STK15C88-SF35 [CYPRESS]

32KX8 NON-VOLATILE SRAM, 35ns, PDSO28, 0.350 INCH, PLASTIC, SOIC-28;
STK15C88-SF35
型号: STK15C88-SF35
厂家: CYPRESS    CYPRESS
描述:

32KX8 NON-VOLATILE SRAM, 35ns, PDSO28, 0.350 INCH, PLASTIC, SOIC-28

静态存储器 光电二极管
文件: 总10页 (文件大小:294K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STK15C88  
32K x 8 AutoStore™ nvSRAM  
QuantumTrap™ CMOS  
Nonvolatile Static RAM  
FEATURES  
DESCRIPTION  
• Nonvolatile Storage without Battery Problems  
The STK15C88 is a fast SRAM with a nonvolatile  
element incorporated in each static memory cell.  
The SRAM can be read and written an unlimited  
number of times, while independent nonvolatile data  
resides in nonvolatile elements. Data transfers from  
the SRAM to the nonvolatile elements (the STORE  
operation) can take place automatically on power  
down using charge stored in system capacitance.  
Transfers from the nonvolatile elements to the SRAM  
(the RECALL operation) take place automatically on  
restoration of power. Initiation of STORE and RECALL  
cycles can also be controlled by entering specific  
read sequences. The STK15C88 is pin-compatible  
with 32k x 8 SRAMs and battery-backed SRAMs,  
allowing direct substitution while enhancing perfor-  
mance. A similar device (STK16C88) with an inter-  
nally integrated capacitor is available for  
applications with very fast power-down slew rates.  
The STK14C88, which uses an external capacitor, is  
another alternative for these applications.  
• Directly Replaces 32K x 8 Static RAM, Battery-  
Backed RAM or EEPROM  
• 25ns, 35ns and 45ns Access Times  
STORE to nonvolatile elements Initiated by  
Software or AutoStore™  
RECALL to SRAM Initiated by Software or  
Power Restore  
• 10mA Typical ICC at 200ns Cycle Time  
• Unlimited READ, WRITE and RECALL Cycles  
• 1,000,000 STORE Cycles to nonvolatile ele-  
ments  
• 100-Year Data Retention in nonvolatile ele-  
ments (Commercial/Industrial)  
• Single 5V + 10% Operation  
• Commercial and Industrial Temperatures  
• 28-Pin PDIP and SOIC Packages  
BLOCK DIAGRAM  
PIN CONFIGURATIONS  
A14  
A12  
A7  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VCC  
W
QUANTUM TRAP  
V
512 x 512  
3
4
5
6
7
8
9
A13  
A8  
CC  
A6  
A5  
A5  
A9  
A6  
STORE  
A4  
A11  
G
A10  
E
STORE/  
RECALL  
A7  
POWER  
A3  
A8  
STATIC RAM  
ARRAY  
CONTROL  
A2  
CONTROL  
RECALL  
A9  
A1  
A0  
10  
11  
12  
13  
14  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
A11  
A12  
A13  
A14  
512 x 512  
28 - 300 PDIP  
28 - 600 PDIP  
28 - 300 SOIC  
28 - 350 SOIC  
DQ0  
DQ1  
DQ2  
VSS  
SOFTWARE  
DETECT  
A
- A  
13  
0
DQ  
DQ  
DQ  
PIN NAMES  
0
1
2
COLUMN I/O  
A
- A  
Address Inputs  
0
14  
COLUMN DEC  
W
Write Enable  
Data In/Out  
Chip Enable  
Output Enable  
Power (+ 5V)  
Ground  
DQ  
3
4
DQ  
DQ - DQ  
0
7
DQ  
DQ  
DQ  
5
6
7
A
A A A  
A A  
1 4  
2 3  
10  
0
E
G
G
E
W
V
V
CC  
SS  
September 2003  
1
Document Control # ML0016 rev 0.1  
STK15C88  
ABSOLUTE MAXIMUM RATINGSa  
Voltage on Input Relative to Ground. . . . . . . . . . . . . .0.5V to 7.0V  
Voltage on Input Relative to VSS . . . . . . . . . . –0.6V to (VCC + 0.5V)  
Voltage on DQ0-7. . . . . . . . . . . . . . . . . . . . . . –0.5V to (VCC + 0.5V)  
Temperature under Bias . . . . . . . . . . . . . . . . . . . . . –55°C to 125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1W  
DC Output Current (1 output at a time, 1s duration). . . . . . . . 15mA  
Note a: Stresses greater than those listed under “Absolute Maximum Rat-  
ings” may cause permanent damage to the device. This is a stress  
rating only, and functional operation of the device at conditions  
above those indicated in the operational sections of this specifica-  
tion is not implied. Exposure to absolute maximum rating condi-  
tions for extended periods may affect reliability.  
DC CHARACTERISTICS  
(VCC = 5.0V ± 10%)  
COMMERCIAL  
INDUSTRIAL  
SYMBOL  
PARAMETER  
UNITS  
NOTES  
MIN  
MAX  
MIN  
MAX  
b
I
Average V Current  
97  
80  
70  
100  
85  
70  
mA  
mA  
mA  
t
t
t
= 25ns  
= 35ns  
= 45ns  
CC  
CC  
AVAV  
AVAV  
AVAV  
1
c
I
I
Average V Current during STORE  
3
3
mA  
All Inputs Don’t Care, V = max  
CC  
CC  
CC  
CC  
2
3
b
Average V  
Current at t  
AVAV  
= 200ns  
W (V  
– 0.2V)  
CC  
CC  
5V, 25°C, Typical  
10  
10  
mA  
All Others Cycling, CMOS Levels  
c
I
I
Average V Current during  
All Inputs Don’t Care  
CC  
SB  
CAP  
4
2
2
mA  
AutoStore™ Cycle  
d
Average V Current  
30  
25  
22  
31  
26  
23  
mA  
mA  
mA  
t
t
t
= 25ns, E V  
= 35ns, E V  
= 45ns, E V  
CC  
AVAV  
AVAV  
AVAV  
IH  
IH  
IH  
1
(Standby, Cycling TTL Input Levels)  
d
I
I
I
V
Standby Current  
E (V  
– 0.2V)  
IN  
SB  
CC  
CC  
All Others V 0.2V or (V  
2
1.5  
±1  
±5  
1.5  
±1  
±5  
mA  
µA  
µA  
(Standby, Stable CMOS Input Levels)  
– 0.2V)  
CC  
Input Leakage Current  
V
V
= max  
CC  
IN  
ILK  
= V to V  
SS  
CC  
Off-State Output Leakage Current  
V
V
= max  
CC  
IN  
OLK  
= V to V , E or G V  
SS CC  
IH  
V
V
V
V
Input Logic “1” Voltage  
Input Logic “0” Voltage  
Output Logic “1” Voltage  
Output Logic “0” Voltage  
Operating Temperature  
2.2  
V
+ .5  
2.2  
V
+ .5  
V
V
All Inputs  
All Inputs  
IH  
CC  
0.8  
CC  
0.8  
V
– .5  
V
– .5  
SS  
IL  
SS  
2.4  
2.4  
V
I
I
=– 4mA  
= 8mA  
OH  
OL  
OUT  
OUT  
0.4  
70  
0.4  
85  
V
T
0
40  
°C  
A
Note b: ICC and ICC are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded.  
Note c: ICC1 and ICC3 are the average currents required for the duration of the respective STORE cycles (tSTORE ).  
4
Note d: E 2VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out.  
AC TEST CONDITIONS  
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0V to 3V  
Input Rise and Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5ns  
Input and Output Timing Reference Levels . . . . . . . . . . . . . . . 1.5V  
Output Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .See Figure 1  
5.0V  
480 Ohms  
CAPACITANCEe  
(TA = 25°C, f = 1.0MHz)  
OUTPUT  
30 pF  
SYMBOL  
PARAMETER  
MAX  
UNITS  
CONDITIONS  
V = 0 to 3V  
V = 0 to 3V  
INCLUDING  
SCOPE AND  
FIXTURE  
255 Ohms  
C
Input Capacitance  
5
7
pF  
IN  
C
Output Capacitance  
pF  
OUT  
Note e: These parameters are guaranteed but not tested.  
Figure 1: AC Output Loading  
September 2003  
2
Document Control # ML0016 rev 0.1  
 
 
 
 
STK15C88  
SRAM READ CYCLES #1 & #2  
(VCC = 5.0V ± 10%)  
SYMBOLS  
STK15C88-25 STK15C88-35 STK15C88-45  
PARAMETER  
UNITS  
NO.  
#1, #2  
Alt.  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
1
2
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Chip Enable Access Time  
25  
35  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ELQV  
ACS  
f
Read Cycle Time  
25  
35  
45  
AVAV  
RC  
AA  
g
3
Address Access Time  
25  
10  
35  
15  
45  
20  
AVQV  
4
Output Enable to Data Valid  
Output Hold after Address Change  
Chip Enable to Output Active  
Chip Disable to Output Inactive  
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
Chip Disable to Power Standby  
GLQV  
OE  
OH  
LZ  
g
5
5
5
5
5
5
5
AXQX  
6
ELQX  
h
7
10  
10  
25  
13  
13  
35  
15  
15  
45  
EHQZ  
HZ  
8
0
0
0
0
0
0
GLQX  
OLZ  
OHZ  
PA  
h
9
GHQZ  
e
d
10  
11  
ELICCH  
EHICCL  
,
e
PS  
Note f: W must be high during SRAM READ cycles and low during SRAM WRITE cycles.  
Note g: I/O state assumes E, G < VIL and W > VIH; device is continuously selected.  
Note h: Measured + 200mV from steady state output voltage.  
SRAM READ CYCLE #1: Address Controlledf, g  
2
AVAV  
t
ADDRESS  
3
t
AVQV  
5
t
AXQX  
DATA VALID  
DQ (DATA OUT)  
SRAM READ CYCLE #2: E Controlledf  
2
t
AVAV  
ADDRESS  
E
1
11  
t
ELQV  
t
6
EHICCL  
t
ELQX  
7
t
EHQZ  
G
9
4
t
GHQZ  
t
GLQV  
8
t
GLQX  
DATA VALID  
DQ (DATA OUT)  
10  
t
ELICCH  
ACTIVE  
STANDBY  
I
CC  
September 2003  
3
Document Control # ML0016 rev 0.1  
 
 
 
STK15C88  
SRAM WRITE CYCLES #1 & #2  
(VCC = 5.0V ± 10%)  
SYMBOLS  
STK15C88-25  
STK15C88-35  
STK15C88-45  
NO.  
PARAMETER  
UNITS  
#1  
#2  
Alt.  
MIN  
25  
20  
20  
10  
0
MAX  
MIN  
35  
25  
25  
12  
0
MAX  
MIN  
45  
30  
30  
15  
0
MAX  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
t
t
t
WC  
Write Cycle Time  
Write Pulse Width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
AVAV  
t
t
t
WLWH  
WLEH  
WP  
CW  
DW  
t
t
t
t
Chip Enable to End of Write  
Data Set-up to End of Write  
Data Hold after End of Write  
Address Set-up to End of Write  
Address Set-up to Start of Write  
Address Hold after End of Write  
Write Enable to Output Disable  
Output Active after End of Write  
ELWH  
DVWH  
WHDX  
ELEH  
DVEH  
EHDX  
t
t
t
t
t
DH  
t
t
t
20  
0
25  
0
30  
0
AVWH  
AVEH  
AW  
t
t
t
AVWL  
AVEL  
AS  
t
t
t
0
0
0
WHAX  
EHAX  
WR  
h, i  
t
t
10  
13  
15  
WLQZ  
WZ  
t
t
5
5
5
WHQX  
OW  
Note i: If W is low when E goes low, the outputs remain in the high-impedance state.  
Note j: E or W must be VIH during address transitions.  
SRAM WRITE CYCLE #1: W Controlledj  
12  
t
AVAV  
ADDRESS  
19  
14  
t
WHAX  
t
ELWH  
E
17  
t
AVWH  
18  
t
AVWL  
13  
W
t
WLWH  
15  
16  
t
t
DVWH  
WHDX  
DATA IN  
DATA VALID  
20  
t
WLQZ  
21  
t
WHQX  
HIGH IMPEDANCE  
DATA OUT  
PREVIOUS DATA  
SRAM WRITE CYCLE #2: E Controlledj  
12  
t
AVAV  
ADDRESS  
18  
14  
19  
t
t
AVEL  
ELEH  
t
EHAX  
E
17  
t
AVEH  
13  
t
WLEH  
W
15  
16  
t
DVEH  
t
EHDX  
DATA IN  
DATA VALID  
HIGH IMPEDANCE  
DATA OUT  
September 2003  
4
Document Control # ML0016 rev 0.1  
 
 
 
STK15C88  
AutoStore™/POWER-UP RECALL  
(VCC = 5.0V ± 10%)  
SYMBOLS  
STK15C88  
NO.  
PARAMETER  
UNITS NOTES  
Standard  
MIN  
MAX  
550  
10  
22  
23  
24  
25  
t
t
Power-up RECALL Duration  
STORE Cycle Duration  
µs  
ms  
V
k
RESTORE  
STORE  
g
V
V
Low Voltage Trigger Level  
Low Voltage Reset Level  
4.0  
4.5  
SWITCH  
RESET  
3.6  
V
Note k: tRESTORE starts from the time VCC rises above VSWITCH  
.
AutoStore™/POWER-UP RECALL  
VCC  
5V  
24  
VSWITCH  
25  
VRESET  
AutoStore™  
23  
t
STORE  
POWER-UP RECALL  
22  
t
RESTORE  
W
DQ (DATA OUT)  
POWER-UP  
RECALL  
BROWN OUT  
NO STORE DUE TO  
NO SRAM WRITES  
BROWN OUT  
AutoStore™  
BROWN OUT  
AutoStore™  
NO RECALL  
NO RECALL  
RECALL WHEN  
(VCC DID NOT GO  
(VCC DID NOT GO  
V
RETURNS  
CC  
BELOW VRESET  
)
BELOW VRESET  
)
ABOVE VSWITCH  
September 2003  
5
Document Control # ML0016 rev 0.1  
 
 
STK15C88  
SOFTWARE STORE/RECALL MODE SELECTION  
E
W
A
- A (hex)  
MODE  
I/O  
NOTES  
13  
0
0E38  
31C7  
03E0  
3C1F  
303F  
0FC0  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Read SRAM  
L
H
l, m  
Read SRAM  
Read SRAM  
Nonvolatile STORE  
0E38  
31C7  
03E0  
3C1F  
303F  
0C63  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Read SRAM  
L
H
l, m  
Read SRAM  
Read SRAM  
Nonvolatile RECALL  
Note l: The six consecutive addresses must be in the order listed. W must be high during all six consecutive cycles to enable a nonvolatile cycle.  
Note m: While there are 15 addresses on the STK15C88, only the lower 14 are used to control software modes.  
SOFTWARE STORE/RECALL CYCLEn, o  
(VCC = 5.0V ± 10%)  
STK15C88-25  
STK15C88-35  
STK15C88-45  
NO.  
SYMBOLS  
PARAMETER  
UNITS  
MIN  
25  
0
MAX  
MIN  
35  
0
MAX  
MIN  
45  
0
MAX  
26  
27  
28  
29  
30  
t
t
t
t
t
STORE/RECALL Initiation Cycle Time  
Address Set-up Time  
Clock Pulse Width  
ns  
ns  
ns  
ns  
µs  
AVAV  
AVEL  
n
n
20  
20  
25  
20  
30  
20  
ELEH  
ELAX  
g, n  
Address Hold Time  
RECALL Duration  
20  
20  
20  
RECALL  
Note n: The software sequence is clocked with E controlled reads.  
Note o: The six consecutive addresses must be in the order listed in the Software STORE/RECALL Mode Selection Table: (0E38, 31C7, 03E0, 3C1F,  
303F, 0FC0) for a STORE cycle or (0E38, 31C7, 03E0, 3C1F, 303F, 0C63) for a RECALL cycle. W must be high during all six consecutive  
cycles.  
SOFTWARE STORE/RECALL CYCLE: E Controlledo  
26  
AVAV  
26  
AVAV  
t
t
ADDRESS #1  
ADDRESS #6  
ADDRESS  
27  
AVEL  
28  
ELEH  
t
t
E
29  
ELAX  
t
23  
30  
RECALL  
t
STORE / t  
HIGH IMPEDANCE  
DATA VALID  
DATA VALID  
DQ (DATA  
September 2003  
6
Document Control # ML0016 rev 0.1  
 
STK15C88  
DEVICE OPERATION  
The STK15C88 is a versatile memory chip that pro-  
SOFTWARE NONVOLATILE STORE  
vides several modes of operation. The STK15C88  
can operate as a standard 32K x 8 SRAM. It has a  
32K x 8 nonvolatile element shadow to which the  
SRAM information can be copied, or from which the  
SRAM can be updated in nonvolatile mode.  
The STK15C88 software STORE cycle is initiated by  
executing sequential READ cycles from six specific  
address locations. During the STORE cycle an erase  
of the previous nonvolatile data is first performed,  
followed by a program of the nonvolatile elements.  
The program operation copies the SRAM data into  
nonvolatile memory. Once a STORE cycle is initi-  
ated, further input and output are disabled until the  
cycle is completed.  
NOISE CONSIDERATIONS  
Note that the STK15C88 is a high-speed memory  
and so must have a high-frequency bypass capaci-  
tor of approximately 0.1µF connected between VCC  
and VSS, using leads and traces that are as short as  
possible. As with all high-speed CMOS ICs, normal  
careful routing of power, ground and signals will help  
prevent noise problems.  
Because a sequence of READs from specific  
addresses is used for STORE initiation, it is impor-  
tant that no other READ or WRITE accesses inter-  
vene in the sequence or the sequence will be  
aborted and no STORE or RECALL will take place.  
SRAM READ  
To initiate the software STORE cycle, the following  
READ sequence must be performed:  
The STK15C88 performs a READ cycle whenever E  
and G are low and W is high. The address specified  
on pins A0-14 determines which of the 32,768 data  
bytes will be accessed. When the READ is initiated  
by an address transition, the outputs will be valid  
after a delay of tAVQV (READ cycle #1). If the READ is  
initiated by E or G, the outputs will be valid at tELQV or  
at tGLQV, whichever is later (READ cycle #2). The data  
outputs will repeatedly respond to address changes  
within the tAVQV access time without the need for tran-  
sitions on any control input pins, and will remain valid  
until another address change or until E or G is  
brought high.  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0E38 (hex)  
31C7 (hex)  
03E0 (hex)  
3C1F (hex)  
303F (hex)  
0FC0 (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate STORE cycle  
The software sequence must be clocked with E con-  
trolled READs.  
Once the sixth address in the sequence has been  
entered, the STORE cycle will commence and the  
chip will be disabled. It is important that READ cycles  
and not WRITE cycles be used in the sequence,  
although it is not necessary that G be low for the  
sequence to be valid. After the tSTORE cycle time has  
been fulfilled, the SRAM will again be activated for  
READ and WRITE operation.  
SRAM WRITE  
A WRITE cycle is performed whenever E and W are  
low. The address inputs must be stable prior to  
entering the WRITE cycle and must remain stable  
until either E or W goes high at the end of the cycle.  
The data on the common I/O pins DQ0-7 will be writ-  
ten into the memory if it is valid tDVWH before the end  
of a W controlled WRITE or tDVEH before the end of an  
E controlled WRITE.  
SOFTWARE NONVOLATILE RECALL  
A software RECALL cycle is initiated with a sequence  
of READ operations in a manner similar to the soft-  
ware STORE initiation. To initiate the RECALL cycle,  
the following sequence of READ operations must be  
performed:  
It is recommended that G be kept high during the  
entire WRITE cycle to avoid data bus contention on  
the common I/O lines. If G is left low, internal circuitry  
will turn off the output buffers tWLQZ after W goes low.  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0E38 (hex)  
31C7 (hex)  
03E0 (hex)  
3C1F (hex)  
303F (hex)  
0C63 (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate RECALL cycle  
September 2003  
7
Document Control # ML0016 rev 0.1  
STK15C88  
Internally, RECALL is a two-step procedure. First,  
the SRAM data is cleared, and second, the nonvola-  
tile information is transferred into the SRAM cells.  
After the tRECALL cycle time the SRAM will once again  
be ready for READ and WRITE operations. The  
RECALL operation in no way alters the data in the  
nonvolatile elements. The nonvolatile data can be  
recalled an unlimited number of times.  
voltage of VSWITCH, a RECALL cycle will automatically  
be initiated and will take tRESTORE to complete.  
If the STK15C88 is in a WRITE state at the end of  
power-up RECALL, the SRAM data will be corrupted.  
To help avoid this situation, a 10K Ohm resistor  
should be connected either between W and system  
VCC or between E and system VCC.  
HARDWARE PROTECT  
AutoStoreTM OPERATION  
The STK15C88 offers hardware protection against  
The STK15C88 uses the intrinsic system capaci-  
tance to perform an automatic STORE on power  
down. As long as the system power supply takes at  
least tSTORE to decay from VSWITCH down to 3.6V, the  
STK15C88 will safely and automatically store the  
SRAM data in nonvolatile elements on power down.  
inadvertent STORE operation and SRAM WRITEs  
during low-voltage conditions. When VCC < VSWITCH  
,
all software STORE operations and SRAM WRITEs  
are inhibited.  
LOW AVERAGE ACTIVE POWER  
In order to prevent unneeded STORE operations,  
automatic STOREs will be ignored unless at least  
one WRITE operation has taken place since the  
most recent STORE or RECALL cycle. Software-  
initiated STORE cycles are performed regardless of  
whether a WRITE operation has taken place.  
The STK15C88 draws significantly less current  
when it is cycled at times longer than 50ns. Figure 2  
shows the relationship between ICC and READ cycle  
time. Worst-case current consumption is shown for  
both CMOS and TTL input levels (commercial tem-  
perature range, VCC = 5.5V, 100% duty cycle on chip  
enable). Figure 3 shows the same relationship for  
WRITE cycles. If the chip enable duty cycle is less  
than 100%, only standby current is drawn when the  
chip is disabled. The overall average current drawn  
by the STK15C88 depends on the following items:  
1) CMOS vs. TTL input levels; 2) the duty cycle of  
chip enable; 3) the overall cycle rate for accesses;  
4) the ratio of READs to WRITEs; 5) the operating  
temperature; 6) the VCC level; and 7) I/O loading.  
Additional information may be found in applications  
note “Applying the STK11C88, STK15C88 and  
STK16C88 32K nvSRAM.”  
POWER-UP RECALL  
During power up, or after any low-power condition  
(VCC < VRESET), an internal RECALL request will be  
latched. When VCC once again exceeds the sense  
100  
80  
100  
80  
60  
60  
TTL  
CMOS  
40  
40  
TTL  
20  
20  
CMOS  
0
0
50  
100  
150  
200  
50  
100  
150  
200  
Cycle Time (ns)  
Cycle Time (ns)  
Figure 2: ICC (max) Reads  
Figure 3: ICC (max) Writes  
September 2003  
8
Document Control # ML0016 rev 0.1  
STK15C88  
ORDERING INFORMATION  
- N F 45 I  
STK15C88  
Temperature Range  
Blank = Commercial (0 to 70°C)  
I = Industrial (–40 to 85°C)  
Access Time  
25 = 25ns  
35 = 35ns  
45 = 45ns  
Lead Finish  
Blank = 85%Sn/15%Pb  
F = 100% Sn (Matte Tin)  
Package  
W = Plastic 28-pin 600 mil DIP  
P
S
= Plastic 28-pin 300 mil DIP  
= Plastic 28-pin 350 mil SOIC  
N = Plastic 28-pin 300 mil SOIC  
September 2003  
9
Document Control # ML0016 rev 0.1  
STK15C88  
Document Revision History  
Revision  
0.0  
Date  
December 2002  
September 2003  
Summary  
0.1  
Added lead-free lead finish  
September 2003  
10  
Document Control # ML0016 rev 0.1  

相关型号:

STK15C88-SF35I

Non-Volatile SRAM, 32KX8, 35ns, CMOS, PDSO28, 0.350 INCH, PLASTIC, SOIC-28

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYPRESS

STK15C88-SF45

32Kx8 PowerStore nvSRAM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIMTEK

STK15C88-SF45

256 Kbit (32K x 8) PowerStore nvSRAM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYPRESS

STK15C88-SF45I

32Kx8 PowerStore nvSRAM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIMTEK

STK15C88-SF45I

256 Kbit (32K x 8) PowerStore nvSRAM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYPRESS

STK15C88-SF45ITR

32Kx8 PowerStore nvSRAM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIMTEK

STK15C88-SF45ITR

256 Kbit (32K x 8) PowerStore nvSRAM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYPRESS

STK15C88-SF45TR

32Kx8 PowerStore nvSRAM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIMTEK

STK15C88-SF45TR

256 Kbit (32K x 8) PowerStore nvSRAM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYPRESS

STK15C88-W20

32KX8 NON-VOLATILE SRAM, 22ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYPRESS

STK15C88-W25

32KX8 NON-VOLATILE SRAM, 25ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYPRESS

STK15C88-W25I

32KX8 NON-VOLATILE SRAM, 25ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYPRESS