address Range  
(in hexadecimal)  
Address Range  
(in hexadecimal)  
Sector  
SA0  
A23–A16  
(Kbytes/Kwords)  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
12/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0000000–001FFFF  
0020000–003FFFF  
0040000–005FFFF  
0060000–007FFFF  
0080000–009FFFF  
00A0000–00BFFFF  
00C0000–00DFFFF  
00E0000–00FFFFF  
0100000–011FFFF  
0120000–013FFFF  
0140000–015FFFF  
0160000–017FFFF  
0180000–019FFFF  
01A0000–01BFFFF  
01C0000–01DFFFF  
01E0000–01FFFFF  
0200000–021FFFF  
0220000–023FFFF  
240000–025FFFF  
0260000–027FFFF  
0280000–029FFFF  
02A0000–02BFFFF  
02C0000–02DFFFF  
02E0000–02FFFFF  
0300000–031FFFF  
0320000–033FFFF  
0340000–035FFFF  
0360000–037FFFF  
0380000–039FFFF  
03A0000–03BFFFF  
03C0000–03DFFFF  
03E0000–03FFFFF  
0400000–041FFFF  
0420000–043FFFF  
0440000–045FFFF  
0460000–047FFFF  
0480000–049FFFF  
04A0000–04BFFFF  
04C0000–04DFFFF  
04E0000–04FFFFF  
0500000–051FFFF  
0520000–053FFFF  
0540000–055FFFF  
0560000–057FFFF  
0000000–000FFFF  
0010000–001FFFF  
0020000–002FFFF  
0030000–003FFFF  
0040000–004FFFF  
0050000–005FFFF  
0060000–006FFFF  
0070000–007FFFF  
0080000–008FFFF  
009000009FFFF  
00A0000–00AFFFF  
00B0000–00BFFFF  
00C0000–00CFFFF  
00D0000–00DFFFF  
00E0000–00EFFFF  
00F0000–00FFFFF  
0100000–010FFFF  
0110000–011FFFF  
0120000–012FFFF  
0130000–013FFFF  
0140000–014FFFF  
0150000–015FFFF  
0160000–016FFFF  
0170000–017FFFF  
0180000–018FFFF  
0190000–019FFFF  
01A0000–01AFFFF  
01B0000–01BFFFF  
01C0000–01CFFFF  
01D0000–01DFFFF  
01E0000–01EFFFF  
01F0000–01FFFFF  
0200000–020FFFF  
0210000–021FFFF  
0220000–022FFFF  
0230000–023FFFF  
0240000–024FFFF  
0250000–025FFFF  
0260000–026FFFF  
0270000–027FFFF  
0280000–028FFFF  
0290000–029FFFF  
02A0000–02AFFFF  
02B0000–02BFFFF  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
Document Number: 002-01522 Rev. *B  
Page 25 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Sector Address Table–S29GL256N (Sheet 2 of 6)  
8-bit  
16-bit  
Sector Size  
Address Range  
(in hexadecimal)  
Address Range  
(in hexadecimal)  
Sector  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
A23–A16  
(Kbytes/Kwords)  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
12/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0580000–059FFFF  
05A0000–05BFFFF  
05C0000–05DFFFF  
05E0000–05FFFFF  
0600000–061FFFF  
0620000–063FFFF  
0640000–065FFFF  
0660000–067FFFF  
0680000–069FFFF  
06A0000–06BFFFF  
06C0000–06DFFFF  
06E0000–06FFFFF  
0700000–071FFFF  
0720000–073FFFF  
0740000–075FFF  
0760000–077FFFF  
0780000–079FFFF  
07A000–7BFFFF  
07C0000–07DFFFF  
07E0000–07FFFFF0  
0800000–081FFFF  
0820000–083FFFF  
0840000–085FFFF  
0860000–087FFFF  
0880000–089FFFF  
08A0000–08BFFFF  
08C0000–08DFFFF  
08E0000–08FFFFF  
0900000–091FFFF  
0920000–093FFFF  
0940000–095FFFF  
0960000–097FFFF  
0980000–099FFFF  
09A0000–09BFFFF  
09C0000–09DFFFF  
09E0000–09FFFFF  
0A00000–0A1FFFF  
0A20000–0A3FFFF  
0A40000–045FFFF  
0A60000–0A7FFFF  
0A80000–0A9FFFF  
0AA0000–0ABFFFF  
0AC0000–0ADFFFF  
0AE0000–AEFFFFF  
0B00000–0B1FFFF  
02C0000–02CFFFF  
02D0000–02DFFFF  
02E0000–02EFFFF  
02F0000–02FFFFF  
0300000–030FFFF  
0310000–031FFFF  
0320000–032FFFF  
0330000–033FFFF  
0340000–034FFFF  
035000035FFFF  
0360000–036FFFF  
070000–037FFFF  
0380000–038FFFF  
0390000–039FFFF  
03A0000–03AFFFF  
03B0000–03BFFFF  
03C0000–03CFFFF  
03D0000–03DFFFF  
03E0000–03EFFFF  
03F0000–03FFFFF  
0400000–040FFFF  
0410000–041FFFF  
0420000–042FFFF  
0430000–043FFFF  
0440000–044FFFF  
0450000–045FFFF  
0460000–046FFFF  
0470000–047FFFF  
0480000–048FFFF  
0490000–049FFFF  
04A0000–04AFFFF  
04B0000–04BFFFF  
04C0000–04CFFFF  
04D0000–04DFFFF  
04E0000–04EFFFF  
04F0000–04FFFFF  
0500000–050FFFF  
0510000–051FFFF  
0520000–052FFFF  
0530000–053FFFF  
0540000–054FFFF  
0550000–055FFFF  
0560000–056FFFF  
0570000–057FFFF  
0580000–058FFFF  
Document Number: 002-01522 Rev. *B  
Page 26 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Sector Address Table–S29GL256N (Sheet 3 of 6)  
8-bit  
16-bit  
Sector Size  
Address Range  
(in hexadecimal)  
Address Range  
(in hexadecimal)  
Sector  
SA89  
A23–A16  
(Kbytes/Kwords)  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
12/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0B20000–0B3FFFF  
0B40000–0B5FFFF  
0B60000–0B7FFFF  
0B80000–0B9FFFF  
0BA0000–0BBFFFF  
0BC0000–0BDFFFF  
0BE0000–0BFFFFF  
0C00000–0C1FFFF  
0C20000–0C3FFFF  
0C40000–0C5FFFF  
0C60000–0C7FFFF  
0C80000–0C9FFFF  
0CA0000–0CBFFFF  
0CC0000–0CDFFFF  
0CE0000–0CFFFF  
0D00000–0D1FFFF  
0D20000–0D3FFFF  
0D40000–0D5FFFF  
0D60000–0D7FFFF  
0D80000–0D9FFFF  
0DA0000–0DBFFFF  
0DC0000–0DDFFFF  
0DE0000–0DFFFFF  
0E00000–0E1FFFF  
0E20000–0E3FFFF  
0E40000–0E5FFFF  
0E60000–0E7FFFF  
0E80000–0E9FFFF  
0EA0000–0EBFFFF  
0EC0000–0EDFFFF  
0EE0000–0EFFFFF  
0F00000–0F1FFFF  
0F20000–0F3FFFF  
0F40000–0F5FFFF  
0F60000–0F7FFFF  
0F80000–0F9FFFF  
0FA0000–0FBFFFF  
0FC0000–0FDFFFF  
0FE0000–0FFFFFF  
1000000–101FFFF  
1020000–103FFFF  
1040000–105FFFF  
1060000–107FFFF  
1080000–109FFFF  
10A0000–10BFFFF  
0590000–059FFFF  
05A0000–05AFFFF  
05B0000–05BFFFF  
05C0000–05CFFFF  
05D0000–05DFFFF  
05E0000–05EFFFF  
05F0000–05FFFFF  
0600000–060FFFF  
0610000–061FFFF  
062000062FFFF  
0630000–063FFFF  
040000–064FFFF  
0650000–065FFFF  
0660000–066FFFF  
0670000–067FFFF  
0680000–068FFFF  
0690000–069FFFF  
06A0000–06AFFFF  
06B0000–06BFFFF  
06C0000–06CFFFF  
06D0000–06DFFFF  
06E0000–06EFFFF  
06F0000–06FFFFF  
0700000–070FFFF  
0710000–071FFFF  
0720000–072FFFF  
0730000–073FFFF  
0740000–074FFFF  
0750000–075FFFF  
0760000–076FFFF  
0770000–077FFFF  
0780000–078FFFF  
0790000–079FFFF  
07A0000–07AFFFF  
07B0000–07BFFFF  
07C0000–07CFFFF  
07D0000–07DFFFF  
07E0000–07EFFFF  
07F0000–07FFFFF  
0800000–080FFFF  
0810000–081FFFF  
0820000–082FFFF  
0830000–083FFFF  
0840000–084FFFF  
0850000–085FFFF  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
Document Number: 002-01522 Rev. *B  
Page 27 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Sector Address Table–S29GL256N (Sheet 4 of 6)  
8-bit  
16-bit  
Sector Size  
Address Range  
(in hexadecimal)  
Address Range  
(in hexadecimal)  
Sector  
SA134  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
SA142  
SA143  
SA144  
SA145  
SA146  
SA147  
SA148  
SA149  
SA150  
SA151  
SA152  
SA153  
SA154  
SA155  
SA156  
SA157  
SA158  
SA159  
SA160  
SA161  
SA162  
SA163  
SA164  
SA165  
SA166  
SA167  
SA168  
SA169  
SA170  
SA171  
SA172  
SA173  
SA174  
SA175  
SA176  
SA177  
SA178  
A23–A16  
(Kbytes/Kwords)  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
12/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
10C0000–10DFFFF  
10E0000–10FFFFF  
1100000–111FFFF  
1120000–113FFFF  
1140000–115FFFF  
1160000–117FFFF  
1180000–119FFFF  
11A0000–11BFFFF  
11C0000–11DFFFF  
11E0000–11FFFFF  
1200000–121FFFF  
1220000–123FFFF  
1240000–125FFFF  
1260000–127FFFF  
1280000–129FFF  
12A0000–12BFFFF  
12C0000–12DFFFF  
12E0000–12FFFFF  
1300000–131FFFF  
1320000–133FFFF  
1340000–135FFFF  
1360000–137FFFF  
1380000–139FFFF  
13A0000–13BFFFF  
13C0000–13DFFFF  
13E0000–13FFFFF  
1400000–141FFFF  
1420000–143FFFF  
1440000–145FFFF  
1460000–147FFFF  
1480000–149FFFF  
14A0000–14BFFFF  
14C0000–14DFFFF  
14E0000–14FFFFF  
1500000–151FFFF  
1520000–153FFFF  
1540000–155FFFF  
1560000–157FFFF  
1580000–159FFFF  
15A0000–15BFFFF  
15C0000–15DFFFF  
15E0000–15FFFFF  
1600000–161FFFF  
1620000–163FFFF  
1640000–165FFFFF  
0860000–086FFFF  
0870000–087FFFF  
0880000–088FFFF  
0890000–089FFFF  
08A0000–08AFFFF  
08B0000–08BFFFF  
08C0000–08CFFFF  
08D0000–08DFFFF  
08E0000–08EFFFF  
08F00008FFFFF  
0900000–090FFFF  
010000–091FFFF  
0920000–092FFFF  
0930000–093FFFF  
0940000–094FFFF  
0950000–095FFFF  
0960000–096FFFF  
0970000–097FFFF  
0980000–098FFFF  
0990000–099FFFF  
09A0000–09AFFFF  
09B0000–09BFFFF  
09C0000–09CFFFF  
09D0000–09DFFFF  
09E0000–09EFFFF  
09F0000–09FFFFF  
0A00000–0A0FFFF  
0A10000–0A1FFFF  
0A20000–0A2FFFF  
0A30000–0A3FFFF  
0A40000–0A4FFFF  
0A50000–0A5FFFF  
0A60000–0A6FFFF  
0A70000–0A7FFFF  
0A80000–0A8FFFF  
0A90000–0A9FFFF  
0AA0000–0AAFFFF  
0AB0000–0ABFFFF  
0AC0000–0ACFFFF  
0AD0000–0ADFFFF  
0AE0000–0AEFFFF  
0AF0000–0AFFFFF  
0B00000–0B0FFFF  
0B10000–0B1FFFF  
0B20000–0B2FFFF  
Document Number: 002-01522 Rev. *B  
Page 28 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Sector Address Table–S29GL256N (Sheet 5 of 6)  
8-bit  
16-bit  
Sector Size  
Address Range  
(in hexadecimal)  
Address Range  
(in hexadecimal)  
Sector  
SA179  
SA180  
SA181  
SA182  
SA183  
SA184  
SA185  
SA186  
SA187  
SA188  
SA189  
SA190  
SA191  
SA192  
SA193  
SA194  
SA195  
SA196  
SA197  
SA198  
SA199  
SA200  
SA201  
SA202  
SA203  
SA204  
SA205  
SA206  
SA207  
SA208  
SA209  
SA210  
SA211  
SA212  
SA213  
SA214  
SA215  
SA216  
SA217  
SA218  
SA219  
SA220  
SA221  
SA222  
SA223  
A23–A16  
(Kbytes/Kwords)  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
12/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1660000–167FFFF  
1680000–169FFFF  
16A0000–16BFFFF  
16C0000–16DFFFF  
16E0000–16FFFFF  
1700000–171FFFF  
1720000–173FFFF  
1740000–175FFFF  
1760000–177FFFF  
1780000–179FFFF  
17A0000–17BFFFF  
17C0000–17DFFFF  
17E0000–17FFFFF  
1800000–181FFFF  
1820000–183FFF  
1840000–185FFFF  
1860000–187FFFF  
1880000–189FFFF  
18A0000–18BFFFF  
18C0000–18DFFFF  
18E0000–18FFFFF  
1900000–191FFFF  
1920000–193FFFF  
1940000–195FFFF  
1960000–197FFFF  
1980000–199FFFF  
19A0000–19BFFFF  
19C0000–19DFFFF  
19E0000–19FFFF  
1A00000–1A1FFFF  
1A20000–1A3FFFF  
1A40000–1A5FFFF  
1A60000–1A7FFFF  
1A80000–1A9FFFF  
1AA0000–1ABFFFF  
1AC0000–1ADFFFF  
1AE0000–1AFFFFF  
1B00000–1B1FFFF  
1B20000–1B3FFFF  
1B40000–1B5FFFF  
1B60000–1B7FFFF  
1B80000–1B9FFFF  
1BA0000–1BBFFFF  
1BC0000–1BDFFFF  
1BE0000–1BFFFFF  
0B30000–0B3FFFF  
0B40000–0B4FFFF  
0B50000–0B5FFFF  
0B60000–0B6FFFF  
0B70000–0B7FFFF  
0B80000–0B8FFFF  
0B90000–0B9FFFF  
0BA0000–0BAFFFF  
0BB0000–0BBFFFF  
0BC0000BCFFFF  
0BD0000–0BDFFFF  
0BE0000–0BEFFFF  
0BF0000–0BFFFFF  
0C00000–0C0FFFF  
0C10000–0C1FFFF  
0C20000–0C2FFFF  
0C30000–0C3FFFF  
0C40000–0C4FFFF  
0C50000–0C5FFFF  
0C60000–0C6FFFF  
0C70000–0C7FFFF  
0C80000–0C8FFFF  
0C90000–0C9FFFF  
0CA0000–0CAFFFF  
0CB0000–0CBFFFF  
0CC0000–0CCFFFF  
0CD0000–0CDFFFF  
0CE0000–0CEFFFF  
0CF0000–0CFFFFF  
0D00000–0D0FFFF  
0D10000–0D1FFFF  
0D20000–0D2FFFF  
0D30000–0D3FFFF  
0D40000–0D4FFFF  
0D50000–0D5FFFF  
0D60000–0D6FFFF  
0D70000–0D7FFFF  
0D80000–0D8FFFF  
0D90000–0D9FFFF  
0DA0000–0DAFFFF  
0DB0000–0DBFFFF  
0DC0000–0DCFFFF  
0DD0000–0DDFFFF  
0DE0000–0DEFFFF  
0DF0000–0DFFFFF  
Document Number: 002-01522 Rev. *B  
Page 29 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Sector Address Table–S29GL256N (Sheet 6 of 6)  
8-bit  
16-bit  
Sector Size  
Address Range  
(in hexadecimal)  
Address Range  
(in hexadecimal)  
Sector  
SA224  
SA225  
SA226  
SA227  
SA228  
SA229  
SA230  
SA231  
SA232  
SA233  
SA234  
SA235  
SA236  
SA237  
SA238  
SA239  
SA240  
SA241  
SA242  
SA243  
SA244  
SA245  
SA246  
SA247  
SA248  
SA249  
SA250  
SA251  
SA252  
SA253  
SA254  
SA255  
A23–A16  
(Kbytes/Kwords)  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
12/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1C00000–1C1FFFF  
1C20000–1C3FFFF  
1C40000–1C5FFFF  
1C60000–1C7FFFF  
1C80000–1C9FFFF  
1CA0000–1CBFFFF  
1CC0000–1CDFFFF  
1CE0000–1CFFFFF  
1D00000–1D1FFFF  
1D20000–1D3FFFF  
1D40000–1D5FFFF  
1D60000–1D7FFFF  
1D80000–1D9FFFF  
1DA0000–1DBFFFF  
1DC0000–1DDFFFF  
1DE0000–1DFFFFF  
1E00000–1E1FFFF  
1E20000–1E3FFFF  
1E40000–1E5FFFF  
1E60000–137FFFF  
1E80000–1E9FFFF  
1EA0000–1EBFFFF  
1EC0000–1EDFFFF  
1EE0000–1EFFFFF  
1F00000–1F1FFFF  
1F20000–1F3FFFF  
1F40000–1F5FFFF  
1F60000–1F7FFFF  
1F80000–1F9FFFF  
1FA0000–1FBFFFF  
1FC0000–1FDFFFF  
1FE0000–1FFFFFF  
0E00000–0E0FFFF  
0E10000–0E1FFFF  
0E20000–0E2FFFF  
0E30000–0E3FFFF  
0E40000–0E4FFFF  
0E50000–0E5FFFF  
0E60000–0E6FFFF  
0E70000–0E7FFFF  
0E80000–0E8FFFF  
0E90000E9FFFF  
0EA0000–0EAFFFF  
0EB0000–0EBFFFF  
EC0000–0ECFFFF  
0ED0000–0EDFFFF  
0EE0000–0EEFFFF  
0EF0000–0EFFFFF  
0F00000–0F0FFFF  
0F10000–0F1FFFF  
0F20000–0F2FFFF  
0F30000–0F3FFFF  
0F40000–0F4FFFF  
0F50000–0F5FFFF  
0F60000–0F6FFFF  
0F70000–0F7FFFF  
0F80000–0F8FFFF  
0F90000–0F9FFFF  
0FA0000–0FAFFFF  
0FB0000–0FBFFFF  
0FC0000–0FCFFFF  
0FD0000–0FDFFFF  
0FE0000–0FEFFFF  
0FF0000–0FFFFFF  
Document Number: 002-01522 Rev. *B  
Page 30 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Sector Address Table–S29GL128N (Sheet 1 of 3)  
Sector Size  
(Kbytes/  
Kwords)  
8-Bit  
Address Range  
(in hexadecimal)  
16-bit  
Address Range  
(in hexadecimal)  
Sector  
SA0  
A22–A16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
0000000–001FFFF  
0020000–003FFFF  
0040000–005FFFF  
0060000–007FFFF  
0080000–009FFFF  
00A0000–00BFFFF  
00C0000–00DFFFF  
00E0000–00FFFFF  
0100000–011FFFF  
0120000–013FFFF  
0140000–015FFFF  
0160000–017FFFF  
0180000–019FFFF  
01A0000–01BFFF  
01C0000–01DFFFF  
01E0000–01FFFFF  
020000–021FFFF  
0220000–023FFFF  
0240000–025FFFF  
0260000–027FFFF  
0280000–029FFFF  
02A0000–02BFFFF  
02C0000–02DFFFF  
02E0000–02FFFFF  
0300000–031FFFF  
0320000–033FFFF  
0340000–035FFFF  
0360000–037FFFF  
0380000–039FFFF  
03A0000–03BFFFF  
03C0000–03DFFFF  
03E0000–03FFFFF  
0400000–041FFFF  
0420000–043FFFF  
0440000–045FFFF  
0460000–047FFFF  
0480000–049FFFF  
04A0000–04BFFFF  
04C0000–04DFFFF  
04E0000–04FFFFF  
0500000–051FFFF  
0520000–053FFFF  
0540000–055FFFF  
0560000–057FFFF  
0000000–000FFFF  
0010000–001FFFF  
0020000–002FFFF  
0030000–003FFFF  
0040000–004FFFF  
0050000–005FFFF  
0060000–006FFFF  
0070000–007FFFF  
008000008FFFF  
0090000–009FFFF  
0A0000–00AFFFF  
00B0000–00BFFFF  
00C0000–00CFFFF  
00D0000–00DFFFF  
00E0000–00EFFFF  
00F0000–00FFFFF  
0100000–010FFFF  
0110000–011FFFF  
0120000–012FFFF  
0130000–013FFFF  
0140000–014FFFF  
0150000–015FFFF  
0160000–016FFFF  
0170000–017FFFF  
0180000–018FFFF  
0190000–019FFFF  
01A0000–01AFFFF  
01B0000–01BFFFF  
01C0000–01CFFFF  
01D0000–01DFFFF  
01E0000–01EFFFF  
01F0000–01FFFFF  
0200000–020FFFF  
0210000–021FFFF  
0220000–022FFFF  
0230000–023FFFF  
0240000–024FFFF  
0250000–025FFFF  
0260000–026FFFF  
0270000–027FFFF  
0280000–028FFFF  
0290000–029FFFF  
02A0000–02AFFFF  
02B0000–02BFFFF  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
Document Number: 002-01522 Rev. *B  
Page 31 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Sector Address Table–S29GL128N (Sheet 2 of 3)  
Sector Size  
(Kbytes/  
Kwords)  
8-Bit  
Address Range  
(in hexadecimal)  
16-bit  
Address Range  
(in hexadecimal)  
Sector  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
A22–A16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
0580000–059FFFF  
05A0000–05BFFFF  
05C0000–05DFFFF  
05E0000–05FFFFF  
0600000–061FFFF  
0620000–063FFFF  
0640000–065FFFF  
0660000–067FFFF  
0680000–069FFFF  
06A0000–06BFFFF  
06C0000–06DFFFF  
06E0000–06FFFFF  
0700000–071FFFF  
0720000–073FFFF  
0740000–075FFFF  
0760000–077FFFF  
0780–079FFFF  
07A0000–07BFFFF  
07C0000–07DFFFF  
07E0000–07FFFFF  
0800000–081FFFF  
0820000–083FFFF  
0840000–085FFFF  
0860000–087FFFF  
0880000–089FFFF  
08A0000–08BFFFF  
08C0000–08DFFFF  
08E0000–08FFFFF  
0900000–091FFFF  
0920000–093FFFF  
0940000–095FFFF  
0960000–097FFFF  
0980000–099FFFF  
09A0000–09BFFFF  
09C0000–09DFFFF  
09E0000–09FFFFF  
0A00000–0A1FFFF  
0A20000–0A3FFFF  
0A40000–0A5FFFF  
0A60000–0A7FFFF  
0A80000–0A9FFFF  
0AA0000–0ABFFFF  
0AC0000–0ADFFFF  
0AE0000–0AFFFFF  
02C0000–02CFFFF  
02D0000–02DFFFF  
02E0000–02EFFFF  
02F0000–02FFFFF  
0300000–030FFFF  
0310000–031FFFF  
0320000–032FFFF  
0330000–033FFFF  
0340000–034FFFF  
0350000–035FFFF  
060000–036FFFF  
0370000–037FFFF  
0380000–038FFFF  
0390000–039FFFF  
03A0000–03AFFFF  
03B0000–03BFFFF  
03C0000–03CFFFF  
03D0000–03DFFFF  
03E0000–03EFFFF  
03F0000–03FFFFF  
0400000–040FFFF  
0410000–041FFFF  
0420000–042FFFF  
0430000–043FFFF  
0440000–044FFFF  
0450000–045FFFF  
0460000–046FFFF  
0470000–047FFFF  
0480000–048FFFF  
0490000–049FFFF  
04A0000–04AFFFF  
04B0000–04BFFFF  
04C0000–04CFFFF  
04D0000–04DFFFF  
04E0000–04EFFFF  
04F0000–04FFFFF  
0500000–050FFFF  
0510000–051FFFF  
0520000–052FFFF  
0530000–053FFFF  
0540000–054FFFF  
0550000–055FFFF  
0560000–056FFFF  
0570000–057FFFF  
Document Number: 002-01522 Rev. *B  
Page 32 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Sector Address Table–S29GL128N (Sheet 3 of 3)  
Sector Size  
(Kbytes/  
Kwords)  
8-Bit  
Address Range  
(in hexadecimal)  
16-bit  
Address Range  
(in hexadecimal)  
Sector  
SA88  
A22–A16  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
0B00000–0B1FFFF  
0B20000–0B3FFFF  
0B40000–0B5FFFF  
0B60000–0B7FFFF  
0B80000–0B9FFFF  
0BA0000–0BBFFFF  
0BC0000–0BDFFFF  
0BE0000–0BFFFFF  
0C00000–0C1FFFF  
0C20000–0C3FFFF  
0C40000–0C5FFFF  
0C60000–0C7FFFF  
0C80000–0C9FFFF  
0CA0000–0CBFFFF  
0CC0000–0CDFFFF  
0CE0000–0CFFFFF  
0D00–0D1FFFF  
0D20000–0D3FFFF  
0D40000–0D5FFFF  
0D60000–0D7FFFF  
0D80000–0D9FFFF  
0DA0000–0DBFFFF  
0DC0000–0DDFFFF  
0DE0000–0DFFFFF  
0E00000–0E1FFFF  
0E20000–0E3FFFF  
0E40000–0E5FFFF  
0E60000–0E7FFFF  
0E80000–0E9FFFF  
0EA0000–0EBFFFF  
0EC0000–0EDFFFF  
0EE0000–0EFFFFF  
0F00000–0F1FFFF  
0F20000–0F3FFFF  
0F40000–0F5FFFF  
0F60000–0F7FFFF  
0F80000–0F9FFFF  
0FA0000–0FBFFFF  
0FC0000–0FDFFFF  
0FE0000–0FFFFFF  
0580000–058FFFF  
0590000–059FFFF  
05A0000–05AFFFF  
05B0000–05BFFFF  
05C0000–05CFFFF  
05D0000–05DFFFF  
05E0000–05EFFFF  
05F0000–05FFFFF  
0600000–060FFFF  
0610000–061FFFF  
020000–062FFFF  
0630000–063FFFF  
0640000–064FFFF  
0650000–065FFFF  
0660000–066FFFF  
0670000–067FFFF  
0680000–068FFFF  
0690000–069FFFF  
06A0000–06AFFFF  
06B0000–06BFFFF  
06C0000–06CFFFF  
06D0000–06DFFFF  
06E0000–06EFFFF  
06F0000–06FFFFF  
0700000–070FFFF  
0710000–071FFFF  
0720000–072FFFF  
0730000–073FFFF  
0740000–074FFFF  
0750000–075FFFF  
0760000–076FFFF  
0770000–077FFFF  
0780000–078FFFF  
0790000–079FFFF  
07A0000–07AFFFF  
07B0000–07BFFFF  
07C0000–07CFFFF  
07D0000–07DFFFF  
07E0000–07EFFFF  
07F0000–07FFFFF  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
Document Number: 002-01522 Rev. *B  
Page 33 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
7.9  
Autoselect Mode  
The autoselect mode provides manufacturer and device identification, and sector group protection verification, through identifier  
codes output on DQ7–DQ0. This mode is primarily intended for programming equipment to automatically match a device to be  
programmed with its corresponding programming algorithm. However, the autoselect codes can also be accessed in-system  
through the command register.  
When using programming equipment, the autoselect mode requires VID on address pin A9. Address pins A6, A3, A2, A1, and A0  
must be as shown in Table . In addition, when verifying sector protection, the sector address must appear on the appropriate highest  
order address bits (see Table on page 13). Table on page 34 shows the remaining address bits that are don’t care. When all  
necessary bits have been set as required, the programming equipment may then read the corresponding identifier code on DQ7–  
DQ0.  
To access the autoselect codes in-system, the host system can issue the autoselect command via the command register, as shown  
in Table on page 54 and Table on page 57. This method does not require VID. Refer to the Autoselect Command Sequence  
on page 44 for more information.  
Autoselect Codes (High Voltage Method)  
D8 to DQ15  
A14  
to  
A22t  
o
A8  
to  
A5  
to  
A3  
to  
TE#= BYTE#  
Description  
CE# OE# WE# A15 A10 A9  
A7  
A6  
A4  
A2  
A1  
A0  
V
= V  
DQ7 to DQ0  
IH  
IL  
Manufacturer ID:  
Spansion Product  
L
L
H
X
X
X
X
V
X
X
L
X
X
L
L
L
00  
X
01h  
ID  
Cycle 1  
Cycle 2  
L
L
H
L
22  
22  
X
X
7Eh  
23h  
H
H
L
L
H
V
L
L
ID  
Cycle 3  
H
H
H
22  
X
01h  
Cycle 1  
Cycle 2  
L
L
H
L
22  
22  
X
X
7Eh  
22h  
H
H
L
L
L
L
H
H
X
X
X
X
V
V
X
X
X
X
ID  
ID  
Cycle 3  
H
H
H
22  
X
01h  
Cycle 1  
Cycle 2  
L
L
H
L
22  
22  
X
X
7Eh  
21h  
H
H
Cycle 3  
H
L
H
H
H
L
22  
X
X
X
01h  
Sector Group Protection  
Verification  
01h (protected),  
00h (unprotected)  
L
L
L
L
H
H
S
X
X
X
V
V
X
X
L
L
X
X
ID  
ID  
Secured Silicon Sector  
Indicator Bit (DQ7), WP#  
protects highest address  
sector  
98h (factory locked),  
18h (not factory locked)  
L
L
H
H
H
H
X
X
X
X
Secured Silicon Sector  
Indicator Bit (DQ7), WP#  
protects lowest address  
sector  
88h (factory locked),  
08h (not factory locked)  
L
L
H
X
X
V
X
L
X
ID  
Legend  
L = Logic Low = V  
IL  
H = Logic High = V  
IH  
SA = Sector Address  
X = Don’t care  
7.10 Sector Protection  
The device features several levels of sector protection, which can disable both the program and erase operations in certain sectors  
or sector groups:  
7.10.1  
Persistent Sector Protection  
A command sector protection method that replaces the old 12 V controlled protection method.  
Document Number: 002-01522 Rev. *B  
Page 34 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
7.10.2  
Password Sector Protection  
A highly sophisticated protection method that requires a password before changes to certain sectors or sector groups are permitted  
7.10.3  
WP# Hardware Protection  
A write protect pin that can prevent program or erase operations in the outermost sectors.  
The WP# Hardware Protection feature is always available, independent of the software managed protection method chosen.  
7.10.4  
Selecting a Sector Protection Mode  
All parts default to operate in the Persistent Sector Protection mode. The customer must then choose if the Persistent or Password  
Protection method is most desirable. There are two one-time programmable non-volatile bits that define which sector protection  
method is used. If the customer decides to continue using the Persistent Sector Protection method, they must set the Persistent  
Sector Protection Mode Locking Bit. This permanently sets the part to operate only using Persistent Sector Protection. If the  
customer decides to use the password method, they must set the Password Mode Locking Bit. his permanently sets the part to  
operate only using password sector protection.  
It is important to remember that setting either the Persistent Sector Protection Mode Locking Bit or the Password Mode  
Locking Bit permanently selects the protection mode. It is not possible to switch betweehe two methods once a locking bit is set.  
It is important that one mode is explicitly selected when the device is first programmed, rather than relying on the default  
mode alone. This is so that it is not possible for a system program or virus to later set the Password Mode Locking Bit, which would  
cause an unexpected shift from the default Persistent Sector Protection Mode into the Password Protection Mode.  
The device is shipped with all sectors unprotected. The factory offers the option of programming and protecting sectors at the factory  
prior to shipping the device through the ExpressFlash™ Service. Contact your sales representative for details.  
It is possible to determine whether a sector is protected or unprotected. See Autoselect Command Sequence on page 44 for details.  
7.11 Advanced Sector Protection  
Advanced Sector Protection features several levels of secor protection, which can disable both the program and erase operations in  
certain sectors.  
Persistent Sector Protection is a method that replaces the old 12V controlled protection method.  
Password Sector Protection is a highly sophicated protection method that requires a password before changes to certain  
sectors are permitted.  
7.12 Lock Register  
The Lock Register consists of 3 bits (DQ2, DQ1, and DQ0). These DQ2, DQ1, DQ0 bits of the Lock Register are programmable by  
the user. Users are not allowed to program both DQ2 and DQ1 bits of the Lock Register to the 00 state. If the user tries to program  
DQ2 and DQ1 bits of the Lock Register to the 00 state, the device aborts the Lock Register back to the default 11 state. The  
programming time of the Lock Register is same as the typical word programming time without utilizing the Write Buffer of the device.  
During a Lock Register programming sequence execution, the DQ6 Toggle Bit I toggles until the programming of the Lock Register  
has completed to indicate programming status. All Lock Register bits are readable to allow users to verify Lock Register statuses.  
The Customer Secured Silicon Sector Protection Bit is DQ0, Persistent Protection Mode Lock Bit is DQ1, and Password Protection  
Mode Lock Bit is DQ2 are accessible by all users. Each of these bits are non-volatile. DQ15-DQ3 are reserved and must be 1's when  
the user tries to program the DQ2, DQ1, and DQ0 bits of the Lock Register. The user is not required to program DQ2, DQ1 and DQ0  
bits of the Lock Register at the same time. This allows users to lock the Secured Silicon Sector and then set the device either  
permanently into Password Protection Mode or Persistent Protection Mode and then lock the Secured Silicon Sector at separate  
instances and time frames.  
Secured Silicon Sector Protection allows the user to lock the Secured Silicon Sector area  
Persistent Protection Mode Lock Bit allows the user to set the device permanently to operate in the Persistent Protection Mode  
Password Protection Mode Lock Bit allows the user to set the device permanently to operate in the Password Protection Mode  
Document Number: 002-01522 Rev. *B  
Page 35 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Lock Register  
DQ15-3  
DQ2  
DQ1  
DQ0  
Password Protection Mode Lock  
Bit  
Persistent Protection Mode Lock  
Bit  
Secured Silicon Sector  
Protection Bit  
Don’t Care  
7.13 Persistent Sector Protection  
The Persistent Sector Protection method replaces the old 12 V controlled protection method while at the same time enhancing  
flexibility by providing three different sector protection states:  
Dynamically Locked-The sector is protected and can be changed by a simple command  
Persistently Locked-A sector is protected and cannot be changed  
Unlocked-The sector is unprotected and can be changed by a simple command  
In order to achieve these states, three types of “bits” are going to be used:  
7.13.1  
Dynamic Protection Bit (DYB)  
A volatile protection bit is assigned for each sector. After power-up or hardware reset, the contents of all DYB bits are in the  
“unprotected state”. Each DYB is individually modifiable through the DYB Set Command and DYB Clear Command. When the parts  
are first shipped, all of the Persistent Protect Bits (PPB) are cleared into the unprtected state. The DYB bits and PPB Lock bit are  
defaulted to power up in the cleared state or unprotected state - meaning the all PPB bits are changeable.  
The Protection State for each sector is determined by the logical OR of the PPB and the DYB related to that sector. For the sectors  
that have the PPB bits cleared, the DYB bits control whether or not the stor is protected or unprotected. By issuing the DYB Set  
and DYB Clear command sequences, the DYB bits is protected or unprotected, thus placing each sector in the protected or  
unprotected state. These are the so-called Dynamic Locked or Unlocked states. They are called dynamic states because it is very  
easy to switch back and forth between the protected and un-prtected conditions. This allows software to easily protect sectors  
against inadvertent changes yet does not prevent the easy removal of protection when changes are needed.  
The DYB bits maybe set or cleared as often as needed. The PPB bits allow for a more static, and difficult to change, level of  
protection. The PPB bits retain their state across power cycles because they are Non-Volatile. Individual PPB bits are set with a  
program command but must all be cleared as a group through an erase command.  
The PPB Lock Bit adds an additional level of prction. Once all PPB bits are programmed to the desired settings, the PPB Lock Bit  
may be set to the “freeze state”. Setting the PPB Lock Bit to the “freeze state” disables all program and erase commands to the Non-  
Volatile PPB bits. In effect, the PPB Lock Bit locks the PPB bits into their current state. The only way to clear the PPB Lock Bit to the  
“unfreeze state” is to go through a power cycle, or hardware reset. The Software Reset command does not clear the PPB Lock Bit to  
the “unfreeze state”. System boot code can determine if any changes to the PPB bits are needed e.g. to allow new system code to  
be downloaded. If no changes are eeded then the boot code can set the PPB Lock Bit to disable any further changes to the PPB  
bits during system operation.  
The WP# write protect pin adds a final level of hardware protection. When this pin is low it is not possible to change the contents of  
the WP# protected sectors. These sectors generally hold system boot code. So, the WP# pin can prevent any changes to the boot  
code that could override the choices made while setting up sector protection during system initialization.  
It is possible to have sectors that have been persistently locked, and sectors that are left in the dynamic state. The sectors in the  
dynamic state are all unprotected. If there is a need to protect some of them, a simple DYB Set command sequence is all that is  
necessary. The DYB Set and DYB Clear commands for the dynamic sectors switch the DYB bits to signify protected and  
unprotected, respectively. If there is a need to change the status of the persistently locked sectors, a few more steps are required.  
First, the PPB Lock Bit must be disabled to the “unfreeze state” by either putting the device through a power-cycle, or hardware  
reset. The PPB bits can then be changed to reflect the desired settings. Setting the PPB Lock Bit once again to the “freeze state”  
locks the PPB bits, and the device operates normally again.  
To achieve the best protection, execute the PPB Lock Bit Set command early in the boot code, and protect the boot code by holding  
WP# = VIL.  
Document Number: 002-01522 Rev. *B  
Page 36 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
7.13.2  
Persistent Protection Bit (PPB)  
A single Persistent (non-volatile) Protection Bit is assigned to each sector. If a PPB is programmed to the protected state through the  
“PPB Program” command, that sector is protected from program or erase operations is read-only. If a PPB requires erasure, all of  
the sector PPB bits must first be erased in parallel through the “All PPB Erase” command. The “All PPB Erase” command  
preprograms all PPB bits prior to PPB erasing. All PPB bits erase in parallel, unlike programming where individual PPB bits are  
programmable. The PPB bits have the same endurance as the flash memory.  
Programming the PPB bit requires the typical word programming time without utilizing the Write Buffer. During a PPB bit  
programming and all PPB bit erasing sequence executions, the DQ6 Toggle Bit I toggles until the programming of the PPB bit or  
erasing of all PPB bits has completed to indicate programming and erasing status. Erasing all of the PPB bits at once requires  
typical sector erase time. During the erasing of all PPB bits, the DQ3 Sector Erase Timer bit outputs a 1 to indicate the erasure of all  
PPB bits are in progress. When the erasure of all PPB bits has completed, the DQ3 Sector Erase Timer bit outputs a 0 to indicate  
that all PPB bits have been erased. Reading the PPB Status bit requires the initial access time of the device.  
7.13.3  
Persistent Protection Bit Lock (PPB Lock Bit)  
A global volatile bit. When set to the “freeze state”, the PPB bits cannot be changed. When cleared to the “unfreeze state”, the PPB  
bits are changeable. There is only one PPB Lock Bit per device. The PPB Lock Bit is cleared to the “unfreeze state” after power-up  
or hardware reset. There is no command sequence to unlock or “unfreeze” the PPB Locit.  
Configuring the PPB Lock Bit to the freeze state requires approximately 100ns. Reading the PPB Lock Status bit requires the initial  
access time of the device.  
Sector Protection Schemes  
Protection States  
DYB Bit  
Unprotect  
Unprotect  
Unprotect  
Unprotect  
Protect  
PPB Bit  
Unprotect  
Unprotect  
Protect  
PPB Lock Bit  
Unfreeze  
Freeze  
Sector State  
Uprotected – PPB and DYB are changeable  
nprotected – PPB not changeable, DYB is changeable  
Protected – PPB and DYB are changeable  
Unfreeze  
Freeze  
Protect  
Protected – PPB not changeable, DYB is changeable  
Protected – PPB and DYB are changeable  
Unprotect  
Unprotect  
Protect  
Unfreeze  
Freeze  
Protect  
Protected – PPB not changeable, DYB is changeable  
Protected – PPB and DYB are changeable  
Protect  
Ueeze  
Freeze  
Protect  
Protect  
Protected – PPB not changeable, DYB is changeable  
Table contains all possible combinations of the DYB bit, PPB bit, and PPB Lock Bit relating to the status of the sector. In summary,  
if the PPB bit is set, and the PPB Lock Bit is set, the sector is protected and the protection cannot be removed until the next power  
cycle or hardware reset clears the PPB Lock Bit to “unfreeze state”. If the PPB bit is cleared, the sector can be dynamically locked or  
unlocked. The DYB bit then controls whether or not the sector is protected or unprotected. If the user attempts to program or erase a  
protected sector, the device ignores the command and returns to read mode. A program command to a protected sector enables  
status polling for approximately 1 µs before the device returns to read mode without having modified the contents of the protected  
sector. An erase command to a protected sector enables status polling for approximately 50 µs after which the device returns to read  
mode without having erased the protected sector. The programming of the DYB bit, PPB bit, and PPB Lock Bit for a given sector can  
be verified by writing a DYB Status Read, PPB Status Read, and PPB Lock Status Read commands to the device.  
The Autoselect Sector Protection Verification outputs the OR function of the DYB bit and PPB bit per sector basis. When the OR  
function of the DYB bit and PPB bit is a 1, the sector is either protected by DYB or PPB or both. When the OR function of the DYB bit  
and PPB bit is a 0, the sector is unprotected through both the DYB and PPB.  
7.14 Persistent Protection Mode Lock Bit  
Like the Password Protection Mode Lock Bit, a Persistent Protection Mode Lock Bit exists to guarantee that the device remain in  
software sector protection. Once programmed, the Persistent Protection Mode Lock Bit prevents programming of the Password  
Protection Mode Lock Bit. This guarantees that a hacker could not place the device in Password Protection Mode. The Password  
Protection Mode Lock Bit resides in the “Lock Register”.  
Document Number: 002-01522 Rev. *B  
Page 37 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
7.15 Password Sector Protection  
The Password Sector Protection method allows an even higher level of security than the Persistent Sector Protection method. There  
are two main differences between the Persistent Sector Protection and the Password Sector Protection methods:  
When the device is first powered on, or comes out of a reset cycle, the PPB Lock Bit is set to the locked state, or the freeze state,  
rather than cleared to the unlocked state, or the unfreeze state.  
The only means to clear and unfreeze the PPB Lock Bit is by writing a unique 64-bit Password to the device.  
The Password Sector Protection method is otherwise identical to the Persistent Sector Protection method.  
A 64-bit password is the only additional tool utilized in this method.  
The password is stored in a one-time programmable (OTP) region outside of the flash memory. Once the Password Protection Mode  
Lock Bit is set, the password is permanently set with no means to read, program, or erase it. The password is used to clear and  
unfreeze the PPB Lock Bit. The Password Unlock command must be written to the flash, along with a password. The flash device  
internally compares the given password with the pre-programmed password. If they match, the PPB Lock Bit is cleared to the  
unfreezed state, and the PPB bits can be altered. If they do not match, the flash device does nothg. There is a built-in 2 µs delay  
for each password check after the valid 64-bit password is entered for the PPB Lock Bit to be cleared to the “unfreezed state”. This  
delay is intended to thwart any efforts to run a program that tries all possible combinations in order to crack the password.  
7.16 Password and Password Protection Mode Lock Bit  
In order to select the Password Sector Protection method, the customer must firsprogram the password. The factory recommends  
that the password be somehow correlated to the unique Electronic Serial Number (ESN) of the particular flash device. Each ESN is  
different for every flash device; therefore each password should be different for every flash device. While programming in the  
password region, the customer may perform Password Read operationsnce the desired password is programmed in, the  
customer must then set the Password Protection Mode Lock Bit. This operation achieves two objectives:  
1. It permanently sets the device to operate using the Password Protection Mode. It is not possible to reverse this function.  
2. It also disables all further commands to the password reion. All program, and read operations are ignored.  
Both of these objectives are important, and if not carefully considered, may lead to unrecoverable errors. The user must be sure that  
the Password Sector Protection method is desired when programming the Password Protection Mode Lock Bit. More importantly,  
the user must be sure that the password is correct when the Password Protection Mode Lock Bit is programmed. Due to the fact that  
read operations are disabled, there is no means to read what the password is afterwards. If the password is lost after programming  
the Password Protection Mode Lock Bit, there ino way to clear and unfreeze the PPB Lock Bit. The Password Protection Mode  
Lock Bit, once programmed, prevents reading the 64-bit password on the DQ bus and further password programming. The  
Password Protection Mode Lock Bit is ot erasable. Once Password Protection Mode Lock Bit is programmed, the Persistent  
Protection Mode Lock Bit is disabled from programming, guaranteeing that no changes to the protection scheme are allowed.  
7.17 64-bit Password  
The 64-bit Password is located in its own memory space and is accessible through the use of the Password Program and Password  
Read commands. The password function works in conjunction with the Password Protection Mode Lock Bit, which when  
programmed, prevents the Password Read command from reading the contents of the password on the pins of the device.  
7.18 Persistent Protection Bit Lock (PPB Lock Bit)  
A global volatile bit. The PPB Lock Bit is a volatile bit that reflects the state of the Password Protection Mode Lock Bit after power-up  
reset. If the Password Protection Mode Lock Bit is also programmed after programming the Password, the Password Unlock  
command must be issued to clear and unfreeze the PPB Lock Bit after a hardware reset (RESET# asserted) or a power-up reset.  
Successful execution of the Password Unlock command clears and unfreezes the PPB Lock Bit, allowing for sector PPB bits to be  
modified. Without issuing the Password Unlock command, while asserting RESET#, taking the device through a power-on reset, or  
issuing the PPB Lock Bit Set command sets the PPB Lock Bit to a the “freeze state”.  
If the Password Protection Mode Lock Bit is not programmed, the device defaults to Persistent Protection Mode. In the Persistent  
Protection Mode, the PPB Lock Bit is cleared to the unfreeze state after power-up or hardware reset. The PPB Lock Bit is set to the  
freeze state by issuing the PPB Lock Bit Set command. Once set to the freeze state the only means for clearing the PPB Lock Bit to  
Document Number: 002-01522 Rev. *B  
Page 38 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
the “unfreeze state” is by issuing a hardware or power-up reset. The Password Unlock command is ignored in Persistent Protection  
Mode.  
Reading the PPB Lock Bit requires a 200ns access time.  
7.19 Secured Silicon Sector Flash Memory Region  
The Secured Silicon Sector feature provides a Flash memory region that enables permanent part identification through an Electronic  
Serial Number (ESN). The Secured Silicon Sector is 256 bytes in length, and uses a Secured Silicon Sector Indicator Bit (DQ7) to  
indicate whether or not the Secured Silicon Sector is locked when shipped from the factory. This bit is permanently set at the factory  
and cannot be changed, which prevents cloning of a factory locked part. This ensures the security of the ESN once the product is  
shipped to the field.  
The factory offers the device with the Secured Silicon Sector either customer lockable (standard shipping option) or factory locked  
(contact an AMD sales representative for ordering information). The customer-lockable version is shipped with the Secured Silicon  
Sector unprotected, allowing customers to program the sector after receiving the device. The customer-lockable version also has the  
Secured Silicon Sector Indicator Bit permanently set to a 0. The factory-locked version is always ptected when shipped from the  
factory, and has the Secured Silicon Sector Indicator Bit permanently set to a 1. Thus, the Secured Silicon Sector Indicator Bit  
prevents customer-lockable devices from being used to replace devices that are factory loced.  
The Secured Silicon sector address space in this device is allocated as follows:  
Secured Silicon Sector Address  
Range  
ExpressFlash  
Factory Locked  
Customer Lockable  
ESN Factory Locked  
ESN  
ESN or determined by  
customer  
000000h–000007h  
000008h–00007Fh  
Determined by customer  
Unavailable  
Determined by customer  
The system accesses the Secured Silicon Sector through a command sequence (see Write Protect (WP#) on page 40). After the  
system has written the Enter Secured Silicon Sector command equence, it may read the Secured Silicon Sector by using the  
addresses normally occupied by the first sector (SA0). This mode of operation continues until the system issues the Exit Secured  
Silicon Sector command sequence, or until power is removed from the device. On power-up, or following a hardware reset, the  
device reverts to sending commands to sector SA0.  
7.19.1  
Customer Lockable: Secured Silicon Sector NOT Programmed or Protected At  
the Factory  
Unless otherwise specified, the device s shipped such that the customer may program and protect the 256-byte Secured Silicon  
sector.  
The system may program the Seced Silicon Sector using the write-buffer, accelerated and/or unlock bypass methods, in addition  
to the standard programming command sequence. See Command Definitions on page 43.  
Programming and protecting the Secured Silicon Sector must be used with caution since, once protected, there is no procedure  
available for unprotecting the Secured Silicon Sector area and none of the bits in the Secured Silicon Sector memory space can be  
modified in any way.  
The Secured Silicon Sector area can be protected using one of the following procedures:  
Write the three-cycle Enter Secured Silicon Sector Region command.  
To verify the protect/unprotect status of the Secured Silicon Sector, follow the algorithm.  
Once the Secured Silicon Sector is programmed, locked and verified, the system must write the Exit Secured Silicon Sector Region  
command sequence to return to reading and writing within the remainder of the array.  
Document Number: 002-01522 Rev. *B  
Page 39 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
7.19.2  
Factory Locked: Secured Silicon Sector Programmed and Protected At the  
Factory  
In devices with an ESN, the Secured Silicon Sector is protected when the device is shipped from the factory. The Secured Silicon  
Sector cannot be modified in any way. An ESN Factory Locked device has an 16-byte random ESN at addresses 000000h–000007h.  
Please contact your sales representative for details on ordering ESN Factory Locked devices.  
Customers may opt to have their code programmed by the factory through the ExpressFlash service (Express Flash Factory  
Locked). The devices are then shipped from the factory with the Secured Silicon Sector permanently locked. Contact your sales  
representative for details on using the ExpressFlash service.  
7.20 Write Protect (WP#)  
The Write Protect function provides a hardware method of protecting the first or last sector group without using VID. Write Protect is  
one of two functions provided by the WP#/ACC input.  
If the system asserts VIL on the WP#/ACC pin, the device disables program and erase functions in the first or last sector group  
independently of whether those sector groups were protected or unprotected using the method described inAdvanced Sector  
Protection on page 35. Note that if WP#/ACC is at VIL when the device is in the standby ode, the maximum input load current is  
increased. See the table in DC Characteristics on page 65.  
If the system asserts VIH on the WP#/ACC pin, the device reverts to whether the first or last sector was previously set to be  
protected or unprotected. Note that WP# has an internal pull-up; when unconnected, WP# is at VIH.  
7.21 Hardware Data Protection  
The command sequence requirement of unlock cycles for programming or erasing provides data protection against inadvertent  
writes (refer to Table on page 54 and Table on page 57 for command definitions). In addition, the following hardware data  
protection measures prevent accidental erasure or programmin, which might otherwise be caused by spurious system level signals  
during VCC power-up and power-down transitions, or from system noise.  
7.21.1  
Low VCC Write Inhibit  
When VCC is less than VLKO, the device does not accept any write cycles. This protects data during VCC power-up and power-down.  
The command register and all internal programrase circuits are disabled, and the device resets to the read mode. Subsequent  
writes are ignored until VCC is greater than VLKO. The system must provide the proper signals to the control pins to prevent  
unintentional writes when VCC is greatthan VLKO  
.
7.21.2  
Write Pulse litch Protection  
Noise pulses of less than 5 ns (typical) on OE#, CE# or WE# do not initiate a write cycle.  
7.21.3  
Logical Inhibit  
Write cycles are inhibited by holding any one of OE# = VIL, CE# = VIH or WE# = VIH. To initiate a write cycle, CE# and WE# must be  
a logical zero while OE# is a logical one.  
7.21.4  
Power-Up Write Inhibit  
If WE# = CE# = VIL and OE# = VIH during power up, the device does not accept commands on the rising edge of WE#. The internal  
state machine is automatically reset to the read mode on power-up.  
8. Common Flash Memory Interface (CFI)  
The Common Flash Interface (CFI) specification outlines device and host system software interrogation handshake, which allows  
specific vendor-specified software algorithms to be used for entire families of devices. Software support can then be device-  
Document Number: 002-01522 Rev. *B  
Page 40 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
independent, JEDEC ID-independent, and forward- and backward-compatible for the specified flash device families. Flash vendors  
can standardize their existing interfaces for long-term compatibility.  
This device enters the CFI Query mode when the system writes the CFI Query command, 98h, to address 55h, any time the device  
is ready to read array data. The system can read CFI information at the addresses given in Table , Table on page 41, and Table  
on page 42. To terminate reading CFI data, the system must write the reset command.  
The system can also write the CFI query command when the device is in the autoselect mode. The device enters the CFI query  
mode, and the system can read CFI data at the addresses given in Table , Table , Table , and Table on page 42. The system must  
write the reset command to return the device to reading array data.  
For further information, please refer to the CFI Specification and CFI Publication 100, available via the World Wide Web at http://  
www.amd.com/flash/cfi. Alternatively, contact your sales representative for copies of these documents.  
CFI Query Identification String  
Addresses (x16) Addresses (x8)  
Data  
Description  
Query Unique ASCII string “QRY”  
10h  
11h  
12h  
20h  
22h  
24h  
0051h  
0052h  
0059h  
13h  
14h  
26h  
28h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
2Ah  
2Ch  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
2Eh  
30h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
Address for Alternate OEM Exteed Table (00h = none exists)  
19h  
1Ah  
32h  
34h  
0000h  
0000h  
System Interface String  
Addresses (x16) Addresses (x8)  
Data  
Description  
V
Min. (wrie/erase)  
CC  
1Bh  
1Ch  
36h  
38h  
0027h  
D7–D4: volt, D3–D0: 100 millivolt  
V
Max. (write/erase)  
CC  
0036h  
D7–D4: volt, D3–D0: 100 millivolt  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
3Ah  
3Ch  
3Eh  
40h  
42h  
44h  
46h  
48h  
4Ah  
4Ch  
0000h  
0000h  
00h  
0007h  
000Ah  
0000h  
0003h  
0005h  
0004h  
0000h  
V
Min. voltage (00h = no V pin present)  
PP  
P  
Max. voltage (00h = no V pin present)  
PP  
PP  
Typical timeout per single byte/word write 2N µs  
Typical timeout for Min. size buffer write 2N µs (00h = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for byte/word write 2N times typical  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
Document Number: 002-01522 Rev. *B  
Page 41 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Device Geometry Definition  
Addresses (x16) Addresses (x8)  
Data  
Description  
Device Size = 2N byte  
001Ah  
0019h  
0018h  
27h  
4Eh  
1A = 512 Mb, 19 = 256 Mb, 18 = 128 Mb  
28h  
29h  
50h  
52h  
0002h  
0000h  
Flash Device Interface description (refer to CFI publication 100)  
2Ah  
2Bh  
54h  
56h  
0005h  
0000h  
Max. number of byte in multi-byte write = 2N  
(00h = not supported)  
Number of Erase Block Regions within device (01h = uniform device, 02h =  
boot device)  
2Ch  
58h  
0001h  
Erase Block Region 1 Information  
2Dh  
2Eh  
2Fh  
30h  
5Ah  
5Ch  
5Eh  
60h  
00xxh  
000xh  
0000h  
000xh  
(refer to the CFI specification or CFI publication 100)  
00FFh, 001h, 0000h, 0002h = 512 Mb  
00FFh, 0000h, 0000h, 0002h = 256 Mb  
007Fh, 0000h, 0000h, 0002h = 128 Mb  
31h  
32h  
33h  
34h  
62h  
64h  
66h  
68h  
0000h  
0000h  
0000h  
0000h  
Erase Block Region 2 Information (refer to CFI publiction 100)  
Erase Block Region 3 Information (refer to FI publication 100)  
Erase Block Region 4 Information (refer to CFI publication 100)  
35h  
36h  
37h  
38h  
6Ah  
6Ch  
6Eh  
70h  
0000h  
0000h  
0000h  
0000h  
39h  
3Ah  
3Bh  
3Ch  
72h  
74h  
76h  
78h  
0000h  
0000h  
0000h  
0000h  
Primary Vendor-Specific Extended Query  
Addresses (x16) Addresses (x8)  
Data  
Description  
40h  
41h  
42h  
80h  
82h  
84h  
0050h  
0052h  
0049h  
Query-unique ASCII string “PRI”  
43h  
44h  
86h  
88h  
0031h  
0033h  
ajor version number, ASCII  
Minor version number, ASCII  
Address Sensitive Unlock (Bits 1-0)  
0 = Required, 1 = Not Required  
45h  
8Ah  
0010h  
Process Technology (Bits 7-2) 0100b = 110 nm MirrorBit  
Erase Suspend  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
46h  
47h  
48h  
49h  
4Ah  
4Bh  
4Ch  
8Ch  
8Eh  
90h  
92h  
94h  
96h  
98h  
0002h  
0001h  
0000h  
0008h  
0000h  
0000h  
0002h  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
Sector Protect/Unprotect scheme  
0008h = Advanced Sector Protection  
Simultaneous Operation  
00 = Not Supported, X = Number of Sectors in Bank  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page  
ACC (Acceleration) Supply Minimum  
4Dh  
4Eh  
9Ah  
9Ch  
00B5h  
00C5h  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
ACC (Acceleration) Supply Maximum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
Document Number: 002-01522 Rev. *B  
Page 42 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Primary Vendor-Specific Extended Query  
Addresses (x16) Addresses (x8)  
Data  
Description  
WP# Protection  
4Fh  
50h  
9Eh  
A0h  
00xxh  
04h = Uniform sectors bottom WP# protect, 05h = Uniform sectors top WP#  
protect  
Program Suspend  
0001h  
00h = Not Supported, 01h = Supported  
9. Command Definitions  
Writing specific address and data commands or sequences into the command register initiates device operations. Table on page 54  
and Table on page 57 define the valid register command sequences. Writing incorrect address and data values or writing them in  
the improper sequence may place the device in an unknown state. A reset command is then required to return the device to reading  
array data.  
All addresses are latched on the falling edge of WE# or CE#, whichever happens later. All data is latched on the rising edge of WE#  
or CE#, whichever happens first. Refer to the AC Characteristics section for timing diagrams.  
9.1  
Reading Array Data  
The device is automatically set to reading array data after device power-up. No commands are required to retrieve data. The device  
is ready to read array data after completing an Embedded Program or Embedded Erase algorithm.  
After the device accepts an Erase Suspend command, the device enters e erase-suspend-read mode, after which the system can  
read data from any non-erase-suspended sector. After completing a programming operation in the Erase Suspend mode, the  
system may once again read array data with the same exception. Se the Erase Suspend/Erase Resume Commands section for  
more information.  
The system must issue the reset command to return the device to the read (or erase-suspend-read) mode if DQ5 goes high during  
an active program or erase operation, or if the device is in the autoselect mode. See the next section, Reset Command, for more  
information.  
See also Requirements for Reading Array Data on page 10 for more information. The Read-Only Operations subsection in the AC  
Characteristics on page 68 section provides the ead parameters, and Figure 15.1 on page 68 shows the timing diagram.  
9.2  
Reset Command  
Writing the reset command resets the device to the read or erase-suspend-read mode. Address bits are don’t cares for this  
command.  
The reset command may be written between the sequence cycles in an erase command sequence before erasing begins. This  
resets the device to the read mode. Once erasure begins, however, the device ignores reset commands until the operation is  
complete.  
The reset command may be written between the sequence cycles in a program command sequence before programming begins.  
This resets the device to the read mode. If the program command sequence is written while the device is in the Erase Suspend  
mode, writing the reset command returns the device to the erase-suspend-read mode. Once programming begins, however, the  
device ignores reset commands until the operation is complete.  
The reset command may be written between the sequence cycles in an autoselect command sequence. Once in the autoselect  
mode, the reset command must be written to return to the read mode. If the device entered the autoselect mode while in the Erase  
Suspend mode, writing the reset command returns the device to the erase-suspend-read mode.  
If DQ5 goes high during a program or erase operation, writing the reset command returns the device to the read mode (or erase-  
suspend-read mode if the device was in Erase Suspend).  
Note that if DQ1 goes high during a Write Buffer Programming operation, the system must write the Write-to-Buffer-Abort Reset  
command sequence to reset the device for the next operation.  
Document Number: 002-01522 Rev. *B  
Page 43 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
9.3  
Autoselect Command Sequence  
The autoselect command sequence allows the host system to access the manufacturer and device codes, and determine whether or  
not a sector is protected. Table on page 54 and Table on page 57 show the address and data requirements. This method is an  
alternative to that shown in Table on page 34, which is intended for PROM programmers and requires VID on address pin A9. The  
autoselect command sequence may be written to an address that is either in the read or erase-suspend-read mode. The autoselect  
command may not be written while the device is actively programming or erasing.  
The autoselect command sequence is initiated by first writing two unlock cycles. This is followed by a third write cycle that contains  
the autoselect command. The device then enters the autoselect mode. The system may read at any address any number of times  
without initiating another autoselect command sequence:  
A read cycle at address XX00h returns the manufacturer code.  
Three read cycles at addresses 01h, 0Eh, and 0Fh return the device code.  
A read cycle to an address containing a sector address (SA), and the address 02h on A7–A0 in word mode returns 01h if the  
sector is protected, or 00h if it is unprotected.  
The system must write the reset command to return to the read mode (or erase-suspend-read mode if the device was previously in  
Erase Suspend).  
9.4  
Enter Secured Silicon Sector/Exit Secured Silicon  
Sector Command Sequence  
The Secured Silicon Sector region provides a secured data area containing an 8-word/16-byte random Electronic Serial Number  
(ESN). The system can access the Secured Silicon Sector region by issuing the three-cycle Enter Secured Silicon Sector command  
sequence. The device continues to access the Secured Silicon Sector region until the system issues the four-cycle Exit Secured  
Silicon Sector command sequence. The Exit Secured Silicon Sector command sequence returns the device to normal operation.  
Table on page 54 shows the address and data requirements for both command sequences. See also “Secured Silicon Sector Flash  
Memory Region” for further information. Note that the ACC funcon and unlock bypass modes are not available when the Secured  
Silicon Sector is enabled.  
9.5  
Word Program Command Sequence  
Programming is a four-bus-cycle operation. The program command sequence is initiated by writing two unlock write cycles, followed  
by the program set-up command. The program address and data are written next, which in turn initiate the Embedded Program  
algorithm. The system is not required to provide further controls or timings. The device automatically provides internally generated  
program pulses and verifies the progrmed cell margin. Table on page 54 and Table on page 57 show the address and data  
requirements for the word program command sequence.  
When the Embedded Program algithm is complete, the device then returns to the read mode and addresses are no longer latched.  
The system can determine the status of the program operation by using DQ7 or DQ6. Refer to the Write Operation Status section for  
information on these status bits.  
Any commands written to the device during the Embedded Program Algorithm are ignored. Note that the Secured Silicon Sector,  
autoselect, and CFI functions are unavailable when a program operation is in progress. Note that a hardware reset  
immediately terminates the program operation. The program command sequence should be reinitiated once the device has returned  
to the read mode, to ensure data integrity.  
Programming is allowed in any sequence of address locations and across sector boundaries. Programming to the same word  
address multiple times without intervening erases (incremental bit programming) is permitted. Word programming is supported for  
backward compatibility with existing Flash driver software and for occasional writing of individual words. Use of Write Buffer  
Programming is strongly recommended for general programming use when more than a few words are to be programmed. The  
effective word programming time using Write Buffer Programming is much shorter than the single word programming time. Any bit  
cannot be programmed from 0 back to a 1. Attempting to do so may cause the device to set DQ5 = 1, or cause the DQ7 and DQ6  
status bits to indicate the operation was successful. However, a succeeding read shows that the data is still 0. Only erase operations  
can convert a 0 to a 1.  
Document Number: 002-01522 Rev. *B  
Page 44 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
9.5.1  
Unlock Bypass Command Sequence  
The unlock bypass feature allows the system to program words to the device faster than using the standard program command  
sequence. The unlock bypass command sequence is initiated by first writing two unlock cycles. This is followed by a third write cycle  
containing the unlock bypass command, 20h. The device then enters the unlock bypass mode. A two-cycle unlock bypass program  
command sequence is all that is required to program in this mode. The first cycle in this sequence contains the unlock bypass  
program command, A0h; the second cycle contains the program address and data. Additional data is programmed in the same  
manner. This mode dispenses with the initial two unlock cycles required in the standard program command sequence, resulting in  
faster total programming time. Table on page 54 and Table on page 57 show the requirements for the command sequence.  
During the unlock bypass mode, only the Unlock Bypass Program and Unlock Bypass Reset commands are valid. To exit the unlock  
bypass mode, the system must issue the two-cycle unlock bypass reset command sequence. (See Table on page 54 and Table  
on page 57).  
9.5.2  
Write Buffer Programming  
Write Buffer Programming allows the system write to a maximum of 16 words/32 bytes in one progmming operation. This results in  
faster effective programming time than the standard programming algorithms. The Write Buffer Programming command sequence is  
initiated by first writing two unlock cycles. This is followed by a third write cycle containing the Write Buffer Load command written at  
the Sector Address in which programming occurs. The fourth cycle writes the sector adss and the number of word locations,  
minus one, to be programmed. For example, if the system programs six unique address locations, then 05h should be written to the  
device. This tells the device how many write buffer addresses are loaded with data and therefore when to expect the Program Buffer  
to Flash command. The number of locations to program cannot exceed the size othe write buffer or the operation aborts.  
The fifth cycle writes the first address location and data to be programmed. The write-buffer-page is selected by address bits AMAX  
A4. All subsequent address/data pairs must fall within the selected-write-buffer-page. The system then writes the remaining address/  
data pairs into the write buffer. Write buffer locations may be loaded in anorder.  
The write-buffer-page address must be the same for all address/datpairs loaded into the write buffer. (This means Write Buffer  
Programming cannot be performed across multiple write-buffer pges. This also means that Write Buffer Programming cannot be  
performed across multiple sectors. If the system attempts to loprogramming data outside of the selected write-buffer page, the  
operation aborts.)  
Note that if a Write Buffer address location is loaded multiple times, the address/data pair counter is decremented for every data  
load operation. The host system must therefore account for loading a write-buffer location more than once. The counter decrements  
for each data load operation, not for each unique write-buffer-address location. Note also that if an address location is loaded more  
than once into the buffer, the final data loaded that address is programmed.  
Once the specified number of write buffer locations have been loaded, the system must then write the Program Buffer to Flash  
command at the sector address. Any er address and data combination aborts the Write Buffer Programming operation. The  
device then begins programming. Data polling should be used while monitoring the last address location loaded into the write buffer.  
DQ7, DQ6, DQ5, and DQ1 should be monitored to determine the device status during Write Buffer Programming.  
The write-buffer programming operation can be suspended using the standard program suspend/resume commands. Upon  
successful completion of the Write Buffer Programming operation, the device is ready to execute the next command.  
The Write Buffer Programming Sequence can be aborted in the following ways:  
Load a value that is greater than the page buffer size during the Number of Locations to Program step.  
Write to an address in a sector different than the one specified during the Write-Buffer-Load command.  
Write an Address/Data pair to a different write-buffer-page than the one selected by the Starting Address during the write buffer  
data loading stage of the operation.  
Write data other than the Confirm Command after the specified number of data load cycles.  
The abort condition is indicated by DQ1 = 1, DQ7 = DATA# (for the last address location loaded), DQ6 = toggle, and DQ5=0. A  
Write-to-Buffer-Abort Reset command sequence must be written to reset the device for the next operation.  
Write buffer programming is allowed in any sequence. Note that the Secured Silicon sector, autoselect, and CFI functions are  
unavailable when a program operation is in progress. This flash device is capable of handling multiple write buffer programming  
operations on the same write buffer address range without intervening erases. Any bit in a write buffer address range cannot be  
programmed from 0 back to a 1. Attempting to do so may cause the device to set DQ5 = 1, or cause the DQ7 and DQ6 status bits  
Document Number: 002-01522 Rev. *B  
Page 45 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
to indicate the operation was successful. However, a succeeding read shows that the data is still 0. Only erase operations can  
convert a 0 to a 1.  
9.5.3  
Accelerated Program  
The device offers accelerated program operations through the WP#/ACC pin. When the system asserts VHH on the WP#/ACC pin,  
the device automatically enters the Unlock Bypass mode. The system may then write the two-cycle Unlock Bypass program  
command sequence. The device uses the higher voltage on the WP#/ACC pin to accelerate the operation. Note that the WP#/ACC  
pin must not be at VHH for operations other than accelerated programming, or device damage may result. WP# has an internal pull-  
up; when unconnected, WP# is at VIH.  
Figure 9.2 on page 48 illustrates the algorithm for the program operation. Refer to Erase and Program Operations on page 71 for  
parameters, and Figure 15.4 on page 72 for timing diagrams.  
Document Number: 002-01522 Rev. *B  
Page 46 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Figure 9.1 Write Buffer Programming Operation  
Write “Write to Buffer”  
command and  
Sector Address  
Part of “Write to Buffer”  
Command Sequence  
Write number of addresses  
to program minus 1(WC)  
and Sector Address  
Write first address/data  
Yes  
WC = 0 ?  
No  
Write to a different  
sector address  
Abort Write to  
Buffer Operation?  
Yes  
Write to buffer ORTED.  
Must write “W-buffer  
Abort Reset” command  
sequence to return  
No  
(Note 1)  
Write next address/data pair  
to read mode.  
WC = WC - 1  
Write program buffer to  
flash sector address  
Read DQ15 - DQ0 at  
Last Loaded Address  
Yes  
DQ7 = Data?  
No  
No  
No  
DQ1 = 1?  
Yes  
DQ5 = 1?  
Yes  
Read DQ15 - DQ0 with  
address = Last Loaded  
Address  
Yes  
(Note 2)  
DQ7 = Data?  
No  
(Note 3)  
FAIL or ABORT  
PASS  
Notes  
1. When Sector Address is specified, any address in the selected sector is acceptable. However, when loading Write-Buffer address locations with data, all addresses  
must fall within the selected Write-Buffer Page.  
2. DQ7 may change simultaneously with DQ5. Therefore, DQ7 should be verified.  
3. If this flowchart location was reached because DQ5= 1, then the device FAILED. If this flowchart location was reached because DQ1= 1, then the Write to Buffer  
operation was ABORTED. In either case, the proper reset command must be written before the device can begin another operation. If DQ1=1, write the Write-Buffer-  
Programming-Abort-Reset command. if DQ5=1, write the Reset command.  
4. See Table on page 54 and Table on page 57 for command sequences required for write buffer programming.  
Document Number: 002-01522 Rev. *B  
Page 47 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Figure 9.2 Program Operation  
START  
Write Program  
Command Sequence  
Data Poll  
from System  
Embedded  
Program  
algorithm  
in progress  
Verify Data?  
No  
Yes  
No  
Increment Address  
Last Addres?  
Yes  
Programming  
Completed  
Note  
See Table on page 54 and Table on page 57 for program command sequence.  
9.6  
Program Suspend/Program Resume Command Sequence  
The Program Suspend command allows the system to interrupt a programming operation or a Write to Buffer programming  
operation so that data can be read from any nosuspended sector. When the Program Suspend command is written during a  
programming process, the device halts the program operation within 15 µs maximum (5µs typical) and updates the status bits.  
Addresses are not required when writithe Program Suspend command.  
After the programming operation is suspended, the system can read array data from any non-suspended sector. The Program  
Suspend command may also be iued during a programming operation while an erase is suspended. In this case, data may be  
read from any addresses not in Erase Suspend or Program Suspend. If a read is needed from the Secured Silicon Sector area  
(One-time Program area), then user must use the proper command sequences to enter and exit this region. Note that the Secured  
Silicon Sector autoselect, and CFI functions are unavailable when program operation is in progress.  
The system may also write the autoselect command sequence when the device is in the Program Suspend mode. The system can  
read as many autoselect codes as required. When the device exits the autoselect mode, the device reverts to the Program Suspend  
mode, and is ready for another valid operation. See Autoselect Command Sequence on page 44 for more information.  
After the Program Resume command is written, the device reverts to programming. The system can determine the status of the  
program operation using the DQ7 or DQ6 status bits, just as in the standard program operation. See Write Operation Status  
on page 59 for more information.  
The system must write the Program Resume command (address bits are don’t care) to exit the Program Suspend mode and  
continue the programming operation. Further writes of the Resume command are ignored. Another Program Suspend command can  
be written after the device has resume programming.  
Document Number: 002-01522 Rev. *B  
Page 48 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Figure 9.3 Program Suspend/Program Resume  
Program Operation  
or Write-to-Buffer  
Sequence in Progress  
Write Program Suspend  
Command Sequence  
Write address/data  
XXXh/B0h  
Command is also valid for  
Erase-suspended-program  
operations  
Wait 15 μs  
Autoselect and SecSi Sector  
read operations are also allowed  
Read data as  
required  
Data cannot be read from erase- or  
program-suspended sectors  
Done  
No  
reading?  
Yes  
Write Program Resume  
Command Sequence  
Write address/data  
XXXh/30h  
Device reverts to  
operation prior to  
Program Suspend  
9.7  
Chip Erase Command Sequence  
Chip erase is a six bus cycle operation. The chip erase command sequence is initiated by writing two unlock cycles, followed by a  
set-up command. Two additional unlock wite cycles are then followed by the chip erase command, which in turn invokes the  
Embedded Erase algorithm. The devicdoes not require the system to preprogram prior to erase. The Embedded Erase algorithm  
automatically preprograms and verifies the entire memory for an all zero data pattern prior to electrical erase. The system is not  
required to provide any controls or imings during these operations. Table on page 54 and Table on page 57 show the address and  
data requirements for the chip erase command sequence.  
When the Embedded Erase algorithm is complete, the device returns to the read mode and addresses are no longer latched. The  
system can determine the status of the erase operation by using DQ7, DQ6, or DQ2. Refer to Write Operation Status on page 59 for  
information on these status bits.  
Any commands written during the chip erase operation are ignored, including erase suspend commands. However, note that a  
hardware reset immediately terminates the erase operation. If that occurs, the chip erase command sequence should be reinitiated  
once the device has returned to reading array data, to ensure data integrity.  
Figure 9.4 on page 50 illustrates the algorithm for the erase operation. Note that the Secured Silicon Sector, autoselect, and CFI  
functions are unavailable when an erase operation in is progress. Refer to Erase and Program Operations on page 71 for  
parameters, and Figure 15.6 on page 73 for timing diagrams.  
Document Number: 002-01522 Rev. *B  
Page 49 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
9.8  
Sector Erase Command Sequence  
Sector erase is a six bus cycle operation. The sector erase command sequence is initiated by writing two unlock cycles, followed by  
a set-up command. Two additional unlock cycles are written, and are then followed by the address of the sector to be erased, and  
the sector erase command. Table on page 54 and Table on page 57 shows the address and data requirements for the sector erase  
command sequence.  
The device does not require the system to preprogram prior to erase. The Embedded Erase algorithm automatically programs and  
verifies the entire memory for an all zero data pattern prior to electrical erase. The system is not required to provide any controls or  
timings during these operations.  
After the command sequence is written, a sector erase time-out of 50 µs occurs. During the time-out period, additional sector  
addresses and sector erase commands may be written. Loading the sector erase buffer may be done in any sequence, and the  
number of sectors may be from one sector to all sectors. The time between these additional cycles must be less than 50 µs,  
otherwise erasure may begin. Any sector erase address and command following the exceeded time-out may or may not be  
accepted. It is recommended that processor interrupts be disabled during this time to ensure all commands are accepted. The  
interrupts can be re-enabled after the last Sector Erase command is written. Any command other than Sector Erase or Erase  
Suspend during the time-out period resets the device to the read mode. Note that the Secured Silicon Sector, autoselect,  
and CFI functions are unavailable when an erase operation in is progress. The system must rewrite the command sequence  
and any additional addresses and commands.  
The system can monitor DQ3 to determine if the sector erase timer has timed out (See DQ3: Sector Erase Timer on page 63.). The  
time-out begins from the rising edge of the final WE# pulse in the command sequence.  
When the Embedded Erase algorithm is complete, the device returns to reading array data and addresses are no longer latched.  
The system can determine the status of the erase operation by reading DQ7, DQ6, or DQ2 in the erasing sector. Refer to the Write  
Operation Status section for information on these status bits.  
Once the sector erase operation has begun, only the Erase Suspend command is valid. All other commands are ignored. However,  
note that a hardware reset immediately terminates the erase operaon. If that occurs, the sector erase command sequence should  
be reinitiated once the device has returned to reading array data, to ensure data integrity.  
Figure 9.4 illustrates the algorithm for the erase operation. Refer to Erase and Program Operations on page 71 for parameters, and  
Figure 15.6 on page 73 for timing diagrams.  
Figure 9.4 Erase Operation  
START  
Write Erase  
Command Sequence  
(Notes 1, 2)  
Data Poll to Erasing  
Bank from System  
Embedded  
Erase  
algorithm  
in progress  
No  
Data = FFh?  
Yes  
Erasure Completed  
Notes  
1. See Table on page 54 and Table on page 57 for program command sequence.  
2. See the section on DQ3 for information on the sector erase timer.  
Document Number: 002-01522 Rev. *B  
Page 50 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
9.9  
Erase Suspend/Erase Resume Commands  
The Erase Suspend command, B0h, allows the system to interrupt a sector erase operation and then read data from, or program  
data to, any sector not selected for erasure. This command is valid only during the sector erase operation, including the 50 µs  
time-out period during the sector erase command sequence. The Erase Suspend command is ignored if written during the chip  
erase operation or Embedded Program algorithm.  
When the Erase Suspend command is written during the sector erase operation, the device requires a typical of 5 smaximum of  
20 s) to suspend the erase operation. However, when the Erase Suspend command is written during the sector erase time-out, the  
device immediately terminates the time-out period and suspends the erase operation.  
After the erase operation is suspended, the device enters the erase-suspend-read mode. The system can read data from or program  
data to any sector not selected for erasure. (The device erase suspends all sectors selected for erasure.) Reading at any address  
within erase-suspended sectors produces status information on DQ7–DQ0. The system can use DQ7, or DQ6 and DQ2 together, to  
determine if a sector is actively erasing or is erase-suspended. Refer to the Write Operation Status section for information on these  
status bits.  
After an erase-suspended program operation is complete, the device returns to the erase-suspenread mode. The system can  
determine the status of the program operation using the DQ7 or DQ6 status bits, just as in the standard word program operation.  
Refer to Write Operation Status on page 59 for more information.  
In the erase-suspend-read mode, the system can also issue the autoselect command seence. Refer to the Autoselect Mode  
on page 34 section and Autoselect Command Sequence on page 44 for details.  
To resume the sector erase operation, the system must write the Erase Resume ommand. The address of the erase-suspended  
sector is required when writing this command. Further writes of the Resume command are ignored. Another Erase Suspend  
command can be written after the chip has resumed erasing. It is important to allow an interval of at least 5 ms between Erase  
Resume and Erase Suspend.  
9.10 Lock Register Command Set Definitions  
The Lock Register Command Set permits the user to one-time program the Secured Silicon Sector Protection Bit, Persistent  
Protection Mode Lock Bit, and Password Protection Mode Lock Bit. The Lock Register bits are all readable after an initial access  
delay.  
The Lock Register Command Set Entry command sequence must be issued prior to any of the following commands listed, to  
enable proper command execution.  
Note that issuing the Lock Register Command Set Entry command disables reads and writes for the flash memory.  
Lock Register Program Command  
Lock Register Read Command  
The Lock Register Command Set Exit command must be issued after the execution of the commands to reset the device to read  
mode. Otherwise the device hangs. If this happens, the flash device must be reset. Please refer to RESET# for more information. It  
is important to note that the device is in either Persistent Protection mode or Password Protection mode depending on the mode  
selected prior to the device hang.  
For either the Secured Silicon Sector to be locked, or the device to be permanently set to the Persistent Protection Mode or the  
Password Protection Mode, the associated Lock Register bits must be programmed. Note that only the Persistent Protection Mode  
Lock Bit or the Password Protection Mode Lock Bit can be programmed. The Lock Register Program operation aborts if there is an  
attempt to program both the Persistent Protection Mode and the Password Protection Mode Lock bits.  
The Lock Register Command Set Exit command must be initiated to re-enable reads and writes to the main memory.  
Document Number: 002-01522 Rev. *B  
Page 51 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
9.11 Password Protection Command Set Definitions  
The Password Protection Command Set permits the user to program the 64-bit password, verify the programming of the 64-bit  
password, and then later unlock the device by issuing the valid 64-bit password.  
The Password Protection Command Set Entry command sequence must be issued prior to any of the commands listed following  
to enable proper command execution.  
Note that issuing the Password Protection Command Set Entry command disabled reads and writes the main memory.  
Password Program Command  
Password Read Command  
Password Unlock Command  
The Password Program command permits programming the password that is used as part of the hardware protection scheme. The  
actual password is 64-bits long. There is no special addressing order required for programming the password. The password is  
programmed in 8-bit or 16-bit portions. Each portion requires a Password Program Command.  
Once the Password is written and verified, the Password Protection Mode Lock Bit in the Lock Register must be programmed in  
order to prevent verification. The Password Program command is only capable of programming 0s. Programming a 1 after a cell is  
programmed as a 0 results in a time-out by the Embedded Program AlgorithmTM with thell remaining as a 0. The password is all  
F’s when shipped from the factory. All 64-bit password combinations are valid as a password.  
The Password Read command is used to verify the Password. The Password is verifiable only when the Password Protection Mode  
Lock Bit in the Lock Register is not programmed. If the Password Protection Mode Lock Bit in the Lock Register is programmed and  
the user attempts to read the Password, the device always drives all F’s onto the DQ data bus.  
The lower two address bits (A1–A0) for word mode and (A1–A-1) for by byte mode are valid during the Password Read, Password  
Program, and Password Unlock commands. Writing a 1 to any other address bits (AMAX-A2) aborts the Password Read and  
Password Program commands.  
The Password Unlock command is used to clear the PPB Lock Bit to the unfreeze state so that the PPB bits can be modified. The  
exact password must be entered in order for the unlocking function to occur. This 64-bit Password Unlock command sequence takes  
at least 2 µs to process each time to prevent a hacker from running through the all 64-bit combinations in an attempt to correctly  
match the password. If another password unlock is issued before the 64-bit password check execution window is completed, the  
command is ignored. If the wrong address or data is given during password unlock command cycle, the device may enter the write-  
to-buffer abort state. In order to exit the write-to-abort state, the write-to-buffer-abort-reset command must be given. Otherwise the  
device hangs.  
The Password Unlock function is accomplished by writing Password Unlock command and data to the device to perform the clearing  
of the PPB Lock Bit to the unfreeze sta. The password is 64 bits long. A1 and A0 are used for matching in word mode and A1, A0,  
A-1 in byte mode. Writing the Password Unlock command does not need to be address order specific. An example sequence is  
starting with the lower address A1-A0=00, followed by A1-A0=01, A1-A0=10, and A1-A0=11 if the device is configured to operate in  
word mode.  
Approximately 2 µs is required for unlocking the device after the valid 64-bit password is given to the device. It is the responsibility of  
the microprocessor to keep track of the entering the portions of the 64-bit password with the Password Unlock command, the order,  
and when to read the PPB Lock bit to confirm successful password unlock. In order to re-lock the device into the Password  
Protection Mode, the PPB Lock Bit Set command can be re-issued.  
Note: The Password Protection Command Set Exit command must be issued after the execution of the commands listed previously  
to reset the device to read mode. Otherwise the device hangs.  
Note: Issuing the Password Protection Command Set Exit command re-enables reads and writes for the main memory.  
9.12 Non-Volatile Sector Protection Command Set Definitions  
The Non-Volatile Sector Protection Command Set permits the user to program the Persistent Protection Bits (PPB bits), erase all of  
the Persistent Protection Bits (PPB bits), and read the logic state of the Persistent Protection Bits (PPB bits).  
The Non-Volatile Sector Protection Command Set Entry command sequence must be issued prior to any of the commands listed  
following to enable proper command execution.  
Document Number: 002-01522 Rev. *B  
Page 52 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Note that issuing the Non-Volatile Sector Protection Command Set Entry command disables reads and writes for the main  
memory.  
PPB Program Command  
The PPB Program command is used to program, or set, a given PPB bit. Each PPB bit is individually programmed (but is bulk  
erased with the other PPB bits). The specific sector address (A24-A16 for S29GL512N, A23-A16 for S29GL256N, A22-A16 for  
S29GL128N) is written at the same time as the program command. If the PPB Lock Bit is set to the freeze state, the PPB  
Program command does not execute and the command times-out without programming the PPB bit.  
All PPB Erase Command  
The All PPB Erase command is used to erase all PPB bits in bulk. There is no means for individually erasing a specific PPB bit.  
Unlike the PPB program, no specific sector address is required. However, when the All PPB Erase command is issued, all Sector  
PPB bits are erased in parallel. If the PPB Lock Bit is set to freeze state, the ALL PPB Erase command does not execute and the  
command times-out without erasing the PPB bits.  
The device preprograms all PPB bits prior to erasing when issuing the All PPB Erase command. Also note that the total number  
of PPB program/erase cycles has the same endurance as the flash memory array.  
PPB Status Read Command  
The programming state of the PPB for a given sector can be verified by writing a PPB atus Read Command to the device. This  
requires an initial access time latency.  
The Non-Volatile Sector Protection Command Set Exit command must be issued after the execution of the commands listed  
previously to reset the device to read mode.  
Note that issuing the Non-Volatile Sector Protection Command Set Exit command re-enables reads and writes for the main  
memory.  
9.13 Global Volatile Sector Protection Freeze Command Set  
The Global Volatile Sector Protection Freeze Command Set permits the user to set the PPB Lock Bit and reading the logic state of  
the PPB Lock Bit.  
The Global Volatile Sector Protection Freeze Command Set Entry command sequence must be issued prior to any of the  
commands listed following to enable proper command execution.  
Reads and writes from the main memory arot allowed.  
PPB Lock Bit Set Command  
The PPB Lock Bit Set command is used to set the PPB Lock Bit to the freeze state if it is cleared either at reset or if the  
Password Unlock command was successfully executed. There is no PPB Lock Bit Clear command. Once the PPB Lock Bit is set  
to the freeze state, it cannot bleared unless the device is taken through a power-on clear (for Persistent Protection Mode) or  
the Password Unlock command is executed (for Password Protection Mode). If the Password Protection Mode Lock Bit is  
programmed, the PPB Lock Bit status is reflected as set to the freeze state, even after a power-on reset cycle.  
PPB Lock Bit Status Read Command  
The programming state of the PPB Lock Bit can be verified by executing a PPB Lock Bit Status Read command to the device.  
The Global Volatile Sector Protection Freeze Command Set Exit command must be issued after the execution of the commands  
listed previously to reset the device to read mode.  
9.14 Volatile Sector Protection Command Set  
The Volatile Sector Protection Command Set permits the user to set the Dynamic Protection Bit (DYB) to the protected state, clear  
the Dynamic Protection Bit (DYB) to the unprotected state, and read the logic state of the Dynamic Protection Bit (DYB).  
The Volatile Sector Protection Command Set Entry command sequence must be issued prior to any of the commands listed  
following to enable proper command execution.  
Note that issuing the Volatile Sector Protection Command Set Entry command disables reads and writes from main memory.  
DYB Set Command  
Document Number: 002-01522 Rev. *B  
Page 53 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
DYB Clear Command  
The DYB Set and DYB Clear commands are used to protect or unprotect a given sector. The high order address bits are issued  
at the same time as the code 00h or 01h on DQ7-DQ0. All other DQ data bus pins are ignored during the data write cycle. The  
DYB bits are modifiable at any time, regardless of the state of the PPB bit or PPB Lock Bit. The DYB bits are cleared to the  
unprotected state at power-up or hardware reset.  
DYB Status Read Command  
The programming state of the DYB bit for a given sector can be verified by writing a DYB Status Read command to the device.  
This requires an initial access delay.  
The Volatile Sector Protection Command Set Exit command must be issued after the execution of the commands listed  
previously to reset the device to read mode.  
Note that issuing the Volatile Sector Protection Command Set Exit command re-enables reads and writes to the main  
memory.  
9.15 Secured Silicon Sector Entry Command  
The Secured Silicon Sector Entry command allows the following commands to be executed  
Read from Secured Silicon Sector  
Program to Secured Silicon Sector  
Once the Secured Silicon Sector Entry Command is issued, the Secured Silicon Sector Exit command has to be issued to exit  
Secured Silicon Sector Mode.  
9.16 Secured Silicon Sector Exit Command  
The Secured Silicon Sector Exit command may be issued to exit the Secured Silicon Sector Mode.  
9.17 Command Definitions  
Memory Array Commands (x16)  
Bus Cycles (Notes 15)  
First  
Addr  
Second  
Third  
Addr  
Fourth  
Fifth  
Addr  
Sixth  
Addr  
Command Sequence  
(Notes)  
Data  
RD  
F0  
Addr  
Data  
Data  
Addr  
Data  
Data  
Data  
Asynchronous Read (6)  
Reset (7)  
1
4
6
4
4
1
4
6
1
3
3
2
2
2
2
6
RA  
XXX  
555  
555  
555  
555  
55  
Manufacturer ID  
AA  
AA  
AA  
AA  
98  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
555  
555  
555  
555  
90  
90  
90  
90  
X00  
X01  
01  
Device ID (8)  
227E  
X0E  
Data  
X0F  
Data  
Sector Protect Verify (9)  
Secure Device Verify (10))  
[SA]X02 Data  
X03  
Data  
CFI Query (11)  
Program  
555  
555  
SA  
AA  
AA  
29  
2AA  
2AA  
55  
55  
555  
PA  
A0  
25  
PA  
SA  
PD  
Write to Buffer (12)  
Program Buffer to Flash  
Write to Buffer Abort Reset (13)  
Entry  
WC  
PA  
PD  
WBL  
PD  
555  
555  
XXX  
XXX  
XXX  
XXX  
555  
AA  
AA  
A0  
80  
2AA  
2AA  
PA  
55  
55  
PD  
30  
10  
00  
55  
555  
555  
F0  
20  
Program (14)  
Sector Erase (14)  
Chip Erase (14)  
Reset  
SA  
80  
SA  
90  
XXX  
2AA  
Chip Erase  
AA  
555  
80  
555  
AA  
2AA  
55  
555  
10  
Document Number: 002-01522 Rev. *B  
Page 54 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Memory Array Commands (x16)  
Bus Cycles (Notes 15)  
Third Fourth  
Addr  
First  
Addr  
Second  
Fifth  
Addr  
2AA  
Sixth  
Command Sequence  
(Notes)  
Data  
AA  
Addr  
Data  
Data  
Addr  
Data  
Data  
Addr  
Data  
Sector Erase  
6
555  
XXX  
XXX  
555  
555  
00  
2AA  
55  
555  
80  
555  
AA  
55  
SA  
30  
Erase/Program Suspend (15)  
Erase/Program Resume (16)  
Entry  
1
1
3
4
1
4
B0  
30  
AA  
2AA  
2AA  
55  
55  
555  
555  
88  
A0  
Program (17)  
AA  
PA  
PD  
00  
Read (17)  
Data  
AA  
Exit (17)  
555  
2AA  
55  
555  
90  
XXX  
Legend  
X = Don’t care.  
RA = Read Address.  
RD = Read Data.  
PA = Program Address. Addresses latch on the falling edge of WE# or CE# pulse, whichever occurs later.  
PD = Program Data. Data latches on the rising edge of WE# or CE# pulse, whichever occurs first.  
SA = Sector Address. Any address that falls within a specified sector. See Tables – for sector address ranges.  
WBL = Write Buffer Location. Address must be within the same write buffer page as PA.  
WC = Word Count. Number of write buffer locations to load minus 1.  
Notes  
1. See Table on page 10 for description of bus operations.  
2. All values are in hexadecimal.  
3. Shaded cells indicate read cycles.  
4. Address and data bits not specified in table, legend, or notes are don’t cares (each hex digit implies 4 bits of data).  
5. Writing incorrect address and data values or writing them in the improper sequence ay place the device in an unknown state. The system must write the reset  
command to return reading array data.  
6. No unlock or command cycles required when bank is reading array data.  
7. Reset command is required to return to reading array data in certain cases. See Reset Command on page 43 for details.  
8. Data in cycles 5 and 6 are listed in Table on page 34.  
9. The data is 00h for an unprotected sector and 01h for a protected sector. PPB Status Read provides the same data but in inverted form.  
10. If DQ7 = 1, region is factory serialized and protected. If DQ7 = 0, region is unserialized and unprotected when shipped from factory. See Secured Silicon Sector Flash  
Memory Region on page 39 for more information.  
11. Command is valid when device is ready to read array datr when device is in autoselect mode.  
12. Total number of cycles in the command sequence is determined by the number of words written to the write buffer.  
13. Command sequence resets device for next commad after write-to-buffer operation.  
14. Requires Entry command sequence prior to ecution. Unlock Bypass Reset command is required to return to reading array data.  
15. System may read and program in non-erasing sectors, or enter the autoselect mode, when in the Erase Suspend mode. The Erase Suspend command is valid only  
during a sector erase operation.  
16. Erase Resume command is valid only duing the Erase Suspend mode.  
17. Requires Entry command sequence prior to execution. Secured Silicon Sector Exit Reset command is required to exit this mode; device may otherwise be placed in an  
unknown state.  
Document Number: 002-01522 Rev. *B  
Page 55 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Sector Protection Commands (x16)  
Bus Cycles (Notes 14)  
First  
Second  
Third  
Fourth  
Fifth  
Add  
Sixth  
Seventh  
Add  
Command Sequence  
(Notes)  
Add  
r
Addr Data Addr  
Data  
55  
Addr  
Data Addr Data  
r
Data  
Data  
r
Data  
Command Set Entry (5)  
Program (6)  
3
2
1
2
3
2
555  
XX  
00  
AA  
A0  
2AA  
XXX  
555  
40  
Lock  
Register  
Bits  
Data  
Read (6)  
Data  
90  
Command Set Exit (7)  
Command Set Entry (5)  
Program (8)  
XX  
555  
XX  
XX  
2AA  
00  
55  
AA  
A0  
555  
60  
PWAx  
PWDx  
PWD  
0
PWD  
2
PWD  
3
Password  
Protection  
Read (9)  
4
7
XXX  
00  
01  
00  
PWD1  
03  
02  
00  
03  
01  
PWD  
0
PWD  
1
PWD  
2
PWD  
3
Unlock (10)  
25  
02  
03  
00  
29  
Command Set Exit (7)  
Command Set Entry (5)  
PPB Program (11)  
All PPB Erase (11, 12)  
PPB Status Read  
2
3
2
2
1
2
3
2
1
2
3
2
2
1
2
XX  
555  
XX  
XX  
SA  
XX  
555  
XX  
90  
AA  
XX  
2AA  
SA  
00  
55  
00  
30  
555  
C0  
A0  
Non-Volatile  
Sector  
Protection  
(PPB)  
80  
00  
RD(0)  
90  
Command Set Exit (7)  
Command Set Entry (5)  
PPB Lock Bit Set  
XX  
2AA  
XX  
00  
55  
00  
AA  
555  
555  
50  
E0  
Global  
Volatile Sector  
Protection  
Freeze  
A0  
PPB Lock Bit Status Read  
Command Set Exit (7)  
Command Set Entry (5)  
DYB Set  
XXX RD(0)  
(PPB Lock)  
XX  
555  
XX  
XX  
SA  
XX  
90  
AA  
XX  
2AA  
SA  
0
55  
00  
01  
A0  
Volatile Sector  
Protection  
(DYB)  
DYB Clear  
A0  
SA  
DYB Status Read  
RD(0)  
90  
Command Set Exit (7)  
XX  
00  
Legend  
X = Don’t care.  
RA = Address of the memory location to be read.  
SA = Sector Address. Any address that falls ithin a specified sector. See Tables – for sector address ranges.  
PWA = Password Address. Address bits A1 and A0 are used to select each 16-bit portion of the 64-bit entity.  
PWD = Password Data.  
RD(0) = DQ0 protection indicator bit. If protected, DQ0 = 0. If unprotected, DQ0 = 1.  
Notes  
1. All values are in hexadecimal.  
2. Shaded cells indicate read cycles.  
3. Address and data bits not specified in table, legend, or notes are don’t cares (each hex digit implies 4 bits of data).  
4. Writing incorrect address and data values or writing them in the improper sequence may place the device in an unknown state. The system must write the reset  
command to return the device to reading array data.  
5. Entry commands are required to enter a specific mode to enable instructions only available within that mode.  
6. No unlock or command cycles required when bank is reading array data.  
7. Exit command must be issued to reset the device into read mode; device may otherwise be placed in an unknown state.  
8. Entire two bus-cycle sequence must be entered for each portion of the password.  
9. Full address range is required for reading password.  
10. Password may be unlocked or read in any order. Unlocking requires the full password (all seven cycles).  
11. ACC must be at V when setting PPB or DYB.  
IH  
12. “All PPB Erase” command pre-programs all PPBs before erasure to prevent over-erasure.  
Document Number: 002-01522 Rev. *B  
Page 56 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Memory Array Commands (x8)  
Bus Cycles (Notes 15)  
Third Fourth  
Addr  
First  
Addr  
Second  
Fifth  
Addr  
Sixth  
Command Sequence  
(Notes)  
Data  
RD  
F0  
Addr  
Data  
Data  
Addr  
Data  
Data  
Addr  
Data  
Asynchronous Read (6)  
Reset (7)  
1
1
4
6
4
4
1
4
6
1
3
3
2
2
2
2
6
6
1
1
3
4
1
4
RA  
XXX  
AAA  
AAA  
AAA  
AAA  
AA  
Manufacturer ID  
Device ID (8)  
AA  
AA  
AA  
AA  
98  
555  
555  
555  
555  
55  
55  
55  
55  
AAA  
AAA  
AAA  
AAA  
90  
90  
90  
90  
X00  
X02  
01  
XX7E  
X1C  
Data  
X1E  
Data  
Sector Protect Verify (9)  
Secure Device Verify (10)  
CFI Query (11)  
Program  
[SA]X04 Data  
X06  
Data  
AAA  
AAA  
SA  
AA  
AA  
29  
555  
555  
55  
55  
AAA  
PA  
A0  
25  
PA  
SA  
PD  
Write to Buffer (12)  
Program Buffer to Flash  
Write to Buffer Abort Reset (13)  
Entry  
WC  
PA  
PD  
WBL  
PD  
AAA  
AAA  
XXX  
XXX  
XXX  
XXX  
AAA  
AAA  
XXX  
XXX  
AAA  
AAA  
00  
AA  
AA  
A0  
80  
PA  
555  
PA  
55  
55  
PD  
30  
10  
00  
55  
55  
555  
F0  
20  
AAA  
Program (14)  
Sector Erase (14)  
Chip Erase (14)  
Reset  
SA  
80  
SA  
90  
XXX  
555  
555  
Chip Erase  
AA  
AA  
B0  
30  
AAA  
AAA  
80  
80  
AAA  
AAA  
AA  
AA  
555  
555  
55  
55  
AAA  
SA  
10  
30  
Sector Erase  
Erase/Program Suspend (15)  
Erase/Program Resume (16)  
Entry  
AA  
AA  
Data  
AA  
555  
555  
55  
55  
AAA  
AAA  
88  
A0  
Program (17)  
PA  
PD  
00  
Read (17)  
Exit (17)  
AAA  
555  
55  
AAA  
90  
XXX  
Legend  
X = Don’t care.  
RA = Read Address.  
RD = Read Data.  
PA = Program Address. Addresses latch on the falling edge of WE# or CE# pulse, whichever occurs later.  
PD = Program Data. Data latches on the rising edge of WE# or CE# pulse, whichever occurs first.  
SA = Sector Address. Any address that falls within a specified sector. See Tables – for sector address ranges.  
WBL = Write Buffer Location. Address must be within the same write buffer page as PA.  
WC = Word Count. Number of write buffer locations to load minus 1.  
Notes  
1. See Table on page 10 for description of bus operations.  
2. All values are in hexadecimal.  
3. Shaded cells indicate read cycles.  
4. Address and data bits not specified in table, legend, or notes are don’t cares (each hex digit implies 4 bits of data).  
5. Writing incorrect address and data values or writing them in the improper sequence may place the device in an unknown state. The system must write the reset  
command to return reading array data.  
6. No unlock or command cycles required when bank is reading array data.  
7. Reset command is required to return to reading array data in certain cases. See Reset Command on page 43 for details.  
8. Data in cycles 5 and 6 are listed in Table on page 34.  
9. The data is 00h for an unprotected sector and 01h for a protected sector. PPB Status Read provides the same data but in inverted form.  
10. If DQ7 = 1, region is factory serialized and protected. If DQ7 = 0, region is unserialized and unprotected when shipped from factory. See Secured Silicon Sector Flash  
Memory Region on page 39 for more information.  
11. Command is valid when device is ready to read array data or when device is in autoselect mode.  
12. Total number of cycles in the command sequence is determined by the number of words written to the write buffer.  
13. Command sequence resets device for next command after write-to-buffer operation.  
14. Requires Entry command sequence prior to execution. Unlock Bypass Reset command is required to return to reading array data.  
Document Number: 002-01522 Rev. *B  
Page 57 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
15. System may read and program in non-erasing sectors, or enter the autoselect mode, when in the Erase Suspend mode. The Erase Suspend command is valid only  
during a sector erase operation.  
16. Erase Resume command is valid only during the Erase Suspend mode.  
17. Requires Entry command sequence prior to execution. Secured Silicon Sector Exit Reset command is required to exit this mode; device may otherwise be placed in an  
unknown state.  
Sector Protection Commands (x8)  
Bus Cycles (Notes 14)  
1st/8th  
2nd/9th  
3rd/10th  
4th/11th  
5th  
6th  
7th  
Command Sequence  
(Notes)  
Add  
r
Add  
r
Add  
r
Addr Data Addr  
Data  
55  
Addr  
Data Addr Data  
Data  
Data  
Data  
Command Set Entry (5)  
3
2
1
2
3
2
AAA  
XXX  
00  
AA  
A0  
555  
AAA  
40  
Lock  
Register  
Bits  
Program (6)  
XXX  
Data  
Read (6)  
Data  
90  
Command Set Exit (7)  
Command Set Entry (5)  
Program (8)  
XXX  
AAA  
XXX  
XXX  
555  
00  
55  
AA  
A0  
AAA  
02  
60  
PWAx  
PWDx  
PWD  
0
PWD  
2
PWD  
4
PWD  
5
PWD  
6
00  
07  
00  
05  
01  
PWD1  
03  
04  
02  
05  
03  
06  
04  
Read (9)  
8
PWD  
7
Password  
Protection  
PWD  
0
PWD  
1
PWD  
2
PWD  
3
PWD  
4
25  
00  
06  
03  
00  
07  
01  
00  
1
1
Unlock (10)  
PWD  
5
PWD  
7
PWD6  
29  
Command Set Exit (7)  
Command Set Entry (5)  
PPB Program (11)  
2
3
2
2
1
2
3
2
XX  
90  
AA  
XX  
555  
SA  
00  
00  
55  
00  
30  
AAA  
XXX  
XXX  
SA  
AAA  
C0  
A0  
Non-Volatile  
Sector  
Protection  
(PPB)  
All PPB Erase (11, 12)  
PPB Status Read  
80  
RD(0)  
90  
Command Set Exit (7)  
Command Set Entry (5)  
PPB Lock Bit Set  
XXX  
AAA  
XXX  
XXX  
555  
00  
55  
00  
AA  
AAA  
AAA  
50  
E0  
Global  
Volatile Sector  
Protection  
Freeze  
A0  
XXX  
PPB Lock Bit Status  
Read  
1
XX RD(0)  
(PPB Lock)  
Command Set Exit (7)  
Command Set Entry (5)  
DYB Set  
2
3
2
2
1
2
XXX  
AAA  
XXX  
XXX  
SA  
90  
AA  
XX  
555  
SA  
SA  
00  
55  
00  
01  
A0  
Volatile Sector  
Protection  
(DYB)  
DYB Clear  
A0  
DYB Status Read  
Command Set Exit (7)  
RD(0)  
90  
XXX  
XXX  
00  
Legend  
X = Don’t care.  
RA = Address of the memory location to be read.  
SA = Sector Address. Any address that falls within a specified sector. See Tables – for sector address ranges.  
PWA = Password Address. Address bits A1 and A0 are used to select each 16-bit portion of the 64-bit entity.  
PWD = Password Data.  
RD(0) = DQ0 protection indicator bit. If protected, DQ0 = 0. If unprotected, DQ0 = 1.  
Notes  
1. All values are in hexadecimal.  
2. Shaded cells indicate read cycles.  
3. Address and data bits not specified in table, legend, or notes are don’t cares (each hex digit implies 4 bits of data).  
4. Writing incorrect address and data values or writing them in the improper sequence may place the device in an unknown state. The system must write the reset  
command to return the device to reading array data.  
5. Entry commands are required to enter a specific mode to enable instructions only available within that mode.  
Document Number: 002-01522 Rev. *B  
Page 58 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
6. No unlock or command cycles required when bank is reading array data.  
7. Exit command must be issued to reset the device into read mode; device may otherwise be placed in an unknown state.  
8. Entire two bus-cycle sequence must be entered for each portion of the password.  
9. Full address range is required for reading password.  
10. Password may be unlocked or read in any order. Unlocking requires the full password (all seven cycles).  
11. ACC must be at V when setting PPB or DYB.  
IH  
12. “All PPB Erase” command pre-programs all PPBs before erasure to prevent over-erasure.  
10. Write Operation Status  
The device provides several bits to determine the status of a program or erase operation: DQ2, DQ3, DQ5, DQ6, and DQ7. Table  
on page 63 and the following subsections describe the function of these bits. DQ7 and DQ6 each offer a method for determining  
whether a program or erase operation is complete or in progress. The device also provides a hardware-based output signal, RY/  
BY#, to determine whether an Embedded Program or Erase operation is in progress or is completed.  
10.1 DQ7: Data# Polling  
The Data# Polling bit, DQ7, indicates to the host system whether an Embedded Program or Erase algorithm is in progress or  
completed, or whether the device is in Erase Suspend. Data# Polling is valid after the risig edge of the final WE# pulse in the  
command sequence.  
During the Embedded Program algorithm, the device outputs on DQ7 the complement of the datum programmed to DQ7. This DQ7  
status also applies to programming during Erase Suspend. When the Embedded Program algorithm is complete, the device outputs  
the datum programmed to DQ7. The system must provide the program address to read valid status information on DQ7. If a program  
address falls within a protected sector, Data# Polling on DQ7 is active fopproximately 1 µs, then the device returns to the read  
mode.  
During the Embedded Erase algorithm, Data# Polling produces a 0 on DQ7. When the Embedded Erase algorithm is complete, or if  
the device enters the Erase Suspend mode, Data# Polling prodces a 1 on DQ7. The system must provide an address within any of  
the sectors selected for erasure to read valid status information on DQ7.  
After an erase command sequence is written, if all sectors selected for erasing are protected, Data# Polling on DQ7 is active for  
approximately 100 µs, then the device returns to the read mode. If not all selected sectors are protected, the Embedded Erase  
algorithm erases the unprotected sectors, and ignores the selected sectors that are protected. However, if the system reads DQ7 at  
an address within a protected sector, the status may not be valid.  
Just prior to the completion of an Embedded Program or Erase operation, DQ7 may change asynchronously with DQ0–DQ6 while  
Output Enable (OE#) is asserted low. at is, the device may change from providing status information to valid data on DQ7.  
Depending on when the system samples the DQ7 output, it may read the status or valid data. Even if the device has completed the  
program or erase operation and DQ7 has valid data, the data outputs on DQ0–DQ6 may be still invalid. Valid data on DQ0–DQ7  
appears on successive read cycles.  
Table on page 63 shows the outputs for Data# Polling on DQ7. Figure 10.1 on page 60 shows the Data# Polling algorithm.  
Figure 15.4 on page 72 shows the Data# Polling timing diagram.  
Document Number: 002-01522 Rev. *B  
Page 59 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Figure 10.1 Data# Polling Algorithm  
START  
Read DQ15–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
No  
DQ5 = 1  
Yes  
Read DQ15–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
PASS  
FAIL  
Notes  
1. VA = Valid address for programming. During a sector erase operation, a valid address is any sector address within the sector being erased. During chip erase, a valid  
address is any non-protected sector address.  
2. DQ7 should be rechecked even if DQ5 = 1 because DQ7 may change simultaneously with DQ5.  
10.2 RY/BY#: Ready/Busy#  
The RY/BY# is a dedicated, open-drain output pin which indicates whether an Embedded Algorithm is in progress or complete. The  
RY/BY# status is valid after the rising edge of the final WE# pulse in the command sequence. Since RY/BY# is an open-drain output,  
several RY/BY# pins can be tied together in parallel with a pull-up resistor to VCC  
.
If the output is low (Busy), the device is actively erasing or programming. (This includes programming in the Erase Suspend mode.)  
If the output is high (Ready), the device is in the read mode, the standby mode, or in the erase-suspend-read mode. Table  
on page 63 shows the outputs for RY/BY#.  
10.3 DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm is in progress or complete, or whether the device  
has entered the Erase Suspend mode. Toggle Bit I may be read at any address, and is valid after the rising edge of the final WE#  
pulse in the command sequence (prior to the program or erase operation), and during the sector erase time-out.  
During an Embedded Program or Erase algorithm operation, successive read cycles to any address cause DQ6 to toggle. The  
system may use either OE# or CE# to control the read cycles. When the operation is complete, DQ6 stops toggling.  
After an erase command sequence is written, if all sectors selected for erasing are protected, DQ6 toggles for approximately 100 µs,  
then returns to reading array data. If not all selected sectors are protected, the Embedded Erase algorithm erases the unprotected  
sectors, and ignores the selected sectors that are protected.  
Document Number: 002-01522 Rev. *B  
Page 60 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
The system can use DQ6 and DQ2 together to determine whether a sector is actively erasing or is erase-suspended. When the  
device is actively erasing (that is, the Embedded Erase algorithm is in progress), DQ6 toggles. When the device enters the Erase  
Suspend mode, DQ6 stops toggling. However, the system must also use DQ2 to determine which sectors are erasing or erase-  
suspended. Alternatively, the system can use DQ7 (see the subsection on DQ7: Data# Polling).  
If a program address falls within a protected sector, DQ6 toggles for approximately 1 µs after the program command sequence is  
written, then returns to reading array data.  
DQ6 also toggles during the erase-suspend-program mode, and stops toggling once the Embedded Program algorithm is complete.  
Table on page 63 shows the outputs for Toggle Bit I on DQ6. Figure 10.2 shows the toggle bit algorithm. Figure 15.8 on page 74  
shows the toggle bit timing diagrams. Figure 15.9 on page 74 shows the differences between DQ2 and DQ6 in graphical form. See  
also DQ2: Toggle Bit II on page 62.  
Figure 10.2 Toggle Bit Algorithm  
START  
Read DQ7–DQ0  
Read DQ7–DQ0  
No  
Toggle Bit  
= Toggle
Yes  
No  
DQ5 = 1?  
Yes  
Read DQ7–DQ0  
Twice  
Toggle Bit  
= Toggle?  
No  
Yes  
Program/Erase  
Operation Not  
Program/Erase  
Operation Complete  
Complete, Write  
Reset Command  
Note  
The system should recheck the toggle bit even if DQ5 = 1 because the toggle bit may stop toggling as DQ5 changes to 1. See the subsections on DQ6 and DQ2 for more  
information.  
Document Number: 002-01522 Rev. *B  
Page 61 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
10.4 DQ2: Toggle Bit II  
The Toggle Bit II on DQ2, when used with DQ6, indicates whether a particular sector is actively erasing (that is, the Embedded  
Erase algorithm is in progress), or whether that sector is erase-suspended. Toggle Bit II is valid after the rising edge of the final WE#  
pulse in the command sequence.  
DQ2 toggles when the system reads at addresses within those sectors that have been selected for erasure. (The system may use  
either OE# or CE# to control the  
read cycles.) But DQ2 cannot distinguish whether the sector is actively erasing or is erase-suspended. DQ6, by comparison,  
indicates whether the device is actively erasing, or is in Erase Suspend, but cannot distinguish which sectors are selected for  
erasure. Thus, both status bits are required for sector and mode information. Refer to Table on page 63 to compare outputs for DQ2  
and DQ6.  
Figure 10.2 on page 61 shows the toggle bit algorithm in flowchart form, and the section DQ2: Toggle Bit II on page 62 explains the  
algorithm. See also the RY/BY#: Ready/Busy# on page 60. Figure 15.8 on page 74 shows the toggle bit timing diagram. Figure 15.9  
on page 74 shows the differences between DQ2 and DQ6 in graphical form.  
10.5 Reading Toggle Bits DQ6/DQ2  
Refer to Figure 10.2 on page 61 and Figure 15.9 on page 74 for the following discussionhenever the system initially begins  
reading toggle bit status, it must read DQ7–DQ0 at least twice in a row to determine whether a toggle bit is toggling. Typically, the  
system would note and store the value of the toggle bit after the first read. After the second read, the system would compare the new  
value of the toggle bit with the first. If the toggle bit is not toggling, the device has completed the program or erase operation. The  
system can read array data on DQ7–DQ0 on the following read cycle.  
However, if after the initial two read cycles, the system determines that the toggle bit is still toggling, the system also should note  
whether the value of DQ5 is high (see the section on DQ5). If it is, the system should then determine again whether the toggle bit is  
toggling, since the toggle bit may have stopped toggling just as DQ5 went high. If the toggle bit is no longer toggling, the device has  
successfully completed the program or erase operation. If it is stiltoggling, the device did not completed the operation successfully,  
and the system must write the reset command to return to reag array data.  
The remaining scenario is that the system initially determines that the toggle bit is toggling and DQ5 has not gone high. The system  
may continue to monitor the toggle bit and DQ5 through successive read cycles, determining the status as described in the previous  
paragraph. Alternatively, it may choose to perform other system tasks. In this case, the system must start at the beginning of the  
algorithm when it returns to determine the status of the operation (top of Figure 10.2 on page 61).  
10.6 DQ5: Exceeded Timing Limits  
DQ5 indicates whether the program, erase, or write-to-buffer time has exceeded a specified internal pulse count limit. Under these  
conditions DQ5 produces a 1, indicating that the program or erase cycle was not successfully completed.  
The device may output a 1 on DQ5 if the system tries to program a 1 to a location that was previously programmed to 0. Only an  
erase operation can change a 0 back to a 1. Under this condition, the device halts the operation, and when the timing limit is  
exceeded, DQ5 produces a 1.  
In all these cases, the system must write the reset command to return the device to the reading the array (or to erase-suspend-read  
if the device was previously in the erase-suspend-program mode).  
Document Number: 002-01522 Rev. *B  
Page 62 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
10.7 DQ3: Sector Erase Timer  
After writing a sector erase command sequence, the system may read DQ3 to determine whether or not erasure has begun. (The  
sector erase timer does not apply to the chip erase command.) If additional sectors are selected for erasure, the entire time-out also  
applies after each additional sector erase command. When the time-out period is complete, DQ3 switches from a 0 to a 1. If the time  
between additional sector erase commands from the system can be assumed to be less than 50 µs, the system need not monitor  
DQ3. See also Sector Erase Command Sequence on page 50.  
After the sector erase command is written, the system should read the status of DQ7 (Data# Polling) or DQ6 (Toggle Bit I) to ensure  
that the device has accepted the command sequence, and then read DQ3. If DQ3 is 1, the Embedded Erase algorithm has begun;  
all further commands (except Erase Suspend) are ignored until the erase operation is complete. If DQ3 is 0, the device accepts  
additional sector erase commands. To ensure the command is accepted, the system software should check the status of DQ3 prior  
to and following each subsequent sector erase command. If DQ3 is high on the second status check, the last command might not  
have been accepted.  
Table on page 63 shows the status of DQ3 relative to the other status bits.  
10.8 DQ1: Write-to-Buffer Abort  
DQ1 indicates whether a Write-to-Buffer operation was aborted. Under these conditions Q1 produces a 1. The system must issue  
the Write-to-Buffer-Abort-Reset command sequence to return the device to reading array data. See Write Buffer on page 11 for  
more details.  
Write Operation Status  
DQ7  
DQ5  
DQ2  
Status  
(Note 2)  
DQ6  
(Note 1)  
DQ3  
N/A  
1
(Note 2)  
DQ1  
0
RY/BY#  
Embedded Program Algorithm  
Embedded Erase Algorithm  
Program-Suspended  
DQ7#  
0
Toggle  
Toggle  
0
0
No toggle  
Toggle  
0
0
Standard  
Mode  
N/A  
nvalid (not allowed)  
Data  
1
1
1
1
0
Program  
Suspend  
Mode  
Program-  
Sector  
Suspend  
Non-Program  
Read  
Suspended Sector  
Erase-Suspended  
1
No toggle  
Toggle  
0
N/A  
Toggle  
N/A  
N/A  
N/A  
Erase-  
Sector  
Suspend  
Erase  
Suspend  
Mode  
Non-Erase Suspended  
Read  
Data  
Sector  
Erase-Suspend-Program  
(Embedded Program)  
DQ7#  
0
N/A  
Busy (Note 3)  
Abort (Note 4)  
DQ7#  
DQ7#  
Toggle  
Toggle  
0
0
N/A  
N/A  
N/A  
N/A  
0
1
0
0
Write-to-  
Buffer  
Notes  
1. DQ5 switches to 1 when an Embedded Program, Embedded Erase, or Write-to-Buffer operation has exceeded the maximum timing limits. Refer to the section on DQ5  
for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further details.  
3. The Data# Polling algorithm should be used to monitor the last loaded write-buffer address location.  
4. DQ1 switches to 1 when the device has aborted the write-to-buffer operation  
Document Number: 002-01522 Rev. *B  
Page 63 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
11. Absolute Maximum Ratings  
Storage Temperature, Plastic Packages  
Ambient Temperature with Power Applied  
Voltage with Respect to Ground:  
–65°C to +150°C  
–65°C to +125°C  
V
V
(Note 1)  
–0.5 V to +4.0 V  
–0.5 V to +4.0 V  
–0.5 V to +12.5 V  
CC  
IO  
A9 and ACC (Note 2)  
All other pins (Note 1)  
–0.5 V to V + 0.5V  
CC  
Output Short Circuit Current (Note 3)  
200 mA  
Notes  
1. Minimum DC voltage on input or I/Os is –0.5 V. During voltage transitions, inputs or I/Os may overshoot V to –2.0 V for periods of up to 20 ns. See Figure 11.1.  
SS  
Maximum DC voltage on input or I/Os is V + 0.5 V. During voltage transitions, input or I/O pins may overshoot to V + 2.0 V for periods up to 20 ns. See  
CC  
CC  
Figure 11.2.  
2. Minimum DC input voltage on pins A9 and ACC is –0.5 V. During voltage transitions, A9 and ACC may overshoot V to –0 V for periods of up to 20 ns. See  
SS  
Figure 11.1. Maximum DC input voltage on pin A9 and ACC is +12.5 V which may overshoot to +14.0V for periods up to 20 ns.  
3. No more than one output may be shorted to ground at a time. Duration of the short circuit should not be greater thn one second.  
4. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational sections of this data sheet is not implied. Exposure of the device to absolute maximum  
rating conditions for extended periods may affect device reliability.  
Figure 11.1 Maximum Negative Overshoot Waveform  
20 ns  
20 ns  
+0.8 V  
–0.5 V  
–2.0 V  
20 ns  
Figure 11.2 Maximum Positive Overshoot Waveform  
20 ns  
VCC  
+2.0 V  
VCC  
+0.5 V  
2.0 V  
20 ns  
20 ns  
Document Number: 002-01522 Rev. *B  
Page 64 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
12. Operating Ranges  
Industrial (I) Devices  
Ambient Temperature (TA)  
–40°C to +85°C  
Supply Voltages  
VCC  
VIO (Note 2)  
+2.7 V to +3.6 V or +3.0 V to 3.6 V  
+1.65 V to 1.95 V or VCC  
Notes  
1. Operating ranges define those limits between which the functionality of the device is guaranteed.  
2. See Product Selector Guide on page 4.  
13. DC Characteristics  
13.1 CMOS Compatible  
Parameter  
Symbol  
Parameter Description  
(Notes)  
Test Conditions  
= V to V  
Min  
Typ  
Max  
WP/ACC: ±2.0  
Others: ±1.0  
35  
Unit  
V
V
,
CC  
IN  
SS  
I
Input Load Current (1)  
µA  
LI  
= V  
CC  
CC max  
I
A9 Input Load Current  
Output Leakage Current  
V
V
= V  
; A9 = 12.5 V  
µA  
µA  
LIT  
CC  
CC max  
I
= V to V , V = V  
CC max  
±1.0  
LO  
OUT  
SS  
CC  
CC  
CE# = V ; OE# = V , V = V ;  
Cax  
f = 1 MHz, Byte Mode  
IL  
IH  
CC  
6
20  
50  
CE# = V ; OE# = V , V V  
f = 5 MHz, Word Mode  
;
IL  
IH  
C
CCmax  
CCmax  
30  
I
V
Active Read Current (1)  
mA  
mA  
CC1  
CC  
CE# = V ; OE# = V , V = V  
;
IL  
H  
CC  
60  
90  
f = 10 MHz  
CE# = V ; OE# = V  
IL  
f = 10 MHz  
V
= V  
;
IH, CC  
CCmax  
1
5
10  
20  
90  
I
V
V
Intra-Page Read Current (1)  
Active Erase/Program Curre
CC2  
CC  
CE# = , OE# = V , V = V  
;
IL  
IH  
CC  
CCmax  
f=33 MHz  
CC  
I
I
CE# = V OE# = V  
V
= V  
50  
mA  
µA  
CC3  
IL,  
IH, CC  
CCmax  
(2, 3)  
V
V
= V  
; V = V ; OE# = V  
CCmax IO CC  
;
CC  
IH  
V
Standby Current  
Reset Current  
= V + 0.3 V / –0.1 V;  
1
1
5
5
CC4  
CC  
CC  
IL  
SS  
CE#, RESET# = V ± 0.3 V  
CC  
V
V
= V  
; V = V  
;
CC  
CC  
CCmax  
IO  
I
I
V
= V + 0.3 V / –0.1 V;  
µA  
µA  
CC5  
CC6  
ACC  
IL  
SS  
RESET# = V ± 0.3 V  
SS  
V
= V  
; V = V  
;
CC  
CC  
CCmax IO  
V
V
= V ± 0.3 V;  
CC  
IH  
IL  
Automatic Sleep Mode (4)  
1
5
= V + 0.3 V / –0.1 V;  
SS  
WP#/A = V  
CC  
IH  
WP#/  
ACC pin  
10  
50  
20  
90  
CE# = V OE# = V  
V
= V  
IL,  
IH, CC CCmax,  
I
ACC Accelerated Program Current  
mA  
WP#/ACC = V  
IH  
V
pin  
CC  
V
Input Low Voltage (5)  
Input High Voltage (5)  
–0.1  
0.3 x V  
V
V
IL  
IO  
V
0.7 x V  
V
+ 0.3  
IO  
IH  
IO  
Voltage for ACC Erase/Program  
Acceleration  
V
V
V
= 2.7–3.6 V  
11.5  
12.5  
12.5  
V
V
HH  
CC  
CC  
Voltage for Autoselect and  
Temporary Sector Unprotect  
V
= 2.7–3.6 V  
11.5  
ID  
Document Number: 002-01522 Rev. *B  
Page 65 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Parameter  
Symbol  
Parameter Description  
(Notes)  
Test Conditions  
= 100 µA  
Min  
Typ  
Max  
Unit  
V
Output Low Voltage (5)  
Output High Voltage (5)  
Low V Lock-Out Voltage (3)  
I
I
0.15 x V  
IO  
V
OL  
OL  
0.85 x  
V
= -100 µA  
V
V
OH  
OH  
V
IO  
V
2.3  
2.5  
LKO  
CC  
Notes  
1. The I current listed is typically less than 2 mA/MHz, with OE# at V  
.
IH  
CC  
2.  
I
active while Embedded Erase or Embedded Program or Write Buffer Programming is in progress.  
CC  
3. Not 100% tested.  
4. Automatic sleep mode enables the lower power mode when addresses remain stable tor t  
+ 30 ns.  
ACC  
5.  
6.  
V
V
= 1.65–1.95 V or 2.7–3.6 V  
IO  
= 3 V and V = 3V or 1.8V. When V is at 1.8V, I/O pins cannot operate at 3V.  
CC  
IO  
IO  
14. Test Conditions  
Figure 14.1 Test Setup  
3.3 V  
2.7 k  
Device  
Under  
Test  
C
6.2 k  
L
Note  
Diodes are IN3064 or equivalent  
Test Specifications  
Test Condition  
All Speeds  
1 TTL gate  
Unit  
Output Load  
Output Load Capacitance, C  
(including jig capacitance)  
L
30  
5
pF  
Input Rise and Fall Times  
Input Pulse Levels  
ns  
V
0.0–V  
IO  
Input timing measurement reference levels (See Note)  
Output timing measurement reference levels  
0.5V  
V
IO  
0.5 V  
V
IO  
Note  
If V < V , the reference level is 0.5 V .  
IO  
IO  
CC  
Document Number: 002-01522 Rev. *B  
Page 66 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
14.1 Key to Switching Waveforms  
Waveform  
Inputs  
Outputs  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State (High Z)  
Figure 14.2 Input Waveforms and Measurement Levels  
VIO  
0.0 V  
0.5 VIO  
0.5 VIO V  
Input  
Measurement Level  
Output  
Note  
If V < V , the input measurement reference level is 0.5 V .  
IO  
IO  
CC  
Document Number: 002-01522 Rev. *B  
Page 67 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
15. AC Characteristics  
15.1 Read-Only Operations  
Parameter  
Speed Options  
90  
JEDEC Std.  
Description  
Read Cycle Time  
Test Setup  
= V = 3 V  
(Note 6)  
100  
110 110 Unit  
V
V
V
V
V
V
90  
100  
110  
ns  
IO  
IO  
IO  
IO  
IO  
IO  
CC  
t
t
Min  
Max  
Max  
AVAV  
RC  
= 1.8 V, V = 3 V  
110  
CC  
= V = 3 V  
90  
90  
100  
100  
110  
ns  
CC  
t
t
Address to Output Delay (Note 2)  
AVQV  
ELQV  
ACC  
= 1.8 V, V = 3 V  
110  
CC  
= V = 3 V  
110  
ns  
CC  
t
t
Chip Enable to Output Delay (Note 3)  
CE  
= 1.8 V, V = 3 V  
110  
CC  
t
Page Access Time  
Max  
Max  
Max  
Max  
25  
25  
25  
25  
0  
20  
25  
35  
30  
35  
ns  
ns  
ns  
ns  
PACC  
t
t
t
Output Enable to Output Delay  
Chip Enable to Output High Z (Note 1)  
Output Enable to Output High Z (Note 1)  
GLQV  
EHQZ  
GHQZ  
OE  
t
t
DF  
DF  
t
Output Hold Time From Addresses, CE# or  
OE#, Whichever Occurs First  
t
t
Min  
Min  
in  
Min  
0
0
ns  
ns  
ns  
ns  
AXQX  
OH  
Read  
Output Enable Hold Time  
t
OEH  
Toggle and  
(Note 1)  
10  
35  
Data# Polling  
t
Chip Enable Hold Time  
Read  
CEH  
Notes  
1. Not 100% tested.  
2. CE#, OE# = V  
IL  
3. OE# = V  
IL  
4. See Figure 14.1 on page 66 and Table on page 66 for test specifications.  
5. Unless otherwise indicated, AC specifications for 90 ns, 100 ns, and 110 ns speed options are tested with V = V = 3 V. AC specifications for 110 ns speed options  
IO  
CC  
are tested with V = 1.8 V and V = 3.0 V.  
IO  
CC  
6. 90 ns speed option only applicable to S29GL128N and SGL256N.  
Figure 15.1 Read Operation Timings  
tRC  
Addresses Stable  
Addresses  
CE#  
tACC  
tCEH  
tRH  
tRH  
tDF  
tOE  
OE#  
tOEH  
WE#  
tCE  
tOH  
HIGH Z  
HIGH Z  
Output Valid  
Outputs  
RESET#  
RY/BY#  
0 V  
Document Number: 002-01522 Rev. *B  
Page 68 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Figure 15.2 Page Read Timings  
Same Page  
Amax-A2  
A2-A0*  
Aa  
tACC  
Ab  
tPACC  
Ac  
tPACC  
Ad  
tPACC  
Data Bus  
Qa  
Qb  
Qc  
Qd  
CE#  
OE#  
Note  
* Figure shows word mode. Addresses are A2–A-1 for byte mode.  
15.2 Hardware Reset (RESET#)  
Parameter  
JEDEC  
Std.  
Description  
Speed (Note 2)  
Unit  
RESET# Pin Low (During Embedded Algorithms) to  
Read Mode (Note 1)  
t
t
Max  
20  
ns  
Ready  
RESET# Pin Low (NOT During Embedded Algorithms)  
to Read Mode (Note 1)  
Max  
500  
ns  
Ready  
t
RESET# Pulse Width  
Mi
Min  
Min  
Min  
500  
50  
20  
0
ns  
ns  
µs  
ns  
RP  
t
Reset High Time Before Read (Note 1)  
RESET# Low to Standby Mode  
RY/BY# Recovery Time  
RH  
t
RPD  
t
RB  
Notes  
1. Not 100% tested. If ramp rate is equal to or faster than 1V/100µs with a falling edge of the RESET# pin initiated, the RESET# pin needs to be held low only for 100µs  
for power-up.  
2. Next generation devices may have different reset speedso increase system design considerations, please refer to Advance Information on S29GL-P Hardware  
Reset (RESET#) and Power-up Sequence on page 80 for advance reset speeds on S29GL-P devices.  
Document Number: 002-01522 Rev. *B  
Page 69 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Figure 15.3 Reset Timings  
RY/BY#  
CE#, OE#  
RESET#  
tRH  
tRP  
tReady  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
tReady  
RY/BY#  
B  
CE#, OE#  
RESET#  
tRP  
tRH  
Document Number: 002-01522 Rev. *B  
Page 70 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
15.3 Erase and Program Operations  
Parameter  
Speed Options  
90  
JEDEC  
Std.  
Description  
Write Cycle Time (Note 1)  
(Note 6)  
100  
110  
110  
Unit  
ns  
t
t
Min  
Min  
90  
100  
110  
110  
AVAV  
WC  
t
t
Address Setup Time  
0
15  
45  
0
ns  
AVWL  
AS  
Address Setup Time to OE# low during toggle bit  
polling  
t
Min  
Min  
Min  
ns  
ns  
ns  
ASO  
t
t
Address Hold Time  
WLAX  
AH  
Address Hold Time From CE# or OE# high  
during toggle bit polling  
t
AHT  
t
t
t
Data Setup Time  
Min  
Min  
Min  
Min  
45  
0
ns  
ns  
DVWH  
WHDX  
DS  
t
Data Hold Time  
DH  
t
CE# High during toggle bit polling  
Output Enable High during toggle bit polling  
20  
20  
CEPH  
OEPH  
t
ns  
ns  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
t
t
Min  
0
GHWL  
GHWL  
t
t
CE# Setup Time  
Min  
Min  
Min  
Min  
Typ  
0
0
ns  
ns  
ns  
ns  
µs  
ELWL  
WHEH  
WLWH  
CS  
CH  
WP  
t
t
t
CE# Hold Time  
t
Write Pulse Width  
35  
30  
240  
t
t
Write Pulse Width High  
Write Buffer Program Operation (Notes 2, 3)  
WHDL  
WPH  
Effective Write Buffer Program  
Per Word  
Typ  
15  
µs  
Operation (Notes 2, 4)  
Accelerated Effective Write Buffer  
Per Word  
t
t
t
t
Typ  
Typ  
Typ  
13.5  
60  
µs  
µs  
µs  
WHWH1  
WHWH2  
WHWH1  
Program Operation (Notes 2, 4)  
Program Operation (Note 2)  
Word  
Word  
Accelerated Programming Operation  
(Note 2)  
54  
Sector Erase Operation (Note 2)  
Typ  
Min  
Min  
Max  
0.5  
250  
50  
sec  
ns  
WHWH2  
t
V
V
Rise and Fall Time (Note 1)  
Setup Time (Note 1)  
VHH  
HH  
CC  
t
µs  
ns  
VCS  
t
Erase/Program Valid to RY/Y# Delay  
90  
BUSY  
Notes  
1. Not 100% tested.  
2. See Erase And Programming Performance on page 77 for more information.  
3. For 1–16 words/1–32 bytes programmed.  
4. Effective write buffer specification is based upon a 16-word/32-byte write buffer operation.  
5. Unless otherwise indicated, AC specifications for 90 ns, 100 ns, and 110 ns speed options are tested with V = V = 3 V. AC specifications for 110 ns speed options  
IO  
CC  
are tested with V = 1.8 V and V = 3.0 V.  
IO  
CC  
6. 90 ns speed option only applicable to S29GL128N and S29GL256N.  
Document Number: 002-01522 Rev. *B  
Page 71 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Figure 15.4 Program Operation Timings  
Program Command Sequence (last two cycles)  
Read Status Data (last two cycles)  
tAS  
PA  
tWC  
Addresses  
555h  
PA  
PA  
tAH  
CE#  
OE#  
tCH  
tWHWH1  
tWP  
WE#  
Data  
tWPH  
tCS  
tDS  
tDH  
PD  
DOUT  
A0h  
Status  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes  
1. PA = program address, PD = program data, D  
is the true data at the program address.  
OUT  
2. Illustration shows device in word mode.  
Figure 15.5 Acclerated Program Timing Diagram  
VHH  
VIL or VIH  
VIL or VIH  
ACC  
tVHH  
tVHH  
Notes  
1. Not 100% tested.  
2. CE#, OE# = V  
IL  
3. OE# = V  
IL  
4. See Figure 14.1 on page 66 and Table on page 66 for test specifications.  
Document Number: 002-01522 Rev. *B  
Page 72 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Figure 15.6 Chip/Sector Erase Operation Timings  
Erase Command Sequence (last two cycles)  
Read Status Data  
VA  
VA  
tAS  
SA  
tWC  
Addresses  
CE#  
2AAh  
555h for chip erase  
tAH  
tCH  
OE#  
tWP  
WE#  
tWPH  
tWHWH2  
tCS  
tDS  
tDH  
In  
Data  
Complete  
55h  
30h  
Progress  
10 for Chip Erase  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes  
1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see Write peration Status on page 59).  
2. These waveforms are for the word mode.  
Figure 15.7 Data# Polling Timings (During Embedded Algorithms)  
tRC  
Addresses  
CE#  
VA  
tACC  
tCE  
VA  
VA  
tCH  
tOE  
OE#  
WE#  
tOEH  
tDF  
tOH  
High Z  
High Z  
DQ7  
Valid Data  
Complement  
Complement  
True  
DQ6–DQ0  
Status Data  
True  
Valid Data  
Status Data  
tBUSY  
RY/BY#  
Notes  
1. VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array data read cycle.  
2. for data polling is 45 ns when V = 1.65 to 2.7 V and is 35 ns when V = 2.7 to 3.6 V.  
t
OE  
IO  
IO  
Document Number: 002-01522 Rev. *B  
Page 73 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Figure 15.8 Toggle Bit Timings (During Embedded Algorithms)  
tAHT  
tAS  
Addresses  
CE#  
tAHT  
tASO  
tCEPH  
tOEH  
WE#  
OE#  
tOEPH  
tDH  
Valid Data  
tOE  
Valid  
Status  
Valid  
Status  
Valid  
Status  
DQ2 and DQ6  
Valid Data  
(first read)  
(second read)  
(stops toggling)  
RY/BY#  
Notes  
VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequene, last status read cycle, and array data read cycle  
Figure 15.9 DQ2 vs. DQ6  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Suspend  
Program  
Erase  
Complete  
WE#  
Erase  
Erase Suspend  
Read  
DQ6  
DQ2  
Note  
DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE# or CE# to toggle DQ2 and DQ6.  
Document Number: 002-01522 Rev. *B  
Page 74 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
15.4 Alternate CE# Controlled Erase and Program Operations:  
S29GL128N, S29GL256N, S29GL512N  
Parameter  
Speed Options  
90  
JEDEC Std.  
Description  
Write Cycle Time (Note 1)  
(Note 6)  
100  
110  
110  
Unit  
ns  
t
t
Min  
Min  
Min  
Min  
90  
100  
110  
110  
AVAV  
WC  
t
t
Address Setup Time  
0
ns  
AVWL  
AS  
T
Address Setup Time to OE# low during toggle bit polling  
Address Hold Time  
15  
45  
ns  
ASO  
t
t
ns  
ELAX  
AH  
Address Hold Time From CE# or OE# high during toggle bit  
polling  
t
Min  
0
ns  
AHT  
t
t
t
Data Setup Time  
Min  
Min  
Min  
Min  
45  
0
ns  
ns  
ns  
ns  
DVEH  
DS  
t
Data Hold Time  
EHDX  
DH  
t
CE# High during toggle bit polling  
OE# High during toggle bit polling  
20  
20  
CEPH  
OEPH  
t
Read Recovery Time Before Write  
(OE# High to WE# Low)  
t
t
t
Min  
0
ns  
GHEL  
WLEL  
GHEL  
t
WE# Setup Time  
Min  
Min  
Min  
Min  
Typ  
0
0
ns  
ns  
ns  
ns  
µs  
WS  
t
t
WE# Hold Time  
EHWH  
WH  
t
t
CE# Pulse Width  
35  
30  
240  
ELEH  
CP  
t
t
CE# Pulse Width High  
Write Buffer Program Operation (Notes 2, 3)  
EHEL  
CPH  
Effective Write Buffer Program Operation  
(Notes 2, 4)  
Per Word  
Typ  
15  
µs  
Effective Accelerated Write Buffer Program  
Per Word  
t
t
t
t
Typ  
Typ  
Typ  
Typ  
13.5  
60  
µs  
µs  
WHWH1  
WHWH2  
WHWH1  
WHWH2  
Operation (Notes 2, 4)  
Program Operation (Note 2)  
Word  
Word  
Accelerated Programming Operation  
(Note 2)  
54  
µs  
Sector Erase Operation (Note 2)  
0.5  
sec  
Notes  
1. Not 100% tested.  
2. See AC Characteristics on page 68 for more iormation.  
3. For 1–16 words/1–32 bytes programmed.  
4. Effective write buffer specification is basupon a 16-word/32-byte write buffer operation.  
5. Unless otherwise indicated, AC specifications for 90 ns, 100ns, and 110 ns speed options are tested with V = V = 3 V. AC specifications for 110 ns speed options  
IO  
CC  
are tested with V = 1.8 V and V = 3.0 V.  
IO  
CC  
6. 90 ns speed option only applicable to S29GL128N and S29GL256N.  
Document Number: 002-01522 Rev. *B  
Page 75 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Figure 15.10 Alternate CE# Controlled Write (Erase/Program) Operation Timings  
555 for program  
2AA for erase  
PA for program  
SA for sector erase  
555 for chip erase  
Data# Polling  
Addresses  
PA  
tWC  
tWH  
tAS  
tAH  
WE#  
OE#  
tGHEL  
tWHWH1 or 2  
tCP  
CE#  
Data  
tWS  
tCPH  
tDS  
tBUSY  
tDH  
DQ7#  
DOUT  
tRH  
A0 for program  
55 for erase  
PD for program  
30 for sector erase  
10 for chip erase  
RESET#  
RY/BY#  
Notes  
1. Figure indicates last two bus cycles of a program or erase operation.  
2. PA = program address, SA = sector address, PD = program data.  
3. DQ7# is the complement of the data written to the device. D  
is the data written to the device.  
OUT  
Document Number: 002-01522 Rev. *B  
Page 76 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
16. Erase And Programming Performance  
Typ  
Max  
Parameter  
(Note 1)  
(Note 2)  
Unit  
Comments  
Sector Erase Time  
Chip Erase Time  
0.5  
64  
3.5  
256  
sec  
S29GL128N  
Excludes 00h programming  
prior to erasure (Note 4)  
S29GL256N  
S29GL512N  
128  
256  
240  
512  
sec  
1024  
Total Write Buffer Programming Time (Note 3)  
µs  
µs  
Total Accelerated Effective Write Buffer Programming  
Time (Note 3)  
200  
Excludes system level  
overhead (Note 5)  
S29GL128N  
123  
246  
492  
Chip Program Time  
S29GL256N  
S29GL512N  
sec  
Notes  
1. Typical program and erase times assume the following conditions: 25°C, 3.0 V V , 10,000 cycles, checkerboard pattern.  
CC  
2. Under worst case conditions of 90°C, V = 3.0 V, 100,000 cycles.  
CC  
3. Effective write buffer specification is based upon a 16-word write buffer operation.  
4. In the pre-programming step of the Embedded Erase algorithm, all bits are programmed to 00h before erasure.  
5. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the proram command. See Table on page 54 and Table on page 57  
for further information on command definitions.  
17. TSOP Pin and BGA Package Capacitance  
Parameter Symbol  
Parameter Description  
st Setup  
Typ  
6
Max  
7.5  
5.0  
12  
Unit  
pF  
pF  
pF  
pF  
pF  
pF  
TSOP  
BGA  
C
Input Capacitance  
V
= 0  
N  
IN  
4.2  
8.5  
5.4  
7.5  
3.9  
TSOP  
BGA  
C
Output Capacitance  
V
= 0  
OUT  
OUT  
6.5  
9
TSOP  
BGA  
C
Control Pin Capacitance  
V
= 0  
IN  
IN2  
4.7  
Notes  
1. Sampled, not 100% tested.  
2. Test conditions T = 25°C, f = 1.0 MHz.  
A
Document Number: 002-01522 Rev. *B  
Page 77 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
18. Physical Dimensions  
18.1 TS056—56-Pin Standard Thin Small Outline Package (TSOP)  
NOTES:  
PACKAGE  
TS 56  
JEDEC  
MO-142 (B) EC  
1
CONTROLLING DIMENSIONS ARE IN MILLIMETERS (mm).  
(DIMENSIONING AND TOLERANCING CONFORMS TO ANSI Y14.5M-1982.)  
SYMBOL  
MIN.  
---  
NOM.  
---  
MAX.  
20  
0.15  
1.05  
0.23  
0.27  
0.16  
0.21  
2
3
PIN 1 IDENTIFIER FOR STANDARD PIN OUT (DIE UP).  
A
A1  
A2  
b1  
b
TO BE DETERMINED AT THE SEATING PLANE -C- . THE SEATING PLANE IS  
DEFINED AS THE PLANE OF CONTACT THAT IS MADE WHEN THE PACKAGE  
LEADS ARE ALLOWED TO REST FREELY ON A FLAT HORIZONTAL SURFACE.  
0.05  
0.95  
0.17  
0.17  
0.10  
0.10  
---  
1.00  
0.20  
0.22  
---  
4
5
DIMENSIONS D1 AND E DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE  
MOLD PROTUSION IS 0.15 mm PER SIDE.  
c1  
c
DIMENSION b DOES NOT INCLUDE DAMBAR PROTUSION. ALLOWABLE  
DAMBAR PROTUSION SHALL BE 0.08 mm TOTAL IN EXCESS OF b  
DIMENSION AT MAX MATERIAL CONDITION. MINIMUM SPACE BETWEEN  
PROTRUSION AND AN ADJACENT LEAD TO BE 0.07 mm.  
---  
D
19.80  
18.30  
20.00  
18.40  
20.20  
18.50  
D1  
6
7
8
THESE DIMESIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN  
0.10 mm AND 0.25 mm FROM THE LEAD TIP.  
E
e
13.90  
14.00  
14.10  
0.50 BASIC  
LEAD COPLANARITY SHALL BE WITHIN 0.10 mm AS MEASURED FROM THE  
SEATING PLANE.  
L
0.50  
0˚  
0.60  
-
0.70  
8˚  
O
R
N
DIMENSION "e" IS MEASURED AT THE CENTERLINE OF THE LEADS.  
0.08  
---  
56  
0.20  
3160\38.10A  
Document Number: 002-01522 Rev. *B  
Page 78 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
18.2 LAA064—64-Ball Fortified Ball Grid Array (FBGA)  
NOTES:  
PACKAGE  
JEDEC  
LAA 064  
N/A  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
13.00 mm x 11.00 mm  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010 (EXCEPT  
AS NOTED).  
SYMBOL  
MIN  
NOM  
---  
MAX  
NOTE  
PROFILE HEIGHT  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
---  
1.40  
---  
5. SYMBOL "MD" IS THE BALL ROW MATRIX SIZE IN THE  
"D" DIRECTION.  
0.40  
0.60  
---  
STANDOFF  
SYMBOL "ME" IS THE BALL COLUMN MATRIX SIZE IN THE  
"E" DIRECTION.  
A2  
---  
---  
BODY HICKNESS  
D
13.00 BSC.  
11.00 BSC.  
7.00 BSC.  
7.00 BSC.  
8
BODY SIZE  
N IS THE TOTAL NUMBER OF SOLDER BALLS.  
E
BODY SIZE  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
D1  
E1  
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS  
A AND B AND DEFINE THE POSITION OF THE CENTER  
SOLDER BALL IN THE OUTER ROW.  
MD  
ME  
N
8
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN  
THE OUTER ROW PARALLEL TO THE D OR E DIMENSION,  
RESPECTIVELY, SD OR SE = 0.000.  
64  
φb  
0.50  
0.60  
0.70  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN  
THE OUTER ROW, SD OR SE = e/2  
eD  
eE  
1.00 BSC.  
1.00 BSC.  
0.50 BSC.  
NONE  
BALL PITCH - D DIRECTION  
BALL PITCH - E DIRECTION  
SOLDER BALL PLACEMENT  
DEPOPULATED SOLDER BALLS  
8. NOT USED.  
SD / SE  
9. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
3354 \ 16-038.12d  
Document Number: 002-01522 Rev. *B  
Page 79 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
19. Advance Information on S29GL-P Hardware Reset (RESET#) and Power-  
up Sequence  
Hardware Reset (RESET#)  
Parameter  
JEDEC  
Std.  
Description  
Speed  
Unit  
RESET# Pin Low (During Embedded Algorithms) to  
Read Mode or Write mode  
t
t
Min  
Min  
35  
µs  
Ready  
RESET# Pin Low (NOT During Embedded Algorithms)  
to Read Mode or Write mode  
35  
µs  
Ready  
t
RESET# Pulse Width  
Min  
Min  
Min  
Min  
35  
200  
10  
0
µs  
ns  
µs  
ns  
RP  
t
Reset High Time Before Read  
RESET# Low to Standby Mode  
RY/BY# Recovery Time  
RH  
t
RPD  
t
RB  
Note  
CE#, OE# and WE# must be at logic high during Reset Time.  
Figure 19.1 Reset Timings  
RY/BY#  
CE#, OE#  
RESET#  
RH  
tRP  
tReady  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
tReady  
RY/BY#  
tRB  
CE#, OE#  
RESET#  
tRP  
tRH  
Document Number: 002-01522 Rev. *B  
Page 80 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Power-Up Sequence Timings  
Parameter  
Description  
Speed  
Unit  
Reset Low Time from Rising Edge of V (or last Reset pulse) to Rising  
CC  
Edge of RESET#  
t
Min  
35  
µs  
VCS  
Reset Low Time from Rising Edge of V (or last Reset pulse) to Rising  
IO  
Edge of RESET#  
t
Min  
35  
µs  
ns  
VIOS  
t
Reset High Time Before Read  
Max  
200  
RH  
Notes  
1.  
V
< V + 200 mV.  
CC  
IO  
2.  
V
and V ramp must be in sync during power up. If RESET# is not stable for 35 µs, the following conditions may occur: the device does not permit any read and  
IO  
CC  
write operations, valid read operations return FFh, and a hardware reset is required.  
3. Maximum V power up current is 20 mA (RESET# =V ).  
CC  
IL  
Figure 19.2 Power-On Reset Timings  
Vcc_min  
Vio_min  
VCC  
VIO  
tRH  
CE#  
tVIOS  
tVCS  
RESET#  
Document Number: 002-01522 Rev. *B  
Page 81 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
20. Advance Information on S29GL-R 65 nm MirrorBit Hardware  
Reset (RESET#) and Power-up Sequence  
Hardware Reset (RESET#)  
Parameter  
Description  
Limit  
Min  
Time  
35  
Unit  
µs  
t
RESET# Low to CE# Low  
RESET# Pulse Width  
RPH  
t
Min  
200  
200  
ns  
RP  
t
Time between RESET# (high) and CE# (low)  
Min  
ns  
RH  
Note  
CE#, OE# and WE# must be at logic high during Reset Time.  
Figure 20.1 Reset Timings  
tRP  
RESET#  
tRH  
tRPH  
CE#  
Note  
The sum of t and t must be equal to or greater than t .  
RPH  
RP  
RH  
Power-Up Sequence Timings  
Parameter  
Description  
Limit  
Min  
Min  
Min  
Min  
Min  
Time  
300  
300  
35  
Unit  
µs  
t
V
V
Setup Time to first access  
Setup Time to first access  
VCS  
CC  
t
µs  
VIOS  
IO  
t
RESET# Low to CE# Low  
RESET# Pulse Width  
µs  
RPH  
t
200  
200  
ns  
RP  
RH  
t
Time between RESET# (high) and CE# (low)  
ns  
Notes  
1.  
V
< V + 200 mV.  
CC  
IO  
2.  
V
and V ramp must be in sync during power-up. If RESET# is not stable for 300 µs, the following conditions may occur: the device does not permit any read and  
IO  
CC  
write operations, valid read operations return FFh, and a hardware reset is required.  
3. Maximum V power up current is 20 mA (RESET# =V ).  
CC  
IL  
Document Number: 002-01522 Rev. *B  
Page 82 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Figure 20.2 Power-On Reset Timings  
VCC  
VIO  
tVIOS  
t VCS  
tRP  
RESET#  
CE#  
tRH  
tRPH  
Note  
The sum of t and t must be equal to or greater than t .  
RPH  
RP  
RH  
Document Number: 002-01522 Rev. *B  
Page 83 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
21. Document History Page  
Document Title:S29GL512N, S29GL256N, S29GL128N  
512, 256, 128 Mbit, 3 V, Page Flash Featuring 110 nm MirrorBit  
Document Number: 002-01522  
Orig. of Submission  
Rev.  
ECN No.  
Description of Change  
Change  
Date  
09/03/2003 A:Initial release  
**  
**  
-
-
RYSU  
Spansion Publication Number: S29GL-N_00  
RYSU  
10/16/2003  
A1:Global  
Added LAA064 package.  
Distinctive Characteristics, Performance Characteristics  
Clarified fifth bullet information.  
Added RTSOP to Package Options.  
Distinctive Characteristics, Software and Hardware Features  
Clarified Password Sector Protection to Advanced Sector Protection  
Connection Diagrams  
Removed Note.  
Ordering Information  
Modified Package codes  
Device Bus Operations, Table 1  
Modified Table, remed Note.  
Sector Address Tables  
All address ranges doubled in all sector address tables.  
Sector Prtection  
Lock Register: Corrected text to reflect 3 bits instead of 4.  
Table 6, Lock Register: Corrected address range from DQ15-5 to DQ15-3;  
removed DQ4 and DQ3;  
Corrected DQ15-3 Lock Register to Don’t Care.  
Table 7, Sector Protection Schemes: Corrected Sector States.  
Command Definitions  
Table 12, Command Definitions, x16  
Nonvolatile Sector Protection Command Set Entry Second Cycle Address  
corrected from 55 to 2AA.  
Legend: Clarified PWDx, DATA  
Notes: Clarified Note 19.  
Table 13, Command Definitions, x8  
Password Read and Unlock Addresses and Data corrected.  
Legend: Clarified PWDx, DATA  
Notes: Clarified Note 19.  
Test Conditions  
Table Test Specifications and Figure Input Waveforms and Measurement  
Levels: Corrected Input Pulse  
Levels to 0.0–VIO; corrected Input timing measurement reference levels to  
0.5VIO.  
Document Number: 002-01522 Rev. *B  
Page 84 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
(Continued)  
Document Title:S29GL512N, S29GL256N, S29GL128N  
512, 256, 128 Mbit, 3 V, Page Flash Featuring 110 nm MirrorBit  
Document Number: 002-01522  
Orig. of Submission  
Rev.  
ECN No.  
Description of Change  
Change  
Date  
**  
-
RYSU  
01/22/2004  
A2:Lock Register  
Corrected and added new text for Secured Silicon Sector Protection Bit,  
Persistent Protection Mode Lock Bit,  
and Password Protection Mode Lock Bit.  
Persistent Sector Protection  
Persistent Protection Bit (PPB): Added the second paragraph text about  
programming the PPB bit.  
Persistent Protection Bit Lock (PPB Lock Bit): Added the second paragraph  
text about configuring the PPB  
Lock Bit, and fourth paragraph on Autoselect Sector Protection Verification.  
Added PPB Lock Bit requirement of 0ns access time.  
Password Sector Protection  
Corrected 1 μs (built-in delay for each password check) to 2 μs.  
Lock Register Command Set Definitions  
Added new information for this section.  
Password Protection Command Set Definitions  
Added new information for this section.  
Non-Volatile Sctor Protection Command Set Definitions  
Added new iformation for this section.  
Global Votile Sector Protection Freeze Command Set  
Added new information for this section.  
Volatile Sector Protection Command Set  
Added new information for this section.  
Secured Silicon Sector Entry Command  
Added new information for this section.  
Secured Silicon Sector Exit Command  
Added new information for this section.  
**  
-
RYSU  
03/02/2004  
A3:Connection Diagrams  
Removed 56-pin reverse TSOP diagram.  
Ordering Information  
Updated the Standard Products for the S29GL512/256/128N devices and  
modified the valid combinations  
tables.  
Word Program Command Sequence  
Added new information to this section.  
Lock Register Command Set Definitions  
Added new information to this section.  
Table 13  
Updated this table.  
Document Number: 002-01522 Rev. *B  
Page 85 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
(Continued)  
Document Title:S29GL512N, S29GL256N, S29GL128N  
512, 256, 128 Mbit, 3 V, Page Flash Featuring 110 nm MirrorBit  
Document Number: 002-01522  
Orig. of Submission  
Rev.  
ECN No.  
Description of Change  
Change  
Date  
**  
-
RYSU  
05/13/2004  
A4:Global  
Removed references to RTSOP.  
Distinctive Characteristics  
Removed 16-word/32-byte page read buffer from Performance  
Characteristics.  
Changed Low power consumption to 25 mA typical active read current and  
removed 10 mA typical intrapage  
active read current.  
Ordering Information  
Changed formatting of pages.  
Changed model numbers from 00,02,03 to 01, 02, V1, V2.  
Table Device Bus Operations  
Combined WP# and ACC columns.  
Tables CFI Query Identificaion String, System Interface String,  
Device Geometry  
Definition, and Primary Vendor-Specific Extended Query  
Added Address (x8) column.  
Word Program Command Sequence  
Added text to fourth paragraph.  
Figure Wre Buffer Programming Operation  
Added note references and removed DQ15 and DQ13.  
Figure Program Suspend/Program Resume  
Changed field to read XXXh/B0h and XXXh/30h.  
Password Protection Command Set Definitions  
Replaced all text.  
Command Definitions  
Changed the first cycle address of CFI Query to 55.  
Memory Array Commands (x8) Table  
Changed the third cycle data Device ID to 90.  
Removed Unlock Bypass Reset.  
Removed Note 12 and 13.  
Figure Data# Polling Algorithm  
Removed DQ15 and DQ13.  
Absolute Maximum Ratings  
Removed VCC from All other pins with respect to Ground.  
CMOS Compatible  
Changed the Max of ICC4 to 70 mA.  
Added VIL to the Test conditions of ICC5, ICC6, and ICC7  
Change the Min of VIL to - 0.1 V.  
Updated note 5.  
Read-Only Operations–S29GL128N Only  
Added tCEH parameter to table.1/8/16  
Figure Read Operation Timings  
Added tCEH to figure.  
Document Number: 002-01522 Rev. *B  
Page 86 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
(Continued)  
Document Title:S29GL512N, S29GL256N, S29GL128N  
512, 256, 128 Mbit, 3 V, Page Flash Featuring 110 nm MirrorBit  
Document Number: 002-01522  
Orig. of Submission  
Rev.  
ECN No.  
Description of Change  
Change  
Date  
**  
-
RYSU  
05/13/2004  
Figure Page Read Timings  
Change A1-A0 to A2-A0.  
Erase and Program Operations  
Updated tWHWH1 and tWHWH2 with values.  
Figure Chip/Sector Erase Operation Timings  
Changed 5555h to 55h and 3030h to 30h.  
Figure Data# Polling Timings (During Embedded Algorithms)  
Removed DQ15 and DQ14-DQ8  
Added Note 2  
Figure Toggle Bit Timings (During Embedded Algorithms)  
Changed DQ6 & DQ14/DQ2 & DQ1o DQ2 and DQ6.  
Alternate CE# Controlled Erase and Program Operations  
Updated tWHWH1 and tWHWH2 with values.  
Latchup Characteristics  
Removed Table.  
Erase and Programming Performance  
Updated TBD with values.  
Updated Note 1 and 2.  
Physical Dimensions  
Removed e reverse pinout information and note 3.  
**  
-
RYSU  
09/29/2004  
A5:Performance Characteristics  
Removed 80 ns.  
Product Selector Guide  
Updated values in tables.  
Ordering Information  
Created a family table.  
Operating Ranges  
Updated VIO.  
CMOS Characteristics  
Created a family table.  
Read-Only Operations  
Created a family table.  
Hardware Reset (RESET#)  
Created a family table.  
Figure 13, “Reset Timings,”  
Added tRH to waveform.  
Erase and Program Operations  
Created a family table.  
Alternate CE# Controlled Erase and Program Operations  
Created a family table.  
Erase and Programming Performance  
Created a family table.  
Document Number: 002-01522 Rev. *B  
Page 87 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
(Continued)  
Document Title:S29GL512N, S29GL256N, S29GL128N  
512, 256, 128 Mbit, 3 V, Page Flash Featuring 110 nm MirrorBit  
Document Number: 002-01522  
Orig. of Submission  
Rev.  
ECN No.  
Description of Change  
Change  
Date  
**  
-
RYSU  
01/24/2005  
A6:Global  
Updated access times for S29GL512N.  
Product Selector Guides  
All tables updated.  
Valid Combinations Tables  
All tables updated.  
AC Characteristics Read-Only Options Table  
Added note for 90 ns speed options.  
AC Characteristics Erase and Programming Performance Table  
Added note for 90 ns speed options.  
Figure Data# Polling Timings (Dug Embedded Algorithms)  
Updated timing diagram.  
AC Characteristics Alternate CE# Controlled Erase and Program  
Operations Table  
Added note for 90 ns speed options.  
**  
**  
-
-
RYSU  
RYSU  
02/14/2005  
05/09/2005  
A7:Distinctive Characteristics  
Added Product Availability Table  
Ordering Inforation  
Under Model Numbers, changed VIO voltage values for models V1 and V2.  
Physical Dmensions  
Updated Package Table  
A8:Product Availability Table  
Updated data in VCC and availability columns.  
Product Selector Guide  
Combined GL128N and GL256N tables. Changed upper limit of VIO  
voltage range to 3.6 V.  
Ordering Information  
Added wireless temperature range. Combined valid combinations table  
and updated for wireless temperature  
range part numbers.  
DC Characteristics table  
Added VIO = VCC test condition to ICC4, ICC5, ICC6 specifications.  
Corrected unit of measure on ICC4 to μA.  
Changed maximum specifications for IACC (on ACC pin) and ICC3 to 90  
mA.  
Tables Memory Array Commands (x16) to Sector Protection  
Commands (x8), Memory Array  
and Sector Protection (x8 & x16)  
Re-formatted command definition tables for easier reference.  
Advance Information on S9GL-P AC Characteristics  
Changed speed specifications and units of measure for tREADY, tRP, tRH,  
and tRPD. Changed specifications on  
tREADY from maximum to minimum.  
Document Number: 002-01522 Rev. *B  
Page 88 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
(Continued)  
Document Title:S29GL512N, S29GL256N, S29GL128N  
512, 256, 128 Mbit, 3 V, Page Flash Featuring 110 nm MirrorBit  
Document Number: 002-01522  
Orig. of Submission  
Rev.  
ECN No.  
Description of Change  
Change  
Date  
**  
-
RYSU  
06/15/2005  
A9:Ordering Information table  
Added note to temperature range.  
Valid Combinations table  
Replaced table.  
DC Characteristics table  
Replaced VIL lines for ICC4, ICC5, ICC6.  
Connection Diagrams  
Modified 56-Pin Standard TSOP. Modified 64-ball Fortified BGA.  
Advance Information on S9GL-P AC Characteristics  
Added second table.  
Document Number: 002-01522 Rev. *B  
Page 89 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
(Continued)  
Document Title:S29GL512N, S29GL256N, S29GL128N  
512, 256, 128 Mbit, 3 V, Page Flash Featuring 110 nm MirrorBit  
Document Number: 002-01522  
Orig. of Submission  
Rev.  
ECN No.  
Description of Change  
Change  
Date  
**  
-
RYSU  
04/22/2006  
B0:Global  
Changed document status to Full Production.  
Ordering Information  
Changed description of “A” for Package Materials Set. Modified  
S29GL128N Valid Combinations table.  
S29GL128N Sector Address Table  
Corrected bit range values for A22–A16.  
Persistent Protection Bit (PPB)  
Corrected typo in second sentence, second paragraph.  
Secured Silicon Sector Flash Memory Region  
Deleted note at end of second paraph.  
Customer Lockable: Secured Silicon Sector NOT Programmed or  
Protected At the Factory  
Modified 1st bullet text.  
Write Protect (WP#)  
Modified third paragraph.  
Device Geometry Definition table  
Changed 1st x8 address for Erase Block Region 2.  
Word Progrm Command Sequence  
Modified frth paragraph.  
Write Buffer Programming  
Deleted note from eighth paragraph.  
Program Suspend/Program Resume Command Sequence  
Corrected typos in first paragraph.  
Lock Register Command Set Definitions  
Modified fifth paragraph.  
Volatile Sector Protection Command Set  
Modified fourth paragraph.  
Sector Protection Commands (x16) table  
Changed read command address for Lock Register Bits  
Memory Array Commands (x8)  
Added Program and Unlock Bypass Mode commands to table.  
Write Operation Status  
Deleted note (second paragraph).  
DC Characteristics table  
Modified test conditions for ICC4.  
**  
**  
-
-
RYSU  
RYSU  
05/05/2006  
10/03/2006  
B1:Ordering Information  
Modified speed option, package material set, temperature range  
descriptions in breakout diagram. Modified  
Note 1.  
Advance Information on S29GL-P AC Characteristics Hardware Reset  
(RESET#)  
Replaced contents in section.  
Connection Diagrams  
Corrected 56-pin TSOP package drawing.  
Document Number: 002-01522 Rev. *B  
Page 90 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
(Continued)  
Document Title:S29GL512N, S29GL256N, S29GL128N  
512, 256, 128 Mbit, 3 V, Page Flash Featuring 110 nm MirrorBit  
Document Number: 002-01522  
Orig. of Submission  
Rev.  
ECN No.  
Description of Change  
Change  
Date  
**  
-
RYSU  
01/19/2007  
B4:Global  
Added obsolescence and migration notice.  
Product Selector Guide  
Changed manimum VIO for VCC = 2.7–3.6V and VIO = 1.65 V minimum.  
**  
**  
-
-
RYSU  
RYSU  
02/06/2007  
11/08/2007  
B5:Global  
Revised obsolescence and migration notice.  
B6:Advance Information on S29GL-R 65nm MirrorBit Hardware Reset  
(RESET#) and Power-up  
Sequence  
Added advanced information  
**  
**  
-
-
RYSU  
RYSU  
02/12/2008  
04/22/2008  
B7:Erase And Programming Performance  
Chip Program Time: removed comment  
Advance Information on S29GL-R 65nm MirrorBit Hardware Reset  
(RESET#) and Power-up  
Sequence  
Power-Up Sequence imings table: reduced timing from 500 μs to 300 μs  
B8:End of Life Notice  
Added “retired product” status text to cover page, Distinctive  
Characterics page and Ordering Information  
sections of data sheet.  
*A  
*B  
5043543  
5074572  
RYSU  
RYSU  
12/11/2015 Updated to Cypress Template  
01/08/2016 Updated the suggested replacement parts in the note in blue font in page 1.  
Removed Spansion Revision History  
Document Number: 002-01522 Rev. *B  
Page 91 of 92  
S29GL512N  
S29GL256N  
S29GL128N  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
Products  
PSoC® Solutions  
Automotive..................................cypress.com/go/automotive  
Clocks & Buffers ................................ cypress.com/go/clocks  
Interface......................................... cypress.com/go/interface  
Lighting & Power Control............cypress.com/go/powerpsoc  
Memory........................................... cypress.com/go/memory  
PSoC ....................................................cypress.com/go/psoc  
Touch Sensing.................................... cypress.com/go/touch  
USB Controllers....................................cypress.com/go/USB  
Wireless/RF.................................... cypress.com/go/wireless  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP  
Cypress Developer Community  
Community | Forums | Blogs | Video | Training  
Technical Support  
cypress.com/go/support  
© Cypress Semiconductor Corporation, 2003-2016. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 002-01522 Rev. *B  
Revised January 08, 2016  
Page 92 of 92  
Cypress®, Spansion®, MirrorBit®, MirrorBit® Eclipse™, ORNAND™, EcoRAM™, HyperBus™, HyperFlash™, and combinations thereof, are trademarks and registered trademarks of Cypress  
Semiconductor Corp. All products and company names mentioned in this document may be the trademarks of their respective holders.  

相关型号:

S29GL256N90FFIV10

MirrorBit Flash Family
SPANSION

S29GL256N90FFIV12

3.0 Volt-only Page Mode Flash Memory featuring 110 nm MirrorBit⑩ Process Technology
SPANSION

S29GL256N90FFIV13

MirrorBit Flash Family
SPANSION

S29GL256N90FFIV20

MirrorBit Flash Family
SPANSION

S29GL256N90FFIV22

3.0 Volt-only Page Mode Flash Memory featuring 110 nm MirrorBit⑩ Process Technology
SPANSION

S29GL256N90FFIV23

MirrorBit Flash Family
SPANSION

S29GL256N90FXI002

Flash, 16MX16, 90ns, PBGA64, 11 X 13 MM, 1 MM PITCH, FORTIFIED, PLASTIC, BGA-64
SPANSION

S29GL256N90RAI01

Flash, 16MX16, 90ns, PDSO56, REVERSE, MO-142EC, TSOP-56
SPANSION

S29GL256N90RAI03

Flash, 16MX16, 90ns, PDSO56, REVERSE, MO-142EC, TSOP-56
SPANSION

S29GL256N90RFI00

Flash, 16MX16, 90ns, PDSO56, REVERSE, MO-142EC, TSOP-56
SPANSION

S29GL256N90RFI01

Flash, 16MX16, 90ns, PDSO56, REVERSE, MO-142EC, TSOP-56
SPANSION

S29GL256N90RFI02

Flash, 16MX16, 90ns, PDSO56, REVERSE, MO-142EC, TSOP-56
SPANSION